nn.py 384.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
90
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
91 92 93 94 95
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
96
    'group_norm',
D
dengkaipeng 已提交
97
    'spectral_norm',
X
Xin Pan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
111
    'roi_align',
X
Xin Pan 已提交
112 113 114 115
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
116
    'resize_nearest',
X
Xin Pan 已提交
117 118 119 120 121 122
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
123
    'selu',
X
Xin Pan 已提交
124 125 126
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
127
    'margin_rank_loss',
X
Xin Pan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
171
    'space_to_depth',
W
whs 已提交
172
    'affine_grid',
S
sneaxiy 已提交
173
    'sequence_reverse',
174
    'affine_channel',
B
barrierye 已提交
175
    'similarity_focus',
M
minqiyang 已提交
176
    'hash',
D
dengkaipeng 已提交
177
    'grid_sampler',
G
gmcather 已提交
178 179
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
180
    'bilinear_tensor_product',
C
chengduo 已提交
181 182
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
183
    'lstm',
S
shippingwang 已提交
184
    'shuffle_channel',
S
sneaxiy 已提交
185
    'py_func',
186
    'psroi_pool',
H
heqiaozhi 已提交
187
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
188
    'huber_loss',
Z
zhaozhehao 已提交
189
    'tree_conv',
C
ceci3 已提交
190
    'npair_loss',
Y
Yu Yang 已提交
191 192
]

J
jerrywgz 已提交
193 194
kIgnoreIndex = -100

Y
Yu Yang 已提交
195 196 197 198 199 200 201

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
202
       is_test=False,
203
       name=None):
Y
Yu Yang 已提交
204
    """
205
    **Fully Connected Layer**
Y
Yu Yang 已提交
206

207
    This function creates a fully connected layer in the network. It can take
208 209 210 211 212 213 214 215 216
    one or multiple tensors as its inputs(input can be a list of Variable, see
    Args in detail). It creates a variable called weights foreach input tensor,
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [M, `size`] will be sumed up. If bias_attr
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
217

218 219 220 221 222 223 224
    When the input is single tensor:

    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
225 226 227

    .. math::

228
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
229 230 231

    In the above equation:

232 233 234
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
235
    * :math:`b`: The bias parameter created by this layer (if needed).
236
    * :math:`Act`: The activation function.
C
caoying03 已提交
237
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
257
    Args:
R
ranqiu 已提交
258 259 260 261 262 263 264 265 266 267
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
268
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
269 270 271 272
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
273 274
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
275
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
276
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
277
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
278

279
    Returns:
F
fengjiayi 已提交
280
        Variable: The transformation result.
281 282

    Raises:
C
caoying03 已提交
283
        ValueError: If rank of the input tensor is less than 2.
284 285 286 287

    Examples:
        .. code-block:: python

288
          # when input is single tensor
F
fengjiayi 已提交
289
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
290
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
291 292 293 294 295

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
296
    """
C
caoying03 已提交
297

C
caoying03 已提交
298
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
299 300 301 302

    dtype = helper.input_dtype()

    mul_results = []
303 304
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
305 306 307
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
308

Y
Yu Yang 已提交
309
        w = helper.create_parameter(
310
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
311
        tmp = helper.create_variable_for_type_inference(dtype)
312
        helper.append_op(
313 314 315
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
316
            outputs={"Out": tmp},
M
mozga-intel 已提交
317 318
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
319 320 321 322
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
323
    else:
X
Xin Pan 已提交
324
        pre_bias = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
329
            attrs={"use_mkldnn": False})
330 331 332 333
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
334 335


336 337 338
def embedding(input,
              size,
              is_sparse=False,
339
              is_distributed=False,
340 341 342
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
343
    """
344 345
    **Embedding Layer**

346
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
347 348
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
349 350 351

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
352 353

    Args:
354 355 356 357 358
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
359
        is_distributed(bool): Whether to run lookup table from remote parameter server.
360 361
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
362
            with zeros whenever lookup encounters it in :attr:`input`. If
363
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
364 365
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
366
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
367

368 369 370
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
371

372 373
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
374

C
chengduoZH 已提交
375
          dict_size = len(dataset.ids)
376
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
377
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
378 379 380
    """

    helper = LayerHelper('embedding', **locals())
381
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
382 383
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
384 385
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
386
    tmp = helper.create_variable_for_type_inference(dtype)
387 388
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
389 390 391 392 393
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
394 395 396
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
397
            'remote_prefetch': remote_prefetch,
398 399
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
400 401 402
    return tmp


W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
419

W
wopeizl 已提交
420 421 422 423 424 425 426 427 428 429 430
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
431

W
wopeizl 已提交
432 433 434 435
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
436

W
wopeizl 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
523 524


P
phlrain 已提交
525 526 527 528 529 530
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
531
         dropout_prob=0.0,
P
phlrain 已提交
532 533 534 535 536
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
537
    """
P
phlrain 已提交
538
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
539 540

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
541
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
542 543
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
544
    .. math::
M
minqiyang 已提交
545 546 547 548 549 550 551

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
552
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
553 554 555 556

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
557 558

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
559 560 561 562 563 564
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
565 566 567
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
568
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
569

M
minqiyang 已提交
570
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
571 572 573 574 575
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
576
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
577 578 579 580 581
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
582
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
583 584
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
585 586
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
587 588 589 590 591 592
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
593
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
594

L
liuhongyu 已提交
595 596

    Returns:
M
minqiyang 已提交
597 598
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
599
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
600

H
haowang101779990 已提交
601 602 603 604
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
605
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
606 607
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
608
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
624
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
625 626 627 628 629 630
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
631 632 633
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
693 694 695 696 697 698 699 700 701 702
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
703
                  proj_activation='tanh',
704
                  dtype='float32',
X
xuezhong 已提交
705 706 707 708 709
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
710 711 712
    """
    **Dynamic LSTMP Layer**

713 714 715 716 717 718
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
719 720 721 722 723

    The formula is as follows:

    .. math::

724
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
725

726
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
727

728
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
729

730
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
731

732
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
733

734
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
735

736
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
737

Y
Yibing Liu 已提交
738 739 740 741 742 743
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
744
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
745
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
746
          bias vector).
Y
Yibing Liu 已提交
747 748 749
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
750
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
751
    * :math:`h`: The hidden state.
752
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
753 754
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
755
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
756
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
757
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
758 759
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
760 761 762 763

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
764

Y
Yibing Liu 已提交
765 766 767 768 769 770 771 772 773 774 775 776
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
777
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
778 779
                               hidden-hidden weight and projection weight.

780 781
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
782 783
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
784 785
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
786
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
787 788 789 790 791

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
792
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
793 794 795 796 797 798
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
799
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
800 801 802
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
803
                                - The shape is (1 x 7D).
C
chengduo 已提交
804 805 806 807 808

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
809 810 811 812 813 814 815 816 817
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
818
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
819 820
                              default "tanh".
        proj_activation(str): The activation for projection output.
821
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
822
                              default "tanh".
Y
Yibing Liu 已提交
823
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
824 825
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
826 827 828 829 830 831 832 833 834 835 836
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
837 838

    Returns:
839 840 841 842
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
843 844

    Examples:
845

Y
Yibing Liu 已提交
846 847
        .. code-block:: python

848 849 850 851
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
852
            hidden_dim, proj_dim = 512, 256
853
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
854
                                     act=None, bias_attr=None)
855 856 857
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
858 859 860 861
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
862
    """
863

C
chengduo 已提交
864
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
865
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
866
    size = size // 4
Y
Yibing Liu 已提交
867 868 869 870 871 872 873 874 875 876
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
877 878 879 880 881 882
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
898

X
xuezhong 已提交
899 900 901 902 903
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
904 905
    helper.append_op(
        type='lstmp',
906
        inputs=inputs,
Y
Yibing Liu 已提交
907 908 909 910 911 912 913 914 915
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
916 917
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
918 919 920 921 922 923 924 925 926
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
927 928 929 930 931 932 933
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
934 935
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
936
    """
937
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
938

939 940 941
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
942

G
guosheng 已提交
943 944 945 946 947 948 949 950 951
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
952

G
guosheng 已提交
953
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
954

Q
Qiao Longfei 已提交
955 956 957

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
958 959 960 961 962 963 964 965 966 967 968 969
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
970
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
971 972
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
973 974 975 976
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
977
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
978 979

    Args:
980 981
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
982
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
983
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
984 985
            is the hidden size.
        size(int): The dimension of the gru cell.
986
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
987 988
            hidden-hidden weight matrix. Note:

989
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
990
              :math:`D` is the hidden size.
991
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
992
              The first part are weights of the update gate and reset gate with
993
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
994
              candidate hidden state with shape :math:`(D \\times D)`.
995 996 997 998 999

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1000
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1001
            the bias in the update gate, reset gate and candidate calculations.
1002 1003 1004
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1005 1006
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1007
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1008 1009 1010
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1011
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1012
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1013 1014 1015 1016
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1017 1018

    Returns:
G
guosheng 已提交
1019
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1020
            and sequence length is the same with the input.
1021

G
guosheng 已提交
1022
    Examples:
1023

G
guosheng 已提交
1024 1025
        .. code-block:: python

1026 1027 1028 1029
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1030
            hidden_dim = 512
1031
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1032
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1042
    batch_size = input.shape[0]
G
guosheng 已提交
1043
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1044
    if h_0:
G
guosheng 已提交
1045
        assert h_0.shape == (
Y
Yancey 已提交
1046 1047 1048
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1049

X
Xin Pan 已提交
1050 1051 1052 1053
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1067 1068
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1069 1070 1071 1072
        })
    return hidden


Y
Yu Yang 已提交
1073 1074 1075
def gru_unit(input,
             hidden,
             size,
1076 1077
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1078
             activation='tanh',
Q
Qiao Longfei 已提交
1079 1080
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1081
    """
1082 1083 1084
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1085
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1086
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1087

1088 1089
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1090

1091
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1092

1093
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1110 1111

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1112 1113 1114
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1115 1116
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1117 1118
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1119 1120 1121
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1122 1123 1124

    Args:
        input (Variable): The fc transformed input value of current step.
1125
        hidden (Variable): The hidden value of gru unit from previous step.
1126
        size (integer): The input dimension value.
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1141
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1142
            the bias in the update gate, reset gate and candidate calculations.
1143 1144 1145
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1146 1147
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1148 1149 1150 1151
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1152

1153 1154 1155 1156 1157 1158
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1159

1160
             # assuming we have x_t_data and prev_hidden of size=10
1161
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1162 1163
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1176
    size = size // 3
Y
Yu Yang 已提交
1177 1178

    # create weight
1179 1180
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1181

X
Xin Pan 已提交
1182 1183 1184
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1185
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1186
    # create bias
1187
    if helper.bias_attr:
Y
Yu Yang 已提交
1188 1189 1190
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1191
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1192 1193 1194

    helper.append_op(
        type='gru_unit',
1195
        inputs=inputs,
Y
Yu Yang 已提交
1196 1197 1198 1199 1200 1201
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1202 1203
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1204 1205 1206 1207 1208
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1209
@templatedoc()
1210
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1211 1212 1213 1214 1215 1216 1217
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1218
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1219 1220 1221 1222
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1223 1224 1225
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1226 1227

    """
Y
Yu Yang 已提交
1228 1229 1230 1231 1232 1233
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1234 1235 1236 1237 1238 1239 1240 1241
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1257 1258 1259 1260
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1261

W
wopeizl 已提交
1262 1263
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1264

W
wopeizl 已提交
1265
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1266

W
wopeizl 已提交
1267
        label(${label_type}): ${label_comment}
1268

W
wopeizl 已提交
1269 1270
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1271

W
wopeizl 已提交
1272 1273
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1274

W
wopeizl 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1285
                "Transition": transition,
W
wopeizl 已提交
1286 1287
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1288

W
wopeizl 已提交
1289
    return viterbi_path
Y
Yu Yang 已提交
1290 1291


Y
yi.wu 已提交
1292
@templatedoc()
F
fengjiayi 已提交
1293
def cos_sim(X, Y):
Y
Yu Yang 已提交
1294
    """
Y
yi.wu 已提交
1295 1296 1297
    ${comment}

    Args:
1298 1299
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1300

Y
yi.wu 已提交
1301
    Returns:
1302
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1303
    """
F
fengjiayi 已提交
1304
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1305 1306 1307
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1318 1319 1320 1321 1322
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1323
            dropout_implementation="downgrade_in_infer"):
1324 1325 1326 1327 1328
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1329
    training. The dropout operator randomly sets (according to the given dropout
1330 1331 1332
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1333 1334
    dropout op can be removed from the program to make the program more efficient.

1335
    Args:
1336 1337
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1338 1339 1340 1341 1342 1343 1344
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1345 1346
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1347
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1348 1349 1350 1351 1352 1353

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1354
                                        2. upscale_in_train, upscale the outcome at training time
1355

H
haowang101779990 已提交
1356 1357
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1358

H
haowang101779990 已提交
1359 1360
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1361

M
minqiyang 已提交
1362

1363
    Returns:
1364
        Variable: A tensor variable is the shape with `x`.
1365 1366

    Examples:
1367

1368 1369
        .. code-block:: python

1370 1371
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1372 1373
    """

F
fengjiayi 已提交
1374
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1375 1376 1377
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1378 1379 1380 1381

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1382 1383 1384 1385 1386
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1387 1388 1389 1390
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1391 1392
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1393
        })
1394 1395 1396
    return out


J
jerrywgz 已提交
1397
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1398
    """
Y
Yibing Liu 已提交
1399 1400
    **Cross Entropy Layer**

1401 1402 1403
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1404 1405

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1406
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1407

Y
Yibing Liu 已提交
1408
        .. math::
Y
yangyaming 已提交
1409

Y
Yibing Liu 已提交
1410 1411 1412
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1413 1414
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1415 1416 1417 1418 1419

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1420
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1421 1422 1423
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1424 1425
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1426
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1427

Y
Yibing Liu 已提交
1428
    Args:
Y
yangyaming 已提交
1429
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1430 1431 1432 1433
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1434
        label (Variable|list): the ground truth which is a 2-D tensor. When
1435 1436 1437 1438
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1439
        soft_label (bool): a flag indicating whether to
1440
                                           interpretate the given labels as soft
1441
                                           labels. Default: `False`.
M
minqiyang 已提交
1442 1443
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1444
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1445 1446 1447 1448 1449

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1450 1451 1452
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1453

H
haowang101779990 已提交
1454 1455
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1456

H
haowang101779990 已提交
1457 1458
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1459 1460 1461 1462 1463 1464

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1465
    """
S
sneaxiy 已提交
1466 1467
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1468
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1469
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1470 1471 1472 1473 1474
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1475 1476
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1477 1478 1479
    return out


S
sneaxiy 已提交
1480 1481 1482 1483
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1484
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1485 1486 1487 1488 1489
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1490
                 'MatchX': [match_x],
S
sneaxiy 已提交
1491 1492 1493 1494 1495
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1496
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1497 1498 1499
    """
    Bayesian Personalized Ranking Loss Operator.

1500
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1501 1502 1503 1504 1505 1506
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1507 1508 1509 1510 1511 1512
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1513 1514
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1515 1516 1517
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1518 1519 1520
    Examples:
        .. code-block:: python

1521
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1522
    """
1523 1524 1525 1526 1527 1528

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1529
                'Label': [label]},
1530 1531 1532 1533
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1534
def square_error_cost(input, label):
Y
Yu Yang 已提交
1535
    """
1536 1537
    **Square error cost layer**

1538 1539
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1554 1555
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1556 1557

    Returns:
G
guosheng 已提交
1558
        Variable: The tensor variable storing the element-wise squared error \
1559
                  difference of input and label.
1560 1561 1562 1563 1564 1565 1566 1567

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1568
    """
F
fengjiayi 已提交
1569
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1570
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1571 1572 1573 1574 1575 1576
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1577
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1578
    helper.append_op(
F
fengjiayi 已提交
1579 1580
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1581 1582 1583
    return square_out


Y
yi.wu 已提交
1584
@templatedoc()
Y
Yu Yang 已提交
1585 1586 1587 1588
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1589
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1590
    """
Y
yi.wu 已提交
1591
    **Chunk Evaluator**
Y
yi.wu 已提交
1592

Y
yangyaming 已提交
1593
    This function computes and outputs the precision, recall and
1594
    F1-score of chunk detection.
Y
yi.wu 已提交
1595

M
minqiyang 已提交
1596
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1597
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1598 1599 1600 1601 1602 1603

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1604

Y
yi.wu 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1630

Y
yi.wu 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1655
    Args:
1656 1657 1658 1659 1660
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1661

Y
yi.wu 已提交
1662
    Returns:
Y
update  
yi.wu 已提交
1663 1664 1665
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1666

Y
yi.wu 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1679
    """
F
fengjiayi 已提交
1680
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1681 1682

    # prepare output
X
Xin Pan 已提交
1683 1684 1685 1686 1687 1688 1689
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1690 1691 1692 1693 1694 1695 1696 1697

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1698 1699 1700 1701
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1702 1703 1704
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1705 1706
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1707
        })
1708 1709
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1710 1711


1712
@templatedoc()
Y
Yu Yang 已提交
1713 1714 1715 1716 1717 1718 1719
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1720 1721
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1722 1723 1724 1725
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1726 1727 1728 1729 1730 1731 1732

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1746

1747 1748
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1749 1750 1751 1752 1753 1754 1755
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1756
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1767
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1768 1769 1770 1771 1772 1773
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1774
def sequence_softmax(input, use_cudnn=False, name=None):
1775 1776 1777
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1778
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1795 1796 1797
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1810 1811
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1812
    softmax_out = helper.create_variable_for_type_inference(dtype)
1813 1814 1815 1816 1817 1818 1819 1820
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1821
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1822
    """
1823
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1824
    has the same shape as the input.
Q
qiaolongfei 已提交
1825

1826 1827 1828 1829 1830 1831
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1832
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1833 1834 1835 1836 1837 1838 1839

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1840
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1841 1842 1843 1844 1845 1846 1847 1848

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1849 1850
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1851 1852
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1865 1866
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1867
    softmax_out = helper.create_variable_for_type_inference(dtype)
1868 1869 1870 1871 1872 1873 1874 1875
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1876 1877 1878
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1879 1880
           stride=1,
           padding=0,
1881
           dilation=1,
Y
Yu Yang 已提交
1882 1883 1884
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1885
           use_cudnn=True,
1886 1887
           act=None,
           name=None):
Y
Yu Yang 已提交
1888
    """
C
chengduoZH 已提交
1889
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1890 1891
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1892
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1893 1894 1895 1896 1897 1898 1899
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1900 1901 1902
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1903

1904
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1905

C
chengduoZH 已提交
1906 1907
    .. math::

C
refine  
chengduoZH 已提交
1908
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1909

T
tensor-tang 已提交
1910
    Where:
C
chengduoZH 已提交
1911

1912 1913 1914 1915 1916
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1917
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1918 1919 1920

    Example:

1921 1922
        - Input:

W
weixing02 已提交
1923
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1924

W
weixing02 已提交
1925
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1926

1927
        - Output:
T
tensor-tang 已提交
1928

W
weixing02 已提交
1929
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1930

C
chengduoZH 已提交
1931
        Where
1932 1933

        .. math::
C
chengduoZH 已提交
1934

W
weixing02 已提交
1935 1936
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1937 1938

    Args:
1939
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1940
        num_filters(int): The number of filter. It is as same as the output
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1958 1959 1960 1961 1962
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1963
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1964 1965 1966 1967 1968
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1969 1970
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1971 1972
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1973
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1974
            will be named automatically. Default: None
C
chengduoZH 已提交
1975 1976

    Returns:
G
guosheng 已提交
1977
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1978 1979
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1980
    Raises:
1981 1982
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1983

C
chengduoZH 已提交
1984 1985 1986
    Examples:
        .. code-block:: python

1987 1988
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1989 1990 1991
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1992
    assert param_attr is not False, "param_attr should not be False here."
1993
    l_type = 'conv2d'
X
xzl 已提交
1994 1995
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1996
        l_type = 'depthwise_conv2d'
1997 1998 1999 2000

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2001 2002 2003 2004 2005
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2006
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2007

C
chengduoZH 已提交
2008 2009 2010
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2011
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2012

C
chengduoZH 已提交
2013 2014
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2015 2016

    input_shape = input.shape
M
minqiyang 已提交
2017
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2018 2019

    def _get_default_param_initializer():
C
chengduo 已提交
2020 2021
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2022 2023 2024 2025 2026 2027 2028 2029
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2030
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2046
    helper.append_op(
2047
        type=l_type,
Y
Yu Yang 已提交
2048 2049 2050 2051 2052
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2053 2054 2055
        attrs={
            'strides': stride,
            'paddings': padding,
2056
            'dilations': dilation,
C
chengduoZH 已提交
2057
            'groups': groups,
2058
            'use_cudnn': use_cudnn,
2059
            'use_mkldnn': False,
2060
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2061
        })
Y
Yu Yang 已提交
2062 2063 2064 2065 2066 2067

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2085 2086 2087 2088 2089 2090
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2100 2101
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2102 2103 2104
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2105
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2131
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2132 2133
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2134
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2135 2136
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2137
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2138 2139
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2140
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2141 2142 2143 2144 2145 2146
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2157 2158
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2159 2160
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2161
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2162
            will be named automatically. Default: None.
C
chengduoZH 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2175 2176
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2177 2178 2179
    """

    l_type = 'conv3d'
C
chengduo 已提交
2180
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2191
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2205 2206 2207
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2208 2209 2210 2211 2212 2213 2214 2215
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2216
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2231
            'use_mkldnn': False
C
chengduoZH 已提交
2232 2233
        })

2234
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2235 2236 2237 2238

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2239
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2240
    """
Y
yangyaming 已提交
2241 2242 2243
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2255
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2256 2257 2258 2259 2260
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2261
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2262 2263 2264 2265 2266 2267 2268

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2269 2270
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2271

L
Luo Tao 已提交
2272 2273
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2274
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2275
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2276
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2277 2278 2279 2280 2281 2282 2283

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2284

Y
yangyaming 已提交
2285
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2286 2287 2288 2289 2290
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2291 2292
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2293
    """
F
fengjiayi 已提交
2294
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2295
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2296 2297
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2298 2299 2300 2301 2302 2303

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2304 2305
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2306

Y
yangyaming 已提交
2307 2308 2309 2310 2311
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2312 2313 2314
    return pool_out


C
add doc  
chengduoZH 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2334
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2335 2336 2337 2338 2339
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2340
def sequence_first_step(input):
L
Luo Tao 已提交
2341
    """
L
Luo Tao 已提交
2342
    This function gets the first step of sequence.
L
Luo Tao 已提交
2343 2344 2345 2346

    .. code-block:: text

       x is a 1-level LoDTensor:
2347
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2348 2349 2350 2351 2352
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2353
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2354
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2355

L
Luo Tao 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2365

Y
yangyaming 已提交
2366
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2367 2368 2369
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2370 2371 2372
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2373
def sequence_last_step(input):
L
Luo Tao 已提交
2374
    """
L
Luo Tao 已提交
2375
    This function gets the last step of sequence.
L
Luo Tao 已提交
2376 2377 2378 2379

    .. code-block:: text

       x is a 1-level LoDTensor:
2380
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2381 2382 2383 2384 2385
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2386
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2387
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2388

L
Luo Tao 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2398

Y
yangyaming 已提交
2399
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2400 2401 2402
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2403 2404 2405
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2406 2407 2408 2409
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2410
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2411 2412 2413 2414 2415
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2416

H
haowang101779990 已提交
2417
              - Case:
Y
Yibing Liu 已提交
2418

2419
            Given the input Variable **input**:
2420

2421 2422 2423
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2424

2425
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2426

2427
            the output Variable will be
2428

2429 2430 2431
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2432

M
minqiyang 已提交
2433
    Note:
H
haowang101779990 已提交
2434
          The first dimension size of **input**, **offset** and **length**
2435
          should be equal. The **offset** should start from 0.
2436

Y
Yibing Liu 已提交
2437
    Args:
2438
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2439
                         sequences.
Y
Yibing Liu 已提交
2440 2441 2442 2443 2444 2445
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2446
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2457
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2458 2459 2460 2461
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2462
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2477
@templatedoc()
Y
Yu Yang 已提交
2478
def pool2d(input,
C
chengduoZH 已提交
2479 2480
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2481 2482
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2483
           global_pooling=False,
C
chengduoZH 已提交
2484
           use_cudnn=True,
2485
           ceil_mode=False,
2486 2487
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2488
    """
F
fengjiayi 已提交
2489
    ${comment}
2490 2491

    Args:
2492 2493 2494
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2495
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2496
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2497 2498
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2499
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2500 2501 2502 2503 2504 2505
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2506 2507 2508
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2509
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2510
                        layer will be named automatically.
2511
        exclusive (bool): Whether to exclude padding points in average pooling
2512
                          mode, default is true
F
fengjiayi 已提交
2513

2514
    Returns:
F
fengjiayi 已提交
2515
        Variable: The pooling result.
F
fengjiayi 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2528
          pool2d = fluid.layers.pool2d(
2529 2530 2531 2532
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2533
                            global_pooling=False)
Y
Yu Yang 已提交
2534 2535 2536 2537 2538
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2539

C
chengduoZH 已提交
2540 2541 2542 2543 2544
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2545 2546 2547 2548
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2549 2550
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2551

C
Add doc  
chengduoZH 已提交
2552
    l_type = 'pool2d'
2553 2554

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2555
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2556
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2557 2558

    helper.append_op(
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2570 2571
            "use_mkldnn": False,
            "exclusive": exclusive,
2572 2573 2574 2575 2576
        })

    return pool_out


D
dengkaipeng 已提交
2577
@templatedoc()
2578 2579 2580 2581 2582 2583 2584 2585
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2586 2587
           name=None,
           exclusive=True):
2588
    """
2589
    ${comment}
2590 2591

    Args:
D
dengkaipeng 已提交
2592 2593 2594 2595 2596
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2597 2598 2599 2600 2601
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2602 2603 2604 2605 2606 2607 2608
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2609
        exclusive (bool): Whether to exclude padding points in average pooling
2610
                          mode, default is true
2611

2612
    Returns:
2613
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2627 2628 2629 2630 2631
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2632

C
chengduoZH 已提交
2633 2634 2635 2636 2637
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2638 2639 2640
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2641

C
chengduoZH 已提交
2642 2643
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2644

2645 2646
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2647
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2648
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2649 2650

    helper.append_op(
2651
        type=l_type,
Y
Yu Yang 已提交
2652 2653 2654 2655 2656 2657 2658
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2659
            "paddings": pool_padding,
2660
            "use_cudnn": use_cudnn,
2661
            "ceil_mode": ceil_mode,
2662 2663
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2664 2665 2666 2667 2668
        })

    return pool_out


2669 2670 2671 2672 2673 2674 2675
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2676 2677 2678 2679 2680 2681 2682
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2697 2698 2699 2700 2701 2702 2703 2704 2705

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2706 2707
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2722
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2723
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2724
          # of input data into m * n grids averagely and performs poolings in each
2725 2726
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2727
          #
2728 2729 2730 2731 2732 2733 2734 2735
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2736 2737
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2738
          pool_out = fluid.layers.adaptive_pool2d(
2739 2740
                            input=data,
                            pool_size=[3, 3],
2741
                            pool_type='avg')
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2752
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2778
    return (pool_out, mask) if require_index else pool_out
2779 2780 2781 2782 2783 2784 2785 2786 2787


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2788 2789 2790 2791 2792 2793 2794
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2795

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2813 2814 2815

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2816 2817 2818
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2819
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2820
            it must contain three integers, (Depth, Height, Width).
2821
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2822 2823
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2838 2839
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2840
          # of input data into l * m * n grids averagely and performs poolings in each
2841 2842
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2843
          #
2844 2845 2846 2847 2848 2849 2850 2851 2852
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2853
          #                 output[:, :, i, j, k] =
2854 2855
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2856 2857
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2858
          pool_out, mask = fluid.layers.adaptive_pool3d(
2859
                            input=data,
D
dengkaipeng 已提交
2860
                            pool_size=[3, 3, 3],
2861
                            pool_type='avg')
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2872
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2898
    return (pool_out, mask) if require_index else pool_out
2899 2900


Y
Yu Yang 已提交
2901 2902 2903 2904 2905 2906 2907
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2908
               data_layout='NCHW',
Y
Yang Yang 已提交
2909
               in_place=False,
2910 2911
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2912
               moving_variance_name=None,
2913
               do_model_average_for_mean_and_var=False,
2914 2915
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2916
    """
Q
qiaolongfei 已提交
2917 2918 2919 2920
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2921

Q
qiaolongfei 已提交
2922
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2923

Q
qiaolongfei 已提交
2924 2925
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2926 2927 2928
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2955
    Args:
Q
qiaolongfei 已提交
2956
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2957 2958 2959 2960
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2961 2962 2963 2964 2965 2966 2967 2968
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2969
        data_layout(string, default NCHW): NCHW|NHWC
2970
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2971 2972 2973 2974
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2975
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2976
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2977 2978 2979 2980 2981
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2982 2983

    Returns:
Q
qiaolongfei 已提交
2984
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2985 2986 2987 2988 2989 2990 2991

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2992
    """
C
chengduo 已提交
2993
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2994 2995 2996
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2997 2998 2999 3000
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
3018 3019 3020
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
3021 3022

    bias = helper.create_parameter(
3023
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
3024 3025
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
3026
        bias.stop_gradient = True
Y
Yu Yang 已提交
3027

3028 3029
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3030 3031 3032
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3033
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3034
        shape=param_shape,
W
Wu Yi 已提交
3035
        dtype=dtype)
3036 3037 3038 3039 3040 3041
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3042
            trainable=False,
W
wanghaoshuang 已提交
3043
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3044
        shape=param_shape,
W
Wu Yi 已提交
3045
        dtype=dtype)
3046
    variance.stop_gradient = True
Y
Yu Yang 已提交
3047 3048 3049 3050 3051 3052

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3053 3054 3055 3056
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3057

X
Xin Pan 已提交
3058 3059
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3077 3078 3079 3080
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3081
            "data_layout": data_layout,
X
Xin Pan 已提交
3082
            "use_mkldnn": False,
3083 3084
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3085
        })
Y
Yu Yang 已提交
3086 3087 3088 3089

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3209
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3210 3211 3212 3213

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3214
@templatedoc()
G
guosheng 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3225
    ${comment}
G
guosheng 已提交
3226 3227 3228

    The formula is as follows:

Y
yuyang18 已提交
3229
    ..  math::
G
guosheng 已提交
3230 3231 3232 3233 3234 3235 3236

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3237 3238 3239 3240 3241 3242 3243 3244
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3245

G
guosheng 已提交
3246 3247
    Args:
        input(Variable): The input tensor variable.
3248
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3249
            normalization. Default True.
3250
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3251 3252
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3253
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3254
            Default 1.
3255
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3256
            division by zero. Default 1e-05.
G
guosheng 已提交
3257
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3258 3259
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3260 3261
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3262
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3263 3264
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3265
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3266
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3267
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3268 3269 3270
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3271 3272

    Returns:
Y
yuyang18 已提交
3273
        ${y_comment}
G
guosheng 已提交
3274 3275 3276

    Examples:

Y
yuyang18 已提交
3277 3278 3279
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3295
    if shift:
G
guosheng 已提交
3296 3297 3298 3299 3300 3301
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3302 3303 3304 3305 3306
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3334
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3382 3383
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3401
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3402 3403 3404
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3405
    This layer calculates the spectral normalization value of weight parameters of
3406
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3407
    Parameters. Calculations are showed as follows.
3408

D
dengkaipeng 已提交
3409 3410 3411
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3412
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3425
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3426 3427 3428 3429

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3430

D
dengkaipeng 已提交
3431
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3432 3433
                

D
dengkaipeng 已提交
3434 3435 3436 3437
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3438 3439 3440
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3441 3442 3443
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3444
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3445 3446 3447 3448 3449 3450 3451 3452

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3453
    dtype = weight.dtype
D
dengkaipeng 已提交
3454 3455 3456

    # create intput and parameters
    inputs = {'Weight': weight}
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3475 3476

    # create output
3477
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3478 3479

    helper.append_op(
3480
        type="spectral_norm",
D
Dun 已提交
3481
        inputs=inputs,
3482 3483 3484 3485 3486 3487
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3488

3489
    return out
D
Dun 已提交
3490 3491


Y
Yu Yang 已提交
3492 3493 3494 3495
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3496 3497 3498
                     padding=0,
                     stride=1,
                     dilation=1,
3499
                     groups=None,
C
caoying03 已提交
3500
                     param_attr=None,
3501
                     bias_attr=None,
C
chengduoZH 已提交
3502
                     use_cudnn=True,
3503
                     act=None,
C
caoying03 已提交
3504
                     name=None):
Y
Yu Yang 已提交
3505
    """
3506 3507 3508 3509 3510 3511 3512 3513
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3514 3515
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3516 3517 3518
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3519 3520 3521 3522 3523

    For each input :math:`X`, the equation is:

    .. math::

3524
        Out = \sigma (W \\ast X + b)
3525

3526
    Where:
3527 3528 3529

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3530 3531 3532 3533
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3534

3535 3536 3537 3538
    Example:

        - Input:

3539
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3540

3541
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3542 3543 3544

        - Output:

3545
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3546 3547

        Where
Y
Yu Yang 已提交
3548

3549 3550
        .. math::

3551 3552
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3553 3554
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3555 3556

    Args:
3557 3558 3559 3560
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3561 3562 3563 3564
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3593
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3594 3595 3596
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3597
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3598
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3599 3600

    Returns:
3601
        Variable: The tensor variable storing the convolution transpose result.
3602 3603

    Raises:
3604 3605
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3606 3607 3608 3609

    Examples:
       .. code-block:: python

3610 3611
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3612
    """
C
chengduo 已提交
3613
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3614 3615 3616 3617 3618 3619 3620 3621
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3622 3623 3624
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3625 3626 3627
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3628

C
chengduoZH 已提交
3629 3630
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3631

Y
Yu Yang 已提交
3632 3633 3634 3635 3636
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3637

Y
Yu Yang 已提交
3638 3639
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3640

C
chengduoZH 已提交
3641
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3642
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3643
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3644
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3645
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3646 3647 3648
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3649

3650 3651 3652 3653 3654 3655 3656
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3657
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3658
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3659

Y
Yu Yang 已提交
3660 3661 3662
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3663
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3664
    helper.append_op(
3665
        type=op_type,
Y
Yu Yang 已提交
3666 3667
        inputs={'Input': [input],
                'Filter': [img_filter]},
3668
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3669
        attrs={
3670
            'output_size': output_size,
3671 3672 3673 3674 3675
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3676 3677
        })

3678 3679 3680
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3681 3682


3683
def conv3d_transpose(input,
Y
Yu Yang 已提交
3684 3685 3686
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3687 3688 3689
                     padding=0,
                     stride=1,
                     dilation=1,
3690
                     groups=None,
C
caoying03 已提交
3691
                     param_attr=None,
3692
                     bias_attr=None,
C
chengduoZH 已提交
3693
                     use_cudnn=True,
3694
                     act=None,
C
caoying03 已提交
3695
                     name=None):
Y
Yu Yang 已提交
3696
    """
3697
    **Convlution3D transpose layer**
3698

3699
    The convolution3D transpose layer calculates the output based on the input,
3700
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3701 3702 3703 3704 3705 3706
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3707 3708 3709
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3710 3711 3712 3713 3714

    For each input :math:`X`, the equation is:

    .. math::

3715
        Out = \sigma (W \\ast X + b)
3716 3717 3718

    In the above equation:

3719 3720
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3721 3722 3723 3724
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3725

3726 3727 3728 3729
    Example:

        - Input:

3730
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3731

3732
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3733 3734 3735

        - Output:

3736
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3737 3738

        Where
Y
Yu Yang 已提交
3739

3740 3741
        .. math::

3742 3743 3744
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3745 3746

    Args:
3747
        input(Variable): The input image with [N, C, D, H, W] format.
3748 3749 3750
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3751
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3752 3753
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3754
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3755 3756 3757
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3758 3759
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3760
        stride(int|tuple): The stride size. If stride is a tuple, it must
3761 3762
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3763
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3764 3765 3766
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3767 3768 3769 3770 3771
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3781 3782
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3783 3784
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3785 3786
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3787 3788

    Returns:
3789
        Variable: The tensor variable storing the convolution transpose result.
3790 3791

    Raises:
3792 3793
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3794 3795 3796 3797

    Examples:
       .. code-block:: python

3798 3799
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3800
    """
C
chengduo 已提交
3801
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3802 3803
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3804
    if not isinstance(input, Variable):
3805
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3806 3807
    input_channel = input.shape[1]

3808 3809 3810
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3811

C
chengduoZH 已提交
3812 3813 3814
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3815 3816 3817 3818 3819 3820
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3821 3822 3823
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3824

3825
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3826
                         padding[0] - 1) // dilation[0] + 1
3827
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3828
                         padding[1] - 1) // dilation[1] + 1
3829
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3830
                         padding[2] - 1) // dilation[2] + 1
3831
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3832
    else:
3833 3834
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3835

3836
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3837
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3838 3839 3840
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3841
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3842
    helper.append_op(
3843
        type=l_type,
Y
Yu Yang 已提交
3844 3845
        inputs={'Input': [input],
                'Filter': [img_filter]},
3846
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3847 3848 3849 3850
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3851
            'groups': groups,
C
chengduoZH 已提交
3852 3853
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3854

3855 3856
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3857
    return out
Y
yangyaming 已提交
3858 3859


Y
yangyaming 已提交
3860
def sequence_expand(x, y, ref_level=-1, name=None):
3861
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3862 3863 3864 3865
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3866 3867 3868 3869 3870

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3871
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3872
                x.data = [[a], [b], [c], [d]]
3873 3874 3875
                x.dims = [4, 1]

            y is a LoDTensor:
3876 3877
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3878

Y
yangyaming 已提交
3879
            ref_level: 0
3880

Y
yangyaming 已提交
3881
            then output is a 1-level LoDTensor:
3882
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3883
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3884 3885 3886 3887
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3888
                x.data = [[a], [b], [c]]
3889 3890 3891
                x.dims = [3, 1]

            y is a LoDTensor:
3892
                y.lod = [[2, 0, 3]]
3893

Y
yangyaming 已提交
3894
            ref_level: -1
3895

Y
yangyaming 已提交
3896 3897 3898
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3899 3900 3901
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3902 3903
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3904
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3905
                        will be named automatically.
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3916
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3917
    """
Y
yangyaming 已提交
3918
    helper = LayerHelper('sequence_expand', input=x, **locals())
3919
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3920
    tmp = helper.create_variable_for_type_inference(dtype)
3921
    helper.append_op(
Y
yangyaming 已提交
3922 3923 3924 3925 3926
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3927
    return tmp
3928 3929


C
chengduo 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3986
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3987 3988 3989 3990 3991 3992 3993 3994
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3995
@templatedoc()
3996
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3997 3998 3999 4000 4001
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4002 4003 4004
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4005
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4006 4007 4008 4009
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4010 4011 4012
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4013

F
fengjiayi 已提交
4014
    Returns:
M
minqiyang 已提交
4015
        Variable: The padded sequence batch and the original lengths before
4016
                  padding. All sequences has the same length.
M
minqiyang 已提交
4017

F
fengjiayi 已提交
4018 4019 4020 4021 4022 4023 4024
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4025
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4026
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4027 4028 4029 4030 4031
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4032 4033
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4034 4035 4036 4037

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4038 4039 4040 4041 4042 4043
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4044 4045
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4046
        attrs={'padded_length': maxlen})
4047
    return out, length
F
fengjiayi 已提交
4048 4049


4050
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4051
    """
4052
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4053

4054 4055
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4065 4066 4067
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4068
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4069 4070 4071 4072 4073 4074

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4075
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4076 4077 4078 4079 4080 4081

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4082 4083
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4098
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4110 4111 4112 4113 4114 4115 4116
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4117
                is_accumulated=True,
4118 4119
                name=None,
                return_parent_idx=False):
4120
    """
4121 4122
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4123 4124 4125

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4126 4127

    This layer does the search in beams for one time step. Specifically, it
4128 4129 4130
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4142 4143 4144 4145

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4146

4147
    Args:
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4171 4172
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4173 4174
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4175 4176 4177 4178
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4179

4180
    Returns:
4181 4182 4183 4184
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4185 4186 4187 4188

    Examples:
        .. code-block:: python

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4206
    helper = LayerHelper('beam_search', **locals())
4207 4208 4209 4210 4211 4212
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4213

X
Xin Pan 已提交
4214 4215 4216
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4217 4218 4219 4220 4221
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4222 4223 4224

    helper.append_op(
        type='beam_search',
4225
        inputs=inputs,
Q
Qiao Longfei 已提交
4226 4227 4228
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4229
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4230 4231 4232 4233 4234 4235
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4236
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4237
        })
4238 4239 4240 4241
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4242 4243


4244 4245 4246 4247 4248 4249 4250
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4251

4252 4253 4254 4255 4256 4257 4258 4259 4260
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4261

4262 4263 4264 4265 4266 4267
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4268

4269 4270
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4271

4272 4273 4274 4275 4276 4277
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4278 4279
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4295 4296 4297 4298
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4299
              param_attr=None,
C
caoying03 已提交
4300 4301
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4302 4303 4304 4305
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4306
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4307

4308
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4309

4310
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4311

4312
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4313 4314 4315

            h_t & = o_t tanh(c_t)

4316 4317 4318 4319 4320 4321
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4322 4323 4324

        .. math::

4325
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4326 4327 4328 4329 4330 4331 4332 4333

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4334
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4335 4336

    Args:
Y
yangyaming 已提交
4337 4338 4339 4340 4341 4342
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4343
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4356 4357
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4358 4359

    Returns:
Y
yangyaming 已提交
4360
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4361 4362

    Raises:
4363 4364 4365 4366
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4367 4368 4369 4370 4371 4372

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4373
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4374
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4375
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4392
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4393 4394 4395 4396
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4397 4398
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4399 4400 4401
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4402
    size = cell_t_prev.shape[1]
4403
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4404 4405
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4406
                param_attr=param_attr,
4407
                bias_attr=bias_attr)
Y
yangyaming 已提交
4408
    dtype = x_t.dtype
X
Xin Pan 已提交
4409 4410
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4420
    return h, c
G
guosheng 已提交
4421 4422


C
caoying03 已提交
4423
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4424
    """
Y
yangyaming 已提交
4425
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4426 4427 4428

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4429
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4430 4431
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4432 4433
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4434
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4435
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4436
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4437 4438
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4439 4440 4441

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4442

G
guosheng 已提交
4443 4444 4445 4446 4447 4448
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4449
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4450 4451 4452 4453
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4454 4455 4456 4457

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4458
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4459 4460 4461
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4462 4463
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4464
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4465 4466
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4467 4468 4469 4470 4471
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4472
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4473 4474 4475 4476
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4477 4478


C
caoying03 已提交
4479
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4480
    """
Y
Yibing Liu 已提交
4481
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4482 4483 4484

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4485 4486 4487
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4488
            must be in the range :math:`[-rank(input), rank(input))`. If
4489
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4490
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4491 4492
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4493
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4494
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4495
                       will be named automatically.
G
guosheng 已提交
4496 4497

    Returns:
Y
Yibing Liu 已提交
4498
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4499

G
guosheng 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4510 4511
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4512 4513 4514 4515 4516 4517 4518

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4519 4520
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4521
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4522 4523
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4524 4525 4526 4527 4528
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4529
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4530 4531 4532 4533
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4534 4535


C
caoying03 已提交
4536
def reduce_max(input, dim=None, keep_dim=False, name=None):
4537
    """
Y
yangyaming 已提交
4538
    Computes the maximum of tensor elements over the given dimension.
4539 4540 4541

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4542
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4543 4544 4545
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4546
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4547 4548
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4549
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4550 4551
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4552 4553 4554

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4555

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4567 4568 4569 4570 4571 4572 4573

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4574 4575
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4576
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4577 4578
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4579 4580 4581 4582 4583
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4584
            'dim': dim if dim != None else [0],
4585 4586 4587 4588 4589 4590
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4591
def reduce_min(input, dim=None, keep_dim=False, name=None):
4592
    """
Y
yangyaming 已提交
4593
    Computes the minimum of tensor elements over the given dimension.
4594 4595 4596

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4597
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4598 4599 4600
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4601
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4602 4603
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4604
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4605 4606
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4607 4608 4609

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4610

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4622 4623 4624 4625 4626 4627 4628

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4629 4630
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4631
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4632 4633
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4634 4635 4636 4637 4638
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4639
            'dim': dim if dim != None else [0],
4640 4641 4642 4643
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4644 4645


4646 4647 4648 4649 4650 4651
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4652
        dim (list|int|None): The dimensions along which the product is performed. If
4653 4654
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4655 4656
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4657 4658 4659
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4660
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4661
            layer will be named automatically.
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4676
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4677
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4678 4679 4680 4681 4682 4683 4684

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4685 4686
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4687
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4688 4689
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4690 4691 4692 4693 4694
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4695
            'dim': dim if dim != None else [0],
4696 4697 4698 4699 4700 4701
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4702
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4703
    """
C
caoying03 已提交
4704
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4705 4706 4707

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4708 4709 4710 4711 4712
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4713
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4714
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4715
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4716 4717
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4718 4719

    Returns:
D
dzhwinter 已提交
4720
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4730 4731
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4747
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4770
    .. math::
4771 4772

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4773 4774 4775 4776 4777

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4778
        x(Variable|list): The input tensor to l2_normalize layer.
4779
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4780 4781
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4782
        epsilon(float): The epsilon value is used to avoid division by zero, \
4783
            the defalut value is 1e-10.
4784
        name(str|None): A name for this layer(optional). If set None, the layer \
4785
            will be named automatically.
C
caoying03 已提交
4786 4787

    Returns:
4788
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4789 4790

    Examples:
4791

C
caoying03 已提交
4792 4793
        .. code-block:: python

4794 4795 4796 4797
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4798 4799
    """

F
fengjiayi 已提交
4800 4801
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4802 4803
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4804 4805
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4806
    helper.append_op(
4807 4808 4809 4810
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4811
        attrs={
4812 4813
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4814 4815
        })
    return out
4816 4817


S
sneaxiy 已提交
4818
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4819
    """
Y
ying 已提交
4820 4821 4822 4823
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4824

C
chengduoZH 已提交
4825
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4826
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4827

4828 4829 4830 4831 4832
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4833
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4834

C
chengduoZH 已提交
4835
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4836
      performs in the following way.
G
guosheng 已提交
4837

4838
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4839
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4840
        last two dimensions and a batched matrix multiply supporting broadcast
4841
        applies on the two tensors.
G
guosheng 已提交
4842

Y
ying 已提交
4843 4844
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4845
    removed after matrix multiplication.
G
guosheng 已提交
4846 4847 4848

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4849 4850 4851
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4852
        alpha (float): The scale of output. Default 1.0.
4853
        name(str|None): A name for this layer(optional). If set None, the layer
4854
            will be named automatically.
G
guosheng 已提交
4855 4856

    Returns:
4857
        Variable: The product Tensor variable.
G
guosheng 已提交
4858

G
guosheng 已提交
4859 4860 4861
    Examples:
        .. code-block:: python

4862
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4863 4864
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4865

4866 4867
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4868

4869 4870
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4871

4872 4873
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4874 4875 4876 4877

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4878 4879
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4880

Y
ying 已提交
4881
            # x: [M], y: [N]
4882
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4883
    """
Y
ying 已提交
4884 4885 4886 4887 4888 4889 4890

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4891
            y_shape = y_shape + [1]
Y
ying 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

C
chengduo 已提交
4901
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4902 4903
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
C
chengduo 已提交
4904 4905
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4906 4907 4908

    __check_input(x, y)

4909
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4910
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4911
    helper.append_op(
4912 4913 4914 4915
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4916 4917 4918
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4919
            'alpha': float(alpha),
S
sneaxiy 已提交
4920
        })
4921
    return out
4922 4923


4924
def topk(input, k, name=None):
Q
qingqing01 已提交
4925 4926 4927 4928
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4929
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4930 4931 4932 4933 4934 4935
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4957 4958 4959
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4960
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4961
                 of input.
4962
        name(str|None): A name for this layer(optional). If set None, the layer
4963
                       will be named automatically.
F
fengjiayi 已提交
4964
                       Default: None
Q
qingqing01 已提交
4965 4966

    Returns:
4967 4968 4969
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4970
        within the last dimension of input.
Q
qingqing01 已提交
4971

F
fengjiayi 已提交
4972 4973
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4974 4975 4976 4977 4978 4979 4980

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4981 4982
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4983 4984 4985 4986 4987 4988
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4989 4990
    helper.append_op(
        type="top_k",
W
whs 已提交
4991
        inputs=inputs,
Q
qingqing01 已提交
4992 4993
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4994
        attrs=attrs)
Q
qingqing01 已提交
4995 4996 4997 4998 4999
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5000
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5001
    """
Y
ying 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5011

Y
ying 已提交
5012
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5013

5014
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5015 5016
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5017
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5018

5019
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5020 5021
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5022

5023 5024 5025
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5026
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5027
                          the length of reference string.
5028
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5029
                                     calculating edit distance.
5030
        name (str): The name of this layer. It is optional.
5031

W
wanghaoshuang 已提交
5032
    Returns:
W
wanghaoshuang 已提交
5033
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5034 5035 5036 5037

    Examples:
        .. code-block:: python

T
tink2123 已提交
5038 5039
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5040
            cost = fluid.layers.edit_distance(input=x,label=y)
5041
    """
5042
    helper = LayerHelper("edit_distance", **locals())
5043

5044
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5045
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5046 5047
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5048 5049 5050 5051 5052

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5053
            attrs={"tokens": ignored_tokens})
5054 5055 5056 5057 5058
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5059
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5060
            attrs={"tokens": ignored_tokens})
5061 5062
        label = erased_label

5063
    # edit distance op
X
Xin Pan 已提交
5064 5065
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5066 5067 5068 5069
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5070 5071
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5072 5073
        attrs={"normalized": normalized})

5074
    return edit_distance_out, sequence_num
5075 5076 5077 5078 5079


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5080

Y
ying 已提交
5081 5082 5083 5084
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5102
        input.lod = [[4, 4]]
M
minqiyang 已提交
5103

W
whs 已提交
5104
        Computation:
5105

W
whs 已提交
5106 5107 5108 5109 5110 5111
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5112 5113 5114 5115 5116

        output.data = [[2],
                       [1],
                       [3]]

5117
        output.lod = [[2, 1]]
5118

W
whs 已提交
5119

5120 5121
    Args:

Y
ying 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5131
        name (str): The name of this layer. It is optional.
5132 5133

    Returns:
H
haowang101779990 已提交
5134 5135 5136
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5137
                  LoD [[]] and dims [1, 1].
5138 5139 5140 5141 5142

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5143

5144
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5145
    """
5146
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5147
    _, topk_indices = topk(input, k=1)
5148 5149

    # ctc align op
X
Xin Pan 已提交
5150
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5151 5152 5153
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5154
        outputs={"Output": [ctc_out]},
5155 5156
        attrs={"merge_repeated": True,
               "blank": blank})
5157
    return ctc_out
5158 5159


W
Wu Yi 已提交
5160
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5161
    """
5162 5163
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5164
    to compute Connectionist Temporal Classification (CTC) loss.
5165 5166
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5167 5168 5169
    input tensor.

    Args:
5170
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5171 5172 5173 5174
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5175
       label (Variable): The ground truth of variable-length sequence,
5176 5177 5178
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5179 5180
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5181 5182 5183
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5184
         follewed by a mean_op.
W
Wu Yi 已提交
5185
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5186 5187

    Returns:
5188 5189
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5190 5191

    Examples:
5192

W
wanghaoshuang 已提交
5193
        .. code-block:: python
5194

5195 5196 5197
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5198 5199

    """
F
fengjiayi 已提交
5200
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5201 5202
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5203 5204 5205 5206 5207 5208
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5209 5210 5211 5212 5213
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5214
    return loss_out
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5230 5231 5232
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5233 5234 5235 5236 5237
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5238

5239
            out.lod  = [[0, 1, 3]]
5240 5241 5242 5243

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5244 5245 5246 5247 5248 5249 5250
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5251 5252 5253

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5254 5255

    Returns:
5256

5257 5258 5259 5260 5261
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5262
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5263
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5264 5265
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5266
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5267 5268 5269 5270 5271 5272
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5273 5274


5275 5276 5277 5278
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5279 5280 5281 5282 5283 5284
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5285
        num_neg_samples=None,
5286 5287 5288
        name=None,
        sampler="uniform",
        custom_dist=None,
5289 5290
        seed=0,
        is_sparse=False):
5291 5292 5293 5294 5295 5296 5297
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5298 5299
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5300
            sample is 1.0.
C
chengduo 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5310
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5311 5312
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5313 5314 5315
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5316
        custom_dist (float[]): A float[] with size=num_total_classes.
5317 5318 5319 5320
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5321
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5322

5323
    Returns:
Y
Yibing Liu 已提交
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5351 5352 5353 5354 5355 5356 5357 5358 5359

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5360

5361
    """
Y
Yang Yu 已提交
5362 5363 5364
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5365 5366

    dim = input.shape[1]
Y
Yang Yu 已提交
5367 5368 5369 5370 5371 5372
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5373
    inputs = {}
C
chengduo 已提交
5374 5375 5376 5377 5378 5379 5380
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5381 5382 5383
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5384

5385 5386 5387 5388
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5389 5390 5391 5392 5393 5394 5395

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5396 5397 5398 5399 5400 5401 5402 5403 5404
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5405
            if normal_prob - 1.0 > 0:
5406
                bigs.append((i, normal_prob))
5407
            elif 1.0 - normal_prob > 0:
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5423
            if big_left - 1.0 > 0:
5424
                bigs.append((big_idx, big_left))
5425
            elif 1.0 - big_left > 0:
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5455 5456 5457 5458
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5459 5460 5461 5462 5463
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5464 5465 5466 5467
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5468

Y
Yang Yu 已提交
5469 5470
    attrs = {
        'num_total_classes': int(num_total_classes),
5471 5472
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5473
        'sampler': sampler,
5474 5475
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5476
    }
Y
Yang Yu 已提交
5477 5478 5479

    helper.append_op(
        type='nce',
C
chengduo 已提交
5480
        inputs=inputs,
Y
Yang Yu 已提交
5481 5482 5483 5484 5485 5486
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5487
    return cost / (num_neg_samples + 1)
5488 5489


C
chengduo 已提交
5490 5491
def hsigmoid(input,
             label,
5492
             num_classes,
C
chengduo 已提交
5493 5494
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5495
             name=None,
5496 5497 5498
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5499
             is_sparse=False):
W
weixing02 已提交
5500 5501
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5502
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5503
    complete binary tree, or you can use is_custom to pass your own tree to
5504
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5505 5506 5507 5508 5509 5510
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5511
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5512
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5513

5514 5515
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5516 5517 5518 5519
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5520
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5521
       related to the same batch of inputs.
5522

W
weixing02 已提交
5523
    Args:
M
minqiyang 已提交
5524
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5525 5526 5527 5528
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5529 5530
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5531
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5543
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5544
            it should be in leaf -> root order
M
minqiyang 已提交
5545 5546 5547
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5548
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5549
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5550
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5551
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5552
             of W and input will be sparse.
W
weixing02 已提交
5553 5554

    Returns:
J
JiabinYang 已提交
5555
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5556 5557 5558 5559 5560

    Examples:

        .. code-block:: python

G
guosheng 已提交
5561 5562 5563
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5564 5565 5566 5567
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5568 5569
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5570
    dim = input.shape[1]
5571
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5572 5573 5574
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5575 5576 5577 5578
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5579 5580
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5581 5582 5583
    else:
        pass

J
JiabinYang 已提交
5584
    weights = None
5585 5586 5587 5588
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5589
    if not is_custom:
J
JiabinYang 已提交
5590 5591 5592 5593 5594 5595 5596 5597
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5598
            shape=[num_classes, dim],
J
JiabinYang 已提交
5599 5600
            is_bias=False,
            dtype=input.dtype)
5601 5602 5603
    inputs = {
        "X": input,
        "W": weights,
5604
        "PathTable": path_table,
5605
        "PathCode": path_code,
5606 5607
        "Label": label
    }
W
weixing02 已提交
5608
    if helper.bias_attr:
5609
        if not is_custom:
J
JiabinYang 已提交
5610 5611
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5612
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5613 5614 5615 5616 5617 5618
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5619
                shape=[num_classes, 1],
J
JiabinYang 已提交
5620 5621 5622
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5623 5624
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5625
        inputs=inputs,
W
weixing02 已提交
5626
        outputs={"Out": out,
5627 5628 5629 5630 5631 5632 5633
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5634 5635 5636
    return out


Y
fix ci.  
ying 已提交
5637
def transpose(x, perm, name=None):
Y
ying 已提交
5638 5639 5640 5641 5642 5643 5644
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5645 5646 5647
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5648 5649 5650 5651 5652 5653 5654

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5655
            # use append_batch_size=False to avoid prepending extra
5656
            # batch size in shape
5657
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5658
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5659
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5660 5661
    """

Y
fix ci.  
ying 已提交
5662
    if len(perm) != len(x.shape):
Y
ying 已提交
5663 5664 5665
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5666 5667 5668 5669 5670 5671
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5672 5673

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5674 5675
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5676
    helper.append_op(
5677
        type='transpose2',
Y
fix ci.  
ying 已提交
5678
        inputs={'X': [x]},
5679 5680
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5681 5682
        attrs={'axis': perm})
    return out
5683 5684


5685 5686 5687 5688 5689 5690 5691
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5692
    """
5693 5694 5695 5696 5697 5698 5699
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5728 5729 5730 5731 5732 5733 5734 5735 5736
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5737 5738 5739
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5740 5741 5742 5743 5744
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5772 5773 5774
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5787
            output.dims = {8, 8}
5788

5789
            output.lod = [[4, 4]]
5790

T
Tink_Y 已提交
5791
    Examples:
5792 5793 5794

        .. code-block:: python

5795 5796
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5797 5798

    """
W
wanghaoshuang 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5809 5810 5811 5812 5813 5814 5815
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5816
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5817
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5818
    helper.append_op(
5819
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5820
    return out
5821 5822


Y
yuyang18 已提交
5823
@templatedoc()
5824
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5825 5826
    """
    ${comment}
5827 5828

    Args:
Y
yuyang18 已提交
5829
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5830 5831
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5832 5833 5834 5835 5836
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5837
        ${out_comment}.
5838 5839

    Examples:
Y
yuyang18 已提交
5840 5841 5842 5843
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5844 5845 5846 5847 5848 5849
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5850
    out = helper.create_variable_for_type_inference(dtype)
5851 5852 5853 5854 5855
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5856
    return helper.append_activation(out)
5857 5858


Y
yuyang18 已提交
5859
@templatedoc()
5860 5861
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5862 5863 5864 5865 5866 5867 5868
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5869 5870

    Args:
Y
yuyang18 已提交
5871 5872
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5873 5874

    Returns:
Y
yuyang18 已提交
5875
        ${out_comment}.
5876 5877
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5878 5879 5880 5881 5882

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5883
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5884 5885 5886 5887 5888 5889
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5890 5891


5892 5893 5894
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5895
                               ignore_index=kIgnoreIndex,
5896
                               numeric_stable_mode=True,
5897
                               return_softmax=False):
5898 5899
    """
    **Softmax With Cross Entropy Operator.**
5900

5901 5902 5903 5904
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5905

5906 5907 5908
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5909

5910 5911 5912
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5913

5914
    The equation is as follows:
5915

5916
    1) Hard label (one-hot label, so every sample has exactly one class)
5917

5918 5919 5920 5921
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5922

5923 5924 5925
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5926

5927 5928 5929 5930
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5931 5932 5933
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5934

H
haowang101779990 已提交
5935
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5936

H
haowang101779990 已提交
5937
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5938

H
haowang101779990 已提交
5939
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5940 5941 5942

    and then cross entropy loss is calculated by softmax and label.

5943 5944 5945 5946 5947 5948 5949 5950
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5951 5952
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5953
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5954 5955 5956
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5957 5958 5959
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5960
                                    stable algorithm. Default: True
5961
        return_softmax (bool): A flag indicating whether to return the softmax
5962
                               along with the cross entropy loss. Default: False
5963

5964
    Returns:
H
haowang101779990 已提交
5965 5966 5967 5968 5969
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5970 5971 5972 5973 5974 5975 5976

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5977 5978
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5979 5980
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5981 5982
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5983 5984 5985 5986 5987 5988
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5989 5990 5991 5992 5993
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5994 5995 5996 5997

    if return_softmax:
        return loss, softmax

5998 5999 6000
    return loss


6001 6002 6003
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6004
                                       num_true=1,
6005
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6006 6007 6008
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6009
                                       seed=0):
X
xuezhong 已提交
6010 6011 6012 6013 6014
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6015
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6016 6017 6018 6019 6020 6021 6022 6023
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6024
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6025 6026 6027 6028 6029 6030 6031 6032
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6033
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6045
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6046 6047 6048 6049 6050
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6051
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6052
            logits.
X
xuezhong 已提交
6053 6054 6055 6056 6057
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6058 6059 6060
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6081 6082
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6083 6084 6085 6086 6087

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6088
            'Labels': label,
X
xuezhong 已提交
6089 6090
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6091 6092 6093 6094
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6095
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6096 6097 6098
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6099
            'use_customized_samples': use_customized_samples,
6100
            'uniq': True,
X
xuezhong 已提交
6101 6102 6103 6104
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6105 6106
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6107 6108 6109 6110 6111 6112
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6113 6114
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6115
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6116
                'Label': sampled_softlabel},
X
xuezhong 已提交
6117 6118 6119
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6120
            'soft_label': True,
X
xuezhong 已提交
6121 6122 6123
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6124
    return loss / num_true
X
xuezhong 已提交
6125 6126


6127 6128
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6129 6130
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6131
    For each instance, it computes the smooth L1 loss element by element first
6132
    and then sums all the losses. So the shape of ouput Variable is
6133
    [batch_size, 1].
6134

6135 6136
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6137
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6138
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6139
            L1 loss op with same shape as :attr:`x`.
6140
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6141 6142
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6143
            by this tensor element by element.
6144
        outside_weight (Variable|None): A tensor with rank at least 2. This
6145 6146
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6147
            element by element.
6148
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6149 6150
           scalar with default value 1.0.

6151
    Returns:
6152
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6153 6154 6155 6156 6157

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6158 6159
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6160
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6161
            out = fluid.layers.smooth_l1(x=fc, y=label)
6162
    """
6163

6164
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6165 6166
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6179 6180 6181 6182


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6183
    This layer creates the one-hot representations for input indices.
6184 6185

    Args:
Y
Yibing Liu 已提交
6186 6187
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6188 6189

    Returns:
Y
Yibing Liu 已提交
6190
        Variable: The one-hot representations of input.
6191 6192

    Examples:
C
caoying03 已提交
6193
        .. code-block:: python
6194

Y
Yibing Liu 已提交
6195 6196
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6197 6198
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6199
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6200 6201 6202 6203 6204 6205
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6206 6207


Y
Yu Yang 已提交
6208
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6209
    """
Y
yi.wu 已提交
6210 6211 6212
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6213 6214 6215 6216 6217 6218

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6219 6220
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6221 6222 6223 6224 6225 6226

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6227 6228
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6229 6230
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6231 6232 6233 6234 6235
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6236
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6237
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6238 6239
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6240
            outputs={'Out': [counter]},
M
minqiyang 已提交
6241 6242
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6243 6244 6245
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6246 6247


6248
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6249
    """
C
caoying03 已提交
6250 6251
    Gives a new shape to the input Tensor without changing its data.

6252 6253 6254 6255 6256
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6257

6258
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6259

6260 6261 6262 6263
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6264
    2. 0 means the actual dimension value is going to be copied from the
6265 6266 6267 6268
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6269 6270

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6271
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6272
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6273

6274
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6275 6276
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6277 6278
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6279
    dimensions.
C
caoying03 已提交
6280

6281
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6282 6283 6284 6285
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6286 6287

    Args:
6288
        x(variable): The input tensor.
C
caoying03 已提交
6289 6290
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6291 6292 6293 6294 6295
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6296 6297
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6298 6299 6300
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6301
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6302
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6303

6304
    Returns:
G
guosheng 已提交
6305 6306 6307 6308
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6309

X
Xin Pan 已提交
6310 6311 6312
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6313 6314
    Examples:
        .. code-block:: python
G
guosheng 已提交
6315

6316
            data = fluid.layers.data(
6317
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6318
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6319
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6320 6321 6322
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6323
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6324 6325 6326 6327 6328
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6345
    helper = LayerHelper("reshape2", **locals())
6346 6347
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6348
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6349
    helper.append_op(
6350
        type="reshape2",
X
Xin Pan 已提交
6351
        inputs=inputs,
D
dzhwinter 已提交
6352
        attrs={"shape": shape},
6353 6354
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6355

D
dzhwinter 已提交
6356
    return helper.append_activation(out)
6357

6358

6359
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6360
    """
M
minqiyang 已提交
6361 6362 6363
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6364
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6365

H
haowang101779990 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6387

Y
Yibing Liu 已提交
6388
    Args:
6389
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6390
        axes (list): List of integers, indicating the dimensions to be squeezed.
6391
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6392 6393 6394 6395 6396 6397 6398 6399

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6400
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6401 6402
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6403 6404
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6405
    helper.append_op(
6406
        type="squeeze2",
6407
        inputs={"X": input},
Y
Yibing Liu 已提交
6408
        attrs={"axes": axes},
6409 6410
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6411

6412 6413 6414
    return out


6415
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6416
    """
M
minqiyang 已提交
6417 6418 6419
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6420

M
minqiyang 已提交
6421
    For example:
H
haowang101779990 已提交
6422 6423 6424

    .. code-block:: text

M
minqiyang 已提交
6425
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6426
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6427

Y
Yibing Liu 已提交
6428
    Args:
6429
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6430
        axes (list): List of integers, indicating the dimensions to be inserted.
6431
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6432 6433 6434 6435 6436 6437 6438 6439

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6440
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6441 6442
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6443 6444
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6445
    helper.append_op(
6446
        type="unsqueeze2",
6447
        inputs={"X": input},
Y
Yibing Liu 已提交
6448
        attrs={"axes": axes},
6449 6450
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6451

6452 6453
    return out

6454

Y
yangyaming 已提交
6455
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6456
    """
Y
Yibing Liu 已提交
6457
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6458 6459 6460 6461
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6462
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6463 6464 6465 6466 6467 6468

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6469
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6470 6471 6472
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6473
            target_lod: [4, 2]
Y
yangyaming 已提交
6474 6475

            then we get a 1-level LoDTensor:
6476
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6477 6478 6479 6480 6481 6482
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6483
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6484 6485 6486 6487
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6488
                y.data = [[2, 4]]
Y
yangyaming 已提交
6489 6490 6491
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6492
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6493 6494 6495 6496 6497 6498
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6499
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6500 6501 6502 6503
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6504
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6505 6506 6507 6508
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6509
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6510 6511 6512 6513 6514
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6515
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6516
                           from :attr:`y`.
Y
yangyaming 已提交
6517
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6518
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6519 6520

    Returns:
Y
Yibing Liu 已提交
6521
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6522 6523

    Raises:
Y
Yibing Liu 已提交
6524
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6534
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6560
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6589 6590
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6603 6604 6605
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6619 6620 6621 6622


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6623
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6624
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6625

G
guosheng 已提交
6626 6627 6628 6629
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6652
                         The length of :attr:paddings must be
G
guosheng 已提交
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6663

G
guosheng 已提交
6664 6665 6666 6667 6668 6669
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6670
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6671 6672 6673 6674 6675 6676 6677
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6678 6679


C
chengduo 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6711 6712
		And
            pad_value = -1,
C
chengduo 已提交
6713

T
Tink_Y 已提交
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6749
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6750 6751 6752 6753 6754 6755 6756 6757 6758
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6759 6760 6761 6762 6763 6764 6765
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6766 6767
    called label-smoothing regularization (LSR).

6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6791
                              be :math:`(1, class\_num)`.
6792 6793
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6794
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6814
    smooth_label = helper.create_variable_for_type_inference(dtype)
6815 6816 6817 6818 6819 6820 6821
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6822 6823


W
wopeizl 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6860 6861


J
jerrywgz 已提交
6862 6863 6864 6865 6866 6867
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6868 6869
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6886 6887 6888
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6889 6890 6891 6892 6893 6894
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6895
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6936 6937
        .. code-block:: python

W
whs 已提交
6938 6939 6940 6941
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6942
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6943 6944 6945 6946 6947 6948
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6949 6950


6951 6952 6953 6954
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6955
                 resample='BILINEAR',
6956 6957
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6958
                 align_mode=1):
6959
    """
Q
qiaolongfei 已提交
6960
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6961

6962
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6963 6964 6965
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6966

6967
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6968

6969
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6970

6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6981
    Align_corners and align_mode are optinal parameters,the calculation method 
6982 6983 6984 6985
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6986
    .. code-block:: text
6987

T
Tink_Y 已提交
6988
        For scale:
6989
          
T
Tink_Y 已提交
6990
            if align_corners = True && out_size > 1 :
6991

T
Tink_Y 已提交
6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7003

T
Tink_Y 已提交
7004 7005
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7006

T
Tink_Y 已提交
7007 7008
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7009

T
Tink_Y 已提交
7010 7011
          else:
              align_corners = True
7012

T
Tink_Y 已提交
7013 7014
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7015

T
Tink_Y 已提交
7016 7017
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7018

T
Tink_Y 已提交
7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7029

T
Tink_Y 已提交
7030 7031 7032 7033
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7034

T
Tink_Y 已提交
7035 7036
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7037 7038 7039 7040 7041 7042 7043 7044 7045

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7046
    Args:
7047
        input (Variable): The input tensor of image resize layer,
7048 7049
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7050
        out_shape(list|tuple|Variable|None): Output shape of image resize
7051 7052
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7053
        scale(float|None): The multiplier for the input height or width.
7054 7055 7056
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7057 7058
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7059
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7060
                       currently.
7061
                       Default: 'BILINEAR'
7062 7063 7064
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7065
                                :attr:`out_shape` and :attr:`scale` specifying
7066 7067 7068 7069 7070 7071 7072
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7073 7074
                                constructing stage.
                                Default: None
7075 7076 7077 7078
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7079
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7080 7081
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7082 7083

    Returns:
Q
update  
qiaolongfei 已提交
7084 7085
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7086

7087 7088 7089
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7090
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7091 7092 7093
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7094 7095
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7096

7097 7098 7099
    Examples:
        .. code-block:: python

7100
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7101
    """
7102 7103 7104 7105
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7106 7107
    if resample not in resample_methods:
        raise ValueError(
7108
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7109
        )
7110
    resample_type = resample_methods[resample]
7111 7112 7113 7114 7115 7116

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7117
    if out_shape is None and scale is None:
7118
        raise ValueError("One of out_shape and scale must not be None.")
7119
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7120
    dtype = helper.input_dtype()
7121 7122 7123 7124

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7125 7126 7127
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7128
    if out_shape is not None:
7129 7130 7131 7132
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7133
            inputs['OutSize'] = out_shape
7134 7135 7136 7137 7138 7139 7140 7141
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7142 7143 7144 7145
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7146 7147 7148 7149 7150
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7151
    out = helper.create_variable_for_type_inference(dtype)
7152
    helper.append_op(
7153
        type='{}_interp'.format(resample_type),
7154
        inputs=inputs,
7155
        outputs={"Out": out},
7156 7157 7158 7159 7160 7161 7162
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7163
    return out
F
stash  
fengjiayi 已提交
7164 7165


7166
@templatedoc(op_type="bilinear_interp")
7167 7168 7169 7170
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7171 7172
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7173
                    align_mode=1):
7174
    """
7175 7176
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7177 7178
    in priority order.

7179 7180 7181 7182
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7183 7184
    again in the other direction.

7185
    For details of bilinear interpolation, please refer to Wikipedia:
7186
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7187

T
tink2123 已提交
7188
    Align_corners and align_mode are optinal parameters,the calculation 
7189 7190 7191 7192
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7193
    .. code-block:: text
7194

T
Tink_Y 已提交
7195
        For scale:
7196
          
T
Tink_Y 已提交
7197
            if align_corners = True && out_size > 1 :
7198

T
Tink_Y 已提交
7199 7200 7201 7202 7203
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7204

T
Tink_Y 已提交
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7215 7216


T
Tink_Y 已提交
7217
          else:
T
tink2123 已提交
7218

T
Tink_Y 已提交
7219 7220
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7221

T
Tink_Y 已提交
7222 7223
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7224 7225 7226



Y
yuyang18 已提交
7227 7228 7229 7230
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7231

Y
yuyang18 已提交
7232 7233 7234 7235 7236
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7237 7238 7239
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7240
                                :attr:`out_shape` and :attr:`scale` specifying
7241 7242 7243 7244 7245 7246 7247
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7248 7249
                                constructing stage.
                                Default: None
7250 7251
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7252 7253 7254

    Returns:
        ${out_comment}.
7255 7256 7257 7258 7259

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7260 7261
    """

7262 7263
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7264 7265


7266
@templatedoc(op_type="nearest_interp")
7267 7268 7269 7270
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7271 7272
                   actual_shape=None,
                   align_corners=True):
7273
    """
7274
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7275 7276
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7277 7278
    out_shape and scale in priority order.

7279 7280
    Example:

T
Tink_Y 已提交
7281 7282 7283 7284 7285
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7286

T
Tink_Y 已提交
7287 7288 7289 7290 7291 7292 7293 7294
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7295
          
T
Tink_Y 已提交
7296 7297
          if:
              align_corners = False
7298

T
Tink_Y 已提交
7299 7300
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7301

T
Tink_Y 已提交
7302 7303
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7304

T
Tink_Y 已提交
7305 7306
          else:
              align_corners = True
7307

T
Tink_Y 已提交
7308 7309
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7310

T
Tink_Y 已提交
7311 7312
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7313 7314


7315
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7316
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7317 7318 7319 7320 7321

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7322

Y
yuyang18 已提交
7323 7324 7325 7326 7327
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7328 7329 7330
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7331
                                :attr:`out_shape` and :attr:`scale` specifying
7332 7333 7334 7335 7336 7337 7338
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7339 7340
                                constructing stage.
                                Default: None
7341
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7342 7343 7344

    Returns:
        ${out_comment}.
7345 7346 7347 7348 7349

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7350 7351
    """

7352 7353
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7354 7355 7356 7357


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7358 7359 7360
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7361 7362 7363 7364 7365 7366 7367
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7368
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7369

7370
    Returns:
Q
update  
qiaolongfei 已提交
7371
        Variable: The output is a 4-D tensor of the shape
7372
        (num_batches, channls, out_h, out_w).
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7383 7384 7385
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7386 7387 7388
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7389 7390
def gather(input, index):
    """
Q
qiaolongfei 已提交
7391 7392
    **Gather Layer**

7393
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7394 7395 7396 7397
    of X indexed by `index` and concatenate them together.

    .. math::

7398
        Out = X[Index]
W
whs 已提交
7399 7400 7401 7402 7403 7404 7405


    .. code-block:: text


                Given:

7406 7407
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7418
        input (Variable): The source input with rank>=1.
W
whs 已提交
7419 7420 7421 7422 7423 7424
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7425

W
whs 已提交
7426 7427 7428 7429 7430 7431
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7432
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7433 7434 7435 7436 7437 7438 7439 7440
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7472
    out = helper.create_variable_for_type_inference(dtype)
7473 7474 7475 7476 7477 7478 7479 7480 7481
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7482 7483 7484 7485 7486 7487 7488 7489 7490
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7491

Q
Qingsheng Li 已提交
7492
    Given the following input:
H
haowang101779990 已提交
7493

Q
Qingsheng Li 已提交
7494
    .. code-block:: text
H
haowang101779990 已提交
7495

Q
Qingsheng Li 已提交
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7508

Q
Qingsheng Li 已提交
7509
    .. code-block:: text
H
haowang101779990 已提交
7510

Q
Qingsheng Li 已提交
7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7526
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7537
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7538 7539 7540 7541 7542 7543 7544 7545 7546
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7560

7561 7562 7563
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7564
    """
F
stash  
fengjiayi 已提交
7565
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7566
    dtype = x.dtype
X
Xin Pan 已提交
7567
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7568
    if seed is None:
7569
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7570
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7571
    if isinstance(seed, int):
F
fengjiayi 已提交
7572 7573 7574 7575 7576
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7577 7578 7579 7580
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7581
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7582 7583
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7584 7585
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7586
    return out
W
whs 已提交
7587 7588


7589
def log(x, name=None):
W
wanghaoshuang 已提交
7590 7591 7592 7593 7594
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7595
        Out = \\ln(x)
W
wanghaoshuang 已提交
7596 7597

    Args:
7598
        x (Variable): Input tensor.
7599 7600
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7601 7602 7603 7604 7605 7606 7607 7608

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7609
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7610 7611
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7612
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7613
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7614
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7615 7616 7617
    return out


7618
def relu(x, name=None):
W
wanghaoshuang 已提交
7619 7620
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7621
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7622 7623 7624 7625
    the tensor elementwise.

    .. math::

7626
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7627 7628

    Args:
7629
        x (Variable): The input tensor.
7630 7631
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7632 7633 7634 7635 7636 7637 7638 7639

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7640
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7641 7642
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7643
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7644
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7645 7646
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7647
    return out
7648 7649


C
chengduo 已提交
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7691 7692 7693
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7694 7695 7696 7697
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7698
    .. math::
7699

H
haowang101779990 已提交
7700
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7701

7702
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7703 7704 7705 7706 7707
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7708
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7709
                           Its shape should be the same as input.
7710
        num_classes (int): The possible number of labels.
W
whs 已提交
7711 7712

    Returns:
M
minqiyang 已提交
7713 7714
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7715
                     Three variables:
M
minqiyang 已提交
7716

H
haowang101779990 已提交
7717 7718 7719
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7720 7721 7722 7723

    Examples:

        .. code-block:: python
7724

W
whs 已提交
7725 7726 7727 7728
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7729 7730 7731
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7732 7733
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7734 7735
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7736
        outputs={
W
whs 已提交
7737 7738 7739
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7740 7741 7742
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7811
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7812 7813 7814 7815 7816

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7817
            isinstance(shape, Variable)):
7818 7819 7820 7821 7822
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7823
    out = helper.create_variable_for_type_inference(x.dtype)
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7841 7842


W
whs 已提交
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7860

W
whs 已提交
7861
              out_shape = [2, 3, 5, 5]
7862

W
whs 已提交
7863
          Step 1:
7864

W
whs 已提交
7865 7866 7867
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7868

W
whs 已提交
7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7914
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7915
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7928

W
whs 已提交
7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7940
            isinstance(out_shape, Variable)):
W
whs 已提交
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7962 7963
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7964

7965 7966
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7967
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7968 7969 7970
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7971

7972 7973
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7974

H
haowang101779990 已提交
7975 7976
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7977 7978
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7979

H
haowang101779990 已提交
7980 7981 7982 7983 7984 7985 7986 7987
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7988 7989 7990

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8025
    out = helper.create_variable_for_type_inference("float32")
8026 8027 8028 8029 8030 8031 8032 8033

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8034 8035


M
minqiyang 已提交
8036 8037
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8038
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8039
    which compares left score and right score passed in.
M
minqiyang 已提交
8040
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8041 8042 8043

    .. math::

H
haowang101779990 已提交
8044
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8045 8046

    Args:
M
minqiyang 已提交
8047
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8048 8049
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8050
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8051 8052
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8053

M
minqiyang 已提交
8054
    Returns:
M
minqiyang 已提交
8055
       Variable: The ranking loss.
H
haowang101779990 已提交
8056

M
minqiyang 已提交
8057
    Raises:
M
minqiyang 已提交
8058
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8059

M
minqiyang 已提交
8060
    Examples:
H
haowang101779990 已提交
8061

M
minqiyang 已提交
8062
        .. code-block:: python
H
haowang101779990 已提交
8063

M
minqiyang 已提交
8064 8065 8066 8067 8068
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8069
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8070 8071 8072 8073 8074 8075
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8076 8077
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8101
        .. code-block:: text
W
whs 已提交
8102

T
Tink_Y 已提交
8103
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8104

T
Tink_Y 已提交
8105 8106
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8107

T
Tink_Y 已提交
8108
	      Case 0:
M
minqiyang 已提交
8109

T
Tink_Y 已提交
8110 8111 8112
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8113

T
Tink_Y 已提交
8114 8115 8116
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8117

T
Tink_Y 已提交
8118
	      Case 1:
M
minqiyang 已提交
8119

T
Tink_Y 已提交
8120 8121
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8122

T
Tink_Y 已提交
8123 8124 8125
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8126

T
Tink_Y 已提交
8127
	      Case 2:
M
minqiyang 已提交
8128

T
Tink_Y 已提交
8129 8130
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8131

T
Tink_Y 已提交
8132 8133 8134
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8135 8136


W
whs 已提交
8137 8138
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8139
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8163
    out = helper.create_variable_for_type_inference(dtype)
8164 8165 8166 8167 8168 8169 8170 8171 8172
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8173
    helper.append_op(
8174
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8175 8176 8177 8178

    return out


8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8191 8192 8193 8194 8195

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8196 8197
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8198 8199
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8200
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8221 8222 8223 8224 8225

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8226 8227
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8228 8229
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8251 8252 8253 8254 8255

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8256 8257
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8258 8259
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8260
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8282 8283 8284 8285 8286

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8287
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8288
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8289 8290
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8314 8315 8316 8317 8318

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8319 8320
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8321 8322
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8323
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8345 8346 8347 8348 8349

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8350 8351
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8352 8353
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8354
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8355 8356 8357 8358 8359 8360 8361 8362
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8363 8364 8365 8366
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8367 8368
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8369 8370 8371

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8372
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8373
          weight (alpha).
J
jerrywgz 已提交
8374
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8375 8376 8377
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8378
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8379
          will be named automatically.
J
jerrywgz 已提交
8380 8381 8382 8383 8384 8385 8386 8387

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8388
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8402
        attr=helper.param_attr,
J
jerrywgz 已提交
8403 8404 8405 8406
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8407
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8408 8409 8410 8411 8412 8413 8414 8415 8416
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8417 8418 8419 8420 8421 8422 8423 8424 8425 8426
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8427
    Returns:
8428
        output(${out_type}): ${out_comment}
8429 8430 8431

    Examples:

8432
    .. code-block:: python
8433

H
haowang101779990 已提交
8434 8435
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8436 8437
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8438
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8457
    Returns:
8458
        output(${out_type}): ${out_comment}
8459 8460 8461 8462 8463

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8464 8465
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8466 8467
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8468
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8486
    Returns:
8487
        output(${out_type}): ${out_comment}
8488 8489 8490 8491 8492

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8493 8494
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8495 8496
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8497
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8498 8499 8500 8501 8502 8503 8504 8505
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8506 8507 8508 8509
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8510

H
haowang101779990 已提交
8511
    For Example:
M
minqiyang 已提交
8512

H
haowang101779990 已提交
8513
    .. code-block:: text
8514

H
haowang101779990 已提交
8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8536 8537 8538

    Args:
        x (Variable): A tensor of rank >= axis.
8539 8540
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8541 8542 8543 8544 8545 8546 8547 8548
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8549 8550 8551
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8552 8553 8554 8555
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8556
        ValueError: If axis is not in range [0, rank(x)].
8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8573 8574
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8575
    helper.append_op(
8576
        type='flatten2',
8577
        inputs={"X": x},
8578 8579
        outputs={'Out': out,
                 'XShape': x_shape},
8580 8581
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8582 8583


C
chenweihang 已提交
8584
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8585
    """
C
chenweihang 已提交
8586
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8587
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8588 8589
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8590

H
haowang101779990 已提交
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8608 8609

    Args:
C
chenweihang 已提交
8610 8611 8612
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8624 8625
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8626 8627 8628 8629 8630 8631
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8632
    return out
8633

8634

S
sneaxiy 已提交
8635 8636 8637 8638 8639 8640 8641 8642 8643
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8644

S
sneaxiy 已提交
8645
    .. math::
8646

S
sneaxiy 已提交
8647 8648 8649
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8650
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8651 8652 8653 8654
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8655 8656 8657
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8658 8659
    Returns:
        Variable: The output sequence mask.
8660

S
sneaxiy 已提交
8661 8662
    """

Q
qingqing01 已提交
8663
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8664
    if name is None:
X
Xin Pan 已提交
8665
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8666
    else:
X
Xin Pan 已提交
8667
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8668

Q
qingqing01 已提交
8669 8670 8671
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8672 8673
        outputs={'Y': out},
        attrs={
8674
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8675 8676 8677
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8678 8679


X
Xin Pan 已提交
8680
def stack(x, axis=0):
S
sneaxiy 已提交
8681 8682 8683 8684
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8685 8686 8687 8688 8689 8690 8691

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8692
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8693
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8694

C
chengduozh 已提交
8695 8696
    For Example:

C
chengduozh 已提交
8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8735
    Args:
8736
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8737
        axis (int|None): The axis along which all inputs are stacked.
8738

S
sneaxiy 已提交
8739 8740
    Returns:
        Variable: The stacked variable.
8741

S
sneaxiy 已提交
8742 8743
    """

X
Xin Pan 已提交
8744 8745 8746 8747 8748 8749
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8750
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8751
    helper.append_op(
S
sneaxiy 已提交
8752 8753
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8754

X
Xin Pan 已提交
8755
    return out
D
dzhwinter 已提交
8756 8757 8758 8759 8760 8761 8762


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8763

D
dzhwinter 已提交
8764 8765 8766
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8767
    raised.
D
dzhwinter 已提交
8768 8769

    Args:
M
minqiyang 已提交
8770
        x (Variable): Input variable.
D
dzhwinter 已提交
8771 8772
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8773

D
dzhwinter 已提交
8774 8775
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8776

D
dzhwinter 已提交
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8787
    for _ in range(num):
X
Xin Pan 已提交
8788
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8789 8790 8791 8792 8793 8794 8795 8796

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8809

W
whs 已提交
8810 8811 8812 8813
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8814

W
whs 已提交
8815
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8816

W
whs 已提交
8817
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8818

W
whs 已提交
8819 8820 8821 8822
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8823

W
whs 已提交
8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8840
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8841 8842 8843 8844 8845 8846
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8847 8848


G
fix  
gongweibao 已提交
8849 8850 8851
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8852
@templatedoc()
G
fix  
gongweibao 已提交
8853 8854 8855 8856 8857 8858 8859 8860 8861
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8862
    ${comment}
G
fix  
gongweibao 已提交
8863 8864

    Args:
G
gongweibao 已提交
8865 8866 8867
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8868
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8869 8870 8871
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8872 8873
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8874
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8875

8876 8877 8878 8879 8880
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8881 8882 8883
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8884
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8901 8902


G
gongweibao 已提交
8903
@templatedoc()
X
Xin Pan 已提交
8904
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8905
    """
G
gongweibao 已提交
8906
    ${comment}
G
fix  
gongweibao 已提交
8907 8908

    Args:
G
gongweibao 已提交
8909 8910 8911 8912
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8913 8914 8915
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8916
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8917

8918 8919 8920 8921
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8922 8923 8924
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8925
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8936
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8937 8938 8939 8940 8941
        })

    return out


G
gongweibao 已提交
8942
@templatedoc()
G
fix  
gongweibao 已提交
8943
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8944
    """
G
gongweibao 已提交
8945
    ${comment}
G
fix  
gongweibao 已提交
8946 8947

    Args:
G
gongweibao 已提交
8948 8949 8950 8951
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8952
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8953 8954

    Returns:
G
gongweibao 已提交
8955
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8956

8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8967 8968 8969
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8970
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8982
@templatedoc()
G
fix  
gongweibao 已提交
8983 8984 8985 8986 8987 8988 8989 8990 8991
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8992
    ${comment}
G
fix  
gongweibao 已提交
8993 8994

    Args:
G
gongweibao 已提交
8995 8996
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8997
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8998 8999 9000 9001
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9002
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9003 9004

    Returns:
G
gongweibao 已提交
9005
        out (Variable): ${out_comment}
9006 9007 9008 9009 9010 9011 9012 9013

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9014 9015 9016
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9017
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9036
@templatedoc()
X
Xin Pan 已提交
9037
def sum(x):
G
fix  
gongweibao 已提交
9038
    """
G
gongweibao 已提交
9039
    ${comment}
G
fix  
gongweibao 已提交
9040 9041

    Args:
G
gongweibao 已提交
9042
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9043 9044

    Returns:
G
gongweibao 已提交
9045
        out (Variable): ${out_comment}
9046 9047 9048 9049 9050 9051

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9052 9053 9054
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9055 9056
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9057 9058 9059 9060
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9061
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9062 9063 9064 9065

    return out


G
gongweibao 已提交
9066
@templatedoc()
G
fix  
gongweibao 已提交
9067 9068
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9069
    ${comment}
G
fix  
gongweibao 已提交
9070 9071

    Args:
G
gongweibao 已提交
9072 9073 9074 9075
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9076 9077

    Returns:
G
gongweibao 已提交
9078
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9079

9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9091 9092 9093
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9094 9095
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9109 9110
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9111
    Get the shape of the input.
G
fix  
gongweibao 已提交
9112 9113

    Args:
C
chengduozh 已提交
9114
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9115 9116

    Returns:
C
fix doc  
chengduozh 已提交
9117
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9118

9119 9120 9121 9122 9123 9124
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9125 9126 9127
    """

    helper = LayerHelper('shape', **locals())
9128
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9129
    helper.append_op(
G
fix  
gongweibao 已提交
9130
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9131 9132

    return out
G
merge  
gongweibao 已提交
9133 9134


S
sneaxiy 已提交
9135 9136 9137 9138 9139 9140 9141 9142
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9143 9144
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9145
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9146 9147 9148
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9149

S
sneaxiy 已提交
9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9161
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9162 9163 9164 9165 9166 9167 9168 9169
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9170
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9171
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9172 9173 9174 9175 9176 9177

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9178
    if name is None:
X
Xin Pan 已提交
9179
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9180 9181 9182
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9183 9184 9185 9186 9187 9188 9189 9190 9191 9192

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9193
    return helper.append_activation(out)
S
sneaxiy 已提交
9194 9195


X
Xin Pan 已提交
9196
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9197 9198 9199
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9200
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9201 9202 9203
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9204
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9205 9206 9207
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9208
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9209 9210 9211
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9212
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9213 9214 9215
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9216
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9217 9218 9219
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9220
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9232 9233
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9234
        ])
M
minqiyang 已提交
9235 9236


9237
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9238 9239
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9240 9241
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9242 9243 9244

    if out is None:
        if name is None:
X
Xin Pan 已提交
9245
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9261
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9273 9274 9275 9276 9277 9278 9279 9280 9281

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9282 9283 9284 9285 9286 9287 9288
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9289
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9301 9302 9303 9304 9305 9306 9307 9308 9309

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9310 9311 9312 9313 9314 9315 9316
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9317
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9329 9330 9331 9332 9333 9334 9335 9336 9337

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9338 9339 9340 9341 9342 9343 9344
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9345
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9356 9357 9358 9359 9360 9361 9362

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9363 9364 9365 9366
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9382 9383 9384 9385 9386 9387 9388

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9389 9390 9391 9392 9393
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9394 9395 9396 9397
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9421 9422 9423 9424 9425 9426 9427

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9428 9429 9430 9431 9432
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9433 9434 9435 9436
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9437 9438 9439 9440 9441 9442 9443 9444

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9463
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9464 9465 9466 9467 9468 9469 9470 9471 9472 9473
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9516
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9517 9518 9519 9520 9521 9522 9523 9524 9525
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9526 9527
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9528 9529 9530 9531 9532 9533
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9534 9535 9536
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9537 9538
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9539 9540 9541 9542 9543 9544
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9545
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9546
        name(basestring|None): Name of the output.
9547 9548
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9549 9550 9551

    Returns:
        out(${out_type}): ${out_comment}
9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9566 9567 9568 9569 9570
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9571
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9572 9573 9574 9575 9576 9577 9578 9579
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9580 9581
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9602
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9603 9604 9605 9606 9607 9608 9609 9610 9611 9612
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9613 9614


J
JiabinYang 已提交
9615
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9616
    """
J
JiabinYang 已提交
9617
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9618 9619 9620

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9621
    The attr blocksize indicates the input block size.
9622 9623

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9624
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9625 9626

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9627
    (but keeping all data)
J
JiabinYang 已提交
9628

J
JiabinYang 已提交
9629
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9630
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9631 9632 9633 9634 9635
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9636
    Args:
J
JiabinYang 已提交
9637
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9638
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9639 9640

    Returns:
J
JiabinYang 已提交
9641
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9642 9643

    Raises:
J
JiabinYang 已提交
9644
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9645 9646 9647 9648 9649 9650

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9651
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9652
                x=data, blocksize=2)
J
JiabinYang 已提交
9653 9654
    """

J
JiabinYang 已提交
9655
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9656

J
JiabinYang 已提交
9657 9658
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9659 9660

    if name is None:
J
JiabinYang 已提交
9661 9662
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9663 9664 9665 9666 9667
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9668
        type="space_to_depth",
J
JiabinYang 已提交
9669
        inputs={"X": x},
J
JiabinYang 已提交
9670
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9671
        outputs={"Out": out})
J
JiabinYang 已提交
9672 9673
    return out

J
JiabinYang 已提交
9674

S
sneaxiy 已提交
9675 9676
@templatedoc()
def sequence_reverse(x, name=None):
9677
    """
S
sneaxiy 已提交
9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9689
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9690 9691 9692 9693 9694 9695 9696 9697 9698 9699
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9700 9701


9702 9703 9704 9705 9706 9707
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9708

9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9728
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9741 9742


B
barrierye 已提交
9743
def similarity_focus(input, axis, indexes, name=None):
9744
    """
B
barrierye 已提交
9745
    SimilarityFocus Operator
B
barrierye 已提交
9746 9747

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9748

9749 9750 9751
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9752
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9753 9754 9755 9756 9757 9758 9759
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9760
       each index.
B
barrierye 已提交
9761 9762 9763 9764
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9814
    Args:
9815
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9816
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9817
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9818
            1, 2 or 3.
B
barrierye 已提交
9819
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9820 9821

    Returns:
H
haowang101779990 已提交
9822 9823
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9824

B
barrierye 已提交
9825 9826
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9827

B
barrierye 已提交
9828
            data = fluid.layers.data(
B
barrierye 已提交
9829 9830
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9831

B
barrierye 已提交
9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9844 9845 9846 9847 9848
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9849 9850 9851 9852 9853 9854 9855
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9856 9857


M
minqiyang 已提交
9858 9859
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9860 9861
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9862 9863
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9902
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9903
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9904 9905 9906 9907 9908 9909

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9910

M
minqiyang 已提交
9911 9912 9913
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9914 9915
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9916 9917
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9918 9919 9920 9921 9922 9923 9924
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9925 9926


D
dengkaipeng 已提交
9927
@templatedoc()
9928 9929
def grid_sampler(x, grid, name=None):
    """
9930
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9931
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9932 9933 9934 9935
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9936
    interpolation value of 4 nearest corner points.
9937

H
haowang101779990 已提交
9938
    .. code-block:: text
9939

H
haowang101779990 已提交
9940 9941
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9942

H
haowang101779990 已提交
9943 9944
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9945

H
haowang101779990 已提交
9946 9947 9948
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9949

H
haowang101779990 已提交
9950 9951 9952 9953 9954 9955 9956 9957 9958
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9959

H
haowang101779990 已提交
9960 9961 9962 9963
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9964

H
haowang101779990 已提交
9965 9966 9967 9968
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9969

H
haowang101779990 已提交
9970 9971 9972 9973
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9974

H
haowang101779990 已提交
9975 9976
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9977 9978

    Args:
9979 9980 9981
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9982 9983

    Returns:
H
haowang101779990 已提交
9984
        Variable: Output of shape [N, C, H, W] data samples input X
9985 9986
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9987 9988 9989 9990 9991 9992 9993 9994
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9995

D
dengkaipeng 已提交
9996 9997 9998 9999 10000 10001 10002 10003 10004
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10005
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10006 10007
    ipts = {'X': x, 'Grid': grid}

10008
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10009 10010 10011
    return out


G
gmcather 已提交
10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10078
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10079 10080 10081 10082 10083 10084 10085
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10086

H
heqiaozhi 已提交
10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10101 10102 10103 10104
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10105
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10106 10107
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10108
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10109 10110

    .. math::
H
haowang101779990 已提交
10111 10112 10113
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10114 10115

    Where:
H
haowang101779990 已提交
10116 10117
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10132

G
gmcather 已提交
10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10149 10150 10151 10152 10153 10154 10155 10156 10157 10158


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10159
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10160

Q
Qiao Longfei 已提交
10161
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10162 10163 10164
    For example:

    .. math::
H
haowang101779990 已提交
10165
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10166

Q
Qiao Longfei 已提交
10167
    In this formula:
10168 10169
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10170
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10171
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10172 10173 10174
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10175 10176
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10177 10178 10179
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10180
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10181
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10182
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10183 10184 10185 10186
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10187
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10188 10189 10190 10191

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10192
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10193 10194
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10195
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10196 10197 10198 10199

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10200
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10241 10242


S
shippingwang 已提交
10243
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10244 10245
    """
    **Shuffle Channel Operator**
10246

S
shippingwang 已提交
10247 10248 10249 10250 10251 10252
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10253
    
S
shippingwang 已提交
10254
    .. code-block:: text
10255

S
shippingwang 已提交
10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10284
    Args: 
S
shippingwang 已提交
10285 10286
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10287 10288

    Returns:
S
shippingwang 已提交
10289 10290
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10291 10292

    Raises:
S
shippingwang 已提交
10293
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10294 10295 10296

    Examples:
        .. code-block:: python
10297 10298

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10299
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10300 10301 10302
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10303
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10304 10305 10306 10307 10308 10309 10310 10311 10312

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10313
    return out
S
Add  
shippingwang 已提交
10314 10315


S
sneaxiy 已提交
10316
class PyFuncRegistry(object):
S
sneaxiy 已提交
10317 10318 10319
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10320
        if func is None or not callable(func):
S
sneaxiy 已提交
10321 10322 10323
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10324
        # find named args using reflection
S
sneaxiy 已提交
10325 10326 10327 10328 10329 10330 10331
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10332 10333 10334
        '''
        Why record self here?

M
minqiyang 已提交
10335 10336
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10337
           to find the registered function corresponding
M
minqiyang 已提交
10338
           to :code:`idx`.
S
sneaxiy 已提交
10339

M
minqiyang 已提交
10340 10341
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10342
           whose reference count is 1 would cause
M
minqiyang 已提交
10343
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10344 10345
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10346
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10361 10362 10363 10364 10365 10366 10367 10368 10369
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10370

S
sneaxiy 已提交
10371 10372
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10373 10374

        ret = []
S
sneaxiy 已提交
10375 10376 10377
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10378 10379
                continue

S
sneaxiy 已提交
10380 10381
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10382

S
sneaxiy 已提交
10383 10384 10385
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10386

S
sneaxiy 已提交
10387
        return tuple(ret)
S
sneaxiy 已提交
10388 10389


S
sneaxiy 已提交
10390 10391 10392 10393
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10394

S
sneaxiy 已提交
10395 10396 10397 10398 10399 10400 10401 10402
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10403
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10404

S
sneaxiy 已提交
10405 10406
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10407 10408 10409 10410
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10411
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10412
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10413 10414
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10415 10416 10417 10418 10419
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10420
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10421
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10422
                                       None means no backward. Default None.
S
sneaxiy 已提交
10423
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10424
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10425 10426
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10427
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10428 10429 10430

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10431 10432

    Examples:
M
minqiyang 已提交
10433

S
sneaxiy 已提交
10434 10435 10436 10437 10438
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10439
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10440 10441
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10442
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10443 10444 10445
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10446
        >>>
S
sneaxiy 已提交
10447 10448 10449 10450 10451
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10452
        >>>     print(x)
S
sneaxiy 已提交
10453 10454 10455 10456 10457 10458
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10459
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10460 10461
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10462 10463
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10464 10465 10466 10467 10468 10469 10470 10471
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10472
    """
S
sneaxiy 已提交
10473
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10474 10475 10476
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10477
        x = [x]
S
sneaxiy 已提交
10478 10479
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10480

S
sneaxiy 已提交
10481 10482 10483
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10484
        out_list = [out]
S
sneaxiy 已提交
10485
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10486
        out_list = out
S
sneaxiy 已提交
10487 10488 10489
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10490

S
sneaxiy 已提交
10491 10492
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10493
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10494 10495

    for each_out in out_list:
S
sneaxiy 已提交
10496 10497
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10498 10499
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10500

S
sneaxiy 已提交
10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10516 10517 10518 10519

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10520 10521
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10522 10523 10524
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10525
        })
S
sneaxiy 已提交
10526
    return out
S
sneaxiy 已提交
10527 10528 10529


# For debug usage
S
sneaxiy 已提交
10530 10531 10532 10533
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10586

M
minqiyang 已提交
10587

M
minqiyang 已提交
10588
def huber_loss(input, label, delta):
10589
    """
M
minqiyang 已提交
10590 10591 10592
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10593 10594 10595 10596

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10597
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10598 10599 10600 10601

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10602
        huber\_loss = 0.5 * (label - input) * (label - input)
10603 10604 10605 10606 10607 10608 10609


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10610
        delta (float): The parameter of huber loss, which controls
10611 10612 10613
                       the range of outliers

    Returns:
M
minqiyang 已提交
10614
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10615 10616 10617 10618 10619

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10620
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10621
    """
M
minqiyang 已提交
10622
    helper = LayerHelper('huber_loss', **locals())
10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10704 10705


C
ceci3 已提交
10706
from .ops import square
C
ceci3 已提交
10707
from .control_flow import equal
C
ceci3 已提交
10708 10709


C
ceci3 已提交
10710 10711 10712
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10713

C
ceci3 已提交
10714
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10715 10716

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10717
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10718 10719 10720 10721 10722
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10723 10724
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10725 10726 10727 10728 10729 10730 10731

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10732 10733 10734 10735 10736 10737 10738 10739
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10740 10741 10742 10743 10744 10745 10746
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10747
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10748 10749
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10750 10751
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10752 10753 10754 10755
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10756 10757 10758
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10759 10760 10761
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss