Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8f09109a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
8f09109a
编写于
9月 21, 2018
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
8fa1d84d
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
124 addition
and
163 deletion
+124
-163
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+70
-87
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+0
-1
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+3
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+8
-0
tools/test_generator.py
tools/test_generator.py
+43
-75
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
8f09109a
...
...
@@ -29,93 +29,25 @@ from .. import unique_name
from
functools
import
reduce
__all__
=
[
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstmp'
,
'dynamic_gru'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'conv3d'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'pool3d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv3d_transpose'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_pad'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'reshape'
,
'squeeze'
,
'unsqueeze'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'pad_constant_like'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'scatter'
,
'sequence_scatter'
,
'random_crop'
,
'mean_iou'
,
'relu'
,
'log'
,
'crop'
,
'rank_loss'
,
'prelu'
,
'flatten'
,
'sequence_mask'
,
'stack'
,
'pad2d'
,
'unstack'
,
'sequence_enumerate'
,
'expand'
,
'sequence_concat'
,
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstmp'
,
'dynamic_gru'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'conv3d'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'pool3d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv3d_transpose'
,
'sequence_expand'
,
'sequence_expand_as'
,
'sequence_pad'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'reshape'
,
'squeeze'
,
'unsqueeze'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'pad_constant_like'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'scatter'
,
'sequence_scatter'
,
'random_crop'
,
'mean_iou'
,
'relu'
,
'log'
,
'crop'
,
'rank_loss'
,
'prelu'
,
'flatten'
,
'sequence_mask'
,
'stack'
,
'pad2d'
,
'unstack'
,
'sequence_enumerate'
,
'expand'
,
'sequence_concat'
,
'uniform_random_batch_size_like'
]
...
...
@@ -6234,3 +6166,54 @@ def expand(x, expand_times, name=None):
outputs
=
{
'Out'
:
out
},
attrs
=
{
'expand_times'
:
expand_times
})
return
out
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
def
uniform_random_batch_size_like
(
input
,
shape
,
dtype
=
'float32'
,
input_dim_idx
=
0
,
output_dim_idx
=
0
,
min
=-
1.0
,
max
=
1.0
,
seed
=
0
):
"""
UniformRandomBatchSizeLike operator.
This operator initializes a tensor with the same batch_size as the Input tensor with random values sampled from a uniform distribution.
Args:
input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size.
shape (tuple|list): the shape of the output.
input_dim_idx (Int): The index of input's batch size dimension.
output_dim_idx (Int): The index of output's batch size dimension.
min (Float): Minimum value of uniform random.
max (Float): Maximum value of uniform random.
seed (Int): Random seed used for generating samples. 0 means use a seed generated by the system.
Note that if seed is not 0, this operator will always generate the same random numbers every time.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
output(Variable): Output of this operator.
"""
helper
=
LayerHelper
(
'uniform_random_batch_size_like'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
helper
.
append_op
(
type
=
'uniform_random_batch_size_like'
,
inputs
=
{
'Input'
:
input
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'shape'
:
shape
,
'input_dim_idx'
:
input_dim_idx
,
'output_dim_idx'
:
output_dim_idx
,
'min'
:
min
,
'max'
:
max
,
'seed'
:
seed
,
'dtype'
:
c_dtype
})
return
out
python/paddle/fluid/layers/ops.py
浏览文件 @
8f09109a
...
...
@@ -62,7 +62,6 @@ __all__ = [
'logical_or'
,
'logical_xor'
,
'logical_not'
,
'uniform_random_batch_size_like'
,
'gaussian_random'
,
'sampling_id'
,
'gaussian_random_batch_size_like'
,
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
8f09109a
...
...
@@ -252,6 +252,9 @@ class OpTest(unittest.TestCase):
block
=
program
.
global_block
()
self
.
_append_ops
(
block
)
from
paddle.fluid.transpiler.details
import
program_to_code
program_to_code
(
program
)
inputs
=
self
.
_get_inputs
(
block
)
outputs
=
self
.
_get_outputs
(
block
)
feed_map
=
self
.
feed_var
(
inputs
,
place
)
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
8f09109a
...
...
@@ -596,6 +596,14 @@ class TestBook(unittest.TestCase):
out
=
layers
.
expand
(
x
,
[
1
,
2
])
print
(
str
(
program
))
def
test_uniform_random_batch_size_like
(
self
):
program
=
Program
()
with
program_guard
(
program
):
input
=
layers
.
data
(
name
=
"input"
,
shape
=
[
500
,
2000
],
dtype
=
'float32'
)
out
=
layers
.
uniform_random_batch_size_like
(
input
,
[
-
1
,
2000
])
self
.
assertIsNotNone
(
out
)
if
__name__
==
'__main__'
:
unittest
.
main
()
tools/test_generator.py
浏览文件 @
8f09109a
...
...
@@ -23,7 +23,7 @@ from paddle.fluid.proto import framework_pb2
from
paddle.fluid.framework
import
OpProtoHolder
,
Variable
from
paddle.fluid.layer_helper
import
LayerHelper
g_filer_attrs
=
[
'op_role'
,
'op_role_var'
,
'op_namescope'
,
'dtype'
]
g_filer_attrs
=
[
'op_role'
,
'op_role_var'
,
'op_namescope'
]
def
_convert_
(
name
):
...
...
@@ -46,7 +46,7 @@ def _get_inputs(op_type):
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
)
inputs
=
dict
()
for
ipt
in
op_proto
.
inputs
:
inputs
[
ipt
.
name
]
=
""
inputs
[
ipt
.
name
]
=
ipt
.
comment
return
inputs
...
...
@@ -60,6 +60,34 @@ def _get_outputs(op_type):
return
outputs
_two_dollar_pattern_
=
re
.
compile
(
r
"\$\$([^\$]+)\$\$"
)
_single_dollar_pattern_
=
re
.
compile
(
r
"\$([^\$]+)\$"
)
_two_bang_pattern_
=
re
.
compile
(
r
"!!([^!]+)!!"
)
def
escape_math
(
text
):
return
_two_bang_pattern_
.
sub
(
r
'$$\1$$'
,
_single_dollar_pattern_
.
sub
(
r
':math:`\1`'
,
_two_dollar_pattern_
.
sub
(
r
"!!\1!!"
,
text
)))
def
get_comment
(
op_type
):
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
)
comment_lines
=
op_proto
.
comment
.
split
(
"
\n
"
)
comment
=
""
for
line
in
comment_lines
:
line
=
line
.
strip
()
if
len
(
line
)
!=
0
:
comment
+=
escape_math
(
line
)
comment
+=
" "
elif
len
(
comment
)
!=
0
:
comment
+=
"
\n
"
return
comment
def
_get_attrs
(
op_type
):
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
)
return
op_proto
.
attrs
...
...
@@ -77,14 +105,14 @@ def get_input_comments(op_type, indent=2):
ret
=
""
inputs
=
_get_inputs
(
op_type
)
for
t
in
inputs
:
ret
+=
get_indent_space
(
2
)
+
"
input(${%s_type}): ${%s_comment}
\n
"
%
(
_convert_
(
t
),
_convert_
(
t
)
)
ret
+=
get_indent_space
(
2
)
+
"
%s (Type): %s
\n
"
%
(
_convert_
(
t
),
inputs
[
t
]
)
for
t
in
_get_attrs
(
op_type
):
if
t
.
name
in
g_filer_attrs
:
continue
ret
+=
get_indent_space
(
2
)
+
"
input(${%s_type}): ${%s_comment}
\n
"
%
(
_convert_
(
t
.
name
),
_convert_
(
t
.
name
))
ret
+=
get_indent_space
(
2
)
+
"
%s (%s): %s
\n
"
%
(
_convert_
(
t
.
name
),
t
.
type
,
_convert_
(
t
.
comment
))
return
ret
...
...
@@ -122,7 +150,7 @@ def get_inputs(op_type):
ret
=
"inputs={"
inputs
=
_get_inputs
(
op_type
)
for
t
in
inputs
:
ret
+=
"
{}=
{},"
.
format
(
t
,
_convert_
(
t
))
ret
+=
"
'{}':
{},"
.
format
(
t
,
_convert_
(
t
))
ret
=
ret
.
strip
(
","
)
ret
+=
"}"
...
...
@@ -132,39 +160,11 @@ def get_inputs(op_type):
return
ret
"""
def get_input_dtype(op_type):
dtype = None
for ipt in _get_inputs():
name = _convert_(ipt.name)
val = kwargs.pop(name, [])
if not isinstance(val, list) and not isinstance(val, tuple):
val = [val]
if len(val) == 0:
val = [args[0]]
args = args[1:]
for each in val:
if not isinstance(each, Variable):
raise ValueError("input of {0} must be variable".format(
op_type))
if dtype is None:
dtype = each.dtype
elif dtype != each.dtype:
raise ValueError(
"operator {0} must input same dtype. {1} vs {2}".format(
op_type, dtype, each.dtype))
return dtype
"""
def
get_outputs
(
op_type
):
ret
=
"outputs={"
inputs
=
_get_outputs
(
op_type
)
for
t
in
inputs
:
ret
+=
"
{}=
{},"
.
format
(
t
,
_convert_
(
t
))
ret
+=
"
'{}':
{},"
.
format
(
t
,
_convert_
(
t
))
ret
=
ret
.
strip
(
","
)
ret
+=
"}"
...
...
@@ -174,44 +174,13 @@ def get_outputs(op_type):
return
ret
"""
attr_names = sorted(op.attr_names)
attrs_str = ""
for i in range(0, len(attr_names)):
name = attr_names[i]
attr_type = op.desc.attr_type(name)
if attr_type == core.AttrType.BLOCK:
a = "{name} = block[{value}]".format(
name=name, type=attr_type, value=op.block_attr_id(name))
attrs_str += a
if i != len(attr_names) - 1:
attrs_str += ", "
continue
if attr_type == core.AttrType.BLOCKS:
a = "{name} = blocks{value}".format(
name=name, type=attr_type, value=op.blocks_attr_ids(name))
attrs_str += a
if i != len(attr_names) - 1:
attrs_str += ", "
continue
a = "{name} = {value}".format(
name=name, type=attr_type, value=op.desc.attr(name))
attrs_str += a
if i != len(attr_names) - 1:
attrs_str += ", "
"""
def
get_attrs
(
op_type
):
ret
=
"attrs={"
for
t
in
_get_attrs
(
op_type
):
if
t
.
name
in
g_filer_attrs
:
continue
ret
+=
"
%s=
%s,"
%
(
t
.
name
,
_convert_
(
t
.
name
))
ret
+=
"
'%s':
%s,"
%
(
t
.
name
,
_convert_
(
t
.
name
))
ret
=
ret
.
strip
(
","
)
ret
+=
"}"
...
...
@@ -220,12 +189,13 @@ def get_attrs(op_type):
def
get_outvars
(
op_type
,
indent
=
1
):
inputs
=
_get_inputs
(
op_type
)
ret
=
""
for
t
in
_get_outputs
(
op_type
):
ret
+=
get_indent_space
(
indent
)
+
"%s = helper.create_tmp_variable(dtype=helper.input_dtype())
\n
"
%
(
_convert_
(
t
))
)
+
"%s = helper.create_tmp_variable(dtype=helper.input_dtype(
'%s'
))
\n
"
%
(
(
_convert_
(
t
),
list
(
inputs
)[
0
]
))
ret
=
ret
.
strip
(
'
\n
'
)
return
ret
...
...
@@ -238,17 +208,15 @@ def get_op_py(op_type):
outputs
=
get_outputs
(
op_type
)
attrs
=
get_attrs
(
op_type
)
out_vars
=
get_outvars
(
op_type
)
comment
=
get_comment
(
op_type
)
code
=
"""
@templatedoc()
def {op_type}({args}):
\"\"\"
{op_type}
{comment}
Args:
{input_comments}
Returns:
{output_comments}
\"\"\"
...
...
@@ -263,7 +231,7 @@ def {op_type}({args}):
return out
"""
.
format
(
comment
=
"${comment}"
,
comment
=
comment
,
input_comments
=
input_comments
.
strip
(
'
\n
'
),
output_comments
=
output_comments
,
args
=
args
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录