Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9a14ca91
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9a14ca91
编写于
10月 18, 2018
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
4c9884e7
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
118 addition
and
136 deletion
+118
-136
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+1
-2
paddle/fluid/operators/roi_align_op.cu
paddle/fluid/operators/roi_align_op.cu
+47
-54
paddle/fluid/operators/roi_align_op.h
paddle/fluid/operators/roi_align_op.h
+67
-78
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
9a14ca91
...
...
@@ -114,7 +114,7 @@ paddle.fluid.layers.pad ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], var
paddle.fluid.layers.pad_constant_like ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None))
paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None))
paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0))
paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio'
], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1
))
paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio'
, 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None
))
paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR'))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
...
...
paddle/fluid/operators/roi_align_op.cc
浏览文件 @
9a14ca91
...
...
@@ -94,7 +94,7 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), "
"
t
he input of ROIAlignOp. "
"
T
he input of ROIAlignOp. "
"The format of input tensor is NCHW. Where N is batch size, "
"C is the number of input channels, "
"H is the height of the feature, and "
...
...
@@ -104,7 +104,6 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], …]. "
"Where batch_id is the id of the data, "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates."
);
AddOutput
(
"Out"
,
...
...
paddle/fluid/operators/roi_align_op.cu
浏览文件 @
9a14ca91
...
...
@@ -34,17 +34,13 @@ static inline int NumBlocks(const int N) {
i += blockDim.x * gridDim.x)
template
<
class
T
>
__device__
T
bilinear_i
nterpolate
(
const
T
*
input_data
,
const
int
height
,
const
int
width
,
T
y
,
T
x
)
{
__device__
T
BilinearI
nterpolate
(
const
T
*
input_data
,
const
int
height
,
const
int
width
,
T
y
,
T
x
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
0
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
int
y_high
;
...
...
@@ -75,20 +71,16 @@ __device__ T bilinear_interpolate(const T* input_data, const int height,
}
template
<
class
T
>
__device__
void
bilinear_interpolate_g
radient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
T
*
w1
,
T
*
w2
,
T
*
w3
,
T
*
w4
,
int
*
x_low
,
int
*
x_high
,
int
*
y_low
,
int
*
y_high
)
{
__device__
void
BilinearInterpolateG
radient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
T
*
w1
,
T
*
w2
,
T
*
w3
,
T
*
w4
,
int
*
x_low
,
int
*
x_high
,
int
*
y_low
,
int
*
y_high
)
{
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
return
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
*
y_low
=
static_cast
<
int
>
(
y
);
*
x_low
=
static_cast
<
int
>
(
x
);
if
(
*
y_low
>=
height
-
1
)
{
...
...
@@ -153,7 +145,7 @@ __global__ void GPUROIAlignForward(
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
T
val
=
bilinear_i
nterpolate
(
offset_input_data
,
height
,
width
,
y
,
x
);
T
val
=
BilinearI
nterpolate
(
offset_input_data
,
height
,
width
,
y
,
x
);
output_val
+=
val
;
}
}
...
...
@@ -213,8 +205,8 @@ __global__ void GPUROIAlignBackward(const int nthreads, const T* input_rois,
static_cast
<
T
>
(
roi_bin_grid_w
);
T
w1
=
0
,
w2
=
0
,
w3
=
0
,
w4
=
0
;
int
x_low
=
-
1
,
x_high
=
-
1
,
y_low
=
-
1
,
y_high
=
-
1
;
bilinear_interpolate_g
radient
(
height
,
width
,
y
,
x
,
&
w1
,
&
w2
,
&
w3
,
&
w4
,
&
x_low
,
&
x_high
,
&
y_low
,
&
y_high
);
BilinearInterpolateG
radient
(
height
,
width
,
y
,
x
,
&
w1
,
&
w2
,
&
w3
,
&
w4
,
&
x_low
,
&
x_high
,
&
y_low
,
&
y_high
);
T
diff1
=
out_grad_this_bin
*
w1
/
count
;
T
diff2
=
out_grad_this_bin
*
w2
/
count
;
T
diff3
=
out_grad_this_bin
*
w3
/
count
;
...
...
@@ -279,8 +271,8 @@ class GPUROIAlignOpKernel : public framework::OpKernel<T> {
}
}
Tensor
roi_batch_id_list_gpu
;
framework
::
TensorCopy
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
&
roi_batch_id_list_gpu
);
framework
::
TensorCopy
Sync
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
&
roi_batch_id_list_gpu
);
GPUROIAlignForward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_size
,
in
->
data
<
T
>
(),
rois
->
data
<
T
>
(),
spatial_scale
,
channels
,
...
...
@@ -310,39 +302,40 @@ class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
int
height
=
in
->
dims
()[
2
];
int
width
=
in
->
dims
()[
3
];
if
(
in_grad
)
{
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
Tensor
roi_batch_id_list_gpu
;
framework
::
TensorCopy
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
&
roi_batch_id_list_gpu
);
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
cuda_device_context
(),
in_grad
,
static_cast
<
T
>
(
0
));
int
output_grad_size
=
out_grad
->
numel
();
int
blocks
=
NumBlocks
(
output_grad_size
);
int
threads
=
kNumCUDAThreads
;
if
(
output_grad_size
>
0
)
{
GPUROIAlignBackward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_grad_size
,
rois
->
data
<
T
>
(),
out_grad
->
data
<
T
>
(),
rois_num
,
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
if
(
!
in_grad
)
{
return
;
}
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
Tensor
roi_batch_id_list_gpu
;
framework
::
TensorCopySync
(
roi_batch_id_list
,
ctx
.
GetPlace
(),
&
roi_batch_id_list_gpu
);
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
Place
,
T
>
set_zero
;
set_zero
(
ctx
.
cuda_device_context
(),
in_grad
,
static_cast
<
T
>
(
0
));
int
output_grad_size
=
out_grad
->
numel
();
int
blocks
=
NumBlocks
(
output_grad_size
);
int
threads
=
kNumCUDAThreads
;
if
(
output_grad_size
>
0
)
{
GPUROIAlignBackward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_grad_size
,
rois
->
data
<
T
>
(),
out_grad
->
data
<
T
>
(),
rois_num
,
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
sampling_ratio
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
}
};
...
...
paddle/fluid/operators/roi_align_op.h
浏览文件 @
9a14ca91
...
...
@@ -24,7 +24,7 @@ using LoDTensor = framework::LoDTensor;
static
constexpr
int
kROISize
=
4
;
template
<
class
T
>
void
pre_calc_for_bilinear_i
nterpolate
(
void
PreCalcForBilinearI
nterpolate
(
const
platform
::
DeviceContext
&
ctx
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
iy_upper
,
const
int
ix_upper
,
T
roi_ymin
,
T
roi_xmin
,
T
bin_size_h
,
T
bin_size_w
,
...
...
@@ -53,12 +53,8 @@ void pre_calc_for_bilinear_interpolate(
pre_calc_index
+=
1
;
continue
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
...
...
@@ -104,12 +100,8 @@ void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
x_low
=
x_high
=
y_low
=
y_high
=
-
1
;
return
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
y
=
y
<=
0
?
0
:
y
;
x
=
x
<=
0
?
0
:
x
;
y_low
=
static_cast
<
int
>
(
y
);
x_low
=
static_cast
<
int
>
(
x
);
if
(
y_low
>=
height
-
1
)
{
...
...
@@ -139,7 +131,6 @@ void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
*
(
batch_grad_data
+
y_high
*
width
+
x_low
)
+=
diff3
;
*
(
batch_grad_data
+
y_high
*
width
+
x_high
)
+=
diff4
;
}
return
;
}
template
<
typename
DeviceContext
,
typename
T
>
...
...
@@ -214,7 +205,7 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
pre_pos
.
Resize
({
pre_size
,
kROISize
});
pre_w
.
Resize
({
pre_size
,
kROISize
});
pre_calc_for_bilinear_i
nterpolate
(
PreCalcForBilinearI
nterpolate
(
dev_ctx
,
height
,
width
,
pooled_height
,
pooled_width
,
roi_bin_grid_h
,
roi_bin_grid_w
,
roi_ymin
,
roi_xmin
,
bin_size_h
,
bin_size_w
,
roi_bin_grid_h
,
roi_bin_grid_w
,
&
pre_pos
,
&
pre_w
);
...
...
@@ -245,7 +236,6 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
}
rois_data
+=
roi_stride
[
0
];
}
return
;
}
};
...
...
@@ -264,79 +254,78 @@ class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
in_dims
=
in
->
dims
();
if
(
in_grad
)
{
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
if
(
!
in_grad
)
{
return
;
}
int
channels
=
in_dims
[
1
];
int
height
=
in_dims
[
2
];
int
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
const
T
*
rois_data
=
rois
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
T
*
in_grad_data
=
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
rois_data
=
rois
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
T
*
in_grad_data
=
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_stride
=
framework
::
stride
(
in
->
dims
());
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
out_stride
=
framework
::
stride
(
out_grad
->
dims
());
auto
in_stride
=
framework
::
stride
(
in
->
dims
());
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
out_stride
=
framework
::
stride
(
out_grad
->
dims
());
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_idx
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
rois_data
[
0
]
*
spatial_scale
;
T
roi_ymin
=
rois_data
[
1
]
*
spatial_scale
;
T
roi_xmax
=
rois_data
[
2
]
*
spatial_scale
;
T
roi_ymax
=
rois_data
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
T
*
batch_grad_data
=
in_grad_data
+
roi_batch_idx
*
in_stride
[
0
]
+
c
*
in_stride
[
1
];
const
T
*
batch_out_grad_data
=
out_grad_data
+
n
*
out_stride
[
0
]
+
c
*
out_stride
[
1
];
for
(
int
ph
=
0
;
ph
<
pooled_height
;
++
ph
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
++
pw
)
{
int
pool_index
=
ph
*
pooled_width
+
pw
;
T
out_grad_this_bin
=
batch_out_grad_data
[
pool_index
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
bilinear_interpolate_gradient
(
height
,
width
,
y
,
x
,
out_grad_this_bin
,
count
,
batch_grad_data
);
}
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_idx
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
rois_data
[
0
]
*
spatial_scale
;
T
roi_ymin
=
rois_data
[
1
]
*
spatial_scale
;
T
roi_xmax
=
rois_data
[
2
]
*
spatial_scale
;
T
roi_ymax
=
rois_data
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
T
*
batch_grad_data
=
in_grad_data
+
roi_batch_idx
*
in_stride
[
0
]
+
c
*
in_stride
[
1
];
const
T
*
batch_out_grad_data
=
out_grad_data
+
n
*
out_stride
[
0
]
+
c
*
out_stride
[
1
];
for
(
int
ph
=
0
;
ph
<
pooled_height
;
++
ph
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
++
pw
)
{
int
pool_index
=
ph
*
pooled_width
+
pw
;
T
out_grad_this_bin
=
batch_out_grad_data
[
pool_index
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
bilinear_interpolate_gradient
(
height
,
width
,
y
,
x
,
out_grad_this_bin
,
count
,
batch_grad_data
);
}
}
}
}
rois_data
+=
roi_stride
[
0
];
}
rois_data
+=
roi_stride
[
0
];
}
return
;
}
};
}
// namespace operators
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
9a14ca91
...
...
@@ -5184,7 +5184,8 @@ def roi_align(input,
pooled_height
=
1
,
pooled_width
=
1
,
spatial_scale
=
1.0
,
sampling_ratio
=-
1
):
sampling_ratio
=-
1
,
name
=
None
):
"""
${comment}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录