nn.py 435.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
Y
Yu Yang 已提交
206 207
]

J
jerrywgz 已提交
208 209
kIgnoreIndex = -100

Y
Yu Yang 已提交
210 211 212 213 214 215 216

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
217
       is_test=False,
218
       name=None):
Y
Yu Yang 已提交
219
    """
220
    **Fully Connected Layer**
Y
Yu Yang 已提交
221

222
    This function creates a fully connected layer in the network. It can take
223
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
224
    Args in detail). It creates a variable called weights for each input tensor,
225 226 227 228
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
229
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
230 231
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
232

233
    When the input is single tensor:
C
caoying03 已提交
234

235 236 237 238 239
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
240 241 242

    .. math::

243
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
244 245 246

    In the above equation:

247 248 249
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
250
    * :math:`b`: The bias parameter created by this layer (if needed).
251
    * :math:`Act`: The activation function.
C
caoying03 已提交
252
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
272
    Args:
R
ranqiu 已提交
273 274 275 276 277 278 279 280 281 282
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
283
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
284 285 286 287
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
288 289
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
290
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
291
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
292
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
293

294
    Returns:
F
fengjiayi 已提交
295
        Variable: The transformation result.
296 297

    Raises:
C
caoying03 已提交
298
        ValueError: If rank of the input tensor is less than 2.
299 300 301 302

    Examples:
        .. code-block:: python

303
          # when input is single tensor
F
fengjiayi 已提交
304
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
305
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
306 307 308 309 310

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
311
    """
C
caoying03 已提交
312
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
313 314 315 316

    dtype = helper.input_dtype()

    mul_results = []
317 318
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
319 320 321
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
322

Y
Yu Yang 已提交
323
        w = helper.create_parameter(
324
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
325
        tmp = helper.create_variable_for_type_inference(dtype)
326
        helper.append_op(
327 328 329
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
330
            outputs={"Out": tmp},
M
mozga-intel 已提交
331 332
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
333 334 335 336
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
337
    else:
X
Xin Pan 已提交
338
        pre_bias = helper.create_variable_for_type_inference(dtype)
339
        helper.append_op(
340 341 342
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
343
            attrs={"use_mkldnn": False})
344 345 346 347
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
348 349


350 351 352
def embedding(input,
              size,
              is_sparse=False,
353
              is_distributed=False,
354 355 356
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
357
    """
358 359
    **Embedding Layer**

360
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
361 362
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
363 364 365

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
366 367

    Args:
368 369 370 371 372
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
373
        is_distributed(bool): Whether to run lookup table from remote parameter server.
374 375
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
376
            with zeros whenever lookup encounters it in :attr:`input`. If
377
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
378 379
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
380
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
381

382 383 384
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
385

386 387
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
388

B
bdzhuxiaoning 已提交
389 390 391
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
392 393 394
    """

    helper = LayerHelper('embedding', **locals())
395
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
396 397
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
398 399
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
400
    tmp = helper.create_variable_for_type_inference(dtype)
401 402
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
403 404 405 406 407
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
408 409 410
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
411
            'remote_prefetch': remote_prefetch,
412 413
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
414 415 416
    return tmp


W
wopeizl 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
433

W
wopeizl 已提交
434 435 436 437 438 439 440 441 442 443 444
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
445

W
wopeizl 已提交
446 447 448 449
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
450

W
wopeizl 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
487 488 489
            
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
490
            hidden_dim = 512
491 492 493 494 495 496
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
497
                                           bias_attr=False)
498

W
wopeizl 已提交
499 500 501
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
502
    assert in_dygraph_mode(
503
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
547 548


P
phlrain 已提交
549 550 551 552 553 554
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
555
         dropout_prob=0.0,
P
phlrain 已提交
556 557 558 559 560
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
561
    """
P
phlrain 已提交
562
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
563 564

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
565
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
566 567
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
568
    .. math::
M
minqiyang 已提交
569 570 571 572 573 574 575

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
576
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
577 578 579 580

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
581 582

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
583 584 585 586 587 588
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
589 590 591
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
592
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
593

M
minqiyang 已提交
594
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
595 596 597 598 599
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
600
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
601 602 603 604 605
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
606
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
607 608
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
609 610
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
611 612 613 614 615 616
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
617
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
618

L
liuhongyu 已提交
619 620

    Returns:
M
minqiyang 已提交
621 622
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
623
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
624

H
haowang101779990 已提交
625 626 627 628
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
629
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
630 631
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
632
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
633 634 635 636


    Examples:
        .. code-block:: python
637 638 639 640 641 642
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
643 644 645 646 647 648
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
649 650 651 652 653
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
654 655 656 657
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
658 659 660
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
720 721 722 723 724 725 726 727 728 729
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
730
                  proj_activation='tanh',
731
                  dtype='float32',
X
xuezhong 已提交
732 733 734 735 736
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
737 738 739
    """
    **Dynamic LSTMP Layer**

740 741 742 743 744 745
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
746 747 748 749 750

    The formula is as follows:

    .. math::

751
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
752

753
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
754

755
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
756

757
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
758

759
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
760

761
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
762

763
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
764

Y
Yibing Liu 已提交
765 766 767 768 769 770
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
771
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
772
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
773
          bias vector).
Y
Yibing Liu 已提交
774 775 776
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
777
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
778
    * :math:`h`: The hidden state.
779
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
780 781
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
782
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
783
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
784
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
785 786
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
787 788 789 790

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
791

Y
Yibing Liu 已提交
792 793 794 795 796 797 798 799 800 801 802 803
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
804
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
805 806
                               hidden-hidden weight and projection weight.

807 808
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
809 810
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
811 812
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
813
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
814 815 816 817 818

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
819
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
820 821 822 823 824 825
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
826
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
827 828 829
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
830
                                - The shape is (1 x 7D).
C
chengduo 已提交
831 832 833 834 835

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
836 837 838 839 840 841 842 843 844
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
845
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
846 847
                              default "tanh".
        proj_activation(str): The activation for projection output.
848
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
849
                              default "tanh".
Y
Yibing Liu 已提交
850
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
851 852
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
853 854 855 856 857 858 859 860 861 862 863
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
864 865

    Returns:
866 867 868 869
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
870 871

    Examples:
872

Y
Yibing Liu 已提交
873 874
        .. code-block:: python

875 876 877 878
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
879
            hidden_dim, proj_dim = 512, 256
880
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
881
                                     act=None, bias_attr=None)
882 883 884
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
885 886 887 888
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
889
    """
890

L
lujun 已提交
891
    assert in_dygraph_mode(
892 893
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
894
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
895
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
896
    size = size // 4
Y
Yibing Liu 已提交
897 898 899 900 901 902 903 904 905 906
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
907 908 909 910 911 912
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
928

X
xuezhong 已提交
929 930 931 932 933
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
934 935
    helper.append_op(
        type='lstmp',
936
        inputs=inputs,
Y
Yibing Liu 已提交
937 938 939 940 941 942 943 944 945
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
946 947
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
948 949 950 951 952 953 954 955 956
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
957 958 959 960 961 962 963
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
964 965
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
966
    """
967
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
968

969 970 971
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
972

G
guosheng 已提交
973 974 975 976 977 978 979 980 981
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
982

G
guosheng 已提交
983
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
984

Q
Qiao Longfei 已提交
985 986 987

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
988 989 990 991 992 993 994 995 996 997 998 999
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1000
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1001 1002
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1003 1004 1005 1006
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1007
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1008 1009

    Args:
1010 1011
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1012
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1013
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1014 1015
            is the hidden size.
        size(int): The dimension of the gru cell.
1016
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1017 1018
            hidden-hidden weight matrix. Note:

1019
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1020
              :math:`D` is the hidden size.
1021
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1022
              The first part are weights of the update gate and reset gate with
1023
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1024
              candidate hidden state with shape :math:`(D \\times D)`.
1025 1026 1027 1028 1029

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1030
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1031
            the bias in the update gate, reset gate and candidate calculations.
1032 1033 1034
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1035 1036
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1037
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1038 1039 1040
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1041
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1042
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1043 1044 1045 1046
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1047 1048

    Returns:
G
guosheng 已提交
1049
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1050
            and sequence length is the same with the input.
1051

G
guosheng 已提交
1052
    Examples:
1053

G
guosheng 已提交
1054 1055
        .. code-block:: python

1056 1057
            import paddle.fluid as fluid

1058 1059 1060 1061
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1062
            hidden_dim = 512
1063
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1064
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1065 1066
    """

L
lujun 已提交
1067
    assert in_dygraph_mode(
1068 1069
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1070 1071 1072 1073 1074 1075 1076
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1077
    batch_size = input.shape[0]
G
guosheng 已提交
1078
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1079
    if h_0:
G
guosheng 已提交
1080
        assert h_0.shape == (
Y
Yancey 已提交
1081 1082 1083
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1084

X
Xin Pan 已提交
1085 1086 1087 1088
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1102 1103
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1104 1105 1106 1107
        })
    return hidden


Y
Yu Yang 已提交
1108 1109 1110
def gru_unit(input,
             hidden,
             size,
1111 1112
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1113
             activation='tanh',
Q
Qiao Longfei 已提交
1114 1115
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1116
    """
1117 1118 1119
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1120
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1121
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1122

1123 1124
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1125

1126
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1127

1128
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1145 1146

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1147 1148 1149
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1150 1151
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1152 1153
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1154 1155 1156
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1157 1158 1159

    Args:
        input (Variable): The fc transformed input value of current step.
1160
        hidden (Variable): The hidden value of gru unit from previous step.
1161
        size (integer): The input dimension value.
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1176
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1177
            the bias in the update gate, reset gate and candidate calculations.
1178 1179 1180
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1181 1182
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1183 1184 1185 1186
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1187

1188 1189 1190 1191 1192 1193
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1218
    size = size // 3
Y
Yu Yang 已提交
1219 1220

    # create weight
1221 1222
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1223

X
Xin Pan 已提交
1224 1225 1226
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1227
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1228
    # create bias
1229
    if helper.bias_attr:
Y
Yu Yang 已提交
1230 1231 1232
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1233
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1234 1235 1236

    helper.append_op(
        type='gru_unit',
1237
        inputs=inputs,
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1244 1245
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1246 1247 1248 1249 1250
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1251
@templatedoc()
1252
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1253 1254 1255 1256 1257 1258 1259
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1260
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1261 1262 1263 1264
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1265 1266 1267
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1268

J
JesseyXujin 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1282
    """
Y
Yu Yang 已提交
1283 1284 1285 1286 1287 1288
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1289 1290 1291 1292 1293 1294 1295 1296
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1312 1313 1314 1315
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1316

W
wopeizl 已提交
1317 1318
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1319

W
wopeizl 已提交
1320
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1321

W
wopeizl 已提交
1322
        label(${label_type}): ${label_comment}
1323

W
wopeizl 已提交
1324 1325
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1326

W
wopeizl 已提交
1327 1328
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1329

Y
Yibing Liu 已提交
1330 1331 1332 1333 1334 1335 1336
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1337 1338 1339 1340 1341 1342 1343 1344
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1345
                "Transition": transition,
W
wopeizl 已提交
1346 1347
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1348

W
wopeizl 已提交
1349
    return viterbi_path
Y
Yu Yang 已提交
1350 1351


Y
yi.wu 已提交
1352
@templatedoc()
F
fengjiayi 已提交
1353
def cos_sim(X, Y):
Y
Yu Yang 已提交
1354
    """
Y
yi.wu 已提交
1355 1356 1357
    ${comment}

    Args:
1358 1359
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1360

Y
yi.wu 已提交
1361
    Returns:
1362
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1363 1364 1365 1366 1367 1368 1369

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1370
    """
F
fengjiayi 已提交
1371
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1372 1373 1374
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1385 1386 1387 1388 1389
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1390
            dropout_implementation="downgrade_in_infer"):
1391 1392 1393 1394 1395
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1396
    training. The dropout operator randomly sets (according to the given dropout
1397 1398 1399
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1400 1401
    dropout op can be removed from the program to make the program more efficient.

1402
    Args:
1403 1404
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1405 1406 1407 1408 1409 1410 1411
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1412 1413
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1414
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1415 1416

                                           - train: out = input * mask
C
ceci3 已提交
1417
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1418 1419 1420

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1421
                                        2. upscale_in_train, upscale the outcome at training time
1422

H
haowang101779990 已提交
1423 1424
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1425

H
haowang101779990 已提交
1426 1427
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1428

M
minqiyang 已提交
1429

1430
    Returns:
1431
        Variable: A tensor variable is the shape with `x`.
1432 1433

    Examples:
1434

1435 1436
        .. code-block:: python

1437 1438
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1439 1440
    """

F
fengjiayi 已提交
1441
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1442 1443
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1444
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1445 1446 1447 1448

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1449 1450 1451 1452 1453
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1454 1455 1456 1457
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1458 1459
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1460
        })
1461 1462 1463
    return out


J
jerrywgz 已提交
1464
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1465
    """
Y
Yibing Liu 已提交
1466 1467
    **Cross Entropy Layer**

1468 1469 1470
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1471 1472

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1473
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1474

Y
Yibing Liu 已提交
1475
        .. math::
Y
yangyaming 已提交
1476

Y
Yibing Liu 已提交
1477 1478 1479
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1480 1481
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1482 1483 1484 1485 1486

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1487
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1488 1489 1490
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1491 1492
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1493
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1494

Y
Yibing Liu 已提交
1495
    Args:
Y
yangyaming 已提交
1496
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1497 1498 1499 1500
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1501
        label (Variable|list): the ground truth which is a 2-D tensor. When
1502 1503 1504 1505
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1506
        soft_label (bool): a flag indicating whether to
1507
                                           interpretate the given labels as soft
1508
                                           labels. Default: `False`.
M
minqiyang 已提交
1509 1510
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1511
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1512 1513 1514 1515 1516

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1517 1518 1519
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1520

H
haowang101779990 已提交
1521 1522
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1523

H
haowang101779990 已提交
1524 1525
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1526 1527 1528 1529

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1530 1531 1532 1533
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1534
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1535
    """
S
sneaxiy 已提交
1536 1537
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1538
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1539
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1540 1541 1542 1543 1544
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1545 1546
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1547 1548 1549
    return out


S
sneaxiy 已提交
1550 1551 1552 1553
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1554
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1555 1556 1557 1558 1559
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1560
                 'MatchX': [match_x],
S
sneaxiy 已提交
1561 1562 1563 1564 1565
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1566
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1567
    """
1568
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1569

1570
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1571
    The loss at a given point in one session is defined as:
1572 1573 1574

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1575 1576

    Learn more details by reading paper <session-based recommendations with recurrent
1577
    neural networks>.
F
frankwhzhang 已提交
1578

1579 1580 1581 1582 1583 1584
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1585 1586
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1587 1588 1589
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1590 1591 1592
    Examples:
        .. code-block:: python

1593 1594 1595 1596 1597 1598 1599
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1600
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1601
    """
1602 1603 1604 1605 1606
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1607
                'Label': [label]},
1608 1609 1610 1611
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1612
def square_error_cost(input, label):
Y
Yu Yang 已提交
1613
    """
1614 1615
    **Square error cost layer**

1616 1617
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1632 1633
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1634 1635

    Returns:
G
guosheng 已提交
1636
        Variable: The tensor variable storing the element-wise squared error \
1637
                  difference of input and label.
1638 1639 1640 1641

    Examples:
        .. code-block:: python

R
ruri 已提交
1642 1643 1644
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1645

Y
Yu Yang 已提交
1646
    """
F
fengjiayi 已提交
1647
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1648
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1649 1650 1651 1652 1653 1654
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1655
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1656
    helper.append_op(
F
fengjiayi 已提交
1657 1658
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1659 1660 1661
    return square_out


Y
yi.wu 已提交
1662
@templatedoc()
Y
Yu Yang 已提交
1663 1664 1665 1666
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1667
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1668
    """
Y
yi.wu 已提交
1669
    **Chunk Evaluator**
Y
yi.wu 已提交
1670

Y
yangyaming 已提交
1671
    This function computes and outputs the precision, recall and
1672
    F1-score of chunk detection.
Y
yi.wu 已提交
1673

M
minqiyang 已提交
1674
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1675
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1676 1677 1678 1679 1680 1681

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1682

Y
yi.wu 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1708

Y
yi.wu 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1733
    Args:
1734 1735 1736 1737 1738
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1739

Y
yi.wu 已提交
1740
    Returns:
Y
update  
yi.wu 已提交
1741 1742 1743
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1744

Y
yi.wu 已提交
1745 1746 1747
    Examples:
        .. code-block:: python

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1759
            crf = fluid.layers.linear_chain_crf(
1760
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1761
            crf_decode = fluid.layers.crf_decoding(
1762
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1763 1764 1765 1766 1767
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1768
    """
F
fengjiayi 已提交
1769
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1770 1771

    # prepare output
X
Xin Pan 已提交
1772 1773 1774 1775 1776 1777 1778
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1779 1780 1781 1782 1783 1784 1785 1786

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1787 1788 1789 1790
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1791 1792 1793
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1794 1795
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1796
        })
1797 1798
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1799 1800


1801
@templatedoc()
Y
Yu Yang 已提交
1802 1803 1804 1805 1806 1807 1808
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1809 1810
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1811 1812 1813 1814
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1815 1816 1817 1818 1819 1820 1821

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1835

1836 1837
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1838 1839 1840 1841 1842 1843 1844

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1845 1846
    """

L
lujun 已提交
1847
    assert not in_dygraph_mode(), (
1848
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1849 1850 1851 1852 1853
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1854
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1865
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1866 1867 1868 1869 1870 1871
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1872
def sequence_softmax(input, use_cudnn=False, name=None):
1873 1874 1875
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1876
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1893 1894 1895
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1908
    assert not in_dygraph_mode(), (
1909
        "sequence layer is not supported in dygraph mode yet.")
1910 1911
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1912
    softmax_out = helper.create_variable_for_type_inference(dtype)
1913 1914 1915 1916 1917 1918 1919 1920
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1921
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1922
    """
1923
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1924
    has the same shape as the input.
Q
qiaolongfei 已提交
1925

D
dengkaipeng 已提交
1926
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1927
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1928
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1929 1930 1931
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1932
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1933
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1934 1935 1936 1937 1938 1939 1940

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1941
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1942 1943 1944 1945 1946 1947 1948 1949

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1950 1951
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1952 1953
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1954 1955 1956
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1957 1958 1959 1960 1961 1962 1963 1964

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1965 1966
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1967
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1968
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1969
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1970 1971
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1972 1973

    """
1974 1975
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1976
    softmax_out = helper.create_variable_for_type_inference(dtype)
1977 1978 1979 1980
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1981 1982
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1983 1984 1985
    return softmax_out


Y
Yu Yang 已提交
1986 1987 1988
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1989 1990
           stride=1,
           padding=0,
1991
           dilation=1,
Y
Yu Yang 已提交
1992 1993 1994
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1995
           use_cudnn=True,
1996 1997
           act=None,
           name=None):
Y
Yu Yang 已提交
1998
    """
C
chengduoZH 已提交
1999
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2000 2001
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2002
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2003 2004 2005 2006 2007 2008 2009
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2010 2011 2012
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2013

2014
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2015

C
chengduoZH 已提交
2016 2017
    .. math::

C
refine  
chengduoZH 已提交
2018
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2019

T
tensor-tang 已提交
2020
    Where:
C
chengduoZH 已提交
2021

2022 2023 2024 2025 2026
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2027
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2028 2029 2030

    Example:

2031 2032
        - Input:

W
weixing02 已提交
2033
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2034

W
weixing02 已提交
2035
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2036

2037
        - Output:
T
tensor-tang 已提交
2038

W
weixing02 已提交
2039
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2040

C
chengduoZH 已提交
2041
        Where
2042 2043

        .. math::
C
chengduoZH 已提交
2044

W
weixing02 已提交
2045 2046
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2047 2048

    Args:
2049
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2050
        num_filters(int): The number of filter. It is as same as the output
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2068 2069 2070 2071 2072
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2073
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2074 2075 2076 2077 2078
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2079 2080
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2081 2082
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2083
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2084
            will be named automatically. Default: None
C
chengduoZH 已提交
2085 2086

    Returns:
G
guosheng 已提交
2087
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2088 2089
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2090
    Raises:
2091 2092
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2093

C
chengduoZH 已提交
2094 2095 2096
    Examples:
        .. code-block:: python

2097 2098
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2099 2100 2101
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2102
    assert param_attr is not False, "param_attr should not be False here."
2103
    l_type = 'conv2d'
X
xzl 已提交
2104 2105
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2106
        l_type = 'depthwise_conv2d'
2107 2108 2109 2110

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2111 2112 2113 2114 2115
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2116
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2117

C
chengduoZH 已提交
2118 2119 2120
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2121
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2122

C
chengduoZH 已提交
2123 2124
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2125 2126

    input_shape = input.shape
M
minqiyang 已提交
2127
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2128 2129

    def _get_default_param_initializer():
C
chengduo 已提交
2130 2131
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2140
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2156
    helper.append_op(
2157
        type=l_type,
Y
Yu Yang 已提交
2158 2159 2160 2161 2162
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2163 2164 2165
        attrs={
            'strides': stride,
            'paddings': padding,
2166
            'dilations': dilation,
C
chengduoZH 已提交
2167
            'groups': groups,
2168
            'use_cudnn': use_cudnn,
2169
            'use_mkldnn': False,
2170
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2171
        })
Y
Yu Yang 已提交
2172 2173 2174 2175 2176 2177

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2195 2196 2197 2198 2199 2200
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2210 2211
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2212 2213 2214
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2215
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2241
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2242 2243
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2244
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2245 2246
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2247
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2248 2249
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2250
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2251 2252 2253 2254 2255 2256
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2267 2268
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2269 2270
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2271
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2272
            will be named automatically. Default: None.
C
chengduoZH 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2285 2286
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2287 2288 2289
    """

    l_type = 'conv3d'
C
chengduo 已提交
2290
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2301
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2315 2316 2317
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2318 2319 2320 2321 2322 2323 2324 2325
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2326
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2341
            'use_mkldnn': False
C
chengduoZH 已提交
2342 2343
        })

2344
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2345 2346 2347 2348

    return helper.append_activation(pre_act)


2349
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2350
    """
Y
yangyaming 已提交
2351 2352 2353
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2364 2365
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2366 2367 2368 2369
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2370
         out.dim = [4, 1]
2371
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2372 2373

       for different pool_type:
2374 2375 2376
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2377
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2378 2379 2380 2381 2382
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2383

L
Luo Tao 已提交
2384
    Args:
2385
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2386
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2387
            It supports average, sum, sqrt and max.
2388 2389
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2390 2391 2392 2393 2394 2395 2396

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2397

2398 2399
             import paddle.fluid as fluid

Y
yangyaming 已提交
2400
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2401 2402 2403 2404 2405
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2406 2407
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2408
    """
L
lujun 已提交
2409
    assert not in_dygraph_mode(), (
2410
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2411
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2412
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2413 2414
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2415 2416 2417 2418 2419 2420

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2421 2422 2423 2424 2425
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2426

Y
yangyaming 已提交
2427 2428 2429 2430 2431
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2432 2433 2434
    return pool_out


C
add doc  
chengduoZH 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2451 2452 2453 2454
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2455
    """
L
lujun 已提交
2456
    assert not in_dygraph_mode(), (
2457
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2458
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2459
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2460 2461 2462 2463 2464
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2465
def sequence_first_step(input):
L
Luo Tao 已提交
2466
    """
L
Luo Tao 已提交
2467
    This function gets the first step of sequence.
L
Luo Tao 已提交
2468 2469 2470 2471

    .. code-block:: text

       x is a 1-level LoDTensor:
2472
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2473 2474 2475 2476 2477
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2478
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2479
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2480

L
Luo Tao 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2490

Y
yangyaming 已提交
2491
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2492 2493 2494
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2495 2496 2497
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2498
def sequence_last_step(input):
L
Luo Tao 已提交
2499
    """
L
Luo Tao 已提交
2500
    This function gets the last step of sequence.
L
Luo Tao 已提交
2501 2502 2503 2504

    .. code-block:: text

       x is a 1-level LoDTensor:
2505
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2506 2507 2508 2509 2510
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2511
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2512
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2513

L
Luo Tao 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2523

Y
yangyaming 已提交
2524
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2525 2526 2527
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2528 2529 2530
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2531 2532 2533 2534
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2535
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2536 2537 2538 2539 2540
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2541

H
haowang101779990 已提交
2542
              - Case:
Y
Yibing Liu 已提交
2543

2544
            Given the input Variable **input**:
2545

2546 2547 2548
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2549

2550
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2551

2552
            the output Variable will be
2553

2554 2555 2556
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2557

M
minqiyang 已提交
2558
    Note:
H
haowang101779990 已提交
2559
          The first dimension size of **input**, **offset** and **length**
2560
          should be equal. The **offset** should start from 0.
2561

Y
Yibing Liu 已提交
2562
    Args:
2563
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2564
                         sequences.
Y
Yibing Liu 已提交
2565 2566 2567 2568 2569 2570
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2571
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2582
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2583 2584
                                                   length=length)
    """
L
lujun 已提交
2585
    assert not in_dygraph_mode(), (
2586
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2587 2588
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2589
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2604
@templatedoc()
Y
Yu Yang 已提交
2605
def pool2d(input,
C
chengduoZH 已提交
2606 2607
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2608 2609
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2610
           global_pooling=False,
C
chengduoZH 已提交
2611
           use_cudnn=True,
2612
           ceil_mode=False,
2613 2614
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2615
    """
F
fengjiayi 已提交
2616
    ${comment}
2617 2618

    Args:
2619 2620 2621
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2622
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2623
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2624 2625
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2626
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2627 2628 2629 2630 2631 2632
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2633 2634 2635
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2636
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2637
                        layer will be named automatically.
2638
        exclusive (bool): Whether to exclude padding points in average pooling
2639
                          mode, default is true
F
fengjiayi 已提交
2640

2641
    Returns:
F
fengjiayi 已提交
2642
        Variable: The pooling result.
F
fengjiayi 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2655
          pool2d = fluid.layers.pool2d(
2656 2657 2658 2659
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2660
                            global_pooling=False)
Y
Yu Yang 已提交
2661 2662 2663 2664 2665
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2666

C
chengduoZH 已提交
2667 2668 2669 2670 2671
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2672 2673 2674 2675
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2676 2677
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2678

C
Add doc  
chengduoZH 已提交
2679
    l_type = 'pool2d'
2680 2681

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2682
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2683
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2684 2685

    helper.append_op(
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2697 2698
            "use_mkldnn": False,
            "exclusive": exclusive,
2699 2700 2701 2702 2703
        })

    return pool_out


D
dengkaipeng 已提交
2704
@templatedoc()
2705 2706 2707 2708 2709 2710 2711 2712
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2713 2714
           name=None,
           exclusive=True):
2715
    """
2716
    ${comment}
2717 2718

    Args:
D
dengkaipeng 已提交
2719 2720 2721 2722 2723
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2724 2725 2726 2727 2728
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2729 2730 2731 2732 2733 2734 2735
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2736
        exclusive (bool): Whether to exclude padding points in average pooling
2737
                          mode, default is true
2738

2739
    Returns:
2740
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2754 2755 2756 2757 2758
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2759

C
chengduoZH 已提交
2760 2761 2762 2763 2764
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2765 2766 2767
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2768

C
chengduoZH 已提交
2769 2770
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2771

2772 2773
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2774
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2775
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2776 2777

    helper.append_op(
2778
        type=l_type,
Y
Yu Yang 已提交
2779 2780 2781 2782 2783 2784 2785
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2786
            "paddings": pool_padding,
2787
            "use_cudnn": use_cudnn,
2788
            "ceil_mode": ceil_mode,
2789 2790
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2791 2792 2793 2794 2795
        })

    return pool_out


2796 2797 2798 2799 2800 2801 2802
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2803 2804 2805 2806 2807 2808 2809
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2810

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2824 2825 2826 2827 2828 2829 2830 2831 2832

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2833 2834
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2849
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2850
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2851
          # of input data into m * n grids averagely and performs poolings in each
2852 2853
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2854
          #
2855 2856 2857 2858 2859 2860 2861 2862
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2863 2864
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2865
          pool_out = fluid.layers.adaptive_pool2d(
2866 2867
                            input=data,
                            pool_size=[3, 3],
2868
                            pool_type='avg')
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2879
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2905
    return (pool_out, mask) if require_index else pool_out
2906 2907 2908 2909 2910 2911 2912 2913 2914


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2915 2916 2917 2918 2919 2920 2921
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2940 2941 2942

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2943 2944 2945
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2946
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2947
            it must contain three integers, (Depth, Height, Width).
2948
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2949 2950
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2965 2966
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2967
          # of input data into l * m * n grids averagely and performs poolings in each
2968 2969
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2970
          #
2971 2972 2973 2974 2975 2976 2977 2978 2979
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2980
          #                 output[:, :, i, j, k] =
2981 2982
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2983 2984 2985

          import paddle.fluid as fluid

2986
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2987 2988
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2989
                            input=data,
D
dengkaipeng 已提交
2990
                            pool_size=[3, 3, 3],
2991
                            pool_type='avg')
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3002
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3028
    return (pool_out, mask) if require_index else pool_out
3029 3030


Y
Yu Yang 已提交
3031 3032 3033 3034 3035 3036 3037
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3038
               data_layout='NCHW',
Y
Yang Yang 已提交
3039
               in_place=False,
3040 3041
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3042
               moving_variance_name=None,
3043
               do_model_average_for_mean_and_var=False,
3044 3045
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3046
    """
Q
qiaolongfei 已提交
3047 3048 3049 3050
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3051

Q
qiaolongfei 已提交
3052
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3053

Q
qiaolongfei 已提交
3054 3055
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3056 3057 3058
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3085
    Args:
Q
qingqing01 已提交
3086
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3087
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3097 3098 3099 3100 3101 3102 3103 3104
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3105
        data_layout(string, default NCHW): NCHW|NHWC
3106
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3107 3108 3109 3110
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3111
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3112
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3113 3114 3115 3116 3117
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3118 3119

    Returns:
Q
qiaolongfei 已提交
3120
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3121 3122 3123 3124 3125

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3126
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3127 3128
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3129
    """
C
chengduo 已提交
3130
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3131 3132 3133
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3134 3135 3136 3137
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3156
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3157

3158 3159
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3160 3161 3162
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3163
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3164
        shape=param_shape,
W
Wu Yi 已提交
3165
        dtype=dtype)
3166 3167 3168 3169 3170 3171
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3172
            trainable=False,
W
wanghaoshuang 已提交
3173
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3174
        shape=param_shape,
W
Wu Yi 已提交
3175
        dtype=dtype)
3176
    variance.stop_gradient = True
Y
Yu Yang 已提交
3177 3178 3179 3180 3181 3182

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3183 3184 3185 3186
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3187

X
Xin Pan 已提交
3188 3189
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3207 3208 3209 3210
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3211
            "data_layout": data_layout,
X
Xin Pan 已提交
3212
            "use_mkldnn": False,
3213 3214
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3215
        })
Y
Yu Yang 已提交
3216 3217 3218 3219

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3271 3272
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3273

3274 3275
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3341
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3342 3343 3344 3345

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3346
@templatedoc()
G
guosheng 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3357
    ${comment}
G
guosheng 已提交
3358 3359 3360

    The formula is as follows:

Y
yuyang18 已提交
3361
    ..  math::
G
guosheng 已提交
3362 3363 3364 3365 3366 3367 3368

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3369 3370 3371 3372 3373 3374 3375 3376
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3377

G
guosheng 已提交
3378 3379
    Args:
        input(Variable): The input tensor variable.
3380
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3381
            normalization. Default True.
3382
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3383 3384
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3385
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3386
            Default 1.
3387
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3388
            division by zero. Default 1e-05.
G
guosheng 已提交
3389
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3390 3391
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3392 3393
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3394
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3395 3396
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3397
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3398
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3399
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3400 3401 3402
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3403 3404

    Returns:
Y
yuyang18 已提交
3405
        ${y_comment}
G
guosheng 已提交
3406 3407 3408

    Examples:

Y
yuyang18 已提交
3409 3410 3411
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3412
    """
L
lujun 已提交
3413
    assert in_dygraph_mode(
L
lujun 已提交
3414
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3429
    if shift:
G
guosheng 已提交
3430 3431 3432 3433 3434 3435
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3436 3437 3438 3439 3440
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3468
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3516 3517
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3535
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3536 3537 3538
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3539
    This layer calculates the spectral normalization value of weight parameters of
3540
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3541
    Parameters. Calculations are showed as follows.
3542

D
dengkaipeng 已提交
3543 3544 3545
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3546
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3559
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3560 3561 3562 3563

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3564

D
dengkaipeng 已提交
3565
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3566 3567
                

D
dengkaipeng 已提交
3568 3569 3570 3571
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3572 3573 3574
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3575 3576 3577
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3578
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3579 3580

    Examples:
K
Kaipeng Deng 已提交
3581
       .. code-block:: python
D
dengkaipeng 已提交
3582

K
Kaipeng Deng 已提交
3583 3584 3585 3586 3587
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3588 3589
    """
    helper = LayerHelper('spectral_norm', **locals())
3590
    dtype = weight.dtype
D
dengkaipeng 已提交
3591 3592 3593

    # create intput and parameters
    inputs = {'Weight': weight}
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3612 3613

    # create output
3614
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3615 3616

    helper.append_op(
3617
        type="spectral_norm",
D
Dun 已提交
3618
        inputs=inputs,
3619 3620 3621 3622 3623 3624
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3625

3626
    return out
D
Dun 已提交
3627 3628


Y
Yu Yang 已提交
3629 3630 3631 3632
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3633 3634 3635
                     padding=0,
                     stride=1,
                     dilation=1,
3636
                     groups=None,
C
caoying03 已提交
3637
                     param_attr=None,
3638
                     bias_attr=None,
C
chengduoZH 已提交
3639
                     use_cudnn=True,
3640
                     act=None,
C
caoying03 已提交
3641
                     name=None):
Y
Yu Yang 已提交
3642
    """
3643 3644 3645 3646 3647 3648 3649 3650
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3651 3652
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3653 3654 3655
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3656 3657 3658 3659 3660

    For each input :math:`X`, the equation is:

    .. math::

3661
        Out = \sigma (W \\ast X + b)
3662

3663
    Where:
3664 3665 3666

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3667 3668 3669 3670
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3671

3672 3673 3674 3675
    Example:

        - Input:

3676
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3677

3678
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3679 3680 3681

        - Output:

3682
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3683 3684

        Where
Y
Yu Yang 已提交
3685

3686 3687
        .. math::

3688 3689
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3690 3691
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3692 3693

    Args:
3694 3695 3696 3697
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3698 3699 3700 3701
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3730
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3731 3732 3733
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3734
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3735
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3736 3737

    Returns:
3738
        Variable: The tensor variable storing the convolution transpose result.
3739 3740

    Raises:
3741 3742
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3743 3744 3745 3746

    Examples:
       .. code-block:: python

3747 3748
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3749
    """
C
chengduo 已提交
3750
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3751 3752 3753 3754 3755 3756 3757 3758
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3759 3760 3761
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3762 3763 3764
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3765

C
chengduoZH 已提交
3766 3767
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3768

Y
Yu Yang 已提交
3769 3770 3771 3772 3773
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3774

Y
Yu Yang 已提交
3775 3776
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3777

C
chengduoZH 已提交
3778
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3779
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3780
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3781
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3782
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3783 3784 3785
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3786

3787 3788 3789 3790 3791 3792 3793
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3794
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3795
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3796

Y
Yu Yang 已提交
3797 3798 3799
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3800
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3801
    helper.append_op(
3802
        type=op_type,
Y
Yu Yang 已提交
3803 3804
        inputs={'Input': [input],
                'Filter': [img_filter]},
3805
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3806
        attrs={
3807
            'output_size': output_size,
3808 3809 3810 3811 3812
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3813 3814
        })

3815 3816 3817
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3818 3819


3820
def conv3d_transpose(input,
Y
Yu Yang 已提交
3821 3822 3823
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3824 3825 3826
                     padding=0,
                     stride=1,
                     dilation=1,
3827
                     groups=None,
C
caoying03 已提交
3828
                     param_attr=None,
3829
                     bias_attr=None,
C
chengduoZH 已提交
3830
                     use_cudnn=True,
3831
                     act=None,
C
caoying03 已提交
3832
                     name=None):
Y
Yu Yang 已提交
3833
    """
3834
    **Convlution3D transpose layer**
3835

3836
    The convolution3D transpose layer calculates the output based on the input,
3837
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3838 3839 3840 3841 3842 3843
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3844 3845 3846
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3847 3848 3849 3850 3851

    For each input :math:`X`, the equation is:

    .. math::

3852
        Out = \sigma (W \\ast X + b)
3853 3854 3855

    In the above equation:

3856 3857
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3858 3859 3860 3861
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3862

3863 3864 3865 3866
    Example:

        - Input:

3867
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3868

3869
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3870 3871 3872

        - Output:

3873
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3874 3875

        Where
Y
Yu Yang 已提交
3876

3877 3878
        .. math::

3879 3880 3881
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3882 3883

    Args:
3884
        input(Variable): The input image with [N, C, D, H, W] format.
3885 3886 3887
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3888
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3889 3890
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3891
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3892 3893 3894
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3895 3896
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3897
        stride(int|tuple): The stride size. If stride is a tuple, it must
3898 3899
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3900
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3901 3902 3903
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3904 3905 3906 3907 3908
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3918 3919
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3920 3921
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3922 3923
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3924 3925

    Returns:
3926
        Variable: The tensor variable storing the convolution transpose result.
3927 3928

    Raises:
3929 3930
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3931 3932 3933 3934

    Examples:
       .. code-block:: python

3935 3936
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3937
    """
C
chengduo 已提交
3938
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3939 3940
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3941
    if not isinstance(input, Variable):
3942
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3943 3944
    input_channel = input.shape[1]

3945 3946 3947
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3948

C
chengduoZH 已提交
3949 3950 3951
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3952 3953 3954 3955 3956 3957
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3958 3959 3960
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3961

3962
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3963
                         padding[0] - 1) // dilation[0] + 1
3964
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3965
                         padding[1] - 1) // dilation[1] + 1
3966
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3967
                         padding[2] - 1) // dilation[2] + 1
3968
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3969
    else:
3970 3971
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3972

3973
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3974
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3975 3976 3977
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3978
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3979
    helper.append_op(
3980
        type=l_type,
Y
Yu Yang 已提交
3981 3982
        inputs={'Input': [input],
                'Filter': [img_filter]},
3983
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3984 3985 3986 3987
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3988
            'groups': groups,
C
chengduoZH 已提交
3989 3990
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3991

3992 3993
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3994
    return out
Y
yangyaming 已提交
3995 3996


Y
yangyaming 已提交
3997
def sequence_expand(x, y, ref_level=-1, name=None):
3998
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3999 4000 4001 4002
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4003 4004 4005 4006 4007

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4008
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4009
                x.data = [[a], [b], [c], [d]]
4010 4011 4012
                x.dims = [4, 1]

            y is a LoDTensor:
4013 4014
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4015

Y
yangyaming 已提交
4016
            ref_level: 0
4017

Y
yangyaming 已提交
4018
            then output is a 1-level LoDTensor:
4019
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4020
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4021 4022 4023 4024
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4025
                x.data = [[a], [b], [c]]
4026 4027 4028
                x.dims = [3, 1]

            y is a LoDTensor:
4029
                y.lod = [[2, 0, 3]]
4030

Y
yangyaming 已提交
4031
            ref_level: -1
4032

Y
yangyaming 已提交
4033 4034 4035
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4036 4037 4038
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4039 4040
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4041
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4042
                        will be named automatically.
4043 4044 4045 4046 4047 4048

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4049 4050
	
            import paddle.fluid.layers as layers
4051 4052 4053
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4054
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4055
    """
L
lujun 已提交
4056
    assert not in_dygraph_mode(), (
4057
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4058
    helper = LayerHelper('sequence_expand', input=x, **locals())
4059
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4060
    tmp = helper.create_variable_for_type_inference(dtype)
4061
    helper.append_op(
Y
yangyaming 已提交
4062 4063 4064 4065 4066
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4067
    return tmp
4068 4069


C
chengduo 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4118
            import paddle.fluid.layers as layers
C
chengduo 已提交
4119 4120 4121 4122 4123 4124

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4125
    assert not in_dygraph_mode(), (
4126
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4127 4128
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4129
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4130 4131 4132 4133 4134 4135 4136 4137
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4138
@templatedoc()
4139
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4140 4141 4142 4143 4144
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4145 4146 4147
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4148
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4149 4150 4151 4152
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4153 4154 4155
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4156

F
fengjiayi 已提交
4157
    Returns:
M
minqiyang 已提交
4158
        Variable: The padded sequence batch and the original lengths before
4159
                  padding. All sequences has the same length.
M
minqiyang 已提交
4160

F
fengjiayi 已提交
4161 4162 4163 4164 4165 4166 4167
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4168
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4169
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4170 4171 4172
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4173
    assert not in_dygraph_mode(), (
4174
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4175 4176
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4177 4178
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4179 4180 4181 4182

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4183 4184 4185 4186 4187 4188
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4189 4190
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4191
        attrs={'padded_length': maxlen})
4192
    return out, length
F
fengjiayi 已提交
4193 4194


4195
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4196
    """
4197
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4198

4199 4200
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4210 4211 4212
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4213
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4214 4215 4216 4217 4218 4219

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4220
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4221 4222 4223 4224 4225 4226

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4227 4228
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4241
    assert not in_dygraph_mode(), (
4242
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4243 4244
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4245
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4257 4258 4259 4260 4261 4262 4263
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4264
                is_accumulated=True,
4265 4266
                name=None,
                return_parent_idx=False):
4267
    """
4268 4269
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4270 4271 4272

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4273 4274

    This layer does the search in beams for one time step. Specifically, it
4275 4276 4277
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4289 4290 4291 4292

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4293

4294
    Args:
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4318 4319
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4320 4321
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4322 4323 4324 4325
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4326

4327
    Returns:
4328 4329 4330 4331
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4332 4333 4334 4335

    Examples:
        .. code-block:: python

4336 4337
            import paddle.fluid as fluid

4338 4339 4340
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4353
                axis=0)
4354
            selected_ids, selected_scores = fluid.layers.beam_search(
4355 4356 4357 4358 4359 4360 4361
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4362
    helper = LayerHelper('beam_search', **locals())
4363 4364 4365 4366 4367 4368
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4369

X
Xin Pan 已提交
4370 4371 4372
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4373 4374 4375 4376 4377
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4378 4379 4380

    helper.append_op(
        type='beam_search',
4381
        inputs=inputs,
Q
Qiao Longfei 已提交
4382 4383 4384
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4385
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4386 4387 4388 4389 4390 4391
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4392
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4393
        })
4394 4395 4396 4397
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4398 4399


4400 4401 4402 4403 4404 4405 4406
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4407

4408 4409 4410 4411 4412 4413 4414 4415 4416
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4417

4418 4419 4420 4421 4422 4423
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4424

4425 4426
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4427

4428 4429
            import paddle.fluid as fluid

4430 4431
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4432 4433 4434
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4435 4436 4437
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4438 4439
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4455 4456 4457 4458
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4459
              param_attr=None,
C
caoying03 已提交
4460 4461
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4462 4463 4464 4465
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4466
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4467

4468
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4469

4470
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4471

4472
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4473 4474 4475

            h_t & = o_t tanh(c_t)

4476 4477 4478 4479 4480 4481
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4482 4483 4484

        .. math::

4485
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4486 4487 4488 4489 4490 4491 4492 4493

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4494
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4495 4496

    Args:
Y
yangyaming 已提交
4497 4498 4499 4500 4501 4502
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4503
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4516 4517
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4518 4519

    Returns:
Y
yangyaming 已提交
4520
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4521 4522

    Raises:
4523 4524 4525 4526
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4527 4528 4529 4530 4531

    Examples:

        .. code-block:: python

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4559
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4560 4561 4562 4563
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4564 4565
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4566 4567 4568
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4569
    size = cell_t_prev.shape[1]
4570
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4571 4572
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4573
                param_attr=param_attr,
4574
                bias_attr=bias_attr)
Y
yangyaming 已提交
4575
    dtype = x_t.dtype
X
Xin Pan 已提交
4576 4577
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4587
    return h, c
G
guosheng 已提交
4588 4589


C
caoying03 已提交
4590
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4591
    """
Y
yangyaming 已提交
4592
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4593 4594 4595

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4596
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4597 4598
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4599 4600
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4601
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4602
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4603
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4604 4605
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4606 4607 4608

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4609

G
guosheng 已提交
4610 4611 4612
    Examples:
        .. code-block:: python

4613
            import paddle.fluid as fluid
G
guosheng 已提交
4614 4615 4616
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4617
            # Each example is followed by the corresponding output tensor.
4618
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4619 4620 4621 4622
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4623

4624
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4625 4626
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4627
            # Each example is followed by the corresponding output tensor.
4628 4629 4630
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4631

G
guosheng 已提交
4632 4633
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4634
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4635 4636
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4637 4638 4639 4640 4641
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4642
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4643 4644 4645 4646
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4647 4648


C
caoying03 已提交
4649
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4650
    """
Y
Yibing Liu 已提交
4651
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4652 4653 4654

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4655 4656 4657
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4658
            must be in the range :math:`[-rank(input), rank(input))`. If
4659
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4660
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4661 4662
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4663
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4664
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4665
                       will be named automatically.
G
guosheng 已提交
4666 4667

    Returns:
Y
Yibing Liu 已提交
4668
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4669

G
guosheng 已提交
4670 4671 4672
    Examples:
        .. code-block:: python

4673
            import paddle.fluid as fluid
G
guosheng 已提交
4674 4675 4676 4677
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4678
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4679 4680 4681
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4682
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4683

4684
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4685 4686 4687
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4688 4689 4690
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4691 4692
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4693
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4694 4695
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4696 4697 4698 4699 4700
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4701
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4702 4703 4704 4705
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4706 4707


C
caoying03 已提交
4708
def reduce_max(input, dim=None, keep_dim=False, name=None):
4709
    """
Y
yangyaming 已提交
4710
    Computes the maximum of tensor elements over the given dimension.
4711 4712 4713

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4714
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4715 4716 4717
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4718
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4719 4720
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4721
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4722 4723
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4724 4725 4726

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4727

4728 4729 4730
    Examples:
        .. code-block:: python

4731
            import paddle.fluid as fluid
4732 4733 4734 4735
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4736
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4737 4738 4739 4740
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4741

4742
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4743 4744 4745
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4746 4747 4748
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4749 4750
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4751
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4752 4753
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4754 4755 4756 4757 4758
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4759
            'dim': dim if dim != None else [0],
4760 4761 4762 4763 4764 4765
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4766
def reduce_min(input, dim=None, keep_dim=False, name=None):
4767
    """
Y
yangyaming 已提交
4768
    Computes the minimum of tensor elements over the given dimension.
4769 4770 4771

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4772
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4773 4774 4775
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4776
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4777 4778
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4779
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4780 4781
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4782 4783 4784

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4785

4786 4787 4788
    Examples:
        .. code-block:: python

4789
            import paddle.fluid as fluid
4790 4791 4792 4793
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4794
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4795 4796 4797 4798
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4799

4800
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4801 4802 4803
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4804 4805 4806
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4807 4808
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4809
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4810 4811
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4812 4813 4814 4815 4816
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4817
            'dim': dim if dim != None else [0],
4818 4819 4820 4821
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4822 4823


4824 4825 4826 4827 4828 4829
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4830
        dim (list|int|None): The dimensions along which the product is performed. If
4831 4832
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4833 4834
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4835 4836 4837
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4838
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4839
            layer will be named automatically.
4840 4841 4842 4843 4844 4845 4846

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4847
            import paddle.fluid as fluid
4848 4849 4850 4851
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4852
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4853 4854 4855
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4856
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4857
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4858

4859
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4860 4861 4862
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4863 4864 4865
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4866 4867
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4868
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4869 4870
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4871 4872 4873 4874 4875
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4876
            'dim': dim if dim != None else [0],
4877 4878 4879 4880 4881 4882
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4883 4884
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4885
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4905
        
Z
zhoukunsheng 已提交
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4935
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4955

Z
zhoukunsheng 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4978 4979 4980 4981 4982
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4983
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4984
    """
C
caoying03 已提交
4985
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4986 4987 4988

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4989 4990 4991 4992 4993
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4994
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4995
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4996
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4997 4998
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4999 5000

    Returns:
D
dzhwinter 已提交
5001
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5002 5003 5004 5005

    Examples:
        .. code-block:: python

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5021 5022 5023 5024 5025 5026 5027 5028
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5029
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5030 5031 5032
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5033
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5047 5048 5049 5050 5051 5052 5053 5054 5055


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5056
    .. math::
5057 5058

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5059 5060 5061 5062 5063

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5064
        x(Variable|list): The input tensor to l2_normalize layer.
5065
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5066 5067
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5068
        epsilon(float): The epsilon value is used to avoid division by zero, \
5069
            the defalut value is 1e-12.
5070
        name(str|None): A name for this layer(optional). If set None, the layer \
5071
            will be named automatically.
C
caoying03 已提交
5072 5073

    Returns:
5074
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5075 5076

    Examples:
5077

C
caoying03 已提交
5078 5079
        .. code-block:: python

5080 5081 5082 5083
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5084 5085
    """

F
fengjiayi 已提交
5086 5087
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5088 5089
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5090 5091
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5092
    helper.append_op(
5093 5094 5095 5096
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5097
        attrs={
5098 5099
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5100 5101
        })
    return out
5102 5103


S
sneaxiy 已提交
5104
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5105
    """
Y
ying 已提交
5106 5107 5108 5109
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5110

C
chengduoZH 已提交
5111
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5112
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5113

5114 5115 5116 5117 5118
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5119
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5120

C
chengduoZH 已提交
5121
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5122
      performs in the following way.
G
guosheng 已提交
5123

5124
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5125
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5126
        last two dimensions and a batched matrix multiply supporting broadcast
5127
        applies on the two tensors.
G
guosheng 已提交
5128

Y
ying 已提交
5129 5130
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5131
    removed after matrix multiplication.
G
guosheng 已提交
5132 5133 5134

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5135 5136 5137
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5138
        alpha (float): The scale of output. Default 1.0.
5139
        name(str|None): A name for this layer(optional). If set None, the layer
5140
            will be named automatically.
G
guosheng 已提交
5141 5142

    Returns:
5143
        Variable: The product Tensor variable.
G
guosheng 已提交
5144

G
guosheng 已提交
5145 5146 5147
    Examples:
        .. code-block:: python

5148
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5149
            # x: [B, ..., M, K], y: [B, ..., K, N]
5150
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5151

5152
            # x: [B, M, K], y: [B, K, N]
5153
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5154

5155
            # x: [B, M, K], y: [K, N]
5156
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5157

5158
            # x: [M, K], y: [K, N]
5159
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5160 5161

            # x: [B, M, K], y: [K]
5162
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5163

5164
            # x: [K], y: [K]
5165
            # fluid.layers.matmul(x, y)  # out: [1]
5166

Y
ying 已提交
5167
            # x: [M], y: [N]
5168 5169 5170 5171 5172
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5173
    """
Y
ying 已提交
5174 5175 5176 5177 5178 5179 5180

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5181
            y_shape = y_shape + [1]
Y
ying 已提交
5182 5183 5184 5185 5186 5187 5188

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5189 5190
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5191

C
chengduo 已提交
5192
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5193
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5194 5195 5196
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5197
                if dim_x != y_shape[i]:
C
chengduo 已提交
5198 5199
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5200 5201 5202

    __check_input(x, y)

5203
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5204
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5205
    helper.append_op(
5206 5207 5208 5209
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5210 5211 5212
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5213
            'alpha': float(alpha),
S
sneaxiy 已提交
5214
        })
5215
    return out
5216 5217


5218
def topk(input, k, name=None):
Q
qingqing01 已提交
5219 5220 5221 5222
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5223
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5224 5225 5226 5227 5228 5229
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5251 5252 5253
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5254
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5255
                 of input.
5256
        name(str|None): A name for this layer(optional). If set None, the layer
5257
                       will be named automatically.
F
fengjiayi 已提交
5258
                       Default: None
Q
qingqing01 已提交
5259 5260

    Returns:
5261 5262 5263
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5264
        within the last dimension of input.
Q
qingqing01 已提交
5265

F
fengjiayi 已提交
5266 5267
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5268 5269 5270 5271

    Examples:
        .. code-block:: python

5272 5273
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5274 5275 5276
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5277 5278
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5279 5280 5281 5282 5283 5284
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5285 5286
    helper.append_op(
        type="top_k",
W
whs 已提交
5287
        inputs=inputs,
Q
qingqing01 已提交
5288 5289
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5290
        attrs=attrs)
Q
qingqing01 已提交
5291 5292 5293 5294 5295
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5296
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5297
    """
Y
ying 已提交
5298 5299 5300 5301 5302 5303 5304 5305 5306
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5307

Y
ying 已提交
5308
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5309

5310
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5311 5312
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5313
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5314

5315
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5316 5317
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5318

5319 5320 5321
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5322
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5323
                          the length of reference string.
5324
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5325
                                     calculating edit distance.
5326
        name (str): The name of this layer. It is optional.
5327

W
wanghaoshuang 已提交
5328
    Returns:
W
wanghaoshuang 已提交
5329
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5330 5331 5332 5333

    Examples:
        .. code-block:: python

T
tink2123 已提交
5334 5335
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5336
            cost = fluid.layers.edit_distance(input=x,label=y)
5337
    """
5338
    helper = LayerHelper("edit_distance", **locals())
5339

5340
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5341
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5342 5343
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5344 5345 5346 5347 5348

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5349
            attrs={"tokens": ignored_tokens})
5350 5351 5352 5353 5354
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5355
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5356
            attrs={"tokens": ignored_tokens})
5357 5358
        label = erased_label

5359
    # edit distance op
X
Xin Pan 已提交
5360 5361
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5362 5363 5364 5365
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5366 5367
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5368 5369
        attrs={"normalized": normalized})

5370
    return edit_distance_out, sequence_num
5371 5372 5373 5374 5375


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5376

Y
ying 已提交
5377 5378 5379 5380
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5398
        input.lod = [[4, 4]]
M
minqiyang 已提交
5399

W
whs 已提交
5400
        Computation:
5401

W
whs 已提交
5402 5403 5404 5405 5406 5407
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5408 5409 5410 5411 5412

        output.data = [[2],
                       [1],
                       [3]]

5413
        output.lod = [[2, 1]]
5414

W
whs 已提交
5415

5416 5417
    Args:

Y
ying 已提交
5418 5419 5420 5421 5422 5423 5424 5425 5426
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5427
        name (str): The name of this layer. It is optional.
5428 5429

    Returns:
H
haowang101779990 已提交
5430 5431 5432
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5433
                  LoD [[]] and dims [1, 1].
5434 5435 5436 5437

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5438
            import paddle.fluid as fluid
5439 5440
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5441
    """
5442
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5443
    _, topk_indices = topk(input, k=1)
5444 5445

    # ctc align op
X
Xin Pan 已提交
5446
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5447 5448 5449
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5450
        outputs={"Output": [ctc_out]},
5451 5452
        attrs={"merge_repeated": True,
               "blank": blank})
5453
    return ctc_out
5454 5455


W
Wu Yi 已提交
5456
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5457
    """
5458 5459
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5460
    to compute Connectionist Temporal Classification (CTC) loss.
5461 5462
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5463 5464 5465
    input tensor.

    Args:
5466
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5467 5468 5469 5470
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5471
       label (Variable): The ground truth of variable-length sequence,
5472 5473 5474
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5475 5476
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5477 5478 5479
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5480
         follewed by a mean_op.
W
Wu Yi 已提交
5481
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5482 5483

    Returns:
5484 5485
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5486 5487

    Examples:
5488

W
wanghaoshuang 已提交
5489
        .. code-block:: python
5490

B
Bai Yifan 已提交
5491 5492 5493 5494 5495
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5496
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5497 5498

    """
F
fengjiayi 已提交
5499
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5500 5501
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5502 5503 5504 5505 5506 5507
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5508 5509 5510 5511 5512
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5513
    return loss_out
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5529 5530 5531
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5532 5533 5534 5535 5536
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5537

5538
            out.lod  = [[0, 1, 3]]
5539 5540 5541 5542

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5543 5544 5545 5546 5547 5548 5549
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5550 5551 5552

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5553 5554

    Returns:
5555

5556 5557 5558 5559 5560
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5561 5562 5563
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5564
    """
L
lujun 已提交
5565
    assert not in_dygraph_mode(), (
5566
        "sequence layer is not supported in dygraph mode yet.")
5567
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5568
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5569 5570 5571 5572 5573 5574
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5575 5576


5577 5578 5579 5580
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5581 5582 5583 5584 5585 5586
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5587
        num_neg_samples=None,
5588 5589 5590
        name=None,
        sampler="uniform",
        custom_dist=None,
5591 5592
        seed=0,
        is_sparse=False):
5593 5594 5595 5596 5597 5598 5599
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5600 5601
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5602
            sample is 1.0.
C
chengduo 已提交
5603 5604 5605 5606 5607 5608 5609 5610 5611
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5612
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5613 5614
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5615 5616 5617
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5618
        custom_dist (float[]): A float[] with size=num_total_classes.
5619 5620 5621 5622
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5623
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5624

5625
    Returns:
Y
Yibing Liu 已提交
5626 5627 5628 5629 5630 5631
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5632
	    import numpy as np
Y
Yibing Liu 已提交
5633

Y
Yibing Liu 已提交
5634 5635 5636 5637 5638 5639 5640 5641
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5642

Y
Yibing Liu 已提交
5643 5644 5645 5646
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5647

Y
Yibing Liu 已提交
5648 5649 5650
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5651

Y
Yibing Liu 已提交
5652 5653 5654 5655
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5656

Y
Yibing Liu 已提交
5657 5658 5659 5660 5661 5662 5663 5664
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5665
    """
Y
Yang Yu 已提交
5666 5667 5668
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5669 5670

    dim = input.shape[1]
Y
Yang Yu 已提交
5671 5672 5673 5674 5675 5676
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5677
    inputs = {}
C
chengduo 已提交
5678 5679 5680 5681 5682 5683 5684
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5685 5686 5687
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5688

5689 5690 5691 5692
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5693 5694 5695 5696 5697 5698 5699

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5700 5701
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5702
        custom_dist_len = num_total_classes
5703 5704 5705 5706 5707 5708
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5709
            if normal_prob - 1.0 > 0:
5710
                bigs.append((i, normal_prob))
5711
            elif 1.0 - normal_prob > 0:
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5727
            if big_left - 1.0 > 0:
5728
                bigs.append((big_idx, big_left))
5729
            elif 1.0 - big_left > 0:
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5759 5760 5761 5762
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5763 5764 5765 5766 5767
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5768 5769 5770 5771
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5772

Y
Yang Yu 已提交
5773 5774
    attrs = {
        'num_total_classes': int(num_total_classes),
5775 5776
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5777
        'sampler': sampler,
5778 5779
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5780
    }
Y
Yang Yu 已提交
5781 5782 5783

    helper.append_op(
        type='nce',
C
chengduo 已提交
5784
        inputs=inputs,
Y
Yang Yu 已提交
5785 5786 5787 5788 5789 5790
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5791
    return cost / (num_neg_samples + 1)
5792 5793


C
chengduo 已提交
5794 5795
def hsigmoid(input,
             label,
5796
             num_classes,
C
chengduo 已提交
5797 5798
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5799
             name=None,
5800 5801 5802
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5803
             is_sparse=False):
W
weixing02 已提交
5804 5805
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5806
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5807
    complete binary tree, or you can use is_custom to pass your own tree to
5808
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5809 5810 5811 5812 5813 5814
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5815
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5816
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5817

5818 5819
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5820 5821 5822 5823
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5824
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5825
       related to the same batch of inputs.
5826

W
weixing02 已提交
5827
    Args:
M
minqiyang 已提交
5828
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5829 5830 5831 5832
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5833 5834
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5835
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5847
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5848
            it should be in leaf -> root order
M
minqiyang 已提交
5849 5850 5851
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5852
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5853
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5854
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5855
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5856
             of W and input will be sparse.
W
weixing02 已提交
5857 5858

    Returns:
J
JiabinYang 已提交
5859
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5860 5861 5862 5863 5864

    Examples:

        .. code-block:: python

5865
            import paddle.fluid as fluid
G
guosheng 已提交
5866 5867 5868
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5869 5870 5871 5872
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5873 5874
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5875
    dim = input.shape[1]
5876
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5877 5878 5879
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5880 5881 5882 5883 5884 5885 5886 5887 5888
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5889
    if (is_custom) and (path_code is None):
5890
        raise ValueError("path_code should not be None with custom tree")
5891
    elif (is_custom) and (path_table is None):
5892
        raise ValueError("path_table should not be None with custom tree")
5893
    elif (is_custom) and (num_classes is None):
5894
        raise ValueError("num_classes should not be None with custom tree")
5895 5896 5897
    else:
        pass

J
JiabinYang 已提交
5898
    weights = None
5899 5900 5901 5902
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5903
    if not is_custom:
J
JiabinYang 已提交
5904 5905 5906 5907 5908 5909 5910 5911
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5912
            shape=[num_classes, dim],
J
JiabinYang 已提交
5913 5914
            is_bias=False,
            dtype=input.dtype)
5915 5916 5917
    inputs = {
        "X": input,
        "W": weights,
5918
        "PathTable": path_table,
5919
        "PathCode": path_code,
5920 5921
        "Label": label
    }
W
weixing02 已提交
5922
    if helper.bias_attr:
5923
        if not is_custom:
J
JiabinYang 已提交
5924 5925
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5926
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5927 5928 5929 5930 5931 5932
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5933
                shape=[num_classes, 1],
J
JiabinYang 已提交
5934 5935 5936
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5937 5938
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5939
        inputs=inputs,
W
weixing02 已提交
5940
        outputs={"Out": out,
5941 5942 5943 5944 5945 5946 5947
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5948 5949 5950
    return out


Y
fix ci.  
ying 已提交
5951
def transpose(x, perm, name=None):
Y
ying 已提交
5952 5953 5954 5955 5956 5957 5958
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5959 5960 5961
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5962 5963 5964 5965 5966 5967 5968

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5969
            # use append_batch_size=False to avoid prepending extra
5970
            # batch size in shape
5971
            import paddle.fluid as fluid
5972
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5973
                            dtype='float32', append_batch_size=False)
5974
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5975 5976
    """

Y
fix ci.  
ying 已提交
5977
    if len(perm) != len(x.shape):
Y
ying 已提交
5978 5979 5980
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5981 5982 5983 5984 5985 5986
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5987 5988

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5989 5990
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5991
    helper.append_op(
5992
        type='transpose2',
Y
fix ci.  
ying 已提交
5993
        inputs={'X': [x]},
5994 5995
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5996 5997
        attrs={'axis': perm})
    return out
5998 5999


6000 6001 6002 6003 6004 6005 6006
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6007
    """
6008 6009 6010 6011 6012 6013 6014
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6043 6044 6045 6046 6047 6048 6049 6050 6051
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6052 6053 6054
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6055 6056 6057 6058 6059
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6087 6088 6089
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6102
            output.dims = {8, 8}
6103

6104
            output.lod = [[4, 4]]
6105

T
Tink_Y 已提交
6106
    Examples:
6107 6108 6109

        .. code-block:: python

B
Bai Yifan 已提交
6110 6111 6112
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6113
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6114 6115
                input=data, stride=[1, 1], filter_size=[2, 2])

6116 6117

    """
L
lujun 已提交
6118
    assert not in_dygraph_mode(), (
6119
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6130
    inputs = {"X": input}
6131
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6132 6133 6134 6135 6136
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6137
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6138
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6139
    helper.append_op(
6140
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6141
    return out
6142 6143


Y
yuyang18 已提交
6144
@templatedoc()
6145
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6146 6147
    """
    ${comment}
6148 6149

    Args:
Y
yuyang18 已提交
6150
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6151 6152
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6153 6154 6155 6156 6157
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6158
        ${out_comment}.
6159 6160

    Examples:
Y
yuyang18 已提交
6161 6162 6163 6164
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6165 6166 6167 6168 6169 6170
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6171
    out = helper.create_variable_for_type_inference(dtype)
6172 6173 6174 6175 6176
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6177
    return helper.append_activation(out)
6178 6179


Y
yuyang18 已提交
6180
@templatedoc()
6181 6182
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6183 6184
    ${comment}

L
lujun 已提交
6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6228 6229

    Args:
Y
yuyang18 已提交
6230 6231
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6232 6233

    Returns:
Y
yuyang18 已提交
6234
        ${out_comment}.
6235 6236
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6237 6238 6239 6240 6241

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6242
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6243 6244 6245 6246 6247 6248
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6249 6250


6251 6252 6253
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6254
                               ignore_index=kIgnoreIndex,
6255
                               numeric_stable_mode=True,
6256 6257
                               return_softmax=False,
                               axis=-1):
6258 6259
    """
    **Softmax With Cross Entropy Operator.**
6260

6261
    Cross entropy loss with softmax is used as the output layer extensively. This
6262 6263 6264
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6265

6266 6267 6268
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6269

6270 6271 6272 6273
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6274

6275
    The equation is as follows:
6276

6277
    1) Hard label (one-hot label, so every sample has exactly one class)
6278

6279 6280 6281 6282
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6283

6284 6285 6286
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6287

6288 6289 6290 6291
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6292 6293
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6294 6295

    .. math::
6296

H
haowang101779990 已提交
6297
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6298

H
haowang101779990 已提交
6299
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6300

H
haowang101779990 已提交
6301
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6302 6303 6304

    and then cross entropy loss is calculated by softmax and label.

6305
    Args:
6306 6307 6308 6309 6310 6311
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6312
        soft_label (bool): A flag to indicate whether to interpretate the given
6313
            labels as soft labels. Default False.
M
minqiyang 已提交
6314 6315
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6316 6317
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6318 6319
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6320 6321 6322 6323
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6324
                                    Note that the speed may be slower when use
6325
                                    stable algorithm. Default: True
6326
        return_softmax (bool): A flag indicating whether to return the softmax
6327
                               along with the cross entropy loss. Default: False
6328 6329 6330
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6331

6332
    Returns:
H
haowang101779990 已提交
6333 6334
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6335 6336 6337 6338
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6339 6340 6341 6342 6343 6344 6345

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6346 6347
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6348 6349
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6350 6351
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6352 6353 6354 6355 6356 6357
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6358 6359 6360
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6361 6362
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6363
        })
6364 6365 6366 6367

    if return_softmax:
        return loss, softmax

6368 6369 6370
    return loss


6371 6372 6373
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6374
                                       num_true=1,
6375
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6376 6377 6378
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6379
                                       seed=0):
X
xuezhong 已提交
6380 6381 6382 6383 6384
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6385
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6386 6387 6388 6389 6390 6391 6392 6393
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6394
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6395 6396 6397 6398 6399 6400 6401 6402
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6403
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6415
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6416 6417 6418 6419 6420
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6421
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6422
            logits.
X
xuezhong 已提交
6423 6424 6425 6426 6427
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6428 6429 6430
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6431 6432 6433 6434 6435 6436 6437
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6438 6439 6440
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
X
xuezhong 已提交
6441
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
6442
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6443
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6444
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6445 6446 6447 6448 6449 6450 6451 6452
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6453 6454
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6455 6456
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6457 6458 6459 6460 6461

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6462
            'Labels': label,
X
xuezhong 已提交
6463 6464
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6465 6466 6467 6468
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6469
            'SampledLabels': sampled_label,
6470 6471 6472
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6473 6474
        },
        attrs={
X
xuezhong 已提交
6475
            'use_customized_samples': use_customized_samples,
6476
            'uniq': True,
X
xuezhong 已提交
6477 6478 6479 6480
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6481 6482
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6483 6484 6485 6486 6487 6488
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6489 6490
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6491
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6492
                'Label': sampled_softlabel},
X
xuezhong 已提交
6493 6494 6495
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6496
            'soft_label': True,
X
xuezhong 已提交
6497 6498 6499
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6500
    return loss / num_true
X
xuezhong 已提交
6501 6502


6503 6504
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6505 6506
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6507
    For each instance, it computes the smooth L1 loss element by element first
6508
    and then sums all the losses. So the shape of ouput Variable is
6509
    [batch_size, 1].
6510

6511 6512
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6513
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6514
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6515
            L1 loss op with same shape as :attr:`x`.
6516
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6517 6518
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6519
            by this tensor element by element.
6520
        outside_weight (Variable|None): A tensor with rank at least 2. This
6521 6522
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6523
            element by element.
6524
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6525 6526
           scalar with default value 1.0.

6527
    Returns:
6528
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6529 6530 6531 6532 6533

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6534 6535
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6536
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6537
            out = fluid.layers.smooth_l1(x=fc, y=label)
6538
    """
6539

6540
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6541 6542
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6553
        attrs={'sigma': sigma if sigma is not None else 1.0})
6554
    return loss
6555 6556 6557 6558


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6559
    This layer creates the one-hot representations for input indices.
6560 6561

    Args:
Y
Yibing Liu 已提交
6562 6563
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6564 6565

    Returns:
Y
Yibing Liu 已提交
6566
        Variable: The one-hot representations of input.
6567 6568

    Examples:
C
caoying03 已提交
6569
        .. code-block:: python
6570

Y
Yibing Liu 已提交
6571 6572
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6573 6574
    """
    helper = LayerHelper("one_hot", **locals())
6575

X
Xin Pan 已提交
6576
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6587
            depth.stop_gradient = True
6588 6589
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6590 6591
    helper.append_op(
        type="one_hot",
6592 6593
        inputs=inputs,
        attrs=attrs,
6594 6595
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6596
    return one_hot_out
Y
Yu Yang 已提交
6597 6598


Y
Yu Yang 已提交
6599
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6600
    """
Y
yi.wu 已提交
6601 6602 6603
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6604 6605 6606 6607 6608 6609

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6610 6611
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6612 6613 6614 6615 6616

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6617
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6618 6619
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6620 6621
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6622 6623 6624 6625 6626
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6627
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6628
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6629 6630
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6631
            outputs={'Out': [counter]},
M
minqiyang 已提交
6632 6633
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6634 6635 6636
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6637 6638


6639
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6640
    """
C
caoying03 已提交
6641 6642
    Gives a new shape to the input Tensor without changing its data.

6643 6644 6645 6646 6647
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6648

6649
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6650

6651 6652 6653 6654
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6655
    2. 0 means the actual dimension value is going to be copied from the
6656 6657 6658 6659
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6660 6661

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6662
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6663
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6664

6665
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6666 6667
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6668 6669
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6670
    dimensions.
C
caoying03 已提交
6671

6672
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6673 6674 6675 6676
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6677 6678

    Args:
6679
        x(variable): The input tensor.
C
caoying03 已提交
6680 6681
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6682 6683 6684 6685 6686
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6687 6688
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6689 6690 6691
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6692
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6693
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6694

6695
    Returns:
G
guosheng 已提交
6696 6697 6698 6699
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6700

X
Xin Pan 已提交
6701 6702 6703
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6704 6705
    Examples:
        .. code-block:: python
G
guosheng 已提交
6706

6707
            data = fluid.layers.data(
6708
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6709
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6710
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6711 6712 6713
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6714
        raise ValueError("Input shape must be a python list or tuple.")
6715

X
Xin Pan 已提交
6716 6717 6718 6719 6720
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6721

6722 6723
    # Validate the shape
    unk_dim_idx = -1
6724
    contain_var = False
6725
    for dim_idx, dim_size in enumerate(shape):
6726 6727 6728 6729
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6742
    helper = LayerHelper("reshape2", **locals())
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6765 6766
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6767
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6768
    helper.append_op(
6769
        type="reshape2",
X
Xin Pan 已提交
6770
        inputs=inputs,
6771
        attrs=attrs,
6772 6773
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6774

D
dzhwinter 已提交
6775
    return helper.append_activation(out)
6776

6777

6778
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6779
    """
M
minqiyang 已提交
6780 6781 6782
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6783
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6784

H
haowang101779990 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6806

Y
Yibing Liu 已提交
6807
    Args:
6808
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6809
        axes (list): List of integers, indicating the dimensions to be squeezed.
6810
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6811 6812 6813 6814 6815 6816 6817

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6818
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6819
            x = layers.data(name='x', shape=[5, 1, 10])
6820
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6821
    """
L
lujun 已提交
6822
    assert not in_dygraph_mode(), (
L
lujun 已提交
6823
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6824
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6825 6826
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6827
    helper.append_op(
6828
        type="squeeze2",
6829
        inputs={"X": input},
Y
Yibing Liu 已提交
6830
        attrs={"axes": axes},
6831 6832
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6833

6834 6835 6836
    return out


6837
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6838
    """
M
minqiyang 已提交
6839 6840 6841
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6842

M
minqiyang 已提交
6843
    For example:
H
haowang101779990 已提交
6844 6845 6846

    .. code-block:: text

M
minqiyang 已提交
6847
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6848
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6849

Y
Yibing Liu 已提交
6850
    Args:
6851
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6852
        axes (list): List of integers, indicating the dimensions to be inserted.
6853
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6854 6855 6856 6857 6858 6859 6860

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6861 6862 6863
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6864 6865
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6866 6867
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6868
    helper.append_op(
6869
        type="unsqueeze2",
6870
        inputs={"X": input},
Y
Yibing Liu 已提交
6871
        attrs={"axes": axes},
6872 6873
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6874

6875 6876
    return out

6877

Y
yangyaming 已提交
6878
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6879
    """
Y
Yibing Liu 已提交
6880
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6881 6882 6883 6884
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6885
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6886 6887 6888 6889 6890 6891

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6892
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6893 6894 6895
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6896
            target_lod: [4, 2]
Y
yangyaming 已提交
6897 6898

            then we get a 1-level LoDTensor:
6899
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6900 6901 6902 6903 6904 6905
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6906
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6907 6908 6909 6910
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6911
                y.data = [[2, 4]]
Y
yangyaming 已提交
6912 6913 6914
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6915
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6916 6917 6918 6919 6920 6921
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6922
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6923 6924 6925 6926
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6927
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6928 6929 6930 6931
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6932
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6933 6934 6935 6936 6937
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6938
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6939
                           from :attr:`y`.
Y
yangyaming 已提交
6940
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6941
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6942 6943

    Returns:
Y
Yibing Liu 已提交
6944
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6945 6946

    Raises:
Y
Yibing Liu 已提交
6947
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6948 6949 6950 6951

    Examples:
        .. code-block:: python

6952 6953 6954
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6955 6956
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6957
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6983
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
7012 7013
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7026 7027 7028
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7042 7043 7044 7045


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7046
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7047
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7048

G
guosheng 已提交
7049 7050 7051 7052
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7075
                         The length of :attr:paddings must be
G
guosheng 已提交
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7086

G
guosheng 已提交
7087
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7088 7089
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7090 7091 7092 7093 7094
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7095
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7096 7097 7098 7099 7100 7101 7102
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7103 7104


C
chengduo 已提交
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7136 7137
		And
            pad_value = -1,
C
chengduo 已提交
7138

T
Tink_Y 已提交
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7169 7170 7171
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7172 7173 7174 7175 7176
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7177
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7178 7179 7180 7181 7182 7183 7184 7185 7186
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7187 7188 7189 7190 7191 7192 7193
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7194 7195
    called label-smoothing regularization (LSR).

7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7219
                              be :math:`(1, class\_num)`.
7220 7221
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7222
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7223 7224 7225 7226 7227 7228 7229 7230 7231
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7232 7233
            
            import paddle.fluid.layers as layers
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7244
    smooth_label = helper.create_variable_for_type_inference(dtype)
7245 7246 7247 7248 7249 7250 7251
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7252 7253


W
wopeizl 已提交
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7302 7303


J
jerrywgz 已提交
7304 7305 7306 7307 7308 7309
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7310 7311
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7328 7329 7330 7331
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7332 7333 7334
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7335 7336 7337 7338 7339 7340
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7341
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7382 7383
        .. code-block:: python

S
SunGaofeng 已提交
7384 7385 7386
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7387
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7388
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7389 7390
    """
    label = one_hot(label, depth=input.shape[-1])
7391
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7392 7393 7394 7395 7396 7397
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7398 7399


7400 7401 7402 7403
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7404
                 resample='BILINEAR',
7405 7406
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7407
                 align_mode=1):
7408
    """
Q
qiaolongfei 已提交
7409
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7410

7411
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7412 7413 7414
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7415

7416
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7417

7418
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7419

7420 7421 7422 7423 7424 7425 7426 7427 7428 7429
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7430
    Align_corners and align_mode are optinal parameters,the calculation method 
7431 7432 7433 7434
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7435
    .. code-block:: text
7436

T
Tink_Y 已提交
7437
        For scale:
7438
          
T
Tink_Y 已提交
7439
            if align_corners = True && out_size > 1 :
7440

T
Tink_Y 已提交
7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7452

T
Tink_Y 已提交
7453 7454
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7455

T
Tink_Y 已提交
7456 7457
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7458

T
Tink_Y 已提交
7459 7460
          else:
              align_corners = True
7461

T
Tink_Y 已提交
7462 7463
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7464

T
Tink_Y 已提交
7465 7466
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7467

T
Tink_Y 已提交
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7478

T
Tink_Y 已提交
7479 7480 7481 7482
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7483

T
Tink_Y 已提交
7484 7485
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7486 7487 7488 7489 7490 7491 7492 7493 7494

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7495
    Args:
7496
        input (Variable): The input tensor of image resize layer,
7497 7498
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7499
        out_shape(list|tuple|Variable|None): Output shape of image resize
7500 7501
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7502
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7503
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7504
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7505
             Default: None.
7506 7507
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7508
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7509
                       currently.
7510
                       Default: 'BILINEAR'
7511 7512 7513
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7514
                                :attr:`out_shape` and :attr:`scale` specifying
7515 7516 7517 7518 7519 7520 7521
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7522 7523
                                constructing stage.
                                Default: None
7524 7525 7526 7527
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7528
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7529 7530
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7531 7532

    Returns:
Q
update  
qiaolongfei 已提交
7533 7534
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7535

7536 7537 7538
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7539
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7540 7541 7542
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7543
        ValueError: scale should be greater than zero.
7544 7545
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7546

7547 7548 7549
    Examples:
        .. code-block:: python

R
ruri 已提交
7550
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7551
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7552
    """
7553 7554 7555 7556
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7557 7558
    if resample not in resample_methods:
        raise ValueError(
7559
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7560
        )
7561
    resample_type = resample_methods[resample]
7562 7563 7564 7565 7566 7567

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7568
    if out_shape is None and scale is None:
7569
        raise ValueError("One of out_shape and scale must not be None.")
7570
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7571
    dtype = helper.input_dtype()
7572 7573 7574 7575

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7576
    inputs = {"X": input}
D
dengkaipeng 已提交
7577
    attrs = {
D
dengkaipeng 已提交
7578 7579
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7580 7581 7582 7583 7584
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7585
    if out_shape is not None:
7586 7587 7588 7589
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7590
            inputs['OutSize'] = out_shape
7591 7592
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7593 7594
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7595 7596 7597 7598 7599 7600 7601
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7602
    else:
D
dengkaipeng 已提交
7603 7604
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7605
        attrs['scale'] = float(scale)
7606

7607 7608 7609 7610 7611
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7612
    out = helper.create_variable_for_type_inference(dtype)
7613
    helper.append_op(
7614
        type='{}_interp'.format(resample_type),
7615
        inputs=inputs,
7616
        outputs={"Out": out},
D
dengkaipeng 已提交
7617
        attrs=attrs)
7618
    return out
F
stash  
fengjiayi 已提交
7619 7620


7621
@templatedoc(op_type="bilinear_interp")
7622 7623 7624 7625
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7626 7627
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7628
                    align_mode=1):
7629
    """
7630 7631
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7632 7633
    in priority order.

7634 7635 7636 7637
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7638 7639
    again in the other direction.

7640
    For details of bilinear interpolation, please refer to Wikipedia:
7641
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7642

T
tink2123 已提交
7643
    Align_corners and align_mode are optinal parameters,the calculation 
7644 7645 7646 7647
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7648
    .. code-block:: text
7649

T
Tink_Y 已提交
7650
        For scale:
7651
          
T
Tink_Y 已提交
7652
            if align_corners = True && out_size > 1 :
7653

T
Tink_Y 已提交
7654 7655 7656 7657 7658
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7659

T
Tink_Y 已提交
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7670 7671


T
Tink_Y 已提交
7672
          else:
T
tink2123 已提交
7673

T
Tink_Y 已提交
7674 7675
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7676

T
Tink_Y 已提交
7677 7678
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7679 7680 7681



Y
yuyang18 已提交
7682 7683 7684
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7685 7686 7687
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7688

Y
yuyang18 已提交
7689
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7690
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7691
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7692
             Default: None.
Y
yuyang18 已提交
7693 7694

        name(str|None): The output variable name.
7695 7696 7697
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7698
                                :attr:`out_shape` and :attr:`scale` specifying
7699 7700 7701 7702 7703 7704 7705
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7706 7707
                                constructing stage.
                                Default: None
7708 7709
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7710 7711 7712

    Returns:
        ${out_comment}.
7713 7714 7715 7716

    Examples:
        .. code-block:: python

R
ruri 已提交
7717
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7718
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7719 7720
    """

7721 7722
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7723 7724


7725
@templatedoc(op_type="nearest_interp")
7726 7727 7728 7729
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7730 7731
                   actual_shape=None,
                   align_corners=True):
7732
    """
7733
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7734 7735
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7736 7737
    out_shape and scale in priority order.

7738 7739
    Example:

T
Tink_Y 已提交
7740 7741 7742 7743 7744
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7745

T
Tink_Y 已提交
7746 7747 7748 7749 7750 7751 7752 7753
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7754
          
T
Tink_Y 已提交
7755 7756
          if:
              align_corners = False
7757

T
Tink_Y 已提交
7758 7759
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7760

T
Tink_Y 已提交
7761 7762
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7763

T
Tink_Y 已提交
7764 7765
          else:
              align_corners = True
7766

T
Tink_Y 已提交
7767 7768
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7769

T
Tink_Y 已提交
7770 7771
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7772 7773


7774
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7775
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7776 7777 7778 7779

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7780 7781 7782
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7783

Y
yuyang18 已提交
7784
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7785
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7786
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7787
             Default: None.
Y
yuyang18 已提交
7788 7789

        name(str|None): The output variable name.
7790 7791 7792
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7793
                                :attr:`out_shape` and :attr:`scale` specifying
7794 7795 7796 7797 7798 7799 7800
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7801 7802
                                constructing stage.
                                Default: None
7803
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7804 7805 7806

    Returns:
        ${out_comment}.
7807 7808 7809 7810

    Examples:
        .. code-block:: python

R
ruri 已提交
7811
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7812
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7813 7814
    """

7815 7816
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7817 7818 7819 7820


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7821 7822 7823
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7824 7825 7826 7827 7828 7829 7830
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7831
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7832

7833
    Returns:
Q
update  
qiaolongfei 已提交
7834
        Variable: The output is a 4-D tensor of the shape
7835
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7836 7837 7838 7839 7840 7841

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7852 7853 7854
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7855 7856 7857
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7858
def gather(input, index, overwrite=True):
W
whs 已提交
7859
    """
Q
qiaolongfei 已提交
7860 7861
    **Gather Layer**

7862
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7863 7864 7865 7866
    of X indexed by `index` and concatenate them together.

    .. math::

7867
        Out = X[Index]
W
whs 已提交
7868 7869 7870 7871 7872 7873 7874


    .. code-block:: text


                Given:

7875 7876
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7887
        input (Variable): The source input with rank>=1.
W
whs 已提交
7888
        index (Variable): The index input with rank=1.
7889 7890 7891 7892 7893 7894
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7895 7896 7897 7898 7899

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7900

W
whs 已提交
7901 7902
        .. code-block:: python

Y
Yibing Liu 已提交
7903 7904
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7905 7906 7907 7908
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7909
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7910 7911 7912 7913
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7914 7915
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7916 7917 7918
    return out


7919
def scatter(input, index, updates, name=None, overwrite=True):
7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
7937 7938 7939 7940
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
7941 7942 7943 7944 7945 7946 7947 7948

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

7949 7950 7951 7952 7953
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
7954

7955
            output = fluid.layers.scatter(input, index, updates)
7956 7957 7958
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7959
    out = helper.create_variable_for_type_inference(dtype)
7960 7961 7962 7963 7964
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7965
        attrs={'overwrite': overwrite},
7966 7967 7968 7969
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7970 7971 7972 7973 7974 7975 7976 7977 7978
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7979

Q
Qingsheng Li 已提交
7980
    Given the following input:
H
haowang101779990 已提交
7981

Q
Qingsheng Li 已提交
7982
    .. code-block:: text
H
haowang101779990 已提交
7983

Q
Qingsheng Li 已提交
7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7996

Q
Qingsheng Li 已提交
7997
    .. code-block:: text
H
haowang101779990 已提交
7998

Q
Qingsheng Li 已提交
7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8014
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8015 8016 8017 8018

    Examples:

        .. code-block:: python
8019 8020
	
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8021

8022 8023 8024
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8025 8026 8027
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8028
    assert not in_dygraph_mode(), (
8029
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8030 8031
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8032
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8033 8034 8035 8036 8037 8038 8039 8040 8041
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8055

8056 8057 8058
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8059
    """
F
stash  
fengjiayi 已提交
8060
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8061
    dtype = x.dtype
X
Xin Pan 已提交
8062
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8063
    if seed is None:
8064
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8065
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8066
    if isinstance(seed, int):
F
fengjiayi 已提交
8067 8068 8069 8070 8071
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8072 8073 8074 8075
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8076
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8077 8078
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8079 8080
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8081
    return out
W
whs 已提交
8082 8083


8084
def log(x, name=None):
W
wanghaoshuang 已提交
8085 8086 8087 8088 8089
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8090
        Out = \\ln(x)
W
wanghaoshuang 已提交
8091 8092

    Args:
8093
        x (Variable): Input tensor.
8094 8095
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8096 8097 8098 8099 8100 8101 8102 8103

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8104
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8105
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8106 8107
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8108
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8109
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8110
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8111 8112 8113
    return out


8114
def relu(x, name=None):
W
wanghaoshuang 已提交
8115 8116
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8117
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8118 8119 8120 8121
    the tensor elementwise.

    .. math::

8122
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8123 8124

    Args:
8125
        x (Variable): The input tensor.
8126 8127
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8128 8129 8130 8131 8132 8133 8134 8135

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8136
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8137
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8138 8139
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8140
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8141
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8142 8143
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8144
    return out
8145 8146


C
chengduo 已提交
8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8171 8172 8173 8174 8175 8176
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8192 8193 8194
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8195 8196 8197 8198
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8199
    .. math::
8200

H
haowang101779990 已提交
8201
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8202

8203
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8204 8205 8206 8207 8208
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8209
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8210
                           Its shape should be the same as input.
8211
        num_classes (int): The possible number of labels.
W
whs 已提交
8212 8213

    Returns:
M
minqiyang 已提交
8214 8215
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8216
                     Three variables:
M
minqiyang 已提交
8217

H
haowang101779990 已提交
8218 8219 8220
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8221 8222 8223 8224

    Examples:

        .. code-block:: python
8225

B
Bai Yifan 已提交
8226 8227 8228 8229 8230
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8231 8232 8233
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8234 8235 8236
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8237 8238
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8239 8240
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8241
        outputs={
W
whs 已提交
8242 8243 8244
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8245 8246 8247
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8290
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8291
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8292
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8310
            import paddle.fluid as fluid
8311 8312 8313 8314 8315 8316
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8317
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8318 8319 8320 8321 8322

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8323
            isinstance(shape, Variable)):
8324 8325 8326 8327 8328
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8329
    out = helper.create_variable_for_type_inference(x.dtype)
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8347 8348


W
whs 已提交
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8366

W
whs 已提交
8367
              out_shape = [2, 3, 5, 5]
8368

W
whs 已提交
8369
          Step 1:
8370

W
whs 已提交
8371 8372 8373
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8374

W
whs 已提交
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8420
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8421
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8434

S
SunGaofeng 已提交
8435
            import paddle.fluid as fluid
W
whs 已提交
8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8447
            isinstance(out_shape, Variable)):
W
whs 已提交
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8469 8470
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8471

8472 8473
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8474
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8475 8476 8477
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8478

8479 8480
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8481

H
haowang101779990 已提交
8482 8483
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8484 8485
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8486

H
haowang101779990 已提交
8487 8488 8489 8490 8491 8492 8493 8494
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8495 8496 8497

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8515 8516 8517
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8532
    out = helper.create_variable_for_type_inference("float32")
8533 8534 8535 8536 8537 8538 8539 8540

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8541 8542


M
minqiyang 已提交
8543 8544
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8545
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8546
    which compares left score and right score passed in.
M
minqiyang 已提交
8547
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8548 8549 8550

    .. math::

H
haowang101779990 已提交
8551
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8552 8553

    Args:
M
minqiyang 已提交
8554
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8555 8556
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8557
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8558 8559
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8560

M
minqiyang 已提交
8561
    Returns:
M
minqiyang 已提交
8562
       Variable: The ranking loss.
H
haowang101779990 已提交
8563

M
minqiyang 已提交
8564
    Raises:
M
minqiyang 已提交
8565
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8566

M
minqiyang 已提交
8567
    Examples:
H
haowang101779990 已提交
8568

M
minqiyang 已提交
8569
        .. code-block:: python
H
haowang101779990 已提交
8570

Y
Yibing Liu 已提交
8571 8572 8573
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8574 8575
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8576
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8577 8578 8579 8580 8581 8582
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8583 8584
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8608
        .. code-block:: text
W
whs 已提交
8609

T
Tink_Y 已提交
8610
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8611

T
Tink_Y 已提交
8612 8613
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8614

T
Tink_Y 已提交
8615
	      Case 0:
M
minqiyang 已提交
8616

T
Tink_Y 已提交
8617 8618 8619
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8620

T
Tink_Y 已提交
8621 8622 8623
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8624

T
Tink_Y 已提交
8625
	      Case 1:
M
minqiyang 已提交
8626

T
Tink_Y 已提交
8627 8628
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8629

T
Tink_Y 已提交
8630 8631 8632
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8633

T
Tink_Y 已提交
8634
	      Case 2:
M
minqiyang 已提交
8635

T
Tink_Y 已提交
8636 8637
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8638

T
Tink_Y 已提交
8639 8640 8641
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8642 8643


W
whs 已提交
8644 8645
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8646
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8664 8665 8666 8667 8668
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8669 8670 8671 8672
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8673
    out = helper.create_variable_for_type_inference(dtype)
8674 8675 8676 8677 8678 8679 8680 8681 8682
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8683
    helper.append_op(
8684
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8685 8686 8687 8688

    return out


8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8701 8702 8703 8704 8705

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8706 8707
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8708 8709
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8710
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8731 8732 8733 8734 8735

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8736 8737
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8738 8739
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8740
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8761 8762 8763 8764 8765

    Examples:

        .. code-block:: python

8766
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8767 8768
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8769 8770
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8771
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8793 8794 8795 8796 8797

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8798
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8799
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8800 8801
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8802
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8825 8826 8827 8828 8829

    Examples:

        .. code-block:: python

8830
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8831 8832
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8833 8834
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8835
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8857 8858 8859 8860 8861

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8862 8863
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8864 8865
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8866
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8867 8868 8869 8870 8871 8872 8873 8874
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8875 8876 8877 8878
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8879 8880
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8881

J
jerrywgz 已提交
8882 8883 8884 8885 8886 8887 8888 8889
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8890 8891
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8892
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8893
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8894
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8895
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8896
          will be named automatically.
J
jerrywgz 已提交
8897 8898 8899 8900 8901 8902 8903 8904

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8905 8906 8907
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8908
            mode = 'channel'
J
jerrywgz 已提交
8909 8910 8911
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8923
        attr=helper.param_attr,
J
jerrywgz 已提交
8924 8925 8926 8927
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8928
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8929 8930 8931 8932 8933 8934 8935 8936 8937
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8938 8939 8940 8941 8942 8943 8944 8945 8946 8947
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8948
    Returns:
8949
        output(${out_type}): ${out_comment}
8950 8951 8952

    Examples:

8953
    .. code-block:: python
8954

H
haowang101779990 已提交
8955 8956
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8957 8958
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8959
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8978
    Returns:
8979
        output(${out_type}): ${out_comment}
8980 8981 8982 8983 8984

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8985 8986
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8987 8988
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8989
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9007
    Returns:
9008
        output(${out_type}): ${out_comment}
9009 9010 9011

    Examples:

9012 9013 9014 9015 9016
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9017
            y = fluid.layers.soft_relu(x, threshold=20.0)
9018 9019
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9020
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9021 9022 9023 9024 9025 9026 9027 9028
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9029 9030 9031 9032
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9033

H
haowang101779990 已提交
9034
    For Example:
M
minqiyang 已提交
9035

H
haowang101779990 已提交
9036
    .. code-block:: text
9037

H
haowang101779990 已提交
9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9059 9060 9061

    Args:
        x (Variable): A tensor of rank >= axis.
9062 9063
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9064 9065 9066 9067 9068 9069 9070 9071
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9072 9073 9074
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9075 9076 9077 9078
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9079
        ValueError: If axis is not in range [0, rank(x)].
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9096 9097
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9098
    helper.append_op(
9099
        type='flatten2',
9100
        inputs={"X": x},
9101 9102
        outputs={'Out': out,
                 'XShape': x_shape},
9103 9104
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9105 9106


C
chenweihang 已提交
9107
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9108
    """
C
chenweihang 已提交
9109
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9110
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9111 9112
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9113

H
haowang101779990 已提交
9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9131 9132

    Args:
C
chenweihang 已提交
9133 9134 9135
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9136 9137 9138 9139 9140 9141 9142

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9143
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9144 9145
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9146
    assert not in_dygraph_mode(), (
9147
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9148
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9149 9150
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9151 9152 9153 9154 9155 9156
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9157
    return out
9158

9159

S
sneaxiy 已提交
9160 9161 9162 9163 9164 9165 9166 9167 9168
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9169

S
sneaxiy 已提交
9170
    .. math::
9171

S
sneaxiy 已提交
9172 9173 9174
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9175
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9176 9177 9178 9179
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9180 9181 9182
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9183 9184
    Returns:
        Variable: The output sequence mask.
9185

9186 9187 9188 9189 9190 9191 9192 9193
    Examples:
        .. code-block:: python
	
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9194
    """
L
lujun 已提交
9195
    assert not in_dygraph_mode(), (
9196
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9197

Q
qingqing01 已提交
9198
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9199
    if name is None:
X
Xin Pan 已提交
9200
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9201
    else:
X
Xin Pan 已提交
9202
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9203

Q
qingqing01 已提交
9204 9205 9206
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9207 9208
        outputs={'Y': out},
        attrs={
9209
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9210 9211 9212
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9213 9214


X
Xin Pan 已提交
9215
def stack(x, axis=0):
S
sneaxiy 已提交
9216 9217 9218 9219
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9220 9221 9222 9223 9224 9225 9226

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9227
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9228
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9229

C
chengduozh 已提交
9230 9231
    For Example:

C
chengduozh 已提交
9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9270
    Args:
9271
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9272
        axis (int|None): The axis along which all inputs are stacked.
9273

S
sneaxiy 已提交
9274 9275
    Returns:
        Variable: The stacked variable.
9276

9277 9278 9279 9280
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
9281 9282
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9283 9284
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9285 9286
    """

X
Xin Pan 已提交
9287 9288 9289 9290 9291 9292
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9293
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9294
    helper.append_op(
S
sneaxiy 已提交
9295 9296
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9297

X
Xin Pan 已提交
9298
    return out
D
dzhwinter 已提交
9299 9300 9301 9302 9303 9304 9305


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9306

D
dzhwinter 已提交
9307 9308 9309
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9310
    raised.
D
dzhwinter 已提交
9311 9312

    Args:
M
minqiyang 已提交
9313
        x (Variable): Input variable.
D
dzhwinter 已提交
9314 9315
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9316

D
dzhwinter 已提交
9317 9318
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9319

9320 9321 9322 9323 9324 9325
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9326 9327 9328 9329 9330 9331 9332 9333 9334 9335
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9336
    for _ in range(num):
X
Xin Pan 已提交
9337
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9338 9339 9340 9341 9342 9343 9344 9345

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9358

W
whs 已提交
9359 9360 9361 9362
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9363

W
whs 已提交
9364
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9365

W
whs 已提交
9366
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9367

W
whs 已提交
9368 9369 9370 9371
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9372

W
whs 已提交
9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9389
    out = helper.create_variable_for_type_inference(dtype)
9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9407
                    ele.stop_gradient = True
9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9421
    helper.append_op(
9422
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9423
    return out
S
sneaxiy 已提交
9424 9425


G
fix  
gongweibao 已提交
9426 9427 9428
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9429
@templatedoc()
G
fix  
gongweibao 已提交
9430 9431 9432 9433 9434 9435 9436 9437 9438
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9439
    ${comment}
G
fix  
gongweibao 已提交
9440 9441

    Args:
G
gongweibao 已提交
9442 9443 9444
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9445
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9446 9447 9448
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9449 9450
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9451
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9452

9453 9454 9455
    Examples:
        .. code-block:: python

9456 9457
            import paddle.fluid.layers as layers 

9458 9459
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9460 9461 9462
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9463
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9480 9481


G
gongweibao 已提交
9482
@templatedoc()
X
Xin Pan 已提交
9483
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9484
    """
G
gongweibao 已提交
9485
    ${comment}
G
fix  
gongweibao 已提交
9486 9487

    Args:
G
gongweibao 已提交
9488 9489 9490 9491
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9492 9493 9494
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9495
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9496

9497 9498 9499
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9500
            import paddle.fluid.layers as layers
9501
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9502 9503 9504
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9505
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9506 9507 9508 9509 9510 9511 9512 9513 9514 9515
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9516
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9517 9518 9519 9520 9521
        })

    return out


G
gongweibao 已提交
9522
@templatedoc()
G
fix  
gongweibao 已提交
9523
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9524
    """
G
gongweibao 已提交
9525
    ${comment}
G
fix  
gongweibao 已提交
9526 9527

    Args:
G
gongweibao 已提交
9528 9529 9530 9531
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9532
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9533 9534

    Returns:
G
gongweibao 已提交
9535
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9536

9537 9538 9539
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9540
            x = fluid.layers.data(
9541 9542 9543 9544 9545
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9546
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9547 9548 9549
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9550
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9562
@templatedoc()
G
fix  
gongweibao 已提交
9563 9564 9565 9566 9567 9568 9569 9570 9571
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9572
    ${comment}
G
fix  
gongweibao 已提交
9573 9574

    Args:
G
gongweibao 已提交
9575 9576
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9577
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9578 9579 9580 9581
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9582
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9583 9584

    Returns:
G
gongweibao 已提交
9585
        out (Variable): ${out_comment}
9586 9587 9588 9589

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9590
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9591

Y
Yibing Liu 已提交
9592
            out = fluid.layers.gaussian_random_batch_size_like(
9593
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9594 9595 9596
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9597
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9616
@templatedoc()
X
Xin Pan 已提交
9617
def sum(x):
G
fix  
gongweibao 已提交
9618
    """
G
gongweibao 已提交
9619
    ${comment}
G
fix  
gongweibao 已提交
9620 9621

    Args:
G
gongweibao 已提交
9622
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9623 9624

    Returns:
G
gongweibao 已提交
9625
        out (Variable): ${out_comment}
9626 9627 9628 9629

    Examples:
        .. code-block:: python

9630 9631 9632 9633
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9634 9635 9636
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9637 9638
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9639 9640 9641 9642
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9643
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9644 9645 9646 9647

    return out


G
gongweibao 已提交
9648
@templatedoc()
G
fix  
gongweibao 已提交
9649 9650
def slice(input, axes, starts, ends):
    """
9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9666

9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9684
    Args:
G
gongweibao 已提交
9685 9686 9687 9688
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9689 9690

    Returns:
G
gongweibao 已提交
9691
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9692

9693 9694 9695
    Examples:
        .. code-block:: python

9696 9697
            import paddle.fluid as fluid
 
9698 9699 9700 9701
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9702
            input = fluid.layers.data(
9703 9704
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9705
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9706 9707 9708
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9709 9710
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9724 9725
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9726
    Get the shape of the input.
G
fix  
gongweibao 已提交
9727 9728

    Args:
C
chengduozh 已提交
9729
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9730 9731

    Returns:
C
fix doc  
chengduozh 已提交
9732
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9733

9734 9735 9736
    Examples:
        .. code-block:: python

9737 9738 9739
            import paddle.fluid as fluid

            input = fluid.layers.data(
9740
                name="input", shape=[3, 100, 100], dtype="float32")
9741
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9742 9743 9744
    """

    helper = LayerHelper('shape', **locals())
9745
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9746
    helper.append_op(
G
fix  
gongweibao 已提交
9747
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9748 9749

    return out
G
merge  
gongweibao 已提交
9750 9751


Z
zhoukunsheng 已提交
9752 9753 9754 9755
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9756
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9778 9779 9780 9781
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9782
    if in_dygraph_mode():
X
Xin Pan 已提交
9783 9784 9785
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9786 9787 9788 9789
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9790 9791
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9792
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9793 9794 9795
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9796

S
sneaxiy 已提交
9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9808
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9809 9810 9811 9812 9813 9814 9815 9816
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9817
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9818
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9819 9820 9821

    Returns:
        out(${out_type}): ${out_comment}
9822 9823 9824 9825 9826 9827 9828 9829

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9830 9831 9832
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9833
    if name is None:
X
Xin Pan 已提交
9834
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9835 9836 9837
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9838 9839 9840 9841 9842 9843 9844 9845 9846 9847

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9848
    return helper.append_activation(out)
S
sneaxiy 已提交
9849 9850


X
Xin Pan 已提交
9851
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9852 9853 9854
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9855
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9856 9857 9858
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9859
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9860 9861 9862
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9863
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9864 9865 9866
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9867
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9868 9869 9870
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9871
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9872 9873 9874
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9875
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9876 9877 9878
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9879 9880 9881 9882 9883 9884 9885 9886
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9887
for func in [
9888 9889 9890 9891 9892 9893 9894 9895 9896
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9897 9898 9899 9900 9901
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9902 9903
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9904
        ])
9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
9942 9943


9944
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9945 9946
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9947 9948
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9949 9950 9951

    if out is None:
        if name is None:
X
Xin Pan 已提交
9952
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9968
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9980 9981 9982 9983 9984 9985 9986 9987 9988

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9989 9990 9991 9992 9993 9994 9995
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9996
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10008 10009 10010 10011 10012 10013 10014 10015 10016

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10017 10018 10019 10020 10021 10022 10023
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10024
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10036 10037 10038 10039 10040 10041 10042 10043 10044

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10045 10046 10047 10048 10049 10050 10051
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10052
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10053 10054 10055 10056 10057 10058 10059 10060 10061 10062
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10063 10064 10065 10066 10067 10068 10069

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10070 10071 10072 10073
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10089 10090 10091 10092

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10093
            import paddle.fluid as fluid
10094 10095 10096
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10097 10098 10099 10100 10101
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10102 10103
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10104 10105 10106

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10130 10131 10132 10133 10134 10135 10136

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10137 10138 10139 10140 10141
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10142 10143
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10144 10145 10146

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10147 10148 10149 10150 10151 10152 10153 10154

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10168 10169 10170 10171 10172 10173 10174

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10175 10176 10177 10178 10179
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10180
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10181 10182 10183 10184 10185 10186 10187 10188 10189 10190
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10202 10203 10204 10205 10206 10207 10208 10209 10210

    Examples:
        .. code-block:: python

            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10249 10250 10251 10252 10253
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10254
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10255 10256 10257 10258 10259 10260 10261 10262 10263
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10264 10265
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10266 10267 10268 10269 10270 10271
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10272 10273 10274
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10275 10276
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10277 10278 10279 10280 10281 10282
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10283
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10284
        name(basestring|None): Name of the output.
10285 10286
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10287 10288 10289

    Returns:
        out(${out_type}): ${out_comment}
10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10304 10305 10306 10307 10308
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10309
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10310 10311 10312 10313 10314 10315 10316 10317
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10318 10319
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10336 10337 10338 10339 10340 10341 10342 10343 10344

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10345 10346 10347 10348
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10349
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10350 10351 10352 10353 10354 10355 10356 10357 10358 10359
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10360 10361


J
JiabinYang 已提交
10362
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10363
    """
J
JiabinYang 已提交
10364
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10365 10366 10367

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10368
    The attr blocksize indicates the input block size.
10369 10370

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10371
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10372 10373

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10374
    (but keeping all data)
J
JiabinYang 已提交
10375

J
JiabinYang 已提交
10376
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10377
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10378 10379 10380 10381 10382
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10383
    Args:
J
JiabinYang 已提交
10384
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10385
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10386 10387

    Returns:
J
JiabinYang 已提交
10388
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10389 10390

    Raises:
J
JiabinYang 已提交
10391
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10392 10393 10394

    Examples:
        .. code-block:: python
10395 10396 10397
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10398 10399

            data = fluid.layers.data(
10400
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10401
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10402
                x=data, blocksize=2)
10403 10404 10405 10406 10407 10408

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10409

J
JiabinYang 已提交
10410 10411
    """

J
JiabinYang 已提交
10412
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10413

J
JiabinYang 已提交
10414 10415
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10416 10417

    if name is None:
J
JiabinYang 已提交
10418 10419
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10420 10421 10422 10423 10424
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10425
        type="space_to_depth",
J
JiabinYang 已提交
10426
        inputs={"X": x},
J
JiabinYang 已提交
10427
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10428
        outputs={"Out": out})
J
JiabinYang 已提交
10429 10430
    return out

J
JiabinYang 已提交
10431

S
sneaxiy 已提交
10432 10433
@templatedoc()
def sequence_reverse(x, name=None):
10434
    """
S
sneaxiy 已提交
10435 10436 10437 10438 10439 10440 10441 10442
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10443 10444 10445 10446 10447 10448 10449

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10450
    """
L
lujun 已提交
10451
    assert not in_dygraph_mode(), (
10452
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10453 10454
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10455
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10456 10457 10458 10459 10460 10461 10462 10463 10464 10465
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10466 10467


10468 10469 10470 10471 10472 10473
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10474 10475 10476 10477 10478
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10479

10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10492
        act (str, default None): Activation to be applied to the output of this layer.
10493 10494 10495

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10510 10511 10512 10513
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10514
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10526
    return helper.append_activation(out)
10527 10528


B
barrierye 已提交
10529
def similarity_focus(input, axis, indexes, name=None):
10530
    """
B
barrierye 已提交
10531
    SimilarityFocus Operator
B
barrierye 已提交
10532 10533

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10534

10535 10536 10537
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10538
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10539 10540 10541 10542 10543 10544 10545
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10546
       each index.
B
barrierye 已提交
10547 10548 10549 10550
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10600
    Args:
10601
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10602
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10603
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10604
            1, 2 or 3.
B
barrierye 已提交
10605
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10606 10607

    Returns:
H
haowang101779990 已提交
10608 10609
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10610

B
barrierye 已提交
10611 10612
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10613

B
barrierye 已提交
10614
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10615 10616
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10629 10630 10631 10632 10633
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10634 10635 10636 10637 10638 10639 10640
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10641 10642


M
minqiyang 已提交
10643 10644
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10645 10646
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10647 10648
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10649 10650 10651 10652 10653 10654 10655 10656 10657

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10658 10659
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10676 10677
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10678 10679 10680 10681 10682 10683 10684 10685 10686
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10687
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10688
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10689 10690 10691 10692 10693 10694

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10695

10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10714 10715
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10716 10717
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10718 10719 10720 10721 10722 10723 10724
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10725 10726


D
dengkaipeng 已提交
10727
@templatedoc()
10728 10729
def grid_sampler(x, grid, name=None):
    """
10730
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10731
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10732 10733 10734 10735
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10736
    interpolation value of 4 nearest corner points.
10737

H
haowang101779990 已提交
10738
    .. code-block:: text
10739

H
haowang101779990 已提交
10740 10741
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10742

H
haowang101779990 已提交
10743 10744
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10745

H
haowang101779990 已提交
10746 10747 10748
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10749

H
haowang101779990 已提交
10750 10751 10752 10753 10754 10755 10756 10757 10758
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10759

H
haowang101779990 已提交
10760 10761 10762 10763
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10764

H
haowang101779990 已提交
10765 10766 10767 10768
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10769

H
haowang101779990 已提交
10770 10771 10772 10773
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10774

H
haowang101779990 已提交
10775 10776
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10777 10778

    Args:
10779 10780 10781
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10782 10783

    Returns:
H
haowang101779990 已提交
10784
        Variable: Output of shape [N, C, H, W] data samples input X
10785 10786
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10787 10788 10789 10790
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10791 10792 10793 10794 10795
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10796
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10797

D
dengkaipeng 已提交
10798 10799 10800 10801 10802 10803 10804 10805 10806
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10807
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10808 10809
    ipts = {'X': x, 'Grid': grid}

10810
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10811 10812 10813
    return out


G
gmcather 已提交
10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10841 10842
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10881
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10882 10883 10884 10885 10886 10887 10888
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10889 10890
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10891

10892 10893 10894 10895 10896
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10897
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10898

H
heqiaozhi 已提交
10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10912 10913 10914 10915
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10916
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10917 10918
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10919
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10920 10921

    .. math::
H
haowang101779990 已提交
10922 10923 10924
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10925 10926

    Where:
H
haowang101779990 已提交
10927 10928
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

10942 10943 10944 10945 10946 10947 10948 10949 10950
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
10951

G
gmcather 已提交
10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10968 10969 10970 10971 10972 10973 10974 10975 10976 10977


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10978
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10979

Q
Qiao Longfei 已提交
10980
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10981 10982 10983
    For example:

    .. math::
H
haowang101779990 已提交
10984
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10985

Q
Qiao Longfei 已提交
10986
    In this formula:
10987 10988
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10989
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10990
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10991 10992 10993
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10994 10995
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10996 10997 10998
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10999
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11000
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11001
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11002 11003 11004 11005
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11006
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11007 11008 11009 11010

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
11011 11012 11013
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11014 11015
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11016
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11017 11018 11019 11020

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11021
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11052 11053 11054 11055 11056 11057 11058 11059

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11060 11061 11062 11063 11064 11065 11066 11067 11068 11069
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11070 11071


S
shippingwang 已提交
11072
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11073 11074
    """
    **Shuffle Channel Operator**
11075

S
shippingwang 已提交
11076 11077 11078 11079 11080 11081
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11082
    
S
shippingwang 已提交
11083
    .. code-block:: text
11084

S
shippingwang 已提交
11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11113
    Args: 
S
shippingwang 已提交
11114 11115
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11116 11117

    Returns:
S
shippingwang 已提交
11118 11119
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11120 11121

    Raises:
S
shippingwang 已提交
11122
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11123 11124 11125

    Examples:
        .. code-block:: python
11126 11127

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11128
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11129 11130 11131
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11132
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11133 11134 11135 11136 11137 11138 11139 11140 11141

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11142
    return out
S
Add  
shippingwang 已提交
11143 11144


11145
@templatedoc()
D
dengkaipeng 已提交
11146
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11147 11148 11149 11150 11151 11152 11153 11154
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11155
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11156
        name (str, default None): The name of this layer.
11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11169
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11182 11183
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11184 11185 11186
    return out


S
sneaxiy 已提交
11187
class PyFuncRegistry(object):
S
sneaxiy 已提交
11188 11189 11190
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11191
        if func is None or not callable(func):
S
sneaxiy 已提交
11192 11193 11194
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11195
        # find named args using reflection
S
sneaxiy 已提交
11196 11197 11198 11199 11200 11201 11202
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11203 11204 11205
        '''
        Why record self here?

M
minqiyang 已提交
11206 11207
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11208
           to find the registered function corresponding
M
minqiyang 已提交
11209
           to :code:`idx`.
S
sneaxiy 已提交
11210

M
minqiyang 已提交
11211 11212
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11213
           whose reference count is 1 would cause
M
minqiyang 已提交
11214
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11215 11216
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11217
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11232 11233 11234 11235 11236 11237 11238 11239 11240
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11241

S
sneaxiy 已提交
11242 11243
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11244 11245

        ret = []
S
sneaxiy 已提交
11246 11247 11248
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11249 11250
                continue

S
sneaxiy 已提交
11251 11252
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11253

S
sneaxiy 已提交
11254 11255 11256
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11257

S
sneaxiy 已提交
11258
        return tuple(ret)
S
sneaxiy 已提交
11259 11260


S
sneaxiy 已提交
11261 11262 11263 11264
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11265

S
sneaxiy 已提交
11266 11267 11268 11269 11270 11271 11272 11273
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11274
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11275

S
sneaxiy 已提交
11276 11277
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11278 11279 11280 11281
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11282
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11283
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11284 11285
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11286 11287 11288 11289 11290
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11291
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11292
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11293
                                       None means no backward. Default None.
S
sneaxiy 已提交
11294
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11295
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11296 11297
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11298
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11299 11300 11301

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11302 11303

    Examples:
M
minqiyang 已提交
11304

S
sneaxiy 已提交
11305 11306 11307 11308 11309
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11310
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11311 11312
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11313
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11314 11315 11316
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11317
        >>>
S
sneaxiy 已提交
11318 11319 11320 11321 11322
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11323
        >>>     print(x)
S
sneaxiy 已提交
11324 11325 11326 11327 11328 11329
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11330
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11331 11332
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11333 11334
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11335 11336 11337 11338 11339 11340 11341 11342
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11343
    """
S
sneaxiy 已提交
11344
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11345 11346 11347
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11348
        x = [x]
S
sneaxiy 已提交
11349 11350
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11351

S
sneaxiy 已提交
11352 11353 11354
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11355
        out_list = [out]
S
sneaxiy 已提交
11356
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11357
        out_list = out
S
sneaxiy 已提交
11358 11359 11360
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11361

S
sneaxiy 已提交
11362 11363
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11364
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11365 11366

    for each_out in out_list:
S
sneaxiy 已提交
11367 11368
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11369 11370
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11371

S
sneaxiy 已提交
11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11387 11388 11389 11390

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11391 11392
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11393 11394 11395
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11396
        })
S
sneaxiy 已提交
11397
    return out
S
sneaxiy 已提交
11398 11399 11400


# For debug usage
S
sneaxiy 已提交
11401 11402 11403 11404
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11418 11419 11420 11421 11422
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11435 11436 11437 11438
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11464

M
minqiyang 已提交
11465

M
minqiyang 已提交
11466
def huber_loss(input, label, delta):
11467
    """
M
minqiyang 已提交
11468 11469 11470
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11471 11472 11473 11474

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11475
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11476 11477 11478 11479

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11480
        huber\_loss = 0.5 * (label - input) * (label - input)
11481 11482 11483 11484 11485 11486 11487


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11488
        delta (float): The parameter of huber loss, which controls
11489 11490 11491
                       the range of outliers

    Returns:
M
minqiyang 已提交
11492
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11493 11494 11495 11496

    Examples:
        .. code-block:: python

11497 11498 11499 11500 11501 11502 11503 11504 11505
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11506
    """
M
minqiyang 已提交
11507
    helper = LayerHelper('huber_loss', **locals())
11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11519 11520


D
dengkaipeng 已提交
11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11583 11584 11585
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11586
          # edges must be directional
T
Tao Luo 已提交
11587 11588 11589 11590
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11591
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11592 11593
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11594
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11595
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11619 11620


C
ceci3 已提交
11621
from .ops import square
C
ceci3 已提交
11622
from .control_flow import equal
C
ceci3 已提交
11623 11624


C
ceci3 已提交
11625 11626 11627
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11628

C
ceci3 已提交
11629
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11630 11631

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11632
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11633 11634 11635 11636 11637
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11638 11639
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11640 11641 11642 11643 11644 11645 11646

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11647 11648 11649 11650 11651 11652 11653 11654
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11655 11656 11657 11658 11659 11660 11661
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11662
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11663 11664
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11665 11666
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11667 11668 11669 11670
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11671 11672 11673
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11674 11675 11676
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11677 11678


R
ruri 已提交
11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11708
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11709 11710 11711 11712 11713 11714 11715 11716 11717

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11718
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11769 11770 11771 11772 11773 11774
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11775 11776 11777 11778 11779 11780 11781 11782
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11783 11784 11785 11786


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11787

H
heqiaozhi 已提交
11788
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11789

H
fix doc  
heqiaozhi 已提交
11790
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11791 11792 11793
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11794
    
H
fix doc  
heqiaozhi 已提交
11795
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11796

H
heqiaozhi 已提交
11797
    Args:
H
fix doc  
heqiaozhi 已提交
11798 11799

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11800 11801
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11802
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11803
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11804

H
heqiaozhi 已提交
11805
    Returns:
H
fix doc  
heqiaozhi 已提交
11806 11807 11808

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11809
    Examples:
H
fix doc  
heqiaozhi 已提交
11810

H
heqiaozhi 已提交
11811
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11812

H
heqiaozhi 已提交
11813 11814 11815 11816 11817 11818 11819 11820 11821 11822
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11823

H
heqiaozhi 已提交
11824 11825 11826 11827 11828 11829 11830 11831 11832
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11833
    return out
Z
zhoukunsheng 已提交
11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output