nn.py 411.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
Y
Yu Yang 已提交
205 206
]

J
jerrywgz 已提交
207 208
kIgnoreIndex = -100

Y
Yu Yang 已提交
209 210 211 212 213 214 215

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
216
       is_test=False,
217
       name=None):
Y
Yu Yang 已提交
218
    """
219
    **Fully Connected Layer**
Y
Yu Yang 已提交
220

221
    This function creates a fully connected layer in the network. It can take
222
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
223
    Args in detail). It creates a variable called weights for each input tensor,
224 225 226 227
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
228
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
229 230
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
231

232
    When the input is single tensor:
C
caoying03 已提交
233

234 235 236 237 238
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
239 240 241

    .. math::

242
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
243 244 245

    In the above equation:

246 247 248
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
249
    * :math:`b`: The bias parameter created by this layer (if needed).
250
    * :math:`Act`: The activation function.
C
caoying03 已提交
251
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
271
    Args:
R
ranqiu 已提交
272 273 274 275 276 277 278 279 280 281
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
282
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
283 284 285 286
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
287 288
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
289
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
290
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
291
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
292

293
    Returns:
F
fengjiayi 已提交
294
        Variable: The transformation result.
295 296

    Raises:
C
caoying03 已提交
297
        ValueError: If rank of the input tensor is less than 2.
298 299 300 301

    Examples:
        .. code-block:: python

302
          # when input is single tensor
F
fengjiayi 已提交
303
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
304
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
305 306 307 308 309

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
310
    """
C
caoying03 已提交
311
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
312 313 314 315

    dtype = helper.input_dtype()

    mul_results = []
316 317
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
318 319 320
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
321

Y
Yu Yang 已提交
322
        w = helper.create_parameter(
323
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
324
        tmp = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
329
            outputs={"Out": tmp},
M
mozga-intel 已提交
330 331
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
332 333 334 335
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
336
    else:
X
Xin Pan 已提交
337
        pre_bias = helper.create_variable_for_type_inference(dtype)
338
        helper.append_op(
339 340 341
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
342
            attrs={"use_mkldnn": False})
343 344 345 346
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
347 348


349 350 351
def embedding(input,
              size,
              is_sparse=False,
352
              is_distributed=False,
353 354 355
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
356
    """
357 358
    **Embedding Layer**

359
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
360 361
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
362 363 364

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
365 366

    Args:
367 368 369 370 371
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
372
        is_distributed(bool): Whether to run lookup table from remote parameter server.
373 374
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
375
            with zeros whenever lookup encounters it in :attr:`input`. If
376
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
377 378
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
380

381 382 383
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
384

385 386
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
387

C
chengduoZH 已提交
388
          dict_size = len(dataset.ids)
389
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
390
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
391 392 393
    """

    helper = LayerHelper('embedding', **locals())
394
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
395 396
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
397 398
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
399
    tmp = helper.create_variable_for_type_inference(dtype)
400 401
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
402 403 404 405 406
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
407 408 409
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
410
            'remote_prefetch': remote_prefetch,
411 412
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
413 414 415
    return tmp


W
wopeizl 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
432

W
wopeizl 已提交
433 434 435 436 437 438 439 440 441 442 443
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
444

W
wopeizl 已提交
445 446 447 448
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
449

W
wopeizl 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
493
    assert in_dygraph_mode(
494
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
538 539


P
phlrain 已提交
540 541 542 543 544 545
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
546
         dropout_prob=0.0,
P
phlrain 已提交
547 548 549 550 551
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
552
    """
P
phlrain 已提交
553
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
554 555

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
556
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
557 558
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
559
    .. math::
M
minqiyang 已提交
560 561 562 563 564 565 566

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
567
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
568 569 570 571

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
572 573

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
574 575 576 577 578 579
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
580 581 582
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
583
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
584

M
minqiyang 已提交
585
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
586 587 588 589 590
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
591
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
592 593 594 595 596
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
597
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
598 599
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
600 601
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
602 603 604 605 606 607
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
608
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
609

L
liuhongyu 已提交
610 611

    Returns:
M
minqiyang 已提交
612 613
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
614
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
615

H
haowang101779990 已提交
616 617 618 619
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
620
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
621 622
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
623
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
639
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
640 641 642 643 644 645
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
646 647 648
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
718
                  proj_activation='tanh',
719
                  dtype='float32',
X
xuezhong 已提交
720 721 722 723 724
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
725 726 727
    """
    **Dynamic LSTMP Layer**

728 729 730 731 732 733
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
734 735 736 737 738

    The formula is as follows:

    .. math::

739
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
740

741
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
742

743
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
744

745
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
746

747
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
748

749
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
750

751
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
752

Y
Yibing Liu 已提交
753 754 755 756 757 758
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
759
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
760
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
761
          bias vector).
Y
Yibing Liu 已提交
762 763 764
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
765
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
766
    * :math:`h`: The hidden state.
767
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
768 769
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
770
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
771
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
772
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
773 774
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
775 776 777 778

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
779

Y
Yibing Liu 已提交
780 781 782 783 784 785 786 787 788 789 790 791
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
792
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
793 794
                               hidden-hidden weight and projection weight.

795 796
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
797 798
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
799 800
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
801
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
802 803 804 805 806

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
807
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
808 809 810 811 812 813
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
814
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
815 816 817
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
818
                                - The shape is (1 x 7D).
C
chengduo 已提交
819 820 821 822 823

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
824 825 826 827 828 829 830 831 832
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
833
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
834 835
                              default "tanh".
        proj_activation(str): The activation for projection output.
836
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
837
                              default "tanh".
Y
Yibing Liu 已提交
838
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
839 840
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
841 842 843 844 845 846 847 848 849 850 851
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
852 853

    Returns:
854 855 856 857
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
858 859

    Examples:
860

Y
Yibing Liu 已提交
861 862
        .. code-block:: python

863 864 865 866
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
867
            hidden_dim, proj_dim = 512, 256
868
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
869
                                     act=None, bias_attr=None)
870 871 872
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
873 874 875 876
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
877
    """
878

L
lujun 已提交
879
    assert in_dygraph_mode(
880 881
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
882
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
883
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
884
    size = size // 4
Y
Yibing Liu 已提交
885 886 887 888 889 890 891 892 893 894
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
895 896 897 898 899 900
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
916

X
xuezhong 已提交
917 918 919 920 921
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
922 923
    helper.append_op(
        type='lstmp',
924
        inputs=inputs,
Y
Yibing Liu 已提交
925 926 927 928 929 930 931 932 933
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
934 935
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
936 937 938 939 940 941 942 943 944
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
945 946 947 948 949 950 951
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
952 953
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
954
    """
955
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
956

957 958 959
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
960

G
guosheng 已提交
961 962 963 964 965 966 967 968 969
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
970

G
guosheng 已提交
971
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
972

Q
Qiao Longfei 已提交
973 974 975

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
976 977 978 979 980 981 982 983 984 985 986 987
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
988
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
989 990
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
991 992 993 994
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
995
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
996 997

    Args:
998 999
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1000
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1001
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1002 1003
            is the hidden size.
        size(int): The dimension of the gru cell.
1004
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1005 1006
            hidden-hidden weight matrix. Note:

1007
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1008
              :math:`D` is the hidden size.
1009
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1010
              The first part are weights of the update gate and reset gate with
1011
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1012
              candidate hidden state with shape :math:`(D \\times D)`.
1013 1014 1015 1016 1017

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1018
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1019
            the bias in the update gate, reset gate and candidate calculations.
1020 1021 1022
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1023 1024
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1025
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1026 1027 1028
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1029
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1030
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1031 1032 1033 1034
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1035 1036

    Returns:
G
guosheng 已提交
1037
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1038
            and sequence length is the same with the input.
1039

G
guosheng 已提交
1040
    Examples:
1041

G
guosheng 已提交
1042 1043
        .. code-block:: python

1044 1045 1046 1047
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1048
            hidden_dim = 512
1049
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1050
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1051 1052
    """

L
lujun 已提交
1053
    assert in_dygraph_mode(
1054 1055
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1056 1057 1058 1059 1060 1061 1062
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1063
    batch_size = input.shape[0]
G
guosheng 已提交
1064
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1065
    if h_0:
G
guosheng 已提交
1066
        assert h_0.shape == (
Y
Yancey 已提交
1067 1068 1069
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1070

X
Xin Pan 已提交
1071 1072 1073 1074
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1088 1089
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1090 1091 1092 1093
        })
    return hidden


Y
Yu Yang 已提交
1094 1095 1096
def gru_unit(input,
             hidden,
             size,
1097 1098
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1099
             activation='tanh',
Q
Qiao Longfei 已提交
1100 1101
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1102
    """
1103 1104 1105
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1106
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1107
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1108

1109 1110
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1111

1112
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1113

1114
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1131 1132

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1133 1134 1135
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1136 1137
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1138 1139
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1140 1141 1142
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1143 1144 1145

    Args:
        input (Variable): The fc transformed input value of current step.
1146
        hidden (Variable): The hidden value of gru unit from previous step.
1147
        size (integer): The input dimension value.
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1162
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1163
            the bias in the update gate, reset gate and candidate calculations.
1164 1165 1166
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1167 1168
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1169 1170 1171 1172
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1173

1174 1175 1176 1177 1178 1179
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1180

1181
             # assuming we have x_t_data and prev_hidden of size=10
1182
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1183 1184
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1197
    size = size // 3
Y
Yu Yang 已提交
1198 1199

    # create weight
1200 1201
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1202

X
Xin Pan 已提交
1203 1204 1205
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1206
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1207
    # create bias
1208
    if helper.bias_attr:
Y
Yu Yang 已提交
1209 1210 1211
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1212
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1213 1214 1215

    helper.append_op(
        type='gru_unit',
1216
        inputs=inputs,
Y
Yu Yang 已提交
1217 1218 1219 1220 1221 1222
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1223 1224
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1225 1226 1227 1228 1229
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1230
@templatedoc()
1231
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1232 1233 1234 1235 1236 1237 1238
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1239
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1240 1241 1242 1243
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1244 1245 1246
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1247

J
JesseyXujin 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1261
    """
Y
Yu Yang 已提交
1262 1263 1264 1265 1266 1267
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1268 1269 1270 1271 1272 1273 1274 1275
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1291 1292 1293 1294
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1295

W
wopeizl 已提交
1296 1297
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1298

W
wopeizl 已提交
1299
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1300

W
wopeizl 已提交
1301
        label(${label_type}): ${label_comment}
1302

W
wopeizl 已提交
1303 1304
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1305

W
wopeizl 已提交
1306 1307
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1308

Y
Yibing Liu 已提交
1309 1310 1311 1312 1313 1314 1315
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1316 1317 1318 1319 1320 1321 1322 1323
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1324
                "Transition": transition,
W
wopeizl 已提交
1325 1326
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1327

W
wopeizl 已提交
1328
    return viterbi_path
Y
Yu Yang 已提交
1329 1330


Y
yi.wu 已提交
1331
@templatedoc()
F
fengjiayi 已提交
1332
def cos_sim(X, Y):
Y
Yu Yang 已提交
1333
    """
Y
yi.wu 已提交
1334 1335 1336
    ${comment}

    Args:
1337 1338
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1339

Y
yi.wu 已提交
1340
    Returns:
1341
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1342 1343 1344 1345 1346 1347 1348

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1349
    """
F
fengjiayi 已提交
1350
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1351 1352 1353
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1364 1365 1366 1367 1368
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1369
            dropout_implementation="downgrade_in_infer"):
1370 1371 1372 1373 1374
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1375
    training. The dropout operator randomly sets (according to the given dropout
1376 1377 1378
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1379 1380
    dropout op can be removed from the program to make the program more efficient.

1381
    Args:
1382 1383
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1384 1385 1386 1387 1388 1389 1390
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1391 1392
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1393
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1394 1395

                                           - train: out = input * mask
C
ceci3 已提交
1396
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1397 1398 1399

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1400
                                        2. upscale_in_train, upscale the outcome at training time
1401

H
haowang101779990 已提交
1402 1403
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1404

H
haowang101779990 已提交
1405 1406
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1407

M
minqiyang 已提交
1408

1409
    Returns:
1410
        Variable: A tensor variable is the shape with `x`.
1411 1412

    Examples:
1413

1414 1415
        .. code-block:: python

1416 1417
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1418 1419
    """

F
fengjiayi 已提交
1420
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1421 1422
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1423
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1424 1425 1426 1427

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1428 1429 1430 1431 1432
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1433 1434 1435 1436
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1437 1438
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1439
        })
1440 1441 1442
    return out


J
jerrywgz 已提交
1443
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1444
    """
Y
Yibing Liu 已提交
1445 1446
    **Cross Entropy Layer**

1447 1448 1449
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1450 1451

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1452
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1453

Y
Yibing Liu 已提交
1454
        .. math::
Y
yangyaming 已提交
1455

Y
Yibing Liu 已提交
1456 1457 1458
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1459 1460
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1461 1462 1463 1464 1465

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1466
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1467 1468 1469
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1470 1471
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1472
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1473

Y
Yibing Liu 已提交
1474
    Args:
Y
yangyaming 已提交
1475
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1476 1477 1478 1479
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1480
        label (Variable|list): the ground truth which is a 2-D tensor. When
1481 1482 1483 1484
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1485
        soft_label (bool): a flag indicating whether to
1486
                                           interpretate the given labels as soft
1487
                                           labels. Default: `False`.
M
minqiyang 已提交
1488 1489
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1490
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1491 1492 1493 1494 1495

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1496 1497 1498
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1499

H
haowang101779990 已提交
1500 1501
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1502

H
haowang101779990 已提交
1503 1504
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1505 1506 1507 1508

    Examples:
        .. code-block:: python

L
lvmengsi 已提交
1509 1510 1511 1512
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1513
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1514
    """
S
sneaxiy 已提交
1515 1516
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1517
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1518
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1519 1520 1521 1522 1523
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1524 1525
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1526 1527 1528
    return out


S
sneaxiy 已提交
1529 1530 1531 1532
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1533
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1534 1535 1536 1537 1538
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1539
                 'MatchX': [match_x],
S
sneaxiy 已提交
1540 1541 1542 1543 1544
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1545
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1546
    """
1547
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1548

1549
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1550
    The loss at a given point in one session is defined as:
1551 1552 1553

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1554 1555

    Learn more details by reading paper <session-based recommendations with recurrent
1556
    neural networks>.
F
frankwhzhang 已提交
1557

1558 1559 1560 1561 1562 1563
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1564 1565
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1566 1567 1568
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1569 1570 1571
    Examples:
        .. code-block:: python

1572 1573 1574 1575 1576 1577 1578
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1579
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1580
    """
1581 1582 1583 1584 1585
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1586
                'Label': [label]},
1587 1588 1589 1590
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1591
def square_error_cost(input, label):
Y
Yu Yang 已提交
1592
    """
1593 1594
    **Square error cost layer**

1595 1596
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1611 1612
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1613 1614

    Returns:
G
guosheng 已提交
1615
        Variable: The tensor variable storing the element-wise squared error \
1616
                  difference of input and label.
1617 1618 1619 1620

    Examples:
        .. code-block:: python

R
ruri 已提交
1621 1622 1623
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1624

Y
Yu Yang 已提交
1625
    """
F
fengjiayi 已提交
1626
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1627
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1628 1629 1630 1631 1632 1633
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1634
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1635
    helper.append_op(
F
fengjiayi 已提交
1636 1637
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1638 1639 1640
    return square_out


Y
yi.wu 已提交
1641
@templatedoc()
Y
Yu Yang 已提交
1642 1643 1644 1645
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1646
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1647
    """
Y
yi.wu 已提交
1648
    **Chunk Evaluator**
Y
yi.wu 已提交
1649

Y
yangyaming 已提交
1650
    This function computes and outputs the precision, recall and
1651
    F1-score of chunk detection.
Y
yi.wu 已提交
1652

M
minqiyang 已提交
1653
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1654
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1655 1656 1657 1658 1659 1660

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1661

Y
yi.wu 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1687

Y
yi.wu 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1712
    Args:
1713 1714 1715 1716 1717
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1718

Y
yi.wu 已提交
1719
    Returns:
Y
update  
yi.wu 已提交
1720 1721 1722
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1723

Y
yi.wu 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1736
    """
F
fengjiayi 已提交
1737
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1738 1739

    # prepare output
X
Xin Pan 已提交
1740 1741 1742 1743 1744 1745 1746
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1747 1748 1749 1750 1751 1752 1753 1754

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1755 1756 1757 1758
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1759 1760 1761
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1762 1763
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1764
        })
1765 1766
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1767 1768


1769
@templatedoc()
Y
Yu Yang 已提交
1770 1771 1772 1773 1774 1775 1776
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1777 1778
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1779 1780 1781 1782
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1783 1784 1785 1786 1787 1788 1789

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1803

1804 1805
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1806 1807
    """

L
lujun 已提交
1808
    assert not in_dygraph_mode(), (
1809
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1810 1811 1812 1813 1814
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1815
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1826
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1827 1828 1829 1830 1831 1832
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1833
def sequence_softmax(input, use_cudnn=False, name=None):
1834 1835 1836
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1837
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1854 1855 1856
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1869
    assert not in_dygraph_mode(), (
1870
        "sequence layer is not supported in dygraph mode yet.")
1871 1872
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1873
    softmax_out = helper.create_variable_for_type_inference(dtype)
1874 1875 1876 1877 1878 1879 1880 1881
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1882
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1883
    """
1884
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1885
    has the same shape as the input.
Q
qiaolongfei 已提交
1886

D
dengkaipeng 已提交
1887
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1888
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1889
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1890 1891 1892
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1893
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1894
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1895 1896 1897 1898 1899 1900 1901

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1902
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1903 1904 1905 1906 1907 1908 1909 1910

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1911 1912
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1913 1914
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1915 1916 1917
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1918 1919 1920 1921 1922 1923 1924 1925

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1926 1927
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1928
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1929
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1930
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1931 1932
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1933 1934

    """
1935 1936
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1937
    softmax_out = helper.create_variable_for_type_inference(dtype)
1938 1939 1940 1941
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1942 1943
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1944 1945 1946
    return softmax_out


Y
Yu Yang 已提交
1947 1948 1949
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1950 1951
           stride=1,
           padding=0,
1952
           dilation=1,
Y
Yu Yang 已提交
1953 1954 1955
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1956
           use_cudnn=True,
1957 1958
           act=None,
           name=None):
Y
Yu Yang 已提交
1959
    """
C
chengduoZH 已提交
1960
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1961 1962
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1963
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1964 1965 1966 1967 1968 1969 1970
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1971 1972 1973
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1974

1975
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1976

C
chengduoZH 已提交
1977 1978
    .. math::

C
refine  
chengduoZH 已提交
1979
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1980

T
tensor-tang 已提交
1981
    Where:
C
chengduoZH 已提交
1982

1983 1984 1985 1986 1987
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1988
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1989 1990 1991

    Example:

1992 1993
        - Input:

W
weixing02 已提交
1994
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1995

W
weixing02 已提交
1996
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1997

1998
        - Output:
T
tensor-tang 已提交
1999

W
weixing02 已提交
2000
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2001

C
chengduoZH 已提交
2002
        Where
2003 2004

        .. math::
C
chengduoZH 已提交
2005

W
weixing02 已提交
2006 2007
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2008 2009

    Args:
2010
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2011
        num_filters(int): The number of filter. It is as same as the output
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2029 2030 2031 2032 2033
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2034
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2035 2036 2037 2038 2039
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2040 2041
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2042 2043
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2044
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2045
            will be named automatically. Default: None
C
chengduoZH 已提交
2046 2047

    Returns:
G
guosheng 已提交
2048
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2049 2050
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2051
    Raises:
2052 2053
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2054

C
chengduoZH 已提交
2055 2056 2057
    Examples:
        .. code-block:: python

2058 2059
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2060 2061 2062
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2063
    assert param_attr is not False, "param_attr should not be False here."
2064
    l_type = 'conv2d'
X
xzl 已提交
2065 2066
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2067
        l_type = 'depthwise_conv2d'
2068 2069 2070 2071

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2072 2073 2074 2075 2076
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2077
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2078

C
chengduoZH 已提交
2079 2080 2081
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2082
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2083

C
chengduoZH 已提交
2084 2085
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2086 2087

    input_shape = input.shape
M
minqiyang 已提交
2088
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2089 2090

    def _get_default_param_initializer():
C
chengduo 已提交
2091 2092
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2093 2094 2095 2096 2097 2098 2099 2100
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2101
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2117
    helper.append_op(
2118
        type=l_type,
Y
Yu Yang 已提交
2119 2120 2121 2122 2123
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2124 2125 2126
        attrs={
            'strides': stride,
            'paddings': padding,
2127
            'dilations': dilation,
C
chengduoZH 已提交
2128
            'groups': groups,
2129
            'use_cudnn': use_cudnn,
2130
            'use_mkldnn': False,
2131
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2132
        })
Y
Yu Yang 已提交
2133 2134 2135 2136 2137 2138

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2156 2157 2158 2159 2160 2161
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2171 2172
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2173 2174 2175
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2176
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2202
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2203 2204
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2205
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2206 2207
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2208
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2209 2210
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2211
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2212 2213 2214 2215 2216 2217
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2228 2229
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2230 2231
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2232
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2233
            will be named automatically. Default: None.
C
chengduoZH 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2246 2247
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2248 2249 2250
    """

    l_type = 'conv3d'
C
chengduo 已提交
2251
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2262
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2276 2277 2278
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2279 2280 2281 2282 2283 2284 2285 2286
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2287
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2302
            'use_mkldnn': False
C
chengduoZH 已提交
2303 2304
        })

2305
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2306 2307 2308 2309

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2310
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2311
    """
Y
yangyaming 已提交
2312 2313 2314
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2326
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2327 2328 2329 2330 2331
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2332
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2333 2334 2335 2336 2337 2338 2339

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2340 2341
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2342

L
Luo Tao 已提交
2343 2344
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2345
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2346
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2347
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2348 2349 2350 2351 2352 2353 2354

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2355

Y
yangyaming 已提交
2356
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2357 2358 2359 2360 2361
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2362 2363
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2364
    """
L
lujun 已提交
2365
    assert not in_dygraph_mode(), (
2366
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2367
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2368
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2369 2370
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2371 2372 2373 2374 2375 2376

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2377 2378
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2379

Y
yangyaming 已提交
2380 2381 2382 2383 2384
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2385 2386 2387
    return pool_out


C
add doc  
chengduoZH 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
L
lujun 已提交
2406
    assert not in_dygraph_mode(), (
2407
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2408
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2409
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2410 2411 2412 2413 2414
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2415
def sequence_first_step(input):
L
Luo Tao 已提交
2416
    """
L
Luo Tao 已提交
2417
    This function gets the first step of sequence.
L
Luo Tao 已提交
2418 2419 2420 2421

    .. code-block:: text

       x is a 1-level LoDTensor:
2422
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2423 2424 2425 2426 2427
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2428
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2429
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2430

L
Luo Tao 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2440

Y
yangyaming 已提交
2441
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2442 2443 2444
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2445 2446 2447
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2448
def sequence_last_step(input):
L
Luo Tao 已提交
2449
    """
L
Luo Tao 已提交
2450
    This function gets the last step of sequence.
L
Luo Tao 已提交
2451 2452 2453 2454

    .. code-block:: text

       x is a 1-level LoDTensor:
2455
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2456 2457 2458 2459 2460
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2461
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2462
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2463

L
Luo Tao 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2473

Y
yangyaming 已提交
2474
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2475 2476 2477
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2478 2479 2480
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2481 2482 2483 2484
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2485
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2486 2487 2488 2489 2490
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2491

H
haowang101779990 已提交
2492
              - Case:
Y
Yibing Liu 已提交
2493

2494
            Given the input Variable **input**:
2495

2496 2497 2498
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2499

2500
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2501

2502
            the output Variable will be
2503

2504 2505 2506
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2507

M
minqiyang 已提交
2508
    Note:
H
haowang101779990 已提交
2509
          The first dimension size of **input**, **offset** and **length**
2510
          should be equal. The **offset** should start from 0.
2511

Y
Yibing Liu 已提交
2512
    Args:
2513
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2514
                         sequences.
Y
Yibing Liu 已提交
2515 2516 2517 2518 2519 2520
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2521
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2532
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2533 2534
                                                   length=length)
    """
L
lujun 已提交
2535
    assert not in_dygraph_mode(), (
2536
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2537 2538
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2539
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2554
@templatedoc()
Y
Yu Yang 已提交
2555
def pool2d(input,
C
chengduoZH 已提交
2556 2557
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2558 2559
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2560
           global_pooling=False,
C
chengduoZH 已提交
2561
           use_cudnn=True,
2562
           ceil_mode=False,
2563 2564
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2565
    """
F
fengjiayi 已提交
2566
    ${comment}
2567 2568

    Args:
2569 2570 2571
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2572
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2573
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2574 2575
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2576
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2577 2578 2579 2580 2581 2582
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2583 2584 2585
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2586
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2587
                        layer will be named automatically.
2588
        exclusive (bool): Whether to exclude padding points in average pooling
2589
                          mode, default is true
F
fengjiayi 已提交
2590

2591
    Returns:
F
fengjiayi 已提交
2592
        Variable: The pooling result.
F
fengjiayi 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2605
          pool2d = fluid.layers.pool2d(
2606 2607 2608 2609
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2610
                            global_pooling=False)
Y
Yu Yang 已提交
2611 2612 2613 2614 2615
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2616

C
chengduoZH 已提交
2617 2618 2619 2620 2621
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2622 2623 2624 2625
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2626 2627
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2628

C
Add doc  
chengduoZH 已提交
2629
    l_type = 'pool2d'
2630 2631

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2632
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2633
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2634 2635

    helper.append_op(
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2647 2648
            "use_mkldnn": False,
            "exclusive": exclusive,
2649 2650 2651 2652 2653
        })

    return pool_out


D
dengkaipeng 已提交
2654
@templatedoc()
2655 2656 2657 2658 2659 2660 2661 2662
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2663 2664
           name=None,
           exclusive=True):
2665
    """
2666
    ${comment}
2667 2668

    Args:
D
dengkaipeng 已提交
2669 2670 2671 2672 2673
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2674 2675 2676 2677 2678
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2679 2680 2681 2682 2683 2684 2685
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2686
        exclusive (bool): Whether to exclude padding points in average pooling
2687
                          mode, default is true
2688

2689
    Returns:
2690
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2704 2705 2706 2707 2708
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2709

C
chengduoZH 已提交
2710 2711 2712 2713 2714
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2715 2716 2717
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2718

C
chengduoZH 已提交
2719 2720
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2721

2722 2723
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2724
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2725
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2726 2727

    helper.append_op(
2728
        type=l_type,
Y
Yu Yang 已提交
2729 2730 2731 2732 2733 2734 2735
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2736
            "paddings": pool_padding,
2737
            "use_cudnn": use_cudnn,
2738
            "ceil_mode": ceil_mode,
2739 2740
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2741 2742 2743 2744 2745
        })

    return pool_out


2746 2747 2748 2749 2750 2751 2752
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2753 2754 2755 2756 2757 2758 2759
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2760

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2774 2775 2776 2777 2778 2779 2780 2781 2782

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2783 2784
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2799
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2800
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2801
          # of input data into m * n grids averagely and performs poolings in each
2802 2803
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2804
          #
2805 2806 2807 2808 2809 2810 2811 2812
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2813 2814
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2815
          pool_out = fluid.layers.adaptive_pool2d(
2816 2817
                            input=data,
                            pool_size=[3, 3],
2818
                            pool_type='avg')
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2829
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2855
    return (pool_out, mask) if require_index else pool_out
2856 2857 2858 2859 2860 2861 2862 2863 2864


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2865 2866 2867 2868 2869 2870 2871
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2872

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2890 2891 2892

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2893 2894 2895
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2896
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2897
            it must contain three integers, (Depth, Height, Width).
2898
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2899 2900
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2915 2916
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2917
          # of input data into l * m * n grids averagely and performs poolings in each
2918 2919
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2920
          #
2921 2922 2923 2924 2925 2926 2927 2928 2929
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2930
          #                 output[:, :, i, j, k] =
2931 2932
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2933 2934 2935

          import paddle.fluid as fluid

2936
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
2937 2938
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
2939
                            input=data,
D
dengkaipeng 已提交
2940
                            pool_size=[3, 3, 3],
2941
                            pool_type='avg')
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2952
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2978
    return (pool_out, mask) if require_index else pool_out
2979 2980


Y
Yu Yang 已提交
2981 2982 2983 2984 2985 2986 2987
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2988
               data_layout='NCHW',
Y
Yang Yang 已提交
2989
               in_place=False,
2990 2991
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2992
               moving_variance_name=None,
2993
               do_model_average_for_mean_and_var=False,
2994 2995
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2996
    """
Q
qiaolongfei 已提交
2997 2998 2999 3000
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3001

Q
qiaolongfei 已提交
3002
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3003

Q
qiaolongfei 已提交
3004 3005
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3006 3007 3008
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3021

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3035
    Args:
Q
qingqing01 已提交
3036
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3037
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3047 3048 3049 3050 3051 3052 3053 3054
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3055
        data_layout(string, default NCHW): NCHW|NHWC
3056
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3057 3058 3059 3060
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3061
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3062
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3063 3064 3065 3066 3067
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3068 3069

    Returns:
Q
qiaolongfei 已提交
3070
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3071 3072 3073 3074 3075

    Examples:

        .. code-block:: python

L
lvmengsi 已提交
3076
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3077 3078
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3079
    """
C
chengduo 已提交
3080
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3081 3082 3083
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3084 3085 3086 3087
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3106
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3107

3108 3109
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3110 3111 3112
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3113
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3114
        shape=param_shape,
W
Wu Yi 已提交
3115
        dtype=dtype)
3116 3117 3118 3119 3120 3121
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3122
            trainable=False,
W
wanghaoshuang 已提交
3123
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3124
        shape=param_shape,
W
Wu Yi 已提交
3125
        dtype=dtype)
3126
    variance.stop_gradient = True
Y
Yu Yang 已提交
3127 3128 3129 3130 3131 3132

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3133 3134 3135 3136
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3137

X
Xin Pan 已提交
3138 3139
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3157 3158 3159 3160
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3161
            "data_layout": data_layout,
X
Xin Pan 已提交
3162
            "use_mkldnn": False,
3163 3164
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3165
        })
Y
Yu Yang 已提交
3166 3167 3168 3169

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3221 3222
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3223

3224 3225
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3291
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3292 3293 3294 3295

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3296
@templatedoc()
G
guosheng 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3307
    ${comment}
G
guosheng 已提交
3308 3309 3310

    The formula is as follows:

Y
yuyang18 已提交
3311
    ..  math::
G
guosheng 已提交
3312 3313 3314 3315 3316 3317 3318

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3319 3320 3321 3322 3323 3324 3325 3326
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3327

G
guosheng 已提交
3328 3329
    Args:
        input(Variable): The input tensor variable.
3330
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3331
            normalization. Default True.
3332
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3333 3334
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3335
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3336
            Default 1.
3337
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3338
            division by zero. Default 1e-05.
G
guosheng 已提交
3339
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3340 3341
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3342 3343
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3344
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3345 3346
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3347
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3348
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3349
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3350 3351 3352
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3353 3354

    Returns:
Y
yuyang18 已提交
3355
        ${y_comment}
G
guosheng 已提交
3356 3357 3358

    Examples:

Y
yuyang18 已提交
3359 3360 3361
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3362
    """
L
lujun 已提交
3363
    assert in_dygraph_mode(
L
lujun 已提交
3364
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3379
    if shift:
G
guosheng 已提交
3380 3381 3382 3383 3384 3385
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3386 3387 3388 3389 3390
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3418
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3466 3467
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3485
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3486 3487 3488
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3489
    This layer calculates the spectral normalization value of weight parameters of
3490
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3491
    Parameters. Calculations are showed as follows.
3492

D
dengkaipeng 已提交
3493 3494 3495
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3496
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3509
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3510 3511 3512 3513

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3514

D
dengkaipeng 已提交
3515
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3516 3517
                

D
dengkaipeng 已提交
3518 3519 3520 3521
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3522 3523 3524
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3525 3526 3527
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3528
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3529 3530

    Examples:
K
Kaipeng Deng 已提交
3531
       .. code-block:: python
D
dengkaipeng 已提交
3532

K
Kaipeng Deng 已提交
3533 3534 3535 3536 3537
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3538 3539
    """
    helper = LayerHelper('spectral_norm', **locals())
3540
    dtype = weight.dtype
D
dengkaipeng 已提交
3541 3542 3543

    # create intput and parameters
    inputs = {'Weight': weight}
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3562 3563

    # create output
3564
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3565 3566

    helper.append_op(
3567
        type="spectral_norm",
D
Dun 已提交
3568
        inputs=inputs,
3569 3570 3571 3572 3573 3574
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3575

3576
    return out
D
Dun 已提交
3577 3578


Y
Yu Yang 已提交
3579 3580 3581 3582
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3583 3584 3585
                     padding=0,
                     stride=1,
                     dilation=1,
3586
                     groups=None,
C
caoying03 已提交
3587
                     param_attr=None,
3588
                     bias_attr=None,
C
chengduoZH 已提交
3589
                     use_cudnn=True,
3590
                     act=None,
C
caoying03 已提交
3591
                     name=None):
Y
Yu Yang 已提交
3592
    """
3593 3594 3595 3596 3597 3598 3599 3600
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3601 3602
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3603 3604 3605
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3606 3607 3608 3609 3610

    For each input :math:`X`, the equation is:

    .. math::

3611
        Out = \sigma (W \\ast X + b)
3612

3613
    Where:
3614 3615 3616

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3617 3618 3619 3620
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3621

3622 3623 3624 3625
    Example:

        - Input:

3626
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3627

3628
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3629 3630 3631

        - Output:

3632
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3633 3634

        Where
Y
Yu Yang 已提交
3635

3636 3637
        .. math::

3638 3639
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3640 3641
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3642 3643

    Args:
3644 3645 3646 3647
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3648 3649 3650 3651
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3680
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3681 3682 3683
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3684
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3685
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3686 3687

    Returns:
3688
        Variable: The tensor variable storing the convolution transpose result.
3689 3690

    Raises:
3691 3692
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3693 3694 3695 3696

    Examples:
       .. code-block:: python

3697 3698
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3699
    """
C
chengduo 已提交
3700
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3701 3702 3703 3704 3705 3706 3707 3708
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3709 3710 3711
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3712 3713 3714
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3715

C
chengduoZH 已提交
3716 3717
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3718

Y
Yu Yang 已提交
3719 3720 3721 3722 3723
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3724

Y
Yu Yang 已提交
3725 3726
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3727

C
chengduoZH 已提交
3728
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3729
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3730
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3731
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3732
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3733 3734 3735
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3736

3737 3738 3739 3740 3741 3742 3743
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3744
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3745
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3746

Y
Yu Yang 已提交
3747 3748 3749
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3750
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3751
    helper.append_op(
3752
        type=op_type,
Y
Yu Yang 已提交
3753 3754
        inputs={'Input': [input],
                'Filter': [img_filter]},
3755
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3756
        attrs={
3757
            'output_size': output_size,
3758 3759 3760 3761 3762
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3763 3764
        })

3765 3766 3767
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3768 3769


3770
def conv3d_transpose(input,
Y
Yu Yang 已提交
3771 3772 3773
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3774 3775 3776
                     padding=0,
                     stride=1,
                     dilation=1,
3777
                     groups=None,
C
caoying03 已提交
3778
                     param_attr=None,
3779
                     bias_attr=None,
C
chengduoZH 已提交
3780
                     use_cudnn=True,
3781
                     act=None,
C
caoying03 已提交
3782
                     name=None):
Y
Yu Yang 已提交
3783
    """
3784
    **Convlution3D transpose layer**
3785

3786
    The convolution3D transpose layer calculates the output based on the input,
3787
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3788 3789 3790 3791 3792 3793
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3794 3795 3796
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3797 3798 3799 3800 3801

    For each input :math:`X`, the equation is:

    .. math::

3802
        Out = \sigma (W \\ast X + b)
3803 3804 3805

    In the above equation:

3806 3807
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3808 3809 3810 3811
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3812

3813 3814 3815 3816
    Example:

        - Input:

3817
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3818

3819
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3820 3821 3822

        - Output:

3823
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3824 3825

        Where
Y
Yu Yang 已提交
3826

3827 3828
        .. math::

3829 3830 3831
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3832 3833

    Args:
3834
        input(Variable): The input image with [N, C, D, H, W] format.
3835 3836 3837
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3838
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3839 3840
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3841
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3842 3843 3844
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3845 3846
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3847
        stride(int|tuple): The stride size. If stride is a tuple, it must
3848 3849
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3850
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3851 3852 3853
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3854 3855 3856 3857 3858
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3868 3869
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3870 3871
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3872 3873
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3874 3875

    Returns:
3876
        Variable: The tensor variable storing the convolution transpose result.
3877 3878

    Raises:
3879 3880
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3881 3882 3883 3884

    Examples:
       .. code-block:: python

3885 3886
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3887
    """
C
chengduo 已提交
3888
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3889 3890
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3891
    if not isinstance(input, Variable):
3892
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3893 3894
    input_channel = input.shape[1]

3895 3896 3897
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3898

C
chengduoZH 已提交
3899 3900 3901
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3902 3903 3904 3905 3906 3907
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3908 3909 3910
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3911

3912
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3913
                         padding[0] - 1) // dilation[0] + 1
3914
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3915
                         padding[1] - 1) // dilation[1] + 1
3916
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3917
                         padding[2] - 1) // dilation[2] + 1
3918
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3919
    else:
3920 3921
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3922

3923
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3924
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3925 3926 3927
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3928
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3929
    helper.append_op(
3930
        type=l_type,
Y
Yu Yang 已提交
3931 3932
        inputs={'Input': [input],
                'Filter': [img_filter]},
3933
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3934 3935 3936 3937
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3938
            'groups': groups,
C
chengduoZH 已提交
3939 3940
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3941

3942 3943
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3944
    return out
Y
yangyaming 已提交
3945 3946


Y
yangyaming 已提交
3947
def sequence_expand(x, y, ref_level=-1, name=None):
3948
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3949 3950 3951 3952
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3953 3954 3955 3956 3957

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3958
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3959
                x.data = [[a], [b], [c], [d]]
3960 3961 3962
                x.dims = [4, 1]

            y is a LoDTensor:
3963 3964
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3965

Y
yangyaming 已提交
3966
            ref_level: 0
3967

Y
yangyaming 已提交
3968
            then output is a 1-level LoDTensor:
3969
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3970
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3971 3972 3973 3974
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3975
                x.data = [[a], [b], [c]]
3976 3977 3978
                x.dims = [3, 1]

            y is a LoDTensor:
3979
                y.lod = [[2, 0, 3]]
3980

Y
yangyaming 已提交
3981
            ref_level: -1
3982

Y
yangyaming 已提交
3983 3984 3985
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3986 3987 3988
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3989 3990
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3991
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3992
                        will be named automatically.
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4003
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4004
    """
L
lujun 已提交
4005
    assert not in_dygraph_mode(), (
4006
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4007
    helper = LayerHelper('sequence_expand', input=x, **locals())
4008
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4009
    tmp = helper.create_variable_for_type_inference(dtype)
4010
    helper.append_op(
Y
yangyaming 已提交
4011 4012 4013 4014 4015
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4016
    return tmp
4017 4018


C
chengduo 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4073
    assert not in_dygraph_mode(), (
4074
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4075 4076
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4077
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4078 4079 4080 4081 4082 4083 4084 4085
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4086
@templatedoc()
4087
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4088 4089 4090 4091 4092
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4093 4094 4095
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4096
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4097 4098 4099 4100
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4101 4102 4103
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4104

F
fengjiayi 已提交
4105
    Returns:
M
minqiyang 已提交
4106
        Variable: The padded sequence batch and the original lengths before
4107
                  padding. All sequences has the same length.
M
minqiyang 已提交
4108

F
fengjiayi 已提交
4109 4110 4111 4112 4113 4114 4115
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4116
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4117
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4118 4119 4120
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4121
    assert not in_dygraph_mode(), (
4122
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4123 4124
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4125 4126
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4127 4128 4129 4130

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4131 4132 4133 4134 4135 4136
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4137 4138
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4139
        attrs={'padded_length': maxlen})
4140
    return out, length
F
fengjiayi 已提交
4141 4142


4143
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4144
    """
4145
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4146

4147 4148
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4158 4159 4160
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4161
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4162 4163 4164 4165 4166 4167

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4168
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4169 4170 4171 4172 4173 4174

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4175 4176
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4189
    assert not in_dygraph_mode(), (
4190
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4191 4192
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4193
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4205 4206 4207 4208 4209 4210 4211
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4212
                is_accumulated=True,
4213 4214
                name=None,
                return_parent_idx=False):
4215
    """
4216 4217
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4218 4219 4220

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4221 4222

    This layer does the search in beams for one time step. Specifically, it
4223 4224 4225
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4237 4238 4239 4240

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4241

4242
    Args:
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4266 4267
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4268 4269
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4270 4271 4272 4273
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4274

4275
    Returns:
4276 4277 4278 4279
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4280 4281 4282 4283

    Examples:
        .. code-block:: python

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4301
    helper = LayerHelper('beam_search', **locals())
4302 4303 4304 4305 4306 4307
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4308

X
Xin Pan 已提交
4309 4310 4311
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4312 4313 4314 4315 4316
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4317 4318 4319

    helper.append_op(
        type='beam_search',
4320
        inputs=inputs,
Q
Qiao Longfei 已提交
4321 4322 4323
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4324
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4325 4326 4327 4328 4329 4330
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4331
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4332
        })
4333 4334 4335 4336
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4337 4338


4339 4340 4341 4342 4343 4344 4345
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4346

4347 4348 4349 4350 4351 4352 4353 4354 4355
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4356

4357 4358 4359 4360 4361 4362
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4363

4364 4365
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4366

4367 4368 4369 4370 4371 4372
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4373 4374
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4390 4391 4392 4393
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4394
              param_attr=None,
C
caoying03 已提交
4395 4396
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4397 4398 4399 4400
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4401
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4402

4403
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4404

4405
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4406

4407
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4408 4409 4410

            h_t & = o_t tanh(c_t)

4411 4412 4413 4414 4415 4416
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4417 4418 4419

        .. math::

4420
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4421 4422 4423 4424 4425 4426 4427 4428

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4429
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4430 4431

    Args:
Y
yangyaming 已提交
4432 4433 4434 4435 4436 4437
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4438
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4451 4452
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4453 4454

    Returns:
Y
yangyaming 已提交
4455
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4456 4457

    Raises:
4458 4459 4460 4461
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4462 4463 4464 4465 4466 4467

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4468
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4469
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4470
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4487
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4488 4489 4490 4491
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4492 4493
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4494 4495 4496
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4497
    size = cell_t_prev.shape[1]
4498
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4499 4500
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4501
                param_attr=param_attr,
4502
                bias_attr=bias_attr)
Y
yangyaming 已提交
4503
    dtype = x_t.dtype
X
Xin Pan 已提交
4504 4505
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4515
    return h, c
G
guosheng 已提交
4516 4517


C
caoying03 已提交
4518
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4519
    """
Y
yangyaming 已提交
4520
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4521 4522 4523

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4524
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4525 4526
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4527 4528
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4529
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4530
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4531
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4532 4533
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4534 4535 4536

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4537

G
guosheng 已提交
4538 4539 4540 4541 4542 4543
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4544
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4545 4546 4547 4548
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4549 4550 4551 4552

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4553
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4554 4555 4556
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4557 4558
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4559
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4560 4561
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4562 4563 4564 4565 4566
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4567
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4568 4569 4570 4571
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4572 4573


C
caoying03 已提交
4574
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4575
    """
Y
Yibing Liu 已提交
4576
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4577 4578 4579

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4580 4581 4582
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4583
            must be in the range :math:`[-rank(input), rank(input))`. If
4584
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4585
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4586 4587
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4588
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4589
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4590
                       will be named automatically.
G
guosheng 已提交
4591 4592

    Returns:
Y
Yibing Liu 已提交
4593
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4594

G
guosheng 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4605 4606
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4607 4608 4609 4610 4611 4612 4613

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4614 4615
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4616
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4617 4618
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4619 4620 4621 4622 4623
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4624
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4625 4626 4627 4628
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4629 4630


C
caoying03 已提交
4631
def reduce_max(input, dim=None, keep_dim=False, name=None):
4632
    """
Y
yangyaming 已提交
4633
    Computes the maximum of tensor elements over the given dimension.
4634 4635 4636

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4637
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4638 4639 4640
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4641
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4642 4643
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4644
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4645 4646
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4647 4648 4649

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4650

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4662 4663 4664 4665 4666 4667 4668

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4669 4670
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4671
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4672 4673
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4674 4675 4676 4677 4678
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4679
            'dim': dim if dim != None else [0],
4680 4681 4682 4683 4684 4685
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4686
def reduce_min(input, dim=None, keep_dim=False, name=None):
4687
    """
Y
yangyaming 已提交
4688
    Computes the minimum of tensor elements over the given dimension.
4689 4690 4691

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4692
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4693 4694 4695
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4696
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4697 4698
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4699
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4700 4701
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4702 4703 4704

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4705

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4717 4718 4719 4720 4721 4722 4723

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4724 4725
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4726
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4727 4728
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4729 4730 4731 4732 4733
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4734
            'dim': dim if dim != None else [0],
4735 4736 4737 4738
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4739 4740


4741 4742 4743 4744 4745 4746
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4747
        dim (list|int|None): The dimensions along which the product is performed. If
4748 4749
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4750 4751
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4752 4753 4754
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4755
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4756
            layer will be named automatically.
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4771
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4772
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4773 4774 4775 4776 4777 4778 4779

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4780 4781
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4782
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4783 4784
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4785 4786 4787 4788 4789
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4790
            'dim': dim if dim != None else [0],
4791 4792 4793 4794 4795 4796
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4797 4798
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4799
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4819
        
Z
zhoukunsheng 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4849
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4869

Z
zhoukunsheng 已提交
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
4892 4893 4894 4895 4896
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4897
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4898
    """
C
caoying03 已提交
4899
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4900 4901 4902

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4903 4904 4905 4906 4907
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4908
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4909
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4910
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4911 4912
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4913 4914

    Returns:
D
dzhwinter 已提交
4915
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4925 4926
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
4938
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
4939 4940 4941
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4942
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4965
    .. math::
4966 4967

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4968 4969 4970 4971 4972

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4973
        x(Variable|list): The input tensor to l2_normalize layer.
4974
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4975 4976
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4977
        epsilon(float): The epsilon value is used to avoid division by zero, \
4978
            the defalut value is 1e-12.
4979
        name(str|None): A name for this layer(optional). If set None, the layer \
4980
            will be named automatically.
C
caoying03 已提交
4981 4982

    Returns:
4983
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4984 4985

    Examples:
4986

C
caoying03 已提交
4987 4988
        .. code-block:: python

4989 4990 4991 4992
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4993 4994
    """

F
fengjiayi 已提交
4995 4996
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4997 4998
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4999 5000
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5001
    helper.append_op(
5002 5003 5004 5005
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5006
        attrs={
5007 5008
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5009 5010
        })
    return out
5011 5012


S
sneaxiy 已提交
5013
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5014
    """
Y
ying 已提交
5015 5016 5017 5018
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5019

C
chengduoZH 已提交
5020
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5021
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5022

5023 5024 5025 5026 5027
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5028
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5029

C
chengduoZH 已提交
5030
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5031
      performs in the following way.
G
guosheng 已提交
5032

5033
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5034
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5035
        last two dimensions and a batched matrix multiply supporting broadcast
5036
        applies on the two tensors.
G
guosheng 已提交
5037

Y
ying 已提交
5038 5039
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5040
    removed after matrix multiplication.
G
guosheng 已提交
5041 5042 5043

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5044 5045 5046
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5047
        alpha (float): The scale of output. Default 1.0.
5048
        name(str|None): A name for this layer(optional). If set None, the layer
5049
            will be named automatically.
G
guosheng 已提交
5050 5051

    Returns:
5052
        Variable: The product Tensor variable.
G
guosheng 已提交
5053

G
guosheng 已提交
5054 5055 5056
    Examples:
        .. code-block:: python

5057
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5058 5059
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5060

5061 5062
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5063

5064 5065
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5066

5067 5068
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5069 5070 5071 5072

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

5073 5074
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
5075

Y
ying 已提交
5076
            # x: [M], y: [N]
5077
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
5078
    """
Y
ying 已提交
5079 5080 5081 5082 5083 5084 5085

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5086
            y_shape = y_shape + [1]
Y
ying 已提交
5087 5088 5089 5090 5091 5092 5093

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5094 5095
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5096

C
chengduo 已提交
5097
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5098
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5099 5100 5101
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5102
                if dim_x != y_shape[i]:
C
chengduo 已提交
5103 5104
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5105 5106 5107

    __check_input(x, y)

5108
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5109
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5110
    helper.append_op(
5111 5112 5113 5114
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5115 5116 5117
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5118
            'alpha': float(alpha),
S
sneaxiy 已提交
5119
        })
5120
    return out
5121 5122


5123
def topk(input, k, name=None):
Q
qingqing01 已提交
5124 5125 5126 5127
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5128
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5129 5130 5131 5132 5133 5134
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5156 5157 5158
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5159
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5160
                 of input.
5161
        name(str|None): A name for this layer(optional). If set None, the layer
5162
                       will be named automatically.
F
fengjiayi 已提交
5163
                       Default: None
Q
qingqing01 已提交
5164 5165

    Returns:
5166 5167 5168
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5169
        within the last dimension of input.
Q
qingqing01 已提交
5170

F
fengjiayi 已提交
5171 5172
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5173 5174 5175 5176

    Examples:
        .. code-block:: python

5177 5178
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5179 5180 5181
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5182 5183
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5184 5185 5186 5187 5188 5189
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5190 5191
    helper.append_op(
        type="top_k",
W
whs 已提交
5192
        inputs=inputs,
Q
qingqing01 已提交
5193 5194
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5195
        attrs=attrs)
Q
qingqing01 已提交
5196 5197 5198 5199 5200
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5201
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5202
    """
Y
ying 已提交
5203 5204 5205 5206 5207 5208 5209 5210 5211
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5212

Y
ying 已提交
5213
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5214

5215
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5216 5217
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5218
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5219

5220
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5221 5222
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5223

5224 5225 5226
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5227
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5228
                          the length of reference string.
5229
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5230
                                     calculating edit distance.
5231
        name (str): The name of this layer. It is optional.
5232

W
wanghaoshuang 已提交
5233
    Returns:
W
wanghaoshuang 已提交
5234
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5235 5236 5237 5238

    Examples:
        .. code-block:: python

T
tink2123 已提交
5239 5240
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5241
            cost = fluid.layers.edit_distance(input=x,label=y)
5242
    """
5243
    helper = LayerHelper("edit_distance", **locals())
5244

5245
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5246
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5247 5248
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5249 5250 5251 5252 5253

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5254
            attrs={"tokens": ignored_tokens})
5255 5256 5257 5258 5259
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5260
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5261
            attrs={"tokens": ignored_tokens})
5262 5263
        label = erased_label

5264
    # edit distance op
X
Xin Pan 已提交
5265 5266
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5267 5268 5269 5270
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5271 5272
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5273 5274
        attrs={"normalized": normalized})

5275
    return edit_distance_out, sequence_num
5276 5277 5278 5279 5280


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5281

Y
ying 已提交
5282 5283 5284 5285
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5303
        input.lod = [[4, 4]]
M
minqiyang 已提交
5304

W
whs 已提交
5305
        Computation:
5306

W
whs 已提交
5307 5308 5309 5310 5311 5312
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5313 5314 5315 5316 5317

        output.data = [[2],
                       [1],
                       [3]]

5318
        output.lod = [[2, 1]]
5319

W
whs 已提交
5320

5321 5322
    Args:

Y
ying 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5332
        name (str): The name of this layer. It is optional.
5333 5334

    Returns:
H
haowang101779990 已提交
5335 5336 5337
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5338
                  LoD [[]] and dims [1, 1].
5339 5340 5341 5342

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5343
            import paddle.fluid as fluid
5344 5345
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5346
    """
5347
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5348
    _, topk_indices = topk(input, k=1)
5349 5350

    # ctc align op
X
Xin Pan 已提交
5351
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5352 5353 5354
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5355
        outputs={"Output": [ctc_out]},
5356 5357
        attrs={"merge_repeated": True,
               "blank": blank})
5358
    return ctc_out
5359 5360


W
Wu Yi 已提交
5361
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5362
    """
5363 5364
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5365
    to compute Connectionist Temporal Classification (CTC) loss.
5366 5367
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5368 5369 5370
    input tensor.

    Args:
5371
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5372 5373 5374 5375
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5376
       label (Variable): The ground truth of variable-length sequence,
5377 5378 5379
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5380 5381
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5382 5383 5384
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5385
         follewed by a mean_op.
W
Wu Yi 已提交
5386
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5387 5388

    Returns:
5389 5390
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5391 5392

    Examples:
5393

W
wanghaoshuang 已提交
5394
        .. code-block:: python
5395

5396 5397 5398
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5399 5400

    """
F
fengjiayi 已提交
5401
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5402 5403
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5404 5405 5406 5407 5408 5409
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5410 5411 5412 5413 5414
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5415
    return loss_out
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5431 5432 5433
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5434 5435 5436 5437 5438
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5439

5440
            out.lod  = [[0, 1, 3]]
5441 5442 5443 5444

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5445 5446 5447 5448 5449 5450 5451
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5452 5453 5454

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5455 5456

    Returns:
5457

5458 5459 5460 5461 5462
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5463
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5464
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5465
    """
L
lujun 已提交
5466
    assert not in_dygraph_mode(), (
5467
        "sequence layer is not supported in dygraph mode yet.")
5468
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5469
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5470 5471 5472 5473 5474 5475
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5476 5477


5478 5479 5480 5481
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5482 5483 5484 5485 5486 5487
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5488
        num_neg_samples=None,
5489 5490 5491
        name=None,
        sampler="uniform",
        custom_dist=None,
5492 5493
        seed=0,
        is_sparse=False):
5494 5495 5496 5497 5498 5499 5500
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5501 5502
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5503
            sample is 1.0.
C
chengduo 已提交
5504 5505 5506 5507 5508 5509 5510 5511 5512
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5513
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5514 5515
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5516 5517 5518
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5519
        custom_dist (float[]): A float[] with size=num_total_classes.
5520 5521 5522 5523
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5524
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5525

5526
    Returns:
Y
Yibing Liu 已提交
5527 5528 5529 5530 5531 5532
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


Y
Yibing Liu 已提交
5533
	    import numpy as np
Y
Yibing Liu 已提交
5534

Y
Yibing Liu 已提交
5535 5536 5537 5538 5539 5540 5541 5542
	    window_size = 5
	    words = []
	    for i in xrange(window_size):
		words.append(fluid.layers.data(
		    name='word_{0}'.format(i), shape=[1], dtype='int64'))

	    dict_size = 10000
	    label_word = int(window_size / 2) + 1
Y
Yibing Liu 已提交
5543

Y
Yibing Liu 已提交
5544 5545 5546 5547
	    embs = []
	    for i in xrange(window_size):
		if i == label_word:
		    continue
Y
Yibing Liu 已提交
5548

Y
Yibing Liu 已提交
5549 5550 5551
		emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
				   param_attr='embed', is_sparse=True)
		embs.append(emb)
5552

Y
Yibing Liu 已提交
5553 5554 5555 5556
	    embs = fluid.layers.concat(input=embs, axis=1)
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=dict_size, param_attr='nce.w_0',
		      bias_attr='nce.b_0')
5557

Y
Yibing Liu 已提交
5558 5559 5560 5561 5562 5563 5564 5565
	    #or use custom distribution
	    dist = np.array([0.05,0.5,0.1,0.3,0.05])
	    loss = fluid.layers.nce(input=embs, label=words[label_word],
		      num_total_classes=5, param_attr='nce.w_1',
		      bias_attr='nce.b_1',
		      num_neg_samples=3,
		      sampler="custom_dist",
		      custom_dist=dist)
5566
    """
Y
Yang Yu 已提交
5567 5568 5569
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5570 5571

    dim = input.shape[1]
Y
Yang Yu 已提交
5572 5573 5574 5575 5576 5577
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5578
    inputs = {}
C
chengduo 已提交
5579 5580 5581 5582 5583 5584 5585
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5586 5587 5588
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5589

5590 5591 5592 5593
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5594 5595 5596 5597 5598 5599 5600

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5601 5602
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5603
        custom_dist_len = num_total_classes
5604 5605 5606 5607 5608 5609
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5610
            if normal_prob - 1.0 > 0:
5611
                bigs.append((i, normal_prob))
5612
            elif 1.0 - normal_prob > 0:
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5628
            if big_left - 1.0 > 0:
5629
                bigs.append((big_idx, big_left))
5630
            elif 1.0 - big_left > 0:
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5660 5661 5662 5663
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5664 5665 5666 5667 5668
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5669 5670 5671 5672
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5673

Y
Yang Yu 已提交
5674 5675
    attrs = {
        'num_total_classes': int(num_total_classes),
5676 5677
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5678
        'sampler': sampler,
5679 5680
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5681
    }
Y
Yang Yu 已提交
5682 5683 5684

    helper.append_op(
        type='nce',
C
chengduo 已提交
5685
        inputs=inputs,
Y
Yang Yu 已提交
5686 5687 5688 5689 5690 5691
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5692
    return cost / (num_neg_samples + 1)
5693 5694


C
chengduo 已提交
5695 5696
def hsigmoid(input,
             label,
5697
             num_classes,
C
chengduo 已提交
5698 5699
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5700
             name=None,
5701 5702 5703
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5704
             is_sparse=False):
W
weixing02 已提交
5705 5706
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5707
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5708
    complete binary tree, or you can use is_custom to pass your own tree to
5709
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5710 5711 5712 5713 5714 5715
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5716
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5717
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5718

5719 5720
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5721 5722 5723 5724
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5725
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5726
       related to the same batch of inputs.
5727

W
weixing02 已提交
5728
    Args:
M
minqiyang 已提交
5729
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5730 5731 5732 5733
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5734 5735
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5736
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5748
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5749
            it should be in leaf -> root order
M
minqiyang 已提交
5750 5751 5752
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5753
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5754
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5755
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5756
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5757
             of W and input will be sparse.
W
weixing02 已提交
5758 5759

    Returns:
J
JiabinYang 已提交
5760
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5761 5762 5763 5764 5765

    Examples:

        .. code-block:: python

G
guosheng 已提交
5766 5767 5768
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5769 5770 5771 5772
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5773 5774
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5775
    dim = input.shape[1]
5776
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5777 5778 5779
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5780 5781 5782 5783 5784 5785 5786 5787 5788
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5789
    if (is_custom) and (path_code is None):
5790
        raise ValueError("path_code should not be None with custom tree")
5791
    elif (is_custom) and (path_table is None):
5792
        raise ValueError("path_table should not be None with custom tree")
5793
    elif (is_custom) and (num_classes is None):
5794
        raise ValueError("num_classes should not be None with custom tree")
5795 5796 5797
    else:
        pass

J
JiabinYang 已提交
5798
    weights = None
5799 5800 5801 5802
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5803
    if not is_custom:
J
JiabinYang 已提交
5804 5805 5806 5807 5808 5809 5810 5811
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5812
            shape=[num_classes, dim],
J
JiabinYang 已提交
5813 5814
            is_bias=False,
            dtype=input.dtype)
5815 5816 5817
    inputs = {
        "X": input,
        "W": weights,
5818
        "PathTable": path_table,
5819
        "PathCode": path_code,
5820 5821
        "Label": label
    }
W
weixing02 已提交
5822
    if helper.bias_attr:
5823
        if not is_custom:
J
JiabinYang 已提交
5824 5825
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5826
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5827 5828 5829 5830 5831 5832
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5833
                shape=[num_classes, 1],
J
JiabinYang 已提交
5834 5835 5836
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5837 5838
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5839
        inputs=inputs,
W
weixing02 已提交
5840
        outputs={"Out": out,
5841 5842 5843 5844 5845 5846 5847
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5848 5849 5850
    return out


Y
fix ci.  
ying 已提交
5851
def transpose(x, perm, name=None):
Y
ying 已提交
5852 5853 5854 5855 5856 5857 5858
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5859 5860 5861
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5862 5863 5864 5865 5866 5867 5868

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5869
            # use append_batch_size=False to avoid prepending extra
5870
            # batch size in shape
5871
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5872
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5873
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5874 5875
    """

Y
fix ci.  
ying 已提交
5876
    if len(perm) != len(x.shape):
Y
ying 已提交
5877 5878 5879
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5880 5881 5882 5883 5884 5885
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5886 5887

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5888 5889
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5890
    helper.append_op(
5891
        type='transpose2',
Y
fix ci.  
ying 已提交
5892
        inputs={'X': [x]},
5893 5894
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5895 5896
        attrs={'axis': perm})
    return out
5897 5898


5899 5900 5901 5902 5903 5904 5905
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5906
    """
5907 5908 5909 5910 5911 5912 5913
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5942 5943 5944 5945 5946 5947 5948 5949 5950
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5951 5952 5953
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5954 5955 5956 5957 5958
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5986 5987 5988
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6001
            output.dims = {8, 8}
6002

6003
            output.lod = [[4, 4]]
6004

T
Tink_Y 已提交
6005
    Examples:
6006 6007 6008

        .. code-block:: python

6009 6010
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
6011 6012

    """
L
lujun 已提交
6013
    assert not in_dygraph_mode(), (
6014
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6025 6026 6027 6028 6029 6030 6031
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6032
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6033
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6034
    helper.append_op(
6035
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6036
    return out
6037 6038


Y
yuyang18 已提交
6039
@templatedoc()
6040
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6041 6042
    """
    ${comment}
6043 6044

    Args:
Y
yuyang18 已提交
6045
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6046 6047
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6048 6049 6050 6051 6052
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6053
        ${out_comment}.
6054 6055

    Examples:
Y
yuyang18 已提交
6056 6057 6058 6059
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6060 6061 6062 6063 6064 6065
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6066
    out = helper.create_variable_for_type_inference(dtype)
6067 6068 6069 6070 6071
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6072
    return helper.append_activation(out)
6073 6074


Y
yuyang18 已提交
6075
@templatedoc()
6076 6077
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6078 6079
    ${comment}

L
lujun 已提交
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6123 6124

    Args:
Y
yuyang18 已提交
6125 6126
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6127 6128

    Returns:
Y
yuyang18 已提交
6129
        ${out_comment}.
6130 6131
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6132 6133 6134 6135 6136

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6137
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6138 6139 6140 6141 6142 6143
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6144 6145


6146 6147 6148
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6149
                               ignore_index=kIgnoreIndex,
6150
                               numeric_stable_mode=True,
6151 6152
                               return_softmax=False,
                               axis=-1):
6153 6154
    """
    **Softmax With Cross Entropy Operator.**
6155

6156
    Cross entropy loss with softmax is used as the output layer extensively. This
6157 6158 6159
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6160

6161 6162 6163
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6164

6165 6166 6167 6168
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6169

6170
    The equation is as follows:
6171

6172
    1) Hard label (one-hot label, so every sample has exactly one class)
6173

6174 6175 6176 6177
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6178

6179 6180 6181
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6182

6183 6184 6185 6186
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6187 6188
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6189 6190

    .. math::
6191

H
haowang101779990 已提交
6192
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6193

H
haowang101779990 已提交
6194
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6195

H
haowang101779990 已提交
6196
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6197 6198 6199

    and then cross entropy loss is calculated by softmax and label.

6200
    Args:
6201 6202 6203 6204 6205 6206
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6207
        soft_label (bool): A flag to indicate whether to interpretate the given
6208
            labels as soft labels. Default False.
M
minqiyang 已提交
6209 6210
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6211 6212
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6213 6214
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6215 6216 6217 6218
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6219
                                    Note that the speed may be slower when use
6220
                                    stable algorithm. Default: True
6221
        return_softmax (bool): A flag indicating whether to return the softmax
6222
                               along with the cross entropy loss. Default: False
6223 6224 6225
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6226

6227
    Returns:
H
haowang101779990 已提交
6228 6229
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6230 6231 6232 6233
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6234 6235 6236 6237 6238 6239 6240

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6241 6242
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6243 6244
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6245 6246
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6247 6248 6249 6250 6251 6252
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6253 6254 6255
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6256 6257
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6258
        })
6259 6260 6261 6262

    if return_softmax:
        return loss, softmax

6263 6264 6265
    return loss


6266 6267 6268
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6269
                                       num_true=1,
6270
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6271 6272 6273
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6274
                                       seed=0):
X
xuezhong 已提交
6275 6276 6277 6278 6279
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6280
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6281 6282 6283 6284 6285 6286 6287 6288
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6289
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6290 6291 6292 6293 6294 6295 6296 6297
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6298
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6310
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6311 6312 6313 6314 6315
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6316
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6317
            logits.
X
xuezhong 已提交
6318 6319 6320 6321 6322
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6323 6324 6325
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6346 6347
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6348 6349
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6350 6351 6352 6353 6354

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6355
            'Labels': label,
X
xuezhong 已提交
6356 6357
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6358 6359 6360 6361
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6362
            'SampledLabels': sampled_label,
6363 6364 6365
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6366 6367
        },
        attrs={
X
xuezhong 已提交
6368
            'use_customized_samples': use_customized_samples,
6369
            'uniq': True,
X
xuezhong 已提交
6370 6371 6372 6373
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6374 6375
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6376 6377 6378 6379 6380 6381
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6382 6383
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6384
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6385
                'Label': sampled_softlabel},
X
xuezhong 已提交
6386 6387 6388
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6389
            'soft_label': True,
X
xuezhong 已提交
6390 6391 6392
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6393
    return loss / num_true
X
xuezhong 已提交
6394 6395


6396 6397
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6398 6399
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6400
    For each instance, it computes the smooth L1 loss element by element first
6401
    and then sums all the losses. So the shape of ouput Variable is
6402
    [batch_size, 1].
6403

6404 6405
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6406
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6407
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6408
            L1 loss op with same shape as :attr:`x`.
6409
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6410 6411
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6412
            by this tensor element by element.
6413
        outside_weight (Variable|None): A tensor with rank at least 2. This
6414 6415
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6416
            element by element.
6417
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6418 6419
           scalar with default value 1.0.

6420
    Returns:
6421
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6422 6423 6424 6425 6426

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6427 6428
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6429
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6430
            out = fluid.layers.smooth_l1(x=fc, y=label)
6431
    """
6432

6433
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6434 6435
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6446
        attrs={'sigma': sigma if sigma is not None else 1.0})
6447
    return loss
6448 6449 6450 6451


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6452
    This layer creates the one-hot representations for input indices.
6453 6454

    Args:
Y
Yibing Liu 已提交
6455 6456
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6457 6458

    Returns:
Y
Yibing Liu 已提交
6459
        Variable: The one-hot representations of input.
6460 6461

    Examples:
C
caoying03 已提交
6462
        .. code-block:: python
6463

Y
Yibing Liu 已提交
6464 6465
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6466 6467
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6468
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6469 6470 6471 6472
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6473 6474
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6475
    return one_hot_out
Y
Yu Yang 已提交
6476 6477


Y
Yu Yang 已提交
6478
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6479
    """
Y
yi.wu 已提交
6480 6481 6482
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6483 6484 6485 6486 6487 6488

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6489 6490
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6491 6492 6493 6494 6495

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6496
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6497 6498
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6499 6500
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6501 6502 6503 6504 6505
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6506
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6507
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6508 6509
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6510
            outputs={'Out': [counter]},
M
minqiyang 已提交
6511 6512
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6513 6514 6515
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6516 6517


6518
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6519
    """
C
caoying03 已提交
6520 6521
    Gives a new shape to the input Tensor without changing its data.

6522 6523 6524 6525 6526
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6527

6528
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6529

6530 6531 6532 6533
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6534
    2. 0 means the actual dimension value is going to be copied from the
6535 6536 6537 6538
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6539 6540

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6541
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6542
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6543

6544
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6545 6546
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6547 6548
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6549
    dimensions.
C
caoying03 已提交
6550

6551
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6552 6553 6554 6555
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6556 6557

    Args:
6558
        x(variable): The input tensor.
C
caoying03 已提交
6559 6560
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6561 6562 6563 6564 6565
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6566 6567
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6568 6569 6570
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6571
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6572
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6573

6574
    Returns:
G
guosheng 已提交
6575 6576 6577 6578
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6579

X
Xin Pan 已提交
6580 6581 6582
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6583 6584
    Examples:
        .. code-block:: python
G
guosheng 已提交
6585

6586
            data = fluid.layers.data(
6587
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6588
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6589
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6590 6591 6592
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6593
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6594 6595 6596 6597 6598
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6599

6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6615
    helper = LayerHelper("reshape2", **locals())
6616 6617
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6618
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6619
    helper.append_op(
6620
        type="reshape2",
X
Xin Pan 已提交
6621
        inputs=inputs,
D
dzhwinter 已提交
6622
        attrs={"shape": shape},
6623 6624
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6625

D
dzhwinter 已提交
6626
    return helper.append_activation(out)
6627

6628

6629
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6630
    """
M
minqiyang 已提交
6631 6632 6633
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6634
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6635

H
haowang101779990 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6657

Y
Yibing Liu 已提交
6658
    Args:
6659
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6660
        axes (list): List of integers, indicating the dimensions to be squeezed.
6661
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6662 6663 6664 6665 6666 6667 6668

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6669
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6670
            x = layers.data(name='x', shape=[5, 1, 10])
6671
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6672
    """
L
lujun 已提交
6673
    assert not in_dygraph_mode(), (
L
lujun 已提交
6674
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6675
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6676 6677
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6678
    helper.append_op(
6679
        type="squeeze2",
6680
        inputs={"X": input},
Y
Yibing Liu 已提交
6681
        attrs={"axes": axes},
6682 6683
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6684

6685 6686 6687
    return out


6688
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6689
    """
M
minqiyang 已提交
6690 6691 6692
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6693

M
minqiyang 已提交
6694
    For example:
H
haowang101779990 已提交
6695 6696 6697

    .. code-block:: text

M
minqiyang 已提交
6698
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6699
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6700

Y
Yibing Liu 已提交
6701
    Args:
6702
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6703
        axes (list): List of integers, indicating the dimensions to be inserted.
6704
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6705 6706 6707 6708 6709 6710 6711 6712

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6713
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6714 6715
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6716 6717
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6718
    helper.append_op(
6719
        type="unsqueeze2",
6720
        inputs={"X": input},
Y
Yibing Liu 已提交
6721
        attrs={"axes": axes},
6722 6723
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6724

6725 6726
    return out

6727

Y
yangyaming 已提交
6728
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6729
    """
Y
Yibing Liu 已提交
6730
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6731 6732 6733 6734
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6735
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6736 6737 6738 6739 6740 6741

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6742
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6743 6744 6745
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6746
            target_lod: [4, 2]
Y
yangyaming 已提交
6747 6748

            then we get a 1-level LoDTensor:
6749
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6750 6751 6752 6753 6754 6755
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6756
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6757 6758 6759 6760
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6761
                y.data = [[2, 4]]
Y
yangyaming 已提交
6762 6763 6764
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6765
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6766 6767 6768 6769 6770 6771
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6772
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6773 6774 6775 6776
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6777
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6778 6779 6780 6781
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6782
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6783 6784 6785 6786 6787
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6788
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6789
                           from :attr:`y`.
Y
yangyaming 已提交
6790
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6791
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6792 6793

    Returns:
Y
Yibing Liu 已提交
6794
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6795 6796

    Raises:
Y
Yibing Liu 已提交
6797
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6798 6799 6800 6801 6802 6803 6804 6805 6806

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6807
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
6833
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6862 6863
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6876 6877 6878
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6892 6893 6894 6895


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6896
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6897
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6898

G
guosheng 已提交
6899 6900 6901 6902
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6925
                         The length of :attr:paddings must be
G
guosheng 已提交
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6936

G
guosheng 已提交
6937
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
6938 6939
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
6940 6941 6942 6943 6944
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6945
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6946 6947 6948 6949 6950 6951 6952
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6953 6954


C
chengduo 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6986 6987
		And
            pad_value = -1,
C
chengduo 已提交
6988

T
Tink_Y 已提交
6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7019 7020 7021
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7022 7023 7024 7025 7026
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7027
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7028 7029 7030 7031 7032 7033 7034 7035 7036
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7037 7038 7039 7040 7041 7042 7043
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7044 7045
    called label-smoothing regularization (LSR).

7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7069
                              be :math:`(1, class\_num)`.
7070 7071
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7072
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7092
    smooth_label = helper.create_variable_for_type_inference(dtype)
7093 7094 7095 7096 7097 7098 7099
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7100 7101


W
wopeizl 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7150 7151


J
jerrywgz 已提交
7152 7153 7154 7155 7156 7157
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7158 7159
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
7176 7177 7178 7179
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7180 7181 7182
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7183 7184 7185 7186 7187 7188
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7189
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7230 7231
        .. code-block:: python

S
SunGaofeng 已提交
7232 7233 7234
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7235
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7236
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7237 7238
    """
    label = one_hot(label, depth=input.shape[-1])
7239
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7240 7241 7242 7243 7244 7245
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7246 7247


7248 7249 7250 7251
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7252
                 resample='BILINEAR',
7253 7254
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7255
                 align_mode=1):
7256
    """
Q
qiaolongfei 已提交
7257
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7258

7259
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7260 7261 7262
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7263

7264
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7265

7266
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7267

7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7278
    Align_corners and align_mode are optinal parameters,the calculation method 
7279 7280 7281 7282
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7283
    .. code-block:: text
7284

T
Tink_Y 已提交
7285
        For scale:
7286
          
T
Tink_Y 已提交
7287
            if align_corners = True && out_size > 1 :
7288

T
Tink_Y 已提交
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7300

T
Tink_Y 已提交
7301 7302
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7303

T
Tink_Y 已提交
7304 7305
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7306

T
Tink_Y 已提交
7307 7308
          else:
              align_corners = True
7309

T
Tink_Y 已提交
7310 7311
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7312

T
Tink_Y 已提交
7313 7314
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7315

T
Tink_Y 已提交
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7326

T
Tink_Y 已提交
7327 7328 7329 7330
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7331

T
Tink_Y 已提交
7332 7333
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7334 7335 7336 7337 7338 7339 7340 7341 7342

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7343
    Args:
7344
        input (Variable): The input tensor of image resize layer,
7345 7346
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7347
        out_shape(list|tuple|Variable|None): Output shape of image resize
7348 7349
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7350
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7351
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7352
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7353
             Default: None.
7354 7355
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7356
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7357
                       currently.
7358
                       Default: 'BILINEAR'
7359 7360 7361
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7362
                                :attr:`out_shape` and :attr:`scale` specifying
7363 7364 7365 7366 7367 7368 7369
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7370 7371
                                constructing stage.
                                Default: None
7372 7373 7374 7375
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7376
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7377 7378
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7379 7380

    Returns:
Q
update  
qiaolongfei 已提交
7381 7382
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7383

7384 7385 7386
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7387
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7388 7389 7390
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7391
        ValueError: scale should be greater than zero.
7392 7393
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7394

7395 7396 7397
    Examples:
        .. code-block:: python

R
ruri 已提交
7398
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7399
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7400
    """
7401 7402 7403 7404
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7405 7406
    if resample not in resample_methods:
        raise ValueError(
7407
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7408
        )
7409
    resample_type = resample_methods[resample]
7410 7411 7412 7413 7414 7415

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7416
    if out_shape is None and scale is None:
7417
        raise ValueError("One of out_shape and scale must not be None.")
7418
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7419
    dtype = helper.input_dtype()
7420 7421 7422 7423

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7424
    inputs = {"X": input}
D
dengkaipeng 已提交
7425
    attrs = {
D
dengkaipeng 已提交
7426 7427
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7428 7429 7430 7431 7432
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7433
    if out_shape is not None:
7434 7435 7436 7437
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7438
            inputs['OutSize'] = out_shape
7439 7440
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7441 7442
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7443 7444 7445 7446 7447 7448 7449
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7450
    else:
D
dengkaipeng 已提交
7451 7452
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7453
        attrs['scale'] = float(scale)
7454

7455 7456 7457 7458 7459
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7460
    out = helper.create_variable_for_type_inference(dtype)
7461
    helper.append_op(
7462
        type='{}_interp'.format(resample_type),
7463
        inputs=inputs,
7464
        outputs={"Out": out},
D
dengkaipeng 已提交
7465
        attrs=attrs)
7466
    return out
F
stash  
fengjiayi 已提交
7467 7468


7469
@templatedoc(op_type="bilinear_interp")
7470 7471 7472 7473
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7474 7475
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7476
                    align_mode=1):
7477
    """
7478 7479
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7480 7481
    in priority order.

7482 7483 7484 7485
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7486 7487
    again in the other direction.

7488
    For details of bilinear interpolation, please refer to Wikipedia:
7489
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7490

T
tink2123 已提交
7491
    Align_corners and align_mode are optinal parameters,the calculation 
7492 7493 7494 7495
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7496
    .. code-block:: text
7497

T
Tink_Y 已提交
7498
        For scale:
7499
          
T
Tink_Y 已提交
7500
            if align_corners = True && out_size > 1 :
7501

T
Tink_Y 已提交
7502 7503 7504 7505 7506
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7507

T
Tink_Y 已提交
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7518 7519


T
Tink_Y 已提交
7520
          else:
T
tink2123 已提交
7521

T
Tink_Y 已提交
7522 7523
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7524

T
Tink_Y 已提交
7525 7526
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7527 7528 7529



Y
yuyang18 已提交
7530 7531 7532
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7533 7534 7535
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7536

Y
yuyang18 已提交
7537
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7538
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7539
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7540
             Default: None.
Y
yuyang18 已提交
7541 7542

        name(str|None): The output variable name.
7543 7544 7545
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7546
                                :attr:`out_shape` and :attr:`scale` specifying
7547 7548 7549 7550 7551 7552 7553
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7554 7555
                                constructing stage.
                                Default: None
7556 7557
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7558 7559 7560

    Returns:
        ${out_comment}.
7561 7562 7563 7564

    Examples:
        .. code-block:: python

R
ruri 已提交
7565
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7566
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7567 7568
    """

7569 7570
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7571 7572


7573
@templatedoc(op_type="nearest_interp")
7574 7575 7576 7577
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7578 7579
                   actual_shape=None,
                   align_corners=True):
7580
    """
7581
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7582 7583
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7584 7585
    out_shape and scale in priority order.

7586 7587
    Example:

T
Tink_Y 已提交
7588 7589 7590 7591 7592
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7593

T
Tink_Y 已提交
7594 7595 7596 7597 7598 7599 7600 7601
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7602
          
T
Tink_Y 已提交
7603 7604
          if:
              align_corners = False
7605

T
Tink_Y 已提交
7606 7607
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7608

T
Tink_Y 已提交
7609 7610
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7611

T
Tink_Y 已提交
7612 7613
          else:
              align_corners = True
7614

T
Tink_Y 已提交
7615 7616
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7617

T
Tink_Y 已提交
7618 7619
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7620 7621


7622
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7623
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7624 7625 7626 7627

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7628 7629 7630
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7631

Y
yuyang18 已提交
7632
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7633
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7634
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7635
             Default: None.
Y
yuyang18 已提交
7636 7637

        name(str|None): The output variable name.
7638 7639 7640
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7641
                                :attr:`out_shape` and :attr:`scale` specifying
7642 7643 7644 7645 7646 7647 7648
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7649 7650
                                constructing stage.
                                Default: None
7651
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7652 7653 7654

    Returns:
        ${out_comment}.
7655 7656 7657 7658

    Examples:
        .. code-block:: python

R
ruri 已提交
7659
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7660
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7661 7662
    """

7663 7664
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7665 7666 7667 7668


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7669 7670 7671
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7672 7673 7674 7675 7676 7677 7678
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7679
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7680

7681
    Returns:
Q
update  
qiaolongfei 已提交
7682
        Variable: The output is a 4-D tensor of the shape
7683
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7684 7685 7686 7687 7688 7689

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7700 7701 7702
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7703 7704 7705
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7706 7707
def gather(input, index):
    """
Q
qiaolongfei 已提交
7708 7709
    **Gather Layer**

7710
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7711 7712 7713 7714
    of X indexed by `index` and concatenate them together.

    .. math::

7715
        Out = X[Index]
W
whs 已提交
7716 7717 7718 7719 7720 7721 7722


    .. code-block:: text


                Given:

7723 7724
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7735
        input (Variable): The source input with rank>=1.
W
whs 已提交
7736 7737 7738 7739 7740 7741
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7742

W
whs 已提交
7743 7744
        .. code-block:: python

Y
Yibing Liu 已提交
7745 7746
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7747 7748 7749 7750
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7751
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7752 7753 7754 7755 7756 7757 7758 7759
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7791
    out = helper.create_variable_for_type_inference(dtype)
7792 7793 7794 7795 7796 7797 7798 7799 7800
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7801 7802 7803 7804 7805 7806 7807 7808 7809
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7810

Q
Qingsheng Li 已提交
7811
    Given the following input:
H
haowang101779990 已提交
7812

Q
Qingsheng Li 已提交
7813
    .. code-block:: text
H
haowang101779990 已提交
7814

Q
Qingsheng Li 已提交
7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7827

Q
Qingsheng Li 已提交
7828
    .. code-block:: text
H
haowang101779990 已提交
7829

Q
Qingsheng Li 已提交
7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7845
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7846 7847 7848 7849 7850 7851 7852 7853

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
7854
    assert not in_dygraph_mode(), (
7855
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7856 7857
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7858
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7859 7860 7861 7862 7863 7864 7865 7866 7867
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7881

7882 7883 7884
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7885
    """
F
stash  
fengjiayi 已提交
7886
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7887
    dtype = x.dtype
X
Xin Pan 已提交
7888
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7889
    if seed is None:
7890
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7891
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7892
    if isinstance(seed, int):
F
fengjiayi 已提交
7893 7894 7895 7896 7897
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7898 7899 7900 7901
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7902
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7903 7904
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7905 7906
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7907
    return out
W
whs 已提交
7908 7909


7910
def log(x, name=None):
W
wanghaoshuang 已提交
7911 7912 7913 7914 7915
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7916
        Out = \\ln(x)
W
wanghaoshuang 已提交
7917 7918

    Args:
7919
        x (Variable): Input tensor.
7920 7921
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7922 7923 7924 7925 7926 7927 7928 7929

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7930
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7931 7932
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7933
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7934
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7935
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7936 7937 7938
    return out


7939
def relu(x, name=None):
W
wanghaoshuang 已提交
7940 7941
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7942
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7943 7944 7945 7946
    the tensor elementwise.

    .. math::

7947
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7948 7949

    Args:
7950
        x (Variable): The input tensor.
7951 7952
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7953 7954 7955 7956 7957 7958 7959 7960

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7961
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
7962
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7963 7964
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7965
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7966
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7967 7968
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7969
    return out
7970 7971


C
chengduo 已提交
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8013 8014 8015
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8016 8017 8018 8019
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8020
    .. math::
8021

H
haowang101779990 已提交
8022
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8023

8024
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8025 8026 8027 8028 8029
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8030
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8031
                           Its shape should be the same as input.
8032
        num_classes (int): The possible number of labels.
W
whs 已提交
8033 8034

    Returns:
M
minqiyang 已提交
8035 8036
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8037
                     Three variables:
M
minqiyang 已提交
8038

H
haowang101779990 已提交
8039 8040 8041
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8042 8043 8044 8045

    Examples:

        .. code-block:: python
8046

W
whs 已提交
8047 8048 8049 8050
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8051 8052 8053
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8054 8055
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8056 8057
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8058
        outputs={
W
whs 已提交
8059 8060 8061
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8062 8063 8064
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8107
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8108
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8109
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8127
            import paddle.fluid as fluid
8128 8129 8130 8131 8132 8133
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8134
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8135 8136 8137 8138 8139

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8140
            isinstance(shape, Variable)):
8141 8142 8143 8144 8145
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8146
    out = helper.create_variable_for_type_inference(x.dtype)
8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8164 8165


W
whs 已提交
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8183

W
whs 已提交
8184
              out_shape = [2, 3, 5, 5]
8185

W
whs 已提交
8186
          Step 1:
8187

W
whs 已提交
8188 8189 8190
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8191

W
whs 已提交
8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8237
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8238
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8251

S
SunGaofeng 已提交
8252
            import paddle.fluid as fluid
W
whs 已提交
8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8264
            isinstance(out_shape, Variable)):
W
whs 已提交
8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8286 8287
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8288

8289 8290
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8291
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8292 8293 8294
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8295

8296 8297
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8298

H
haowang101779990 已提交
8299 8300
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8301 8302
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8303

H
haowang101779990 已提交
8304 8305 8306 8307 8308 8309 8310 8311
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8312 8313 8314

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8349
    out = helper.create_variable_for_type_inference("float32")
8350 8351 8352 8353 8354 8355 8356 8357

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8358 8359


M
minqiyang 已提交
8360 8361
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8362
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8363
    which compares left score and right score passed in.
M
minqiyang 已提交
8364
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8365 8366 8367

    .. math::

H
haowang101779990 已提交
8368
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8369 8370

    Args:
M
minqiyang 已提交
8371
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8372 8373
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8374
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8375 8376
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8377

M
minqiyang 已提交
8378
    Returns:
M
minqiyang 已提交
8379
       Variable: The ranking loss.
H
haowang101779990 已提交
8380

M
minqiyang 已提交
8381
    Raises:
M
minqiyang 已提交
8382
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8383

M
minqiyang 已提交
8384
    Examples:
H
haowang101779990 已提交
8385

M
minqiyang 已提交
8386
        .. code-block:: python
H
haowang101779990 已提交
8387

Y
Yibing Liu 已提交
8388 8389 8390
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8391 8392
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8393
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8394 8395 8396 8397 8398 8399
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8400 8401
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8425
        .. code-block:: text
W
whs 已提交
8426

T
Tink_Y 已提交
8427
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8428

T
Tink_Y 已提交
8429 8430
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8431

T
Tink_Y 已提交
8432
	      Case 0:
M
minqiyang 已提交
8433

T
Tink_Y 已提交
8434 8435 8436
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8437

T
Tink_Y 已提交
8438 8439 8440
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8441

T
Tink_Y 已提交
8442
	      Case 1:
M
minqiyang 已提交
8443

T
Tink_Y 已提交
8444 8445
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8446

T
Tink_Y 已提交
8447 8448 8449
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8450

T
Tink_Y 已提交
8451
	      Case 2:
M
minqiyang 已提交
8452

T
Tink_Y 已提交
8453 8454
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8455

T
Tink_Y 已提交
8456 8457 8458
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8459 8460


W
whs 已提交
8461 8462
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8463
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8487
    out = helper.create_variable_for_type_inference(dtype)
8488 8489 8490 8491 8492 8493 8494 8495 8496
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8497
    helper.append_op(
8498
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8499 8500 8501 8502

    return out


8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8515 8516 8517 8518 8519

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8520 8521
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8522 8523
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8524
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8545 8546 8547 8548 8549

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8550 8551
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8552 8553
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8554
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8575 8576 8577 8578 8579

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8580 8581
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8582 8583
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8584
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8606 8607 8608 8609 8610

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8611
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8612
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8613 8614
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8615
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8638 8639 8640 8641 8642

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8643 8644
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8645 8646
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8647
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8669 8670 8671 8672 8673

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8674 8675
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8676 8677
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8678
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8679 8680 8681 8682 8683 8684 8685 8686
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8687 8688 8689 8690
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8691 8692
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8693 8694 8695

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8696
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8697
          weight (alpha).
J
jerrywgz 已提交
8698
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8699 8700 8701
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8702
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8703
          will be named automatically.
J
jerrywgz 已提交
8704 8705 8706 8707 8708 8709 8710 8711

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8712
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8726
        attr=helper.param_attr,
J
jerrywgz 已提交
8727 8728 8729 8730
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8731
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8732 8733 8734 8735 8736 8737 8738 8739 8740
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8751
    Returns:
8752
        output(${out_type}): ${out_comment}
8753 8754 8755

    Examples:

8756
    .. code-block:: python
8757

H
haowang101779990 已提交
8758 8759
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8760 8761
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8762
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8781
    Returns:
8782
        output(${out_type}): ${out_comment}
8783 8784 8785 8786 8787

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8788 8789
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8790 8791
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8792
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8810
    Returns:
8811
        output(${out_type}): ${out_comment}
8812 8813 8814 8815 8816

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8817 8818
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8819 8820
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8821
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8822 8823 8824 8825 8826 8827 8828 8829
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8830 8831 8832 8833
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8834

H
haowang101779990 已提交
8835
    For Example:
M
minqiyang 已提交
8836

H
haowang101779990 已提交
8837
    .. code-block:: text
8838

H
haowang101779990 已提交
8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8860 8861 8862

    Args:
        x (Variable): A tensor of rank >= axis.
8863 8864
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8865 8866 8867 8868 8869 8870 8871 8872
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8873 8874 8875
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8876 8877 8878 8879
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8880
        ValueError: If axis is not in range [0, rank(x)].
8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8897 8898
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8899
    helper.append_op(
8900
        type='flatten2',
8901
        inputs={"X": x},
8902 8903
        outputs={'Out': out,
                 'XShape': x_shape},
8904 8905
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8906 8907


C
chenweihang 已提交
8908
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8909
    """
C
chenweihang 已提交
8910
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8911
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8912 8913
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8914

H
haowang101779990 已提交
8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8932 8933

    Args:
C
chenweihang 已提交
8934 8935 8936
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8937 8938 8939 8940 8941 8942 8943 8944 8945 8946

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
8947
    assert not in_dygraph_mode(), (
8948
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8949
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8950 8951
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8952 8953 8954 8955 8956 8957
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8958
    return out
8959

8960

S
sneaxiy 已提交
8961 8962 8963 8964 8965 8966 8967 8968 8969
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8970

S
sneaxiy 已提交
8971
    .. math::
8972

S
sneaxiy 已提交
8973 8974 8975
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8976
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8977 8978 8979 8980
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8981 8982 8983
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8984 8985
    Returns:
        Variable: The output sequence mask.
8986

S
sneaxiy 已提交
8987
    """
L
lujun 已提交
8988
    assert not in_dygraph_mode(), (
8989
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8990

Q
qingqing01 已提交
8991
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8992
    if name is None:
X
Xin Pan 已提交
8993
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8994
    else:
X
Xin Pan 已提交
8995
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8996

Q
qingqing01 已提交
8997 8998 8999
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
9000 9001
        outputs={'Y': out},
        attrs={
9002
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
9003 9004 9005
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
9006 9007


X
Xin Pan 已提交
9008
def stack(x, axis=0):
S
sneaxiy 已提交
9009 9010 9011 9012
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9013 9014 9015 9016 9017 9018 9019

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9020
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9021
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9022

C
chengduozh 已提交
9023 9024
    For Example:

C
chengduozh 已提交
9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9063
    Args:
9064
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9065
        axis (int|None): The axis along which all inputs are stacked.
9066

S
sneaxiy 已提交
9067 9068
    Returns:
        Variable: The stacked variable.
9069

9070 9071 9072 9073 9074 9075 9076 9077
    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers
            x1 = layers.data(name='x1', shape[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape[1, 2], dtype='int32')
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9078 9079
    """

X
Xin Pan 已提交
9080 9081 9082 9083 9084 9085
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9086
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9087
    helper.append_op(
S
sneaxiy 已提交
9088 9089
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9090

X
Xin Pan 已提交
9091
    return out
D
dzhwinter 已提交
9092 9093 9094 9095 9096 9097 9098


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9099

D
dzhwinter 已提交
9100 9101 9102
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9103
    raised.
D
dzhwinter 已提交
9104 9105

    Args:
M
minqiyang 已提交
9106
        x (Variable): Input variable.
D
dzhwinter 已提交
9107 9108
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9109

D
dzhwinter 已提交
9110 9111
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9112

D
dzhwinter 已提交
9113 9114 9115 9116 9117 9118 9119 9120 9121 9122
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9123
    for _ in range(num):
X
Xin Pan 已提交
9124
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9125 9126 9127 9128 9129 9130 9131 9132

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9145

W
whs 已提交
9146 9147 9148 9149
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9150

W
whs 已提交
9151
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9152

W
whs 已提交
9153
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9154

W
whs 已提交
9155 9156 9157 9158
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9159

W
whs 已提交
9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9176
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9177 9178 9179 9180 9181 9182
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
9183 9184


G
fix  
gongweibao 已提交
9185 9186 9187
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9188
@templatedoc()
G
fix  
gongweibao 已提交
9189 9190 9191 9192 9193 9194 9195 9196 9197
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9198
    ${comment}
G
fix  
gongweibao 已提交
9199 9200

    Args:
G
gongweibao 已提交
9201 9202 9203
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9204
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9205 9206 9207
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9208 9209
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9210
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9211

9212 9213 9214 9215 9216
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9217 9218 9219
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9220
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9237 9238


G
gongweibao 已提交
9239
@templatedoc()
X
Xin Pan 已提交
9240
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9241
    """
G
gongweibao 已提交
9242
    ${comment}
G
fix  
gongweibao 已提交
9243 9244

    Args:
G
gongweibao 已提交
9245 9246 9247 9248
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9249 9250 9251
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9252
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9253

9254 9255 9256
    Examples:
        .. code-block:: python

J
JesseyXujin 已提交
9257
            import paddle.fluid.layers as layers
9258
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9259 9260 9261
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9262
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9263 9264 9265 9266 9267 9268 9269 9270 9271 9272
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9273
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9274 9275 9276 9277 9278
        })

    return out


G
gongweibao 已提交
9279
@templatedoc()
G
fix  
gongweibao 已提交
9280
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9281
    """
G
gongweibao 已提交
9282
    ${comment}
G
fix  
gongweibao 已提交
9283 9284

    Args:
G
gongweibao 已提交
9285 9286 9287 9288
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9289
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9290 9291

    Returns:
G
gongweibao 已提交
9292
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9293

9294 9295 9296
    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9297
            x = fluid.layers.data(
9298 9299 9300 9301 9302
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9303
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9304 9305 9306
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9307
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9319
@templatedoc()
G
fix  
gongweibao 已提交
9320 9321 9322 9323 9324 9325 9326 9327 9328
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9329
    ${comment}
G
fix  
gongweibao 已提交
9330 9331

    Args:
G
gongweibao 已提交
9332 9333
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9334
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9335 9336 9337 9338
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9339
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9340 9341

    Returns:
G
gongweibao 已提交
9342
        out (Variable): ${out_comment}
9343 9344 9345 9346

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
9347
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9348

Y
Yibing Liu 已提交
9349
            out = fluid.layers.gaussian_random_batch_size_like(
9350
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9351 9352 9353
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9354
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9373
@templatedoc()
X
Xin Pan 已提交
9374
def sum(x):
G
fix  
gongweibao 已提交
9375
    """
G
gongweibao 已提交
9376
    ${comment}
G
fix  
gongweibao 已提交
9377 9378

    Args:
G
gongweibao 已提交
9379
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9380 9381

    Returns:
G
gongweibao 已提交
9382
        out (Variable): ${out_comment}
9383 9384 9385 9386 9387 9388

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9389 9390 9391
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9392 9393
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9394 9395 9396 9397
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9398
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9399 9400 9401 9402

    return out


G
gongweibao 已提交
9403
@templatedoc()
G
fix  
gongweibao 已提交
9404 9405
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9406
    ${comment}
G
fix  
gongweibao 已提交
9407 9408

    Args:
G
gongweibao 已提交
9409 9410 9411 9412
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9413 9414

    Returns:
G
gongweibao 已提交
9415
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9416

9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9428 9429 9430
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9431 9432
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9446 9447
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9448
    Get the shape of the input.
G
fix  
gongweibao 已提交
9449 9450

    Args:
C
chengduozh 已提交
9451
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9452 9453

    Returns:
C
fix doc  
chengduozh 已提交
9454
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9455

9456 9457 9458 9459 9460 9461
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9462 9463 9464
    """

    helper = LayerHelper('shape', **locals())
9465
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9466
    helper.append_op(
G
fix  
gongweibao 已提交
9467
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9468 9469

    return out
G
merge  
gongweibao 已提交
9470 9471


Z
zhoukunsheng 已提交
9472 9473 9474 9475
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9476
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9498 9499 9500 9501
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9502
    if in_dygraph_mode():
X
Xin Pan 已提交
9503 9504 9505
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9506 9507 9508 9509
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9510 9511
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9512
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9513 9514 9515
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9516

S
sneaxiy 已提交
9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9528
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9529 9530 9531 9532 9533 9534 9535 9536
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9537
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9538
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9539 9540 9541 9542 9543 9544

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9545
    if name is None:
X
Xin Pan 已提交
9546
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9547 9548 9549
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9550 9551 9552 9553 9554 9555 9556 9557 9558 9559

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9560
    return helper.append_activation(out)
S
sneaxiy 已提交
9561 9562


X
Xin Pan 已提交
9563
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9564 9565 9566
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9567
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9568 9569 9570
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9571
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9572 9573 9574
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9575
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9576 9577 9578
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9579
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9580 9581 9582
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9583
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9584 9585 9586
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9587
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9588 9589 9590
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9591 9592 9593 9594 9595 9596 9597 9598
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9599
for func in [
9600 9601 9602 9603 9604 9605 9606 9607 9608
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9609 9610 9611 9612 9613
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9614 9615
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9616
        ])
M
minqiyang 已提交
9617 9618


9619
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9620 9621
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9622 9623
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9624 9625 9626

    if out is None:
        if name is None:
X
Xin Pan 已提交
9627
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9643
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9655 9656 9657 9658 9659 9660 9661 9662 9663

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9664 9665 9666 9667 9668 9669 9670
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9671
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9683 9684 9685 9686 9687 9688 9689 9690 9691

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9692 9693 9694 9695 9696 9697 9698
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9699
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9711 9712 9713 9714 9715 9716 9717 9718 9719

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9720 9721 9722 9723 9724 9725 9726
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9727
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9728 9729 9730 9731 9732 9733 9734 9735 9736 9737
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9738 9739 9740 9741 9742 9743 9744

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9745 9746 9747 9748
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9764 9765 9766 9767

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
9768
            import paddle.fluid as fluid
9769 9770 9771
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9772 9773 9774 9775 9776
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9777 9778 9779 9780
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9804 9805 9806 9807 9808 9809 9810

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9811 9812 9813 9814 9815
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9816 9817 9818 9819
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9820 9821 9822 9823 9824 9825 9826 9827

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9846
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9847 9848 9849 9850 9851 9852 9853 9854 9855 9856
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
9906 9907 9908 9909 9910
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9911
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9912 9913 9914 9915 9916 9917 9918 9919 9920
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9921 9922
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9923 9924 9925 9926 9927 9928
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9929 9930 9931
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9932 9933
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9934 9935 9936 9937 9938 9939
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9940
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9941
        name(basestring|None): Name of the output.
9942 9943
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9944 9945 9946

    Returns:
        out(${out_type}): ${out_comment}
9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9961 9962 9963 9964 9965
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9966
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9967 9968 9969 9970 9971 9972 9973 9974
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9975 9976
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
9993 9994 9995 9996 9997 9998 9999 10000 10001

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10002 10003 10004 10005
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10006
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10007 10008 10009 10010 10011 10012 10013 10014 10015 10016
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10017 10018


J
JiabinYang 已提交
10019
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10020
    """
J
JiabinYang 已提交
10021
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10022 10023 10024

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10025
    The attr blocksize indicates the input block size.
10026 10027

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10028
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10029 10030

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10031
    (but keeping all data)
J
JiabinYang 已提交
10032

J
JiabinYang 已提交
10033
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10034
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10035 10036 10037 10038 10039
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10040
    Args:
J
JiabinYang 已提交
10041
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10042
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10043 10044

    Returns:
J
JiabinYang 已提交
10045
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10046 10047

    Raises:
J
JiabinYang 已提交
10048
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10049 10050 10051 10052 10053

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
10054
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10055
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10056
                x=data, blocksize=2)
10057 10058 10059 10060 10061 10062

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
10063 10064
    """

J
JiabinYang 已提交
10065
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10066

J
JiabinYang 已提交
10067 10068
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10069 10070

    if name is None:
J
JiabinYang 已提交
10071 10072
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10073 10074 10075 10076 10077
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10078
        type="space_to_depth",
J
JiabinYang 已提交
10079
        inputs={"X": x},
J
JiabinYang 已提交
10080
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10081
        outputs={"Out": out})
J
JiabinYang 已提交
10082 10083
    return out

J
JiabinYang 已提交
10084

S
sneaxiy 已提交
10085 10086
@templatedoc()
def sequence_reverse(x, name=None):
10087
    """
S
sneaxiy 已提交
10088 10089 10090 10091 10092 10093 10094 10095 10096
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
L
lujun 已提交
10097
    assert not in_dygraph_mode(), (
10098
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10099 10100
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10101
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10102 10103 10104 10105 10106 10107 10108 10109 10110 10111
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10112 10113


10114 10115 10116 10117 10118 10119
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10120 10121 10122 10123 10124
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10125

10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10138
        act (str, default None): Activation to be applied to the output of this layer.
10139 10140 10141 10142 10143 10144 10145

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10146
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10158
    return helper.append_activation(out)
10159 10160


B
barrierye 已提交
10161
def similarity_focus(input, axis, indexes, name=None):
10162
    """
B
barrierye 已提交
10163
    SimilarityFocus Operator
B
barrierye 已提交
10164 10165

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10166

10167 10168 10169
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10170
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10171 10172 10173 10174 10175 10176 10177
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10178
       each index.
B
barrierye 已提交
10179 10180 10181 10182
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10232
    Args:
10233
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10234
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10235
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10236
            1, 2 or 3.
B
barrierye 已提交
10237
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10238 10239

    Returns:
H
haowang101779990 已提交
10240 10241
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10242

B
barrierye 已提交
10243 10244
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10245

B
barrierye 已提交
10246
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10247 10248
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10261 10262 10263 10264 10265
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10266 10267 10268 10269 10270 10271 10272
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10273 10274


M
minqiyang 已提交
10275 10276
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10277 10278
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10279 10280
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10319
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10320
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10321 10322 10323 10324 10325 10326

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10327

10328
           x = fluid.layers.data(name="x", shape=[1], dtype='int32', lod_level=1)
M
minqiyang 已提交
10329
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10330 10331
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10332 10333
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10334 10335 10336 10337 10338 10339 10340
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10341 10342


D
dengkaipeng 已提交
10343
@templatedoc()
10344 10345
def grid_sampler(x, grid, name=None):
    """
10346
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10347
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10348 10349 10350 10351
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10352
    interpolation value of 4 nearest corner points.
10353

H
haowang101779990 已提交
10354
    .. code-block:: text
10355

H
haowang101779990 已提交
10356 10357
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10358

H
haowang101779990 已提交
10359 10360
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10361

H
haowang101779990 已提交
10362 10363 10364
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10365

H
haowang101779990 已提交
10366 10367 10368 10369 10370 10371 10372 10373 10374
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10375

H
haowang101779990 已提交
10376 10377 10378 10379
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10380

H
haowang101779990 已提交
10381 10382 10383 10384
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10385

H
haowang101779990 已提交
10386 10387 10388 10389
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10390

H
haowang101779990 已提交
10391 10392
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10393 10394

    Args:
10395 10396 10397
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10398 10399

    Returns:
H
haowang101779990 已提交
10400
        Variable: Output of shape [N, C, H, W] data samples input X
10401 10402
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10403 10404 10405 10406
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10407 10408 10409 10410 10411
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10412
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10413

D
dengkaipeng 已提交
10414 10415 10416 10417 10418 10419 10420 10421 10422
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10423
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10424 10425
    ipts = {'X': x, 'Grid': grid}

10426
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10427 10428 10429
    return out


G
gmcather 已提交
10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10457 10458
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10497
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10498 10499 10500 10501 10502 10503 10504
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
10505 10506
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
10507

10508 10509 10510 10511 10512
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
10513
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
10514

H
heqiaozhi 已提交
10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10528 10529 10530 10531
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10532
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10533 10534
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10535
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10536 10537

    .. math::
H
haowang101779990 已提交
10538 10539 10540
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10541 10542

    Where:
H
haowang101779990 已提交
10543 10544
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10559

G
gmcather 已提交
10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10576 10577 10578 10579 10580 10581 10582 10583 10584 10585


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10586
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10587

Q
Qiao Longfei 已提交
10588
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10589 10590 10591
    For example:

    .. math::
H
haowang101779990 已提交
10592
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10593

Q
Qiao Longfei 已提交
10594
    In this formula:
10595 10596
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10597
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10598
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10599 10600 10601
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10602 10603
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10604 10605 10606
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10607
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10608
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10609
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10610 10611 10612 10613
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10614
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10615 10616 10617 10618

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
10619 10620 10621
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10622 10623
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10624
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10625 10626 10627 10628

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10629
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10670 10671


S
shippingwang 已提交
10672
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10673 10674
    """
    **Shuffle Channel Operator**
10675

S
shippingwang 已提交
10676 10677 10678 10679 10680 10681
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10682
    
S
shippingwang 已提交
10683
    .. code-block:: text
10684

S
shippingwang 已提交
10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10713
    Args: 
S
shippingwang 已提交
10714 10715
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10716 10717

    Returns:
S
shippingwang 已提交
10718 10719
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10720 10721

    Raises:
S
shippingwang 已提交
10722
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10723 10724 10725

    Examples:
        .. code-block:: python
10726 10727

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10728
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10729 10730 10731
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10732
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10733 10734 10735 10736 10737 10738 10739 10740 10741

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10742
    return out
S
Add  
shippingwang 已提交
10743 10744


10745
@templatedoc()
D
dengkaipeng 已提交
10746
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10747 10748 10749 10750 10751 10752 10753 10754
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10755
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10756
        name (str, default None): The name of this layer.
10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10769
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10782 10783
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10784 10785 10786
    return out


S
sneaxiy 已提交
10787
class PyFuncRegistry(object):
S
sneaxiy 已提交
10788 10789 10790
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10791
        if func is None or not callable(func):
S
sneaxiy 已提交
10792 10793 10794
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10795
        # find named args using reflection
S
sneaxiy 已提交
10796 10797 10798 10799 10800 10801 10802
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10803 10804 10805
        '''
        Why record self here?

M
minqiyang 已提交
10806 10807
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10808
           to find the registered function corresponding
M
minqiyang 已提交
10809
           to :code:`idx`.
S
sneaxiy 已提交
10810

M
minqiyang 已提交
10811 10812
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10813
           whose reference count is 1 would cause
M
minqiyang 已提交
10814
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10815 10816
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10817
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10832 10833 10834 10835 10836 10837 10838 10839 10840
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10841

S
sneaxiy 已提交
10842 10843
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10844 10845

        ret = []
S
sneaxiy 已提交
10846 10847 10848
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10849 10850
                continue

S
sneaxiy 已提交
10851 10852
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10853

S
sneaxiy 已提交
10854 10855 10856
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10857

S
sneaxiy 已提交
10858
        return tuple(ret)
S
sneaxiy 已提交
10859 10860


S
sneaxiy 已提交
10861 10862 10863 10864
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10865

S
sneaxiy 已提交
10866 10867 10868 10869 10870 10871 10872 10873
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10874
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10875

S
sneaxiy 已提交
10876 10877
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10878 10879 10880 10881
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10882
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10883
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10884 10885
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10886 10887 10888 10889 10890
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10891
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10892
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10893
                                       None means no backward. Default None.
S
sneaxiy 已提交
10894
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10895
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10896 10897
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10898
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10899 10900 10901

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10902 10903

    Examples:
M
minqiyang 已提交
10904

S
sneaxiy 已提交
10905 10906 10907 10908 10909
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10910
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10911 10912
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10913
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10914 10915 10916
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10917
        >>>
S
sneaxiy 已提交
10918 10919 10920 10921 10922
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10923
        >>>     print(x)
S
sneaxiy 已提交
10924 10925 10926 10927 10928 10929
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10930
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10931 10932
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10933 10934
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10935 10936 10937 10938 10939 10940 10941 10942
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10943
    """
S
sneaxiy 已提交
10944
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10945 10946 10947
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10948
        x = [x]
S
sneaxiy 已提交
10949 10950
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10951

S
sneaxiy 已提交
10952 10953 10954
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10955
        out_list = [out]
S
sneaxiy 已提交
10956
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10957
        out_list = out
S
sneaxiy 已提交
10958 10959 10960
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10961

S
sneaxiy 已提交
10962 10963
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10964
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10965 10966

    for each_out in out_list:
S
sneaxiy 已提交
10967 10968
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10969 10970
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10971

S
sneaxiy 已提交
10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10987 10988 10989 10990

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10991 10992
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10993 10994 10995
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10996
        })
S
sneaxiy 已提交
10997
    return out
S
sneaxiy 已提交
10998 10999 11000


# For debug usage
S
sneaxiy 已提交
11001 11002 11003 11004
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11018 11019 11020 11021 11022
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11035 11036 11037 11038
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11064

M
minqiyang 已提交
11065

M
minqiyang 已提交
11066
def huber_loss(input, label, delta):
11067
    """
M
minqiyang 已提交
11068 11069 11070
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11071 11072 11073 11074

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11075
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11076 11077 11078 11079

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11080
        huber\_loss = 0.5 * (label - input) * (label - input)
11081 11082 11083 11084 11085 11086 11087


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11088
        delta (float): The parameter of huber loss, which controls
11089 11090 11091
                       the range of outliers

    Returns:
M
minqiyang 已提交
11092
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11093 11094 11095 11096

    Examples:
        .. code-block:: python

11097 11098 11099 11100 11101 11102 11103 11104 11105
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11106
    """
M
minqiyang 已提交
11107
    helper = LayerHelper('huber_loss', **locals())
11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11119 11120


D
dengkaipeng 已提交
11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

T
Tao Luo 已提交
11183 11184 11185
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11186
          # edges must be directional
T
Tao Luo 已提交
11187 11188 11189 11190
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11191
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11192 11193
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11194
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11195
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11219 11220


C
ceci3 已提交
11221
from .ops import square
C
ceci3 已提交
11222
from .control_flow import equal
C
ceci3 已提交
11223 11224


C
ceci3 已提交
11225 11226 11227
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11228

C
ceci3 已提交
11229
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11230 11231

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11232
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11233 11234 11235 11236 11237
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11238 11239
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11240 11241 11242 11243 11244 11245 11246

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
11247 11248 11249 11250 11251 11252 11253 11254
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11255 11256 11257 11258 11259 11260 11261
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11262
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11263 11264
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11265 11266
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11267 11268 11269 11270
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11271 11272 11273
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11274 11275 11276
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11277 11278


R
ruri 已提交
11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11308
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11309 11310 11311 11312 11313 11314 11315 11316 11317

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

R
ruri 已提交
11318
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11379 11380 11381 11382


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11383

H
heqiaozhi 已提交
11384
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11385

H
fix doc  
heqiaozhi 已提交
11386
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11387 11388 11389
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11390
    
H
fix doc  
heqiaozhi 已提交
11391
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11392

H
heqiaozhi 已提交
11393
    Args:
H
fix doc  
heqiaozhi 已提交
11394 11395

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11396 11397
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11398
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11399
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11400

H
heqiaozhi 已提交
11401
    Returns:
H
fix doc  
heqiaozhi 已提交
11402 11403 11404

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11405
    Examples:
H
fix doc  
heqiaozhi 已提交
11406

H
heqiaozhi 已提交
11407
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11408

H
heqiaozhi 已提交
11409 11410 11411 11412 11413 11414 11415 11416 11417 11418
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11419

H
heqiaozhi 已提交
11420 11421 11422 11423 11424 11425 11426 11427 11428
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11429
    return out
Z
zhoukunsheng 已提交
11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out