nn.py 394.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26 27
from ..framework import Variable, OpProtoHolder, _in_dygraph_mode
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
186
    'temporal_shift',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
D
dengkaipeng 已提交
191
    'kldiv_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
R
ruri 已提交
194
    'pixel_shuffle',
195
    'fsp_matrix',
Y
Yu Yang 已提交
196 197
]

J
jerrywgz 已提交
198 199
kIgnoreIndex = -100

Y
Yu Yang 已提交
200 201 202 203 204 205 206

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
207
       is_test=False,
208
       name=None):
Y
Yu Yang 已提交
209
    """
210
    **Fully Connected Layer**
Y
Yu Yang 已提交
211

212
    This function creates a fully connected layer in the network. It can take
213
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
214
    Args in detail). It creates a variable called weights for each input tensor,
215 216 217 218
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
219
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
220 221
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
222

223
    When the input is single tensor:
C
caoying03 已提交
224

225 226 227 228 229
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
230 231 232

    .. math::

233
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
234 235 236

    In the above equation:

237 238 239
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
240
    * :math:`b`: The bias parameter created by this layer (if needed).
241
    * :math:`Act`: The activation function.
C
caoying03 已提交
242
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
262
    Args:
R
ranqiu 已提交
263 264 265 266 267 268 269 270 271 272
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
273
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
274 275 276 277
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
278 279
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
280
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
281
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
282
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
283

284
    Returns:
F
fengjiayi 已提交
285
        Variable: The transformation result.
286 287

    Raises:
C
caoying03 已提交
288
        ValueError: If rank of the input tensor is less than 2.
289 290 291 292

    Examples:
        .. code-block:: python

293
          # when input is single tensor
F
fengjiayi 已提交
294
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
295
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
296 297 298 299 300

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
301
    """
C
caoying03 已提交
302
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
303 304 305 306

    dtype = helper.input_dtype()

    mul_results = []
307 308
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
309 310 311
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
312

Y
Yu Yang 已提交
313
        w = helper.create_parameter(
314
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
315
        tmp = helper.create_variable_for_type_inference(dtype)
316
        helper.append_op(
317 318 319
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
320
            outputs={"Out": tmp},
M
mozga-intel 已提交
321 322
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
323 324 325 326
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
327
    else:
X
Xin Pan 已提交
328
        pre_bias = helper.create_variable_for_type_inference(dtype)
329
        helper.append_op(
330 331 332
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
333
            attrs={"use_mkldnn": False})
334 335 336 337
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
338 339


340 341 342
def embedding(input,
              size,
              is_sparse=False,
343
              is_distributed=False,
344 345 346
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
347
    """
348 349
    **Embedding Layer**

350
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
351 352
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
353 354 355

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
356 357

    Args:
358 359 360 361 362
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
363
        is_distributed(bool): Whether to run lookup table from remote parameter server.
364 365
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
366
            with zeros whenever lookup encounters it in :attr:`input`. If
367
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
368 369
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
370
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
371

372 373 374
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
375

376 377
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
378

C
chengduoZH 已提交
379
          dict_size = len(dataset.ids)
380
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
381
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
382 383 384
    """

    helper = LayerHelper('embedding', **locals())
385
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
386 387
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
388 389
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
390
    tmp = helper.create_variable_for_type_inference(dtype)
391 392
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
393 394 395 396 397
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
398 399 400
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
401
            'remote_prefetch': remote_prefetch,
402 403
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
404 405 406
    return tmp


W
wopeizl 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
423

W
wopeizl 已提交
424 425 426 427 428 429 430 431 432 433 434
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
435

W
wopeizl 已提交
436 437 438 439
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
440

W
wopeizl 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
484 485
    assert _in_dygraph_mode(
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
529 530


P
phlrain 已提交
531 532 533 534 535 536
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
537
         dropout_prob=0.0,
P
phlrain 已提交
538 539 540 541 542
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
543
    """
P
phlrain 已提交
544
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
545 546

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
547
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
548 549
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
550
    .. math::
M
minqiyang 已提交
551 552 553 554 555 556 557

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
558
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
559 560 561 562

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
563 564

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
565 566 567 568 569 570
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
571 572 573
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
574
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
575

M
minqiyang 已提交
576
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
577 578 579 580 581
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
582
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
583 584 585 586 587
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
588
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
589 590
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
591 592
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
593 594 595 596 597 598
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
599
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
600

L
liuhongyu 已提交
601 602

    Returns:
M
minqiyang 已提交
603 604
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
605
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
606

H
haowang101779990 已提交
607 608 609 610
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
611
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
612 613
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
614
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
630
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
631 632 633 634 635 636
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
637 638 639
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
699 700 701 702 703 704 705 706 707 708
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
709
                  proj_activation='tanh',
710
                  dtype='float32',
X
xuezhong 已提交
711 712 713 714 715
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
716 717 718
    """
    **Dynamic LSTMP Layer**

719 720 721 722 723 724
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
725 726 727 728 729

    The formula is as follows:

    .. math::

730
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
731

732
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
733

734
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
735

736
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
737

738
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
739

740
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
741

742
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
743

Y
Yibing Liu 已提交
744 745 746 747 748 749
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
750
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
751
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
752
          bias vector).
Y
Yibing Liu 已提交
753 754 755
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
756
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
757
    * :math:`h`: The hidden state.
758
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
759 760
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
761
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
762
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
763
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
764 765
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
766 767 768 769

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
770

Y
Yibing Liu 已提交
771 772 773 774 775 776 777 778 779 780 781 782
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
783
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
784 785
                               hidden-hidden weight and projection weight.

786 787
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
788 789
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
790 791
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
792
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
793 794 795 796 797

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
798
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
799 800 801 802 803 804
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
805
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
806 807 808
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
809
                                - The shape is (1 x 7D).
C
chengduo 已提交
810 811 812 813 814

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
815 816 817 818 819 820 821 822 823
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
824
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
825 826
                              default "tanh".
        proj_activation(str): The activation for projection output.
827
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
828
                              default "tanh".
Y
Yibing Liu 已提交
829
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
830 831
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
832 833 834 835 836 837 838 839 840 841 842
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
843 844

    Returns:
845 846 847 848
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
849 850

    Examples:
851

Y
Yibing Liu 已提交
852 853
        .. code-block:: python

854 855 856 857
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
858
            hidden_dim, proj_dim = 512, 256
859
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
860
                                     act=None, bias_attr=None)
861 862 863
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
864 865 866 867
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
868
    """
869

870 871 872
    assert _in_dygraph_mode(
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
873
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
874
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
875
    size = size // 4
Y
Yibing Liu 已提交
876 877 878 879 880 881 882 883 884 885
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
886 887 888 889 890 891
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
907

X
xuezhong 已提交
908 909 910 911 912
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
913 914
    helper.append_op(
        type='lstmp',
915
        inputs=inputs,
Y
Yibing Liu 已提交
916 917 918 919 920 921 922 923 924
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
925 926
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
927 928 929 930 931 932 933 934 935
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
936 937 938 939 940 941 942
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
943 944
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
945
    """
946
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
947

948 949 950
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
951

G
guosheng 已提交
952 953 954 955 956 957 958 959 960
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
961

G
guosheng 已提交
962
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
963

Q
Qiao Longfei 已提交
964 965 966

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
967 968 969 970 971 972 973 974 975 976 977 978
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
979
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
980 981
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
982 983 984 985
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
986
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
987 988

    Args:
989 990
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
991
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
992
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
993 994
            is the hidden size.
        size(int): The dimension of the gru cell.
995
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
996 997
            hidden-hidden weight matrix. Note:

998
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
999
              :math:`D` is the hidden size.
1000
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1001
              The first part are weights of the update gate and reset gate with
1002
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1003
              candidate hidden state with shape :math:`(D \\times D)`.
1004 1005 1006 1007 1008

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1009
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1010
            the bias in the update gate, reset gate and candidate calculations.
1011 1012 1013
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1014 1015
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1016
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1017 1018 1019
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1020
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1021
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1022 1023 1024 1025
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1026 1027

    Returns:
G
guosheng 已提交
1028
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1029
            and sequence length is the same with the input.
1030

G
guosheng 已提交
1031
    Examples:
1032

G
guosheng 已提交
1033 1034
        .. code-block:: python

1035 1036 1037 1038
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1039
            hidden_dim = 512
1040
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1041
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1042 1043
    """

1044 1045 1046
    assert _in_dygraph_mode(
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1047 1048 1049 1050 1051 1052 1053
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1054
    batch_size = input.shape[0]
G
guosheng 已提交
1055
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1056
    if h_0:
G
guosheng 已提交
1057
        assert h_0.shape == (
Y
Yancey 已提交
1058 1059 1060
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1061

X
Xin Pan 已提交
1062 1063 1064 1065
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1079 1080
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1081 1082 1083 1084
        })
    return hidden


Y
Yu Yang 已提交
1085 1086 1087
def gru_unit(input,
             hidden,
             size,
1088 1089
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1090
             activation='tanh',
Q
Qiao Longfei 已提交
1091 1092
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1093
    """
1094 1095 1096
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1097
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1098
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1099

1100 1101
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1102

1103
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1104

1105
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1122 1123

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1124 1125 1126
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1127 1128
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1129 1130
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1131 1132 1133
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1134 1135 1136

    Args:
        input (Variable): The fc transformed input value of current step.
1137
        hidden (Variable): The hidden value of gru unit from previous step.
1138
        size (integer): The input dimension value.
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1153
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1154
            the bias in the update gate, reset gate and candidate calculations.
1155 1156 1157
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1158 1159
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1160 1161 1162 1163
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1164

1165 1166 1167 1168 1169 1170
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1171

1172
             # assuming we have x_t_data and prev_hidden of size=10
1173
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1174 1175
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1188
    size = size // 3
Y
Yu Yang 已提交
1189 1190

    # create weight
1191 1192
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1193

X
Xin Pan 已提交
1194 1195 1196
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1197
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1198
    # create bias
1199
    if helper.bias_attr:
Y
Yu Yang 已提交
1200 1201 1202
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1203
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1204 1205 1206

    helper.append_op(
        type='gru_unit',
1207
        inputs=inputs,
Y
Yu Yang 已提交
1208 1209 1210 1211 1212 1213
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1214 1215
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1216 1217 1218 1219 1220
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1221
@templatedoc()
1222
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1223 1224 1225 1226 1227 1228 1229
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1230
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1231 1232 1233 1234
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1235 1236 1237
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1238 1239

    """
Y
Yu Yang 已提交
1240 1241 1242 1243 1244 1245
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1246 1247 1248 1249 1250 1251 1252 1253
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1269 1270 1271 1272
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1273

W
wopeizl 已提交
1274 1275
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1276

W
wopeizl 已提交
1277
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1278

W
wopeizl 已提交
1279
        label(${label_type}): ${label_comment}
1280

W
wopeizl 已提交
1281 1282
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1283

W
wopeizl 已提交
1284 1285
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1286

W
wopeizl 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1297
                "Transition": transition,
W
wopeizl 已提交
1298 1299
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1300

W
wopeizl 已提交
1301
    return viterbi_path
Y
Yu Yang 已提交
1302 1303


Y
yi.wu 已提交
1304
@templatedoc()
F
fengjiayi 已提交
1305
def cos_sim(X, Y):
Y
Yu Yang 已提交
1306
    """
Y
yi.wu 已提交
1307 1308 1309
    ${comment}

    Args:
1310 1311
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1312

Y
yi.wu 已提交
1313
    Returns:
1314
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1315
    """
F
fengjiayi 已提交
1316
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1317 1318 1319
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1330 1331 1332 1333 1334
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1335
            dropout_implementation="downgrade_in_infer"):
1336 1337 1338 1339 1340
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1341
    training. The dropout operator randomly sets (according to the given dropout
1342 1343 1344
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1345 1346
    dropout op can be removed from the program to make the program more efficient.

1347
    Args:
1348 1349
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1350 1351 1352 1353 1354 1355 1356
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1357 1358
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1359
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1360 1361

                                           - train: out = input * mask
C
ceci3 已提交
1362
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1363 1364 1365

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1366
                                        2. upscale_in_train, upscale the outcome at training time
1367

H
haowang101779990 已提交
1368 1369
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1370

H
haowang101779990 已提交
1371 1372
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1373

M
minqiyang 已提交
1374

1375
    Returns:
1376
        Variable: A tensor variable is the shape with `x`.
1377 1378

    Examples:
1379

1380 1381
        .. code-block:: python

1382 1383
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1384 1385
    """

F
fengjiayi 已提交
1386
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1387 1388 1389
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1390 1391 1392 1393

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1394 1395 1396 1397 1398
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1399 1400 1401 1402
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1403 1404
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1405
        })
1406 1407 1408
    return out


J
jerrywgz 已提交
1409
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1410
    """
Y
Yibing Liu 已提交
1411 1412
    **Cross Entropy Layer**

1413 1414 1415
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1416 1417

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1418
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1419

Y
Yibing Liu 已提交
1420
        .. math::
Y
yangyaming 已提交
1421

Y
Yibing Liu 已提交
1422 1423 1424
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1425 1426
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1427 1428 1429 1430 1431

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1432
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1433 1434 1435
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1436 1437
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1438
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1439

Y
Yibing Liu 已提交
1440
    Args:
Y
yangyaming 已提交
1441
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1442 1443 1444 1445
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1446
        label (Variable|list): the ground truth which is a 2-D tensor. When
1447 1448 1449 1450
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1451
        soft_label (bool): a flag indicating whether to
1452
                                           interpretate the given labels as soft
1453
                                           labels. Default: `False`.
M
minqiyang 已提交
1454 1455
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1456
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1457 1458 1459 1460 1461

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1462 1463 1464
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1465

H
haowang101779990 已提交
1466 1467
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1468

H
haowang101779990 已提交
1469 1470
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1471 1472 1473 1474 1475 1476

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1477
    """
S
sneaxiy 已提交
1478 1479
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1480
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1481
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1482 1483 1484 1485 1486
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1487 1488
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1489 1490 1491
    return out


S
sneaxiy 已提交
1492 1493 1494 1495
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1496
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1497 1498 1499 1500 1501
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1502
                 'MatchX': [match_x],
S
sneaxiy 已提交
1503 1504 1505 1506 1507
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1508
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1509 1510 1511
    """
    Bayesian Personalized Ranking Loss Operator.

1512
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1513 1514 1515 1516 1517 1518
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1519 1520 1521 1522 1523 1524
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1525 1526
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1527 1528 1529
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1530 1531 1532
    Examples:
        .. code-block:: python

1533
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1534
    """
1535 1536 1537 1538 1539 1540

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1541
                'Label': [label]},
1542 1543 1544 1545
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1546
def square_error_cost(input, label):
Y
Yu Yang 已提交
1547
    """
1548 1549
    **Square error cost layer**

1550 1551
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1566 1567
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1568 1569

    Returns:
G
guosheng 已提交
1570
        Variable: The tensor variable storing the element-wise squared error \
1571
                  difference of input and label.
1572 1573 1574 1575 1576 1577 1578 1579

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1580
    """
F
fengjiayi 已提交
1581
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1582
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1583 1584 1585 1586 1587 1588
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1589
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1590
    helper.append_op(
F
fengjiayi 已提交
1591 1592
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1593 1594 1595
    return square_out


Y
yi.wu 已提交
1596
@templatedoc()
Y
Yu Yang 已提交
1597 1598 1599 1600
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1601
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1602
    """
Y
yi.wu 已提交
1603
    **Chunk Evaluator**
Y
yi.wu 已提交
1604

Y
yangyaming 已提交
1605
    This function computes and outputs the precision, recall and
1606
    F1-score of chunk detection.
Y
yi.wu 已提交
1607

M
minqiyang 已提交
1608
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1609
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1610 1611 1612 1613 1614 1615

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1616

Y
yi.wu 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1642

Y
yi.wu 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1667
    Args:
1668 1669 1670 1671 1672
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1673

Y
yi.wu 已提交
1674
    Returns:
Y
update  
yi.wu 已提交
1675 1676 1677
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1678

Y
yi.wu 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1691
    """
F
fengjiayi 已提交
1692
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1693 1694

    # prepare output
X
Xin Pan 已提交
1695 1696 1697 1698 1699 1700 1701
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1702 1703 1704 1705 1706 1707 1708 1709

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1710 1711 1712 1713
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1714 1715 1716
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1717 1718
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1719
        })
1720 1721
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1722 1723


1724
@templatedoc()
Y
Yu Yang 已提交
1725 1726 1727 1728 1729 1730 1731
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1732 1733
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1734 1735 1736 1737
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1738 1739 1740 1741 1742 1743 1744

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1758

1759 1760
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1761 1762
    """

1763 1764
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1765 1766 1767 1768 1769
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1770
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1781
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1782 1783 1784 1785 1786 1787
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1788
def sequence_softmax(input, use_cudnn=False, name=None):
1789 1790 1791
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1792
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1809 1810 1811
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1824 1825
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
1826 1827
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1828
    softmax_out = helper.create_variable_for_type_inference(dtype)
1829 1830 1831 1832 1833 1834 1835 1836
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1837
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1838
    """
1839
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1840
    has the same shape as the input.
Q
qiaolongfei 已提交
1841

D
dengkaipeng 已提交
1842
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1843
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1844
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1845 1846 1847
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1848
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1849
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1850 1851 1852 1853 1854 1855 1856

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1857
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1858 1859 1860 1861 1862 1863 1864 1865

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1866 1867
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1868 1869
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1870 1871 1872
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1882
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1883
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1884 1885
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1886 1887

    """
1888 1889
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1890
    softmax_out = helper.create_variable_for_type_inference(dtype)
1891 1892 1893 1894
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1895 1896
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1897 1898 1899
    return softmax_out


Y
Yu Yang 已提交
1900 1901 1902
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1903 1904
           stride=1,
           padding=0,
1905
           dilation=1,
Y
Yu Yang 已提交
1906 1907 1908
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1909
           use_cudnn=True,
1910 1911
           act=None,
           name=None):
Y
Yu Yang 已提交
1912
    """
C
chengduoZH 已提交
1913
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1914 1915
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1916
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1917 1918 1919 1920 1921 1922 1923
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1924 1925 1926
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1927

1928
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1929

C
chengduoZH 已提交
1930 1931
    .. math::

C
refine  
chengduoZH 已提交
1932
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1933

T
tensor-tang 已提交
1934
    Where:
C
chengduoZH 已提交
1935

1936 1937 1938 1939 1940
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1941
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1942 1943 1944

    Example:

1945 1946
        - Input:

W
weixing02 已提交
1947
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1948

W
weixing02 已提交
1949
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1950

1951
        - Output:
T
tensor-tang 已提交
1952

W
weixing02 已提交
1953
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1954

C
chengduoZH 已提交
1955
        Where
1956 1957

        .. math::
C
chengduoZH 已提交
1958

W
weixing02 已提交
1959 1960
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1961 1962

    Args:
1963
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1964
        num_filters(int): The number of filter. It is as same as the output
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1982 1983 1984 1985 1986
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1987
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1988 1989 1990 1991 1992
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1993 1994
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1995 1996
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1997
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1998
            will be named automatically. Default: None
C
chengduoZH 已提交
1999 2000

    Returns:
G
guosheng 已提交
2001
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2002 2003
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2004
    Raises:
2005 2006
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2007

C
chengduoZH 已提交
2008 2009 2010
    Examples:
        .. code-block:: python

2011 2012
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2013 2014 2015
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2016
    assert param_attr is not False, "param_attr should not be False here."
2017
    l_type = 'conv2d'
X
xzl 已提交
2018 2019
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2020
        l_type = 'depthwise_conv2d'
2021 2022 2023 2024

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2025 2026 2027 2028 2029
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2030
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2031

C
chengduoZH 已提交
2032 2033 2034
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2035
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2036

C
chengduoZH 已提交
2037 2038
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2039 2040

    input_shape = input.shape
M
minqiyang 已提交
2041
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2042 2043

    def _get_default_param_initializer():
C
chengduo 已提交
2044 2045
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2046 2047 2048 2049 2050 2051 2052 2053
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2054
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2070
    helper.append_op(
2071
        type=l_type,
Y
Yu Yang 已提交
2072 2073 2074 2075 2076
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2077 2078 2079
        attrs={
            'strides': stride,
            'paddings': padding,
2080
            'dilations': dilation,
C
chengduoZH 已提交
2081
            'groups': groups,
2082
            'use_cudnn': use_cudnn,
2083
            'use_mkldnn': False,
2084
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2085
        })
Y
Yu Yang 已提交
2086 2087 2088 2089 2090 2091

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2109 2110 2111 2112 2113 2114
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2124 2125
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2126 2127 2128
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2129
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2155
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2156 2157
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2158
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2159 2160
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2161
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2162 2163
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2164
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2165 2166 2167 2168 2169 2170
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2181 2182
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2183 2184
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2185
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2186
            will be named automatically. Default: None.
C
chengduoZH 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2199 2200
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2201 2202 2203
    """

    l_type = 'conv3d'
C
chengduo 已提交
2204
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2215
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2229 2230 2231
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2232 2233 2234 2235 2236 2237 2238 2239
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2240
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2255
            'use_mkldnn': False
C
chengduoZH 已提交
2256 2257
        })

2258
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2259 2260 2261 2262

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2263
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2264
    """
Y
yangyaming 已提交
2265 2266 2267
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2279
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2280 2281 2282 2283 2284
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2285
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2286 2287 2288 2289 2290 2291 2292

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2293 2294
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2295

L
Luo Tao 已提交
2296 2297
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2298
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2299
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2300
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2301 2302 2303 2304 2305 2306 2307

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2308

Y
yangyaming 已提交
2309
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2310 2311 2312 2313 2314
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2315 2316
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2317
    """
2318 2319
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2320
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2321
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2322 2323
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2324 2325 2326 2327 2328 2329

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2330 2331
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2332

Y
yangyaming 已提交
2333 2334 2335 2336 2337
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2338 2339 2340
    return pool_out


C
add doc  
chengduoZH 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
2359 2360
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2361
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2362
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2363 2364 2365 2366 2367
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2368
def sequence_first_step(input):
L
Luo Tao 已提交
2369
    """
L
Luo Tao 已提交
2370
    This function gets the first step of sequence.
L
Luo Tao 已提交
2371 2372 2373 2374

    .. code-block:: text

       x is a 1-level LoDTensor:
2375
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2376 2377 2378 2379 2380
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2381
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2382
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2383

L
Luo Tao 已提交
2384 2385 2386 2387 2388 2389 2390 2391 2392
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2393

Y
yangyaming 已提交
2394
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2395 2396 2397
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2398 2399 2400
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2401
def sequence_last_step(input):
L
Luo Tao 已提交
2402
    """
L
Luo Tao 已提交
2403
    This function gets the last step of sequence.
L
Luo Tao 已提交
2404 2405 2406 2407

    .. code-block:: text

       x is a 1-level LoDTensor:
2408
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2409 2410 2411 2412 2413
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2414
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2415
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2416

L
Luo Tao 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2426

Y
yangyaming 已提交
2427
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2428 2429 2430
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2431 2432 2433
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2434 2435 2436 2437
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2438
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2439 2440 2441 2442 2443
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2444

H
haowang101779990 已提交
2445
              - Case:
Y
Yibing Liu 已提交
2446

2447
            Given the input Variable **input**:
2448

2449 2450 2451
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2452

2453
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2454

2455
            the output Variable will be
2456

2457 2458 2459
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2460

M
minqiyang 已提交
2461
    Note:
H
haowang101779990 已提交
2462
          The first dimension size of **input**, **offset** and **length**
2463
          should be equal. The **offset** should start from 0.
2464

Y
Yibing Liu 已提交
2465
    Args:
2466
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2467
                         sequences.
Y
Yibing Liu 已提交
2468 2469 2470 2471 2472 2473
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2474
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2485
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2486 2487
                                                   length=length)
    """
2488 2489
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2490 2491
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2492
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2507
@templatedoc()
Y
Yu Yang 已提交
2508
def pool2d(input,
C
chengduoZH 已提交
2509 2510
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2511 2512
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2513
           global_pooling=False,
C
chengduoZH 已提交
2514
           use_cudnn=True,
2515
           ceil_mode=False,
2516 2517
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2518
    """
F
fengjiayi 已提交
2519
    ${comment}
2520 2521

    Args:
2522 2523 2524
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2525
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2526
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2527 2528
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2529
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2530 2531 2532 2533 2534 2535
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2536 2537 2538
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2539
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2540
                        layer will be named automatically.
2541
        exclusive (bool): Whether to exclude padding points in average pooling
2542
                          mode, default is true
F
fengjiayi 已提交
2543

2544
    Returns:
F
fengjiayi 已提交
2545
        Variable: The pooling result.
F
fengjiayi 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2558
          pool2d = fluid.layers.pool2d(
2559 2560 2561 2562
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2563
                            global_pooling=False)
Y
Yu Yang 已提交
2564 2565 2566 2567 2568
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2569

C
chengduoZH 已提交
2570 2571 2572 2573 2574
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2575 2576 2577 2578
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2579 2580
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2581

C
Add doc  
chengduoZH 已提交
2582
    l_type = 'pool2d'
2583 2584

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2585
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2586
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2587 2588

    helper.append_op(
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2600 2601
            "use_mkldnn": False,
            "exclusive": exclusive,
2602 2603 2604 2605 2606
        })

    return pool_out


D
dengkaipeng 已提交
2607
@templatedoc()
2608 2609 2610 2611 2612 2613 2614 2615
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2616 2617
           name=None,
           exclusive=True):
2618
    """
2619
    ${comment}
2620 2621

    Args:
D
dengkaipeng 已提交
2622 2623 2624 2625 2626
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2627 2628 2629 2630 2631
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2632 2633 2634 2635 2636 2637 2638
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2639
        exclusive (bool): Whether to exclude padding points in average pooling
2640
                          mode, default is true
2641

2642
    Returns:
2643
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2657 2658 2659 2660 2661
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2662

C
chengduoZH 已提交
2663 2664 2665 2666 2667
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2668 2669 2670
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2671

C
chengduoZH 已提交
2672 2673
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2674

2675 2676
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2677
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2678
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2679 2680

    helper.append_op(
2681
        type=l_type,
Y
Yu Yang 已提交
2682 2683 2684 2685 2686 2687 2688
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2689
            "paddings": pool_padding,
2690
            "use_cudnn": use_cudnn,
2691
            "ceil_mode": ceil_mode,
2692 2693
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2694 2695 2696 2697 2698
        })

    return pool_out


2699 2700 2701 2702 2703 2704 2705
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2706 2707 2708 2709 2710 2711 2712
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2727 2728 2729 2730 2731 2732 2733 2734 2735

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2736 2737
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2752
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2753
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2754
          # of input data into m * n grids averagely and performs poolings in each
2755 2756
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2757
          #
2758 2759 2760 2761 2762 2763 2764 2765
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2766 2767
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2768
          pool_out = fluid.layers.adaptive_pool2d(
2769 2770
                            input=data,
                            pool_size=[3, 3],
2771
                            pool_type='avg')
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2782
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2808
    return (pool_out, mask) if require_index else pool_out
2809 2810 2811 2812 2813 2814 2815 2816 2817


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2818 2819 2820 2821 2822 2823 2824
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2843 2844 2845

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2846 2847 2848
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2849
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2850
            it must contain three integers, (Depth, Height, Width).
2851
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2852 2853
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2868 2869
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2870
          # of input data into l * m * n grids averagely and performs poolings in each
2871 2872
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2873
          #
2874 2875 2876 2877 2878 2879 2880 2881 2882
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2883
          #                 output[:, :, i, j, k] =
2884 2885
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2886 2887
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2888
          pool_out, mask = fluid.layers.adaptive_pool3d(
2889
                            input=data,
D
dengkaipeng 已提交
2890
                            pool_size=[3, 3, 3],
2891
                            pool_type='avg')
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2902
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2928
    return (pool_out, mask) if require_index else pool_out
2929 2930


Y
Yu Yang 已提交
2931 2932 2933 2934 2935 2936 2937
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2938
               data_layout='NCHW',
Y
Yang Yang 已提交
2939
               in_place=False,
2940 2941
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2942
               moving_variance_name=None,
2943
               do_model_average_for_mean_and_var=False,
2944 2945
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2946
    """
Q
qiaolongfei 已提交
2947 2948 2949 2950
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2951

Q
qiaolongfei 已提交
2952
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2953

Q
qiaolongfei 已提交
2954 2955
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2956 2957 2958
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2971

2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2985
    Args:
Q
qingqing01 已提交
2986
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2987
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2997 2998 2999 3000 3001 3002 3003 3004
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3005
        data_layout(string, default NCHW): NCHW|NHWC
3006
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3007 3008 3009 3010
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3011
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3012
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3013 3014 3015 3016 3017
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3018 3019

    Returns:
Q
qiaolongfei 已提交
3020
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3021 3022 3023 3024 3025 3026 3027

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3028
    """
C
chengduo 已提交
3029
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3030 3031 3032
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3033 3034 3035 3036
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3055
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3056

3057 3058
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3059 3060 3061
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3062
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3063
        shape=param_shape,
W
Wu Yi 已提交
3064
        dtype=dtype)
3065 3066 3067 3068 3069 3070
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3071
            trainable=False,
W
wanghaoshuang 已提交
3072
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3073
        shape=param_shape,
W
Wu Yi 已提交
3074
        dtype=dtype)
3075
    variance.stop_gradient = True
Y
Yu Yang 已提交
3076 3077 3078 3079 3080 3081

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3082 3083 3084 3085
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3086

X
Xin Pan 已提交
3087 3088
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3106 3107 3108 3109
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3110
            "data_layout": data_layout,
X
Xin Pan 已提交
3111
            "use_mkldnn": False,
3112 3113
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3114
        })
Y
Yu Yang 已提交
3115 3116 3117 3118

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3238
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3239 3240 3241 3242

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3243
@templatedoc()
G
guosheng 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3254
    ${comment}
G
guosheng 已提交
3255 3256 3257

    The formula is as follows:

Y
yuyang18 已提交
3258
    ..  math::
G
guosheng 已提交
3259 3260 3261 3262 3263 3264 3265

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3266 3267 3268 3269 3270 3271 3272 3273
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3274

G
guosheng 已提交
3275 3276
    Args:
        input(Variable): The input tensor variable.
3277
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3278
            normalization. Default True.
3279
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3280 3281
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3282
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3283
            Default 1.
3284
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3285
            division by zero. Default 1e-05.
G
guosheng 已提交
3286
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3287 3288
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3289 3290
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3291
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3292 3293
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3294
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3295
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3296
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3297 3298 3299
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3300 3301

    Returns:
Y
yuyang18 已提交
3302
        ${y_comment}
G
guosheng 已提交
3303 3304 3305

    Examples:

Y
yuyang18 已提交
3306 3307 3308
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3309
    """
L
lujun 已提交
3310 3311
    assert _in_dygraph_mode(
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3326
    if shift:
G
guosheng 已提交
3327 3328 3329 3330 3331 3332
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3333 3334 3335 3336 3337
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3365
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3413 3414
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3432
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3433 3434 3435
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3436
    This layer calculates the spectral normalization value of weight parameters of
3437
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3438
    Parameters. Calculations are showed as follows.
3439

D
dengkaipeng 已提交
3440 3441 3442
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3443
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3456
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3457 3458 3459 3460

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3461

D
dengkaipeng 已提交
3462
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3463 3464
                

D
dengkaipeng 已提交
3465 3466 3467 3468
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3469 3470 3471
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3472 3473 3474
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3475
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3476 3477 3478 3479 3480 3481 3482 3483

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3484
    dtype = weight.dtype
D
dengkaipeng 已提交
3485 3486 3487

    # create intput and parameters
    inputs = {'Weight': weight}
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3506 3507

    # create output
3508
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3509 3510

    helper.append_op(
3511
        type="spectral_norm",
D
Dun 已提交
3512
        inputs=inputs,
3513 3514 3515 3516 3517 3518
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3519

3520
    return out
D
Dun 已提交
3521 3522


Y
Yu Yang 已提交
3523 3524 3525 3526
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3527 3528 3529
                     padding=0,
                     stride=1,
                     dilation=1,
3530
                     groups=None,
C
caoying03 已提交
3531
                     param_attr=None,
3532
                     bias_attr=None,
C
chengduoZH 已提交
3533
                     use_cudnn=True,
3534
                     act=None,
C
caoying03 已提交
3535
                     name=None):
Y
Yu Yang 已提交
3536
    """
3537 3538 3539 3540 3541 3542 3543 3544
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3545 3546
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3547 3548 3549
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3550 3551 3552 3553 3554

    For each input :math:`X`, the equation is:

    .. math::

3555
        Out = \sigma (W \\ast X + b)
3556

3557
    Where:
3558 3559 3560

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3561 3562 3563 3564
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3565

3566 3567 3568 3569
    Example:

        - Input:

3570
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3571

3572
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3573 3574 3575

        - Output:

3576
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3577 3578

        Where
Y
Yu Yang 已提交
3579

3580 3581
        .. math::

3582 3583
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3584 3585
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3586 3587

    Args:
3588 3589 3590 3591
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3592 3593 3594 3595
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3624
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3625 3626 3627
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3628
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3629
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3630 3631

    Returns:
3632
        Variable: The tensor variable storing the convolution transpose result.
3633 3634

    Raises:
3635 3636
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3637 3638 3639 3640

    Examples:
       .. code-block:: python

3641 3642
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3643
    """
C
chengduo 已提交
3644
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3645 3646 3647 3648 3649 3650 3651 3652
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3653 3654 3655
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3656 3657 3658
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3659

C
chengduoZH 已提交
3660 3661
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3662

Y
Yu Yang 已提交
3663 3664 3665 3666 3667
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3668

Y
Yu Yang 已提交
3669 3670
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3671

C
chengduoZH 已提交
3672
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3673
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3674
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3675
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3676
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3677 3678 3679
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3680

3681 3682 3683 3684 3685 3686 3687
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3688
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3689
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3690

Y
Yu Yang 已提交
3691 3692 3693
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3694
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3695
    helper.append_op(
3696
        type=op_type,
Y
Yu Yang 已提交
3697 3698
        inputs={'Input': [input],
                'Filter': [img_filter]},
3699
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3700
        attrs={
3701
            'output_size': output_size,
3702 3703 3704 3705 3706
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3707 3708
        })

3709 3710 3711
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3712 3713


3714
def conv3d_transpose(input,
Y
Yu Yang 已提交
3715 3716 3717
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3718 3719 3720
                     padding=0,
                     stride=1,
                     dilation=1,
3721
                     groups=None,
C
caoying03 已提交
3722
                     param_attr=None,
3723
                     bias_attr=None,
C
chengduoZH 已提交
3724
                     use_cudnn=True,
3725
                     act=None,
C
caoying03 已提交
3726
                     name=None):
Y
Yu Yang 已提交
3727
    """
3728
    **Convlution3D transpose layer**
3729

3730
    The convolution3D transpose layer calculates the output based on the input,
3731
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3732 3733 3734 3735 3736 3737
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3738 3739 3740
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3741 3742 3743 3744 3745

    For each input :math:`X`, the equation is:

    .. math::

3746
        Out = \sigma (W \\ast X + b)
3747 3748 3749

    In the above equation:

3750 3751
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3752 3753 3754 3755
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3756

3757 3758 3759 3760
    Example:

        - Input:

3761
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3762

3763
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3764 3765 3766

        - Output:

3767
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3768 3769

        Where
Y
Yu Yang 已提交
3770

3771 3772
        .. math::

3773 3774 3775
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3776 3777

    Args:
3778
        input(Variable): The input image with [N, C, D, H, W] format.
3779 3780 3781
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3782
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3783 3784
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3785
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3786 3787 3788
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3789 3790
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3791
        stride(int|tuple): The stride size. If stride is a tuple, it must
3792 3793
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3794
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3795 3796 3797
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3798 3799 3800 3801 3802
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3812 3813
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3814 3815
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3816 3817
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3818 3819

    Returns:
3820
        Variable: The tensor variable storing the convolution transpose result.
3821 3822

    Raises:
3823 3824
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3825 3826 3827 3828

    Examples:
       .. code-block:: python

3829 3830
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3831
    """
C
chengduo 已提交
3832
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3833 3834
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3835
    if not isinstance(input, Variable):
3836
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3837 3838
    input_channel = input.shape[1]

3839 3840 3841
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3842

C
chengduoZH 已提交
3843 3844 3845
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3846 3847 3848 3849 3850 3851
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3852 3853 3854
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3855

3856
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3857
                         padding[0] - 1) // dilation[0] + 1
3858
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3859
                         padding[1] - 1) // dilation[1] + 1
3860
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3861
                         padding[2] - 1) // dilation[2] + 1
3862
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3863
    else:
3864 3865
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3866

3867
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3868
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3869 3870 3871
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3872
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3873
    helper.append_op(
3874
        type=l_type,
Y
Yu Yang 已提交
3875 3876
        inputs={'Input': [input],
                'Filter': [img_filter]},
3877
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3878 3879 3880 3881
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3882
            'groups': groups,
C
chengduoZH 已提交
3883 3884
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3885

3886 3887
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3888
    return out
Y
yangyaming 已提交
3889 3890


Y
yangyaming 已提交
3891
def sequence_expand(x, y, ref_level=-1, name=None):
3892
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3893 3894 3895 3896
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3897 3898 3899 3900 3901

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3902
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3903
                x.data = [[a], [b], [c], [d]]
3904 3905 3906
                x.dims = [4, 1]

            y is a LoDTensor:
3907 3908
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3909

Y
yangyaming 已提交
3910
            ref_level: 0
3911

Y
yangyaming 已提交
3912
            then output is a 1-level LoDTensor:
3913
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3914
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3915 3916 3917 3918
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3919
                x.data = [[a], [b], [c]]
3920 3921 3922
                x.dims = [3, 1]

            y is a LoDTensor:
3923
                y.lod = [[2, 0, 3]]
3924

Y
yangyaming 已提交
3925
            ref_level: -1
3926

Y
yangyaming 已提交
3927 3928 3929
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3930 3931 3932
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3933 3934
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3935
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3936
                        will be named automatically.
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3947
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3948
    """
3949 3950
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3951
    helper = LayerHelper('sequence_expand', input=x, **locals())
3952
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3953
    tmp = helper.create_variable_for_type_inference(dtype)
3954
    helper.append_op(
Y
yangyaming 已提交
3955 3956 3957 3958 3959
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3960
    return tmp
3961 3962


C
chengduo 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
4017 4018
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4019 4020
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4021
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4022 4023 4024 4025 4026 4027 4028 4029
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4030
@templatedoc()
4031
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4032 4033 4034 4035 4036
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4037 4038 4039
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4040
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4041 4042 4043 4044
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4045 4046 4047
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4048

F
fengjiayi 已提交
4049
    Returns:
M
minqiyang 已提交
4050
        Variable: The padded sequence batch and the original lengths before
4051
                  padding. All sequences has the same length.
M
minqiyang 已提交
4052

F
fengjiayi 已提交
4053 4054 4055 4056 4057 4058 4059
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4060
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4061
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4062 4063 4064
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

4065 4066
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4067 4068
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4069 4070
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4071 4072 4073 4074

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4075 4076 4077 4078 4079 4080
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4081 4082
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4083
        attrs={'padded_length': maxlen})
4084
    return out, length
F
fengjiayi 已提交
4085 4086


4087
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4088
    """
4089
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4090

4091 4092
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4102 4103 4104
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4105
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4106 4107 4108 4109 4110 4111

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4112
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4113 4114 4115 4116 4117 4118

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4119 4120
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

4133 4134
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4135 4136
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4137
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4149 4150 4151 4152 4153 4154 4155
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4156
                is_accumulated=True,
4157 4158
                name=None,
                return_parent_idx=False):
4159
    """
4160 4161
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4162 4163 4164

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4165 4166

    This layer does the search in beams for one time step. Specifically, it
4167 4168 4169
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4181 4182 4183 4184

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4185

4186
    Args:
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4210 4211
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4212 4213
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4214 4215 4216 4217
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4218

4219
    Returns:
4220 4221 4222 4223
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4224 4225 4226 4227

    Examples:
        .. code-block:: python

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4245
    helper = LayerHelper('beam_search', **locals())
4246 4247 4248 4249 4250 4251
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4252

X
Xin Pan 已提交
4253 4254 4255
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4256 4257 4258 4259 4260
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4261 4262 4263

    helper.append_op(
        type='beam_search',
4264
        inputs=inputs,
Q
Qiao Longfei 已提交
4265 4266 4267
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4268
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4269 4270 4271 4272 4273 4274
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4275
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4276
        })
4277 4278 4279 4280
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4281 4282


4283 4284 4285 4286 4287 4288 4289
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4290

4291 4292 4293 4294 4295 4296 4297 4298 4299
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4300

4301 4302 4303 4304 4305 4306
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4307

4308 4309
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4310

4311 4312 4313 4314 4315 4316
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4317 4318
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4334 4335 4336 4337
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4338
              param_attr=None,
C
caoying03 已提交
4339 4340
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4341 4342 4343 4344
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4345
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4346

4347
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4348

4349
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4350

4351
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4352 4353 4354

            h_t & = o_t tanh(c_t)

4355 4356 4357 4358 4359 4360
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4361 4362 4363

        .. math::

4364
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4365 4366 4367 4368 4369 4370 4371 4372

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4373
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4374 4375

    Args:
Y
yangyaming 已提交
4376 4377 4378 4379 4380 4381
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4382
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4395 4396
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4397 4398

    Returns:
Y
yangyaming 已提交
4399
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4400 4401

    Raises:
4402 4403 4404 4405
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4406 4407 4408 4409 4410 4411

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4412
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4413
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4414
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4431
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4432 4433 4434 4435
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4436 4437
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4438 4439 4440
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4441
    size = cell_t_prev.shape[1]
4442
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4443 4444
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4445
                param_attr=param_attr,
4446
                bias_attr=bias_attr)
Y
yangyaming 已提交
4447
    dtype = x_t.dtype
X
Xin Pan 已提交
4448 4449
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4459
    return h, c
G
guosheng 已提交
4460 4461


C
caoying03 已提交
4462
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4463
    """
Y
yangyaming 已提交
4464
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4465 4466 4467

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4468
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4469 4470
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4471 4472
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4473
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4474
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4475
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4476 4477
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4478 4479 4480

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4481

G
guosheng 已提交
4482 4483 4484 4485 4486 4487
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4488
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4489 4490 4491 4492
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4493 4494 4495 4496

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4497
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4498 4499 4500
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4501 4502
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4503
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4504 4505
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4506 4507 4508 4509 4510
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4511
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4512 4513 4514 4515
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4516 4517


C
caoying03 已提交
4518
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4519
    """
Y
Yibing Liu 已提交
4520
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4521 4522 4523

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4524 4525 4526
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4527
            must be in the range :math:`[-rank(input), rank(input))`. If
4528
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4529
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4530 4531
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4532
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4533
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4534
                       will be named automatically.
G
guosheng 已提交
4535 4536

    Returns:
Y
Yibing Liu 已提交
4537
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4538

G
guosheng 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4549 4550
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4551 4552 4553 4554 4555 4556 4557

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4558 4559
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4560
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4561 4562
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4563 4564 4565 4566 4567
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4568
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4569 4570 4571 4572
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4573 4574


C
caoying03 已提交
4575
def reduce_max(input, dim=None, keep_dim=False, name=None):
4576
    """
Y
yangyaming 已提交
4577
    Computes the maximum of tensor elements over the given dimension.
4578 4579 4580

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4581
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4582 4583 4584
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4585
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4586 4587
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4588
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4589 4590
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4591 4592 4593

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4594

4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4606 4607 4608 4609 4610 4611 4612

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4613 4614
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4615
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4616 4617
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4618 4619 4620 4621 4622
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4623
            'dim': dim if dim != None else [0],
4624 4625 4626 4627 4628 4629
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4630
def reduce_min(input, dim=None, keep_dim=False, name=None):
4631
    """
Y
yangyaming 已提交
4632
    Computes the minimum of tensor elements over the given dimension.
4633 4634 4635

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4636
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4637 4638 4639
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4640
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4641 4642
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4643
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4644 4645
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4646 4647 4648

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4649

4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4661 4662 4663 4664 4665 4666 4667

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4668 4669
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4670
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4671 4672
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4673 4674 4675 4676 4677
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4678
            'dim': dim if dim != None else [0],
4679 4680 4681 4682
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4683 4684


4685 4686 4687 4688 4689 4690
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4691
        dim (list|int|None): The dimensions along which the product is performed. If
4692 4693
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4694 4695
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4696 4697 4698
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4699
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4700
            layer will be named automatically.
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4715
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4716
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4717 4718 4719 4720 4721 4722 4723

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4724 4725
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4726
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4727 4728
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4729 4730 4731 4732 4733
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4734
            'dim': dim if dim != None else [0],
4735 4736 4737 4738 4739 4740
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4741
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4742
    """
C
caoying03 已提交
4743
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4744 4745 4746

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4747 4748 4749 4750 4751
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4752
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4753
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4754
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4755 4756
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4757 4758

    Returns:
D
dzhwinter 已提交
4759
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4769 4770
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4786
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4809
    .. math::
4810 4811

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4812 4813 4814 4815 4816

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4817
        x(Variable|list): The input tensor to l2_normalize layer.
4818
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4819 4820
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4821
        epsilon(float): The epsilon value is used to avoid division by zero, \
4822
            the defalut value is 1e-10.
4823
        name(str|None): A name for this layer(optional). If set None, the layer \
4824
            will be named automatically.
C
caoying03 已提交
4825 4826

    Returns:
4827
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4828 4829

    Examples:
4830

C
caoying03 已提交
4831 4832
        .. code-block:: python

4833 4834 4835 4836
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4837 4838
    """

F
fengjiayi 已提交
4839 4840
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4841 4842
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4843 4844
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4845
    helper.append_op(
4846 4847 4848 4849
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4850
        attrs={
4851 4852
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4853 4854
        })
    return out
4855 4856


S
sneaxiy 已提交
4857
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4858
    """
Y
ying 已提交
4859 4860 4861 4862
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4863

C
chengduoZH 已提交
4864
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4865
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4866

4867 4868 4869 4870 4871
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4872
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4873

C
chengduoZH 已提交
4874
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4875
      performs in the following way.
G
guosheng 已提交
4876

4877
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4878
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4879
        last two dimensions and a batched matrix multiply supporting broadcast
4880
        applies on the two tensors.
G
guosheng 已提交
4881

Y
ying 已提交
4882 4883
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4884
    removed after matrix multiplication.
G
guosheng 已提交
4885 4886 4887

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4888 4889 4890
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4891
        alpha (float): The scale of output. Default 1.0.
4892
        name(str|None): A name for this layer(optional). If set None, the layer
4893
            will be named automatically.
G
guosheng 已提交
4894 4895

    Returns:
4896
        Variable: The product Tensor variable.
G
guosheng 已提交
4897

G
guosheng 已提交
4898 4899 4900
    Examples:
        .. code-block:: python

4901
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4902 4903
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4904

4905 4906
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4907

4908 4909
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4910

4911 4912
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4913 4914 4915 4916

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4917 4918
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4919

Y
ying 已提交
4920
            # x: [M], y: [N]
4921
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4922
    """
Y
ying 已提交
4923 4924 4925 4926 4927 4928 4929

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4930
            y_shape = y_shape + [1]
Y
ying 已提交
4931 4932 4933 4934 4935 4936 4937

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4938 4939
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4940

C
chengduo 已提交
4941
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4942
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4943 4944 4945
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4946
                if dim_x != y_shape[i]:
C
chengduo 已提交
4947 4948
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4949 4950 4951

    __check_input(x, y)

4952
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4953
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4954
    helper.append_op(
4955 4956 4957 4958
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4959 4960 4961
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4962
            'alpha': float(alpha),
S
sneaxiy 已提交
4963
        })
4964
    return out
4965 4966


4967
def topk(input, k, name=None):
Q
qingqing01 已提交
4968 4969 4970 4971
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4972
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4973 4974 4975 4976 4977 4978
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5000 5001 5002
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5003
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5004
                 of input.
5005
        name(str|None): A name for this layer(optional). If set None, the layer
5006
                       will be named automatically.
F
fengjiayi 已提交
5007
                       Default: None
Q
qingqing01 已提交
5008 5009

    Returns:
5010 5011 5012
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5013
        within the last dimension of input.
Q
qingqing01 已提交
5014

F
fengjiayi 已提交
5015 5016
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5017 5018 5019 5020 5021 5022 5023

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5024 5025
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5026 5027 5028 5029 5030 5031
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5032 5033
    helper.append_op(
        type="top_k",
W
whs 已提交
5034
        inputs=inputs,
Q
qingqing01 已提交
5035 5036
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5037
        attrs=attrs)
Q
qingqing01 已提交
5038 5039 5040 5041 5042
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5043
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5044
    """
Y
ying 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5054

Y
ying 已提交
5055
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5056

5057
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5058 5059
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5060
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5061

5062
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5063 5064
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5065

5066 5067 5068
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5069
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5070
                          the length of reference string.
5071
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5072
                                     calculating edit distance.
5073
        name (str): The name of this layer. It is optional.
5074

W
wanghaoshuang 已提交
5075
    Returns:
W
wanghaoshuang 已提交
5076
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5077 5078 5079 5080

    Examples:
        .. code-block:: python

T
tink2123 已提交
5081 5082
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5083
            cost = fluid.layers.edit_distance(input=x,label=y)
5084
    """
5085
    helper = LayerHelper("edit_distance", **locals())
5086

5087
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5088
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5089 5090
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5091 5092 5093 5094 5095

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5096
            attrs={"tokens": ignored_tokens})
5097 5098 5099 5100 5101
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5102
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5103
            attrs={"tokens": ignored_tokens})
5104 5105
        label = erased_label

5106
    # edit distance op
X
Xin Pan 已提交
5107 5108
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5109 5110 5111 5112
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5113 5114
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5115 5116
        attrs={"normalized": normalized})

5117
    return edit_distance_out, sequence_num
5118 5119 5120 5121 5122


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5123

Y
ying 已提交
5124 5125 5126 5127
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5145
        input.lod = [[4, 4]]
M
minqiyang 已提交
5146

W
whs 已提交
5147
        Computation:
5148

W
whs 已提交
5149 5150 5151 5152 5153 5154
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5155 5156 5157 5158 5159

        output.data = [[2],
                       [1],
                       [3]]

5160
        output.lod = [[2, 1]]
5161

W
whs 已提交
5162

5163 5164
    Args:

Y
ying 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5174
        name (str): The name of this layer. It is optional.
5175 5176

    Returns:
H
haowang101779990 已提交
5177 5178 5179
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5180
                  LoD [[]] and dims [1, 1].
5181 5182 5183 5184 5185

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5186

5187
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5188
    """
5189
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5190
    _, topk_indices = topk(input, k=1)
5191 5192

    # ctc align op
X
Xin Pan 已提交
5193
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5194 5195 5196
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5197
        outputs={"Output": [ctc_out]},
5198 5199
        attrs={"merge_repeated": True,
               "blank": blank})
5200
    return ctc_out
5201 5202


W
Wu Yi 已提交
5203
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5204
    """
5205 5206
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5207
    to compute Connectionist Temporal Classification (CTC) loss.
5208 5209
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5210 5211 5212
    input tensor.

    Args:
5213
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5214 5215 5216 5217
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5218
       label (Variable): The ground truth of variable-length sequence,
5219 5220 5221
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5222 5223
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5224 5225 5226
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5227
         follewed by a mean_op.
W
Wu Yi 已提交
5228
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5229 5230

    Returns:
5231 5232
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5233 5234

    Examples:
5235

W
wanghaoshuang 已提交
5236
        .. code-block:: python
5237

5238 5239 5240
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5241 5242

    """
F
fengjiayi 已提交
5243
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5244 5245
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5246 5247 5248 5249 5250 5251
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5252 5253 5254 5255 5256
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5257
    return loss_out
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5273 5274 5275
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5276 5277 5278 5279 5280
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5281

5282
            out.lod  = [[0, 1, 3]]
5283 5284 5285 5286

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5287 5288 5289 5290 5291 5292 5293
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5294 5295 5296

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5297 5298

    Returns:
5299

5300 5301 5302 5303 5304
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5305
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5306
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5307
    """
5308 5309
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
5310
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5311
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5312 5313 5314 5315 5316 5317
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5318 5319


5320 5321 5322 5323
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5324 5325 5326 5327 5328 5329
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5330
        num_neg_samples=None,
5331 5332 5333
        name=None,
        sampler="uniform",
        custom_dist=None,
5334 5335
        seed=0,
        is_sparse=False):
5336 5337 5338 5339 5340 5341 5342
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5343 5344
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5345
            sample is 1.0.
C
chengduo 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5355
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5356 5357
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5358 5359 5360
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5361
        custom_dist (float[]): A float[] with size=num_total_classes.
5362 5363 5364 5365
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5366
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5367

5368
    Returns:
Y
Yibing Liu 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5396 5397 5398 5399 5400 5401 5402 5403 5404

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5405

5406
    """
Y
Yang Yu 已提交
5407 5408 5409
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5410 5411

    dim = input.shape[1]
Y
Yang Yu 已提交
5412 5413 5414 5415 5416 5417
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5418
    inputs = {}
C
chengduo 已提交
5419 5420 5421 5422 5423 5424 5425
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5426 5427 5428
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5429

5430 5431 5432 5433
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5434 5435 5436 5437 5438 5439 5440

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5441 5442 5443 5444 5445 5446 5447 5448 5449
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5450
            if normal_prob - 1.0 > 0:
5451
                bigs.append((i, normal_prob))
5452
            elif 1.0 - normal_prob > 0:
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5468
            if big_left - 1.0 > 0:
5469
                bigs.append((big_idx, big_left))
5470
            elif 1.0 - big_left > 0:
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5500 5501 5502 5503
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5504 5505 5506 5507 5508
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5509 5510 5511 5512
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5513

Y
Yang Yu 已提交
5514 5515
    attrs = {
        'num_total_classes': int(num_total_classes),
5516 5517
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5518
        'sampler': sampler,
5519 5520
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5521
    }
Y
Yang Yu 已提交
5522 5523 5524

    helper.append_op(
        type='nce',
C
chengduo 已提交
5525
        inputs=inputs,
Y
Yang Yu 已提交
5526 5527 5528 5529 5530 5531
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5532
    return cost / (num_neg_samples + 1)
5533 5534


C
chengduo 已提交
5535 5536
def hsigmoid(input,
             label,
5537
             num_classes,
C
chengduo 已提交
5538 5539
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5540
             name=None,
5541 5542 5543
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5544
             is_sparse=False):
W
weixing02 已提交
5545 5546
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5547
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5548
    complete binary tree, or you can use is_custom to pass your own tree to
5549
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5550 5551 5552 5553 5554 5555
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5556
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5557
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5558

5559 5560
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5561 5562 5563 5564
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5565
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5566
       related to the same batch of inputs.
5567

W
weixing02 已提交
5568
    Args:
M
minqiyang 已提交
5569
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5570 5571 5572 5573
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5574 5575
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5576
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5588
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5589
            it should be in leaf -> root order
M
minqiyang 已提交
5590 5591 5592
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5593
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5594
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5595
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5596
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5597
             of W and input will be sparse.
W
weixing02 已提交
5598 5599

    Returns:
J
JiabinYang 已提交
5600
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5601 5602 5603 5604 5605

    Examples:

        .. code-block:: python

G
guosheng 已提交
5606 5607 5608
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5609 5610 5611 5612
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5613 5614
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5615
    dim = input.shape[1]
5616
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5617 5618 5619
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5620 5621 5622 5623
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5624 5625
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5626 5627 5628
    else:
        pass

J
JiabinYang 已提交
5629
    weights = None
5630 5631 5632 5633
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5634
    if not is_custom:
J
JiabinYang 已提交
5635 5636 5637 5638 5639 5640 5641 5642
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5643
            shape=[num_classes, dim],
J
JiabinYang 已提交
5644 5645
            is_bias=False,
            dtype=input.dtype)
5646 5647 5648
    inputs = {
        "X": input,
        "W": weights,
5649
        "PathTable": path_table,
5650
        "PathCode": path_code,
5651 5652
        "Label": label
    }
W
weixing02 已提交
5653
    if helper.bias_attr:
5654
        if not is_custom:
J
JiabinYang 已提交
5655 5656
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5657
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5658 5659 5660 5661 5662 5663
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5664
                shape=[num_classes, 1],
J
JiabinYang 已提交
5665 5666 5667
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5668 5669
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5670
        inputs=inputs,
W
weixing02 已提交
5671
        outputs={"Out": out,
5672 5673 5674 5675 5676 5677 5678
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5679 5680 5681
    return out


Y
fix ci.  
ying 已提交
5682
def transpose(x, perm, name=None):
Y
ying 已提交
5683 5684 5685 5686 5687 5688 5689
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5690 5691 5692
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5693 5694 5695 5696 5697 5698 5699

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5700
            # use append_batch_size=False to avoid prepending extra
5701
            # batch size in shape
5702
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5703
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5704
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5705 5706
    """

Y
fix ci.  
ying 已提交
5707
    if len(perm) != len(x.shape):
Y
ying 已提交
5708 5709 5710
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5711 5712 5713 5714 5715 5716
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5717 5718

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5719 5720
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5721
    helper.append_op(
5722
        type='transpose2',
Y
fix ci.  
ying 已提交
5723
        inputs={'X': [x]},
5724 5725
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5726 5727
        attrs={'axis': perm})
    return out
5728 5729


5730 5731 5732 5733 5734 5735 5736
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5737
    """
5738 5739 5740 5741 5742 5743 5744
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5773 5774 5775 5776 5777 5778 5779 5780 5781
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5782 5783 5784
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5785 5786 5787 5788 5789
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5817 5818 5819
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5832
            output.dims = {8, 8}
5833

5834
            output.lod = [[4, 4]]
5835

T
Tink_Y 已提交
5836
    Examples:
5837 5838 5839

        .. code-block:: python

5840 5841
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5842 5843

    """
5844 5845
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5856 5857 5858 5859 5860 5861 5862
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5863
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5864
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5865
    helper.append_op(
5866
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5867
    return out
5868 5869


Y
yuyang18 已提交
5870
@templatedoc()
5871
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5872 5873
    """
    ${comment}
5874 5875

    Args:
Y
yuyang18 已提交
5876
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5877 5878
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5879 5880 5881 5882 5883
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5884
        ${out_comment}.
5885 5886

    Examples:
Y
yuyang18 已提交
5887 5888 5889 5890
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5891 5892 5893 5894 5895 5896
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5897
    out = helper.create_variable_for_type_inference(dtype)
5898 5899 5900 5901 5902
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5903
    return helper.append_activation(out)
5904 5905


Y
yuyang18 已提交
5906
@templatedoc()
5907 5908
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5909 5910
    ${comment}

L
lujun 已提交
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5954 5955

    Args:
Y
yuyang18 已提交
5956 5957
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5958 5959

    Returns:
Y
yuyang18 已提交
5960
        ${out_comment}.
5961 5962
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5963 5964 5965 5966 5967

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5968
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5969 5970 5971 5972 5973 5974
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5975 5976


5977 5978 5979
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5980
                               ignore_index=kIgnoreIndex,
5981
                               numeric_stable_mode=True,
5982
                               return_softmax=False):
5983 5984
    """
    **Softmax With Cross Entropy Operator.**
5985

5986 5987 5988 5989
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5990

5991 5992 5993
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5994

5995 5996 5997
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5998

5999
    The equation is as follows:
6000

6001
    1) Hard label (one-hot label, so every sample has exactly one class)
6002

6003 6004 6005 6006
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6007

6008 6009 6010
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6011

6012 6013 6014 6015
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
6016 6017 6018
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
6019

H
haowang101779990 已提交
6020
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6021

H
haowang101779990 已提交
6022
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6023

H
haowang101779990 已提交
6024
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6025 6026 6027

    and then cross entropy loss is calculated by softmax and label.

6028 6029 6030 6031 6032 6033 6034 6035
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6036 6037
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6038
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6039 6040 6041
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6042 6043 6044
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6045
                                    stable algorithm. Default: True
6046
        return_softmax (bool): A flag indicating whether to return the softmax
6047
                               along with the cross entropy loss. Default: False
6048

6049
    Returns:
H
haowang101779990 已提交
6050 6051 6052 6053 6054
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6055 6056 6057 6058 6059 6060 6061

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6062 6063
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6064 6065
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6066 6067
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6068 6069 6070 6071 6072 6073
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6074 6075 6076 6077 6078
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6079 6080 6081 6082

    if return_softmax:
        return loss, softmax

6083 6084 6085
    return loss


6086 6087 6088
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6089
                                       num_true=1,
6090
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6091 6092 6093
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6094
                                       seed=0):
X
xuezhong 已提交
6095 6096 6097 6098 6099
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6100
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6101 6102 6103 6104 6105 6106 6107 6108
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6109
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6110 6111 6112 6113 6114 6115 6116 6117
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6118
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6130
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6131 6132 6133 6134 6135
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6136
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6137
            logits.
X
xuezhong 已提交
6138 6139 6140 6141 6142
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6143 6144 6145
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6166 6167
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6168 6169 6170 6171 6172

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6173
            'Labels': label,
X
xuezhong 已提交
6174 6175
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6176 6177 6178 6179
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6180
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6181 6182 6183
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6184
            'use_customized_samples': use_customized_samples,
6185
            'uniq': True,
X
xuezhong 已提交
6186 6187 6188 6189
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6190 6191
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6192 6193 6194 6195 6196 6197
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6198 6199
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6200
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6201
                'Label': sampled_softlabel},
X
xuezhong 已提交
6202 6203 6204
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6205
            'soft_label': True,
X
xuezhong 已提交
6206 6207 6208
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6209
    return loss / num_true
X
xuezhong 已提交
6210 6211


6212 6213
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6214 6215
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6216
    For each instance, it computes the smooth L1 loss element by element first
6217
    and then sums all the losses. So the shape of ouput Variable is
6218
    [batch_size, 1].
6219

6220 6221
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6222
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6223
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6224
            L1 loss op with same shape as :attr:`x`.
6225
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6226 6227
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6228
            by this tensor element by element.
6229
        outside_weight (Variable|None): A tensor with rank at least 2. This
6230 6231
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6232
            element by element.
6233
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6234 6235
           scalar with default value 1.0.

6236
    Returns:
6237
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6238 6239 6240 6241 6242

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6243 6244
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6245
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6246
            out = fluid.layers.smooth_l1(x=fc, y=label)
6247
    """
6248

6249
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6250 6251
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6262
        attrs={'sigma': sigma if sigma is not None else 1.0})
6263
    return loss
6264 6265 6266 6267


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6268
    This layer creates the one-hot representations for input indices.
6269 6270

    Args:
Y
Yibing Liu 已提交
6271 6272
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6273 6274

    Returns:
Y
Yibing Liu 已提交
6275
        Variable: The one-hot representations of input.
6276 6277

    Examples:
C
caoying03 已提交
6278
        .. code-block:: python
6279

Y
Yibing Liu 已提交
6280 6281
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6282 6283
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6284
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6285 6286 6287 6288
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6289 6290
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6291
    return one_hot_out
Y
Yu Yang 已提交
6292 6293


Y
Yu Yang 已提交
6294
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6295
    """
Y
yi.wu 已提交
6296 6297 6298
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6299 6300 6301 6302 6303 6304

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6305 6306
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6307 6308 6309 6310 6311 6312

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6313 6314
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6315 6316
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6317 6318 6319 6320 6321
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6322
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6323
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6324 6325
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6326
            outputs={'Out': [counter]},
M
minqiyang 已提交
6327 6328
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6329 6330 6331
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6332 6333


6334
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6335
    """
C
caoying03 已提交
6336 6337
    Gives a new shape to the input Tensor without changing its data.

6338 6339 6340 6341 6342
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6343

6344
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6345

6346 6347 6348 6349
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6350
    2. 0 means the actual dimension value is going to be copied from the
6351 6352 6353 6354
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6355 6356

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6357
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6358
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6359

6360
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6361 6362
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6363 6364
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6365
    dimensions.
C
caoying03 已提交
6366

6367
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6368 6369 6370 6371
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6372 6373

    Args:
6374
        x(variable): The input tensor.
C
caoying03 已提交
6375 6376
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6377 6378 6379 6380 6381
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6382 6383
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6384 6385 6386
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6387
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6388
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6389

6390
    Returns:
G
guosheng 已提交
6391 6392 6393 6394
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6395

X
Xin Pan 已提交
6396 6397 6398
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6399 6400
    Examples:
        .. code-block:: python
G
guosheng 已提交
6401

6402
            data = fluid.layers.data(
6403
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6404
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6405
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6406 6407 6408
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6409
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6410 6411 6412 6413 6414
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6415

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6431
    helper = LayerHelper("reshape2", **locals())
6432 6433
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6434
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6435
    helper.append_op(
6436
        type="reshape2",
X
Xin Pan 已提交
6437
        inputs=inputs,
D
dzhwinter 已提交
6438
        attrs={"shape": shape},
6439 6440
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6441

D
dzhwinter 已提交
6442
    return helper.append_activation(out)
6443

6444

6445
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6446
    """
M
minqiyang 已提交
6447 6448 6449
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6450
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6451

H
haowang101779990 已提交
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6473

Y
Yibing Liu 已提交
6474
    Args:
6475
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6476
        axes (list): List of integers, indicating the dimensions to be squeezed.
6477
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6478 6479 6480 6481 6482 6483 6484 6485

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6486
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6487
    """
L
lujun 已提交
6488 6489
    assert not _in_dygraph_mode(), (
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6490
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6491 6492
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6493
    helper.append_op(
6494
        type="squeeze2",
6495
        inputs={"X": input},
Y
Yibing Liu 已提交
6496
        attrs={"axes": axes},
6497 6498
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6499

6500 6501 6502
    return out


6503
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6504
    """
M
minqiyang 已提交
6505 6506 6507
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6508

M
minqiyang 已提交
6509
    For example:
H
haowang101779990 已提交
6510 6511 6512

    .. code-block:: text

M
minqiyang 已提交
6513
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6514
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6515

Y
Yibing Liu 已提交
6516
    Args:
6517
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6518
        axes (list): List of integers, indicating the dimensions to be inserted.
6519
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6520 6521 6522 6523 6524 6525 6526 6527

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6528
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6529 6530
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6531 6532
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6533
    helper.append_op(
6534
        type="unsqueeze2",
6535
        inputs={"X": input},
Y
Yibing Liu 已提交
6536
        attrs={"axes": axes},
6537 6538
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6539

6540 6541
    return out

6542

Y
yangyaming 已提交
6543
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6544
    """
Y
Yibing Liu 已提交
6545
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6546 6547 6548 6549
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6550
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6551 6552 6553 6554 6555 6556

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6557
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6558 6559 6560
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6561
            target_lod: [4, 2]
Y
yangyaming 已提交
6562 6563

            then we get a 1-level LoDTensor:
6564
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6565 6566 6567 6568 6569 6570
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6571
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6572 6573 6574 6575
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6576
                y.data = [[2, 4]]
Y
yangyaming 已提交
6577 6578 6579
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6580
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6581 6582 6583 6584 6585 6586
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6587
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6588 6589 6590 6591
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6592
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6593 6594 6595 6596
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6597
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6598 6599 6600 6601 6602
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6603
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6604
                           from :attr:`y`.
Y
yangyaming 已提交
6605
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6606
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6607 6608

    Returns:
Y
Yibing Liu 已提交
6609
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6610 6611

    Raises:
Y
Yibing Liu 已提交
6612
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6613 6614 6615 6616 6617 6618 6619 6620 6621

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6622
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6648
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6677 6678
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6691 6692 6693
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6707 6708 6709 6710


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6711
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6712
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6713

G
guosheng 已提交
6714 6715 6716 6717
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6740
                         The length of :attr:paddings must be
G
guosheng 已提交
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6751

G
guosheng 已提交
6752 6753 6754 6755 6756 6757
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6758
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6759 6760 6761 6762 6763 6764 6765
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6766 6767


C
chengduo 已提交
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6799 6800
		And
            pad_value = -1,
C
chengduo 已提交
6801

T
Tink_Y 已提交
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6837
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6847 6848 6849 6850 6851 6852 6853
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6854 6855
    called label-smoothing regularization (LSR).

6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6879
                              be :math:`(1, class\_num)`.
6880 6881
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6882
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6902
    smooth_label = helper.create_variable_for_type_inference(dtype)
6903 6904 6905 6906 6907 6908 6909
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6910 6911


W
wopeizl 已提交
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6948 6949


J
jerrywgz 已提交
6950 6951 6952 6953 6954 6955
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6956 6957
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6974 6975 6976
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6977 6978 6979 6980 6981 6982
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6983
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7024 7025
        .. code-block:: python

W
whs 已提交
7026 7027 7028 7029
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7030
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7031 7032 7033 7034 7035 7036
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7037 7038


7039 7040 7041 7042
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7043
                 resample='BILINEAR',
7044 7045
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7046
                 align_mode=1):
7047
    """
Q
qiaolongfei 已提交
7048
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7049

7050
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7051 7052 7053
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7054

7055
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7056

7057
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7058

7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7069
    Align_corners and align_mode are optinal parameters,the calculation method 
7070 7071 7072 7073
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7074
    .. code-block:: text
7075

T
Tink_Y 已提交
7076
        For scale:
7077
          
T
Tink_Y 已提交
7078
            if align_corners = True && out_size > 1 :
7079

T
Tink_Y 已提交
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7091

T
Tink_Y 已提交
7092 7093
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7094

T
Tink_Y 已提交
7095 7096
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7097

T
Tink_Y 已提交
7098 7099
          else:
              align_corners = True
7100

T
Tink_Y 已提交
7101 7102
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7103

T
Tink_Y 已提交
7104 7105
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7106

T
Tink_Y 已提交
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7117

T
Tink_Y 已提交
7118 7119 7120 7121
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7122

T
Tink_Y 已提交
7123 7124
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7125 7126 7127 7128 7129 7130 7131 7132 7133

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7134
    Args:
7135
        input (Variable): The input tensor of image resize layer,
7136 7137
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7138
        out_shape(list|tuple|Variable|None): Output shape of image resize
7139 7140
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7141
        scale(float|None): The multiplier for the input height or width.
7142 7143 7144
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7145 7146
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7147
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7148
                       currently.
7149
                       Default: 'BILINEAR'
7150 7151 7152
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7153
                                :attr:`out_shape` and :attr:`scale` specifying
7154 7155 7156 7157 7158 7159 7160
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7161 7162
                                constructing stage.
                                Default: None
7163 7164 7165 7166
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7167
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7168 7169
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7170 7171

    Returns:
Q
update  
qiaolongfei 已提交
7172 7173
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7174

7175 7176 7177
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7178
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7179 7180 7181
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7182 7183
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7184

7185 7186 7187
    Examples:
        .. code-block:: python

7188
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7189
    """
7190 7191 7192 7193
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7194 7195
    if resample not in resample_methods:
        raise ValueError(
7196
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7197
        )
7198
    resample_type = resample_methods[resample]
7199 7200 7201 7202 7203 7204

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7205
    if out_shape is None and scale is None:
7206
        raise ValueError("One of out_shape and scale must not be None.")
7207
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7208
    dtype = helper.input_dtype()
7209 7210 7211 7212

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7213 7214 7215
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7216
    if out_shape is not None:
7217 7218 7219 7220
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7221
            inputs['OutSize'] = out_shape
7222 7223 7224 7225 7226 7227 7228 7229
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7230 7231 7232 7233
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7234 7235 7236 7237 7238
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7239
    out = helper.create_variable_for_type_inference(dtype)
7240
    helper.append_op(
7241
        type='{}_interp'.format(resample_type),
7242
        inputs=inputs,
7243
        outputs={"Out": out},
7244 7245 7246 7247 7248 7249 7250
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7251
    return out
F
stash  
fengjiayi 已提交
7252 7253


7254
@templatedoc(op_type="bilinear_interp")
7255 7256 7257 7258
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7259 7260
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7261
                    align_mode=1):
7262
    """
7263 7264
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7265 7266
    in priority order.

7267 7268 7269 7270
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7271 7272
    again in the other direction.

7273
    For details of bilinear interpolation, please refer to Wikipedia:
7274
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7275

T
tink2123 已提交
7276
    Align_corners and align_mode are optinal parameters,the calculation 
7277 7278 7279 7280
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7281
    .. code-block:: text
7282

T
Tink_Y 已提交
7283
        For scale:
7284
          
T
Tink_Y 已提交
7285
            if align_corners = True && out_size > 1 :
7286

T
Tink_Y 已提交
7287 7288 7289 7290 7291
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7292

T
Tink_Y 已提交
7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7303 7304


T
Tink_Y 已提交
7305
          else:
T
tink2123 已提交
7306

T
Tink_Y 已提交
7307 7308
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7309

T
Tink_Y 已提交
7310 7311
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7312 7313 7314



Y
yuyang18 已提交
7315 7316 7317 7318
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7319

Y
yuyang18 已提交
7320 7321 7322 7323 7324
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7325 7326 7327
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7328
                                :attr:`out_shape` and :attr:`scale` specifying
7329 7330 7331 7332 7333 7334 7335
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7336 7337
                                constructing stage.
                                Default: None
7338 7339
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7340 7341 7342

    Returns:
        ${out_comment}.
7343 7344 7345 7346 7347

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7348 7349
    """

7350 7351
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7352 7353


7354
@templatedoc(op_type="nearest_interp")
7355 7356 7357 7358
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7359 7360
                   actual_shape=None,
                   align_corners=True):
7361
    """
7362
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7363 7364
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7365 7366
    out_shape and scale in priority order.

7367 7368
    Example:

T
Tink_Y 已提交
7369 7370 7371 7372 7373
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7374

T
Tink_Y 已提交
7375 7376 7377 7378 7379 7380 7381 7382
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7383
          
T
Tink_Y 已提交
7384 7385
          if:
              align_corners = False
7386

T
Tink_Y 已提交
7387 7388
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7389

T
Tink_Y 已提交
7390 7391
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7392

T
Tink_Y 已提交
7393 7394
          else:
              align_corners = True
7395

T
Tink_Y 已提交
7396 7397
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7398

T
Tink_Y 已提交
7399 7400
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7401 7402


7403
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7404
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7405 7406 7407 7408 7409

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7410

Y
yuyang18 已提交
7411 7412 7413 7414 7415
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7416 7417 7418
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7419
                                :attr:`out_shape` and :attr:`scale` specifying
7420 7421 7422 7423 7424 7425 7426
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7427 7428
                                constructing stage.
                                Default: None
7429
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7430 7431 7432

    Returns:
        ${out_comment}.
7433 7434 7435 7436 7437

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7438 7439
    """

7440 7441
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7442 7443 7444 7445


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7446 7447 7448
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7449 7450 7451 7452 7453 7454 7455
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7456
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7457

7458
    Returns:
Q
update  
qiaolongfei 已提交
7459
        Variable: The output is a 4-D tensor of the shape
7460
        (num_batches, channls, out_h, out_w).
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7471 7472 7473
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7474 7475 7476
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7477 7478
def gather(input, index):
    """
Q
qiaolongfei 已提交
7479 7480
    **Gather Layer**

7481
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7482 7483 7484 7485
    of X indexed by `index` and concatenate them together.

    .. math::

7486
        Out = X[Index]
W
whs 已提交
7487 7488 7489 7490 7491 7492 7493


    .. code-block:: text


                Given:

7494 7495
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7506
        input (Variable): The source input with rank>=1.
W
whs 已提交
7507 7508 7509 7510 7511 7512
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7513

W
whs 已提交
7514 7515 7516 7517 7518 7519
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7520
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7521 7522 7523 7524 7525 7526 7527 7528
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7560
    out = helper.create_variable_for_type_inference(dtype)
7561 7562 7563 7564 7565 7566 7567 7568 7569
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7570 7571 7572 7573 7574 7575 7576 7577 7578
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7579

Q
Qingsheng Li 已提交
7580
    Given the following input:
H
haowang101779990 已提交
7581

Q
Qingsheng Li 已提交
7582
    .. code-block:: text
H
haowang101779990 已提交
7583

Q
Qingsheng Li 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7596

Q
Qingsheng Li 已提交
7597
    .. code-block:: text
H
haowang101779990 已提交
7598

Q
Qingsheng Li 已提交
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7614
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7615 7616 7617 7618 7619 7620 7621 7622

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
7623 7624
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7625 7626
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7627
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7628 7629 7630 7631 7632 7633 7634 7635 7636
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7650

7651 7652 7653
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7654
    """
F
stash  
fengjiayi 已提交
7655
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7656
    dtype = x.dtype
X
Xin Pan 已提交
7657
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7658
    if seed is None:
7659
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7660
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7661
    if isinstance(seed, int):
F
fengjiayi 已提交
7662 7663 7664 7665 7666
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7667 7668 7669 7670
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7671
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7672 7673
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7674 7675
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7676
    return out
W
whs 已提交
7677 7678


7679
def log(x, name=None):
W
wanghaoshuang 已提交
7680 7681 7682 7683 7684
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7685
        Out = \\ln(x)
W
wanghaoshuang 已提交
7686 7687

    Args:
7688
        x (Variable): Input tensor.
7689 7690
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7691 7692 7693 7694 7695 7696 7697 7698

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7699
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7700 7701
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7702
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7703
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7704
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7705 7706 7707
    return out


7708
def relu(x, name=None):
W
wanghaoshuang 已提交
7709 7710
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7711
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7712 7713 7714 7715
    the tensor elementwise.

    .. math::

7716
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7717 7718

    Args:
7719
        x (Variable): The input tensor.
7720 7721
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7722 7723 7724 7725 7726 7727 7728 7729

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7730
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7731 7732
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7733
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7734
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7735 7736
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7737
    return out
7738 7739


C
chengduo 已提交
7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7781 7782 7783
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7784 7785 7786 7787
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7788
    .. math::
7789

H
haowang101779990 已提交
7790
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7791

7792
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7793 7794 7795 7796 7797
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7798
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7799
                           Its shape should be the same as input.
7800
        num_classes (int): The possible number of labels.
W
whs 已提交
7801 7802

    Returns:
M
minqiyang 已提交
7803 7804
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7805
                     Three variables:
M
minqiyang 已提交
7806

H
haowang101779990 已提交
7807 7808 7809
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7810 7811 7812 7813

    Examples:

        .. code-block:: python
7814

W
whs 已提交
7815 7816 7817 7818
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7819 7820 7821
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7822 7823
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7824 7825
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7826
        outputs={
W
whs 已提交
7827 7828 7829
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7830 7831 7832
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7901
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7902 7903 7904 7905 7906

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7907
            isinstance(shape, Variable)):
7908 7909 7910 7911 7912
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7913
    out = helper.create_variable_for_type_inference(x.dtype)
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7931 7932


W
whs 已提交
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7950

W
whs 已提交
7951
              out_shape = [2, 3, 5, 5]
7952

W
whs 已提交
7953
          Step 1:
7954

W
whs 已提交
7955 7956 7957
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7958

W
whs 已提交
7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8004
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8005
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8018

W
whs 已提交
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8030
            isinstance(out_shape, Variable)):
W
whs 已提交
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8052 8053
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8054

8055 8056
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8057
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8058 8059 8060
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8061

8062 8063
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8064

H
haowang101779990 已提交
8065 8066
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8067 8068
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8069

H
haowang101779990 已提交
8070 8071 8072 8073 8074 8075 8076 8077
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8078 8079 8080

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8115
    out = helper.create_variable_for_type_inference("float32")
8116 8117 8118 8119 8120 8121 8122 8123

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8124 8125


M
minqiyang 已提交
8126 8127
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8128
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8129
    which compares left score and right score passed in.
M
minqiyang 已提交
8130
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8131 8132 8133

    .. math::

H
haowang101779990 已提交
8134
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8135 8136

    Args:
M
minqiyang 已提交
8137
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8138 8139
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8140
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8141 8142
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8143

M
minqiyang 已提交
8144
    Returns:
M
minqiyang 已提交
8145
       Variable: The ranking loss.
H
haowang101779990 已提交
8146

M
minqiyang 已提交
8147
    Raises:
M
minqiyang 已提交
8148
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8149

M
minqiyang 已提交
8150
    Examples:
H
haowang101779990 已提交
8151

M
minqiyang 已提交
8152
        .. code-block:: python
H
haowang101779990 已提交
8153

M
minqiyang 已提交
8154 8155 8156 8157 8158
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8159
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8160 8161 8162 8163 8164 8165
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8166 8167
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8191
        .. code-block:: text
W
whs 已提交
8192

T
Tink_Y 已提交
8193
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8194

T
Tink_Y 已提交
8195 8196
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8197

T
Tink_Y 已提交
8198
	      Case 0:
M
minqiyang 已提交
8199

T
Tink_Y 已提交
8200 8201 8202
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8203

T
Tink_Y 已提交
8204 8205 8206
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8207

T
Tink_Y 已提交
8208
	      Case 1:
M
minqiyang 已提交
8209

T
Tink_Y 已提交
8210 8211
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8212

T
Tink_Y 已提交
8213 8214 8215
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8216

T
Tink_Y 已提交
8217
	      Case 2:
M
minqiyang 已提交
8218

T
Tink_Y 已提交
8219 8220
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8221

T
Tink_Y 已提交
8222 8223 8224
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8225 8226


W
whs 已提交
8227 8228
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8229
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8253
    out = helper.create_variable_for_type_inference(dtype)
8254 8255 8256 8257 8258 8259 8260 8261 8262
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8263
    helper.append_op(
8264
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8265 8266 8267 8268

    return out


8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8281 8282 8283 8284 8285

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8286 8287
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8288 8289
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8290
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8311 8312 8313 8314 8315

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8316 8317
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8318 8319
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8320
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8341 8342 8343 8344 8345

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8346 8347
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8348 8349
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8350
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8372 8373 8374 8375 8376

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8377
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8378
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8379 8380
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8381
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8404 8405 8406 8407 8408

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8409 8410
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8411 8412
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8413
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8435 8436 8437 8438 8439

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8440 8441
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8442 8443
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8444
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8445 8446 8447 8448 8449 8450 8451 8452
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8453 8454 8455 8456
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8457 8458
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8459 8460 8461

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8462
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8463
          weight (alpha).
J
jerrywgz 已提交
8464
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8465 8466 8467
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8468
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8469
          will be named automatically.
J
jerrywgz 已提交
8470 8471 8472 8473 8474 8475 8476 8477

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8478
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8492
        attr=helper.param_attr,
J
jerrywgz 已提交
8493 8494 8495 8496
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8497
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8498 8499 8500 8501 8502 8503 8504 8505 8506
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8507 8508 8509 8510 8511 8512 8513 8514 8515 8516
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8517
    Returns:
8518
        output(${out_type}): ${out_comment}
8519 8520 8521

    Examples:

8522
    .. code-block:: python
8523

H
haowang101779990 已提交
8524 8525
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8526 8527
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8528
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8547
    Returns:
8548
        output(${out_type}): ${out_comment}
8549 8550 8551 8552 8553

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8554 8555
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8556 8557
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8558
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8576
    Returns:
8577
        output(${out_type}): ${out_comment}
8578 8579 8580 8581 8582

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8583 8584
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8585 8586
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8587
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8588 8589 8590 8591 8592 8593 8594 8595
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8596 8597 8598 8599
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8600

H
haowang101779990 已提交
8601
    For Example:
M
minqiyang 已提交
8602

H
haowang101779990 已提交
8603
    .. code-block:: text
8604

H
haowang101779990 已提交
8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8626 8627 8628

    Args:
        x (Variable): A tensor of rank >= axis.
8629 8630
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8631 8632 8633 8634 8635 8636 8637 8638
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8639 8640 8641
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8642 8643 8644 8645
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8646
        ValueError: If axis is not in range [0, rank(x)].
8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8663 8664
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8665
    helper.append_op(
8666
        type='flatten2',
8667
        inputs={"X": x},
8668 8669
        outputs={'Out': out,
                 'XShape': x_shape},
8670 8671
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8672 8673


C
chenweihang 已提交
8674
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8675
    """
C
chenweihang 已提交
8676
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8677
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8678 8679
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8680

H
haowang101779990 已提交
8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8698 8699

    Args:
C
chenweihang 已提交
8700 8701 8702
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
8713 8714
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8715
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8716 8717
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8718 8719 8720 8721 8722 8723
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8724
    return out
8725

8726

S
sneaxiy 已提交
8727 8728 8729 8730 8731 8732 8733 8734 8735
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8736

S
sneaxiy 已提交
8737
    .. math::
8738

S
sneaxiy 已提交
8739 8740 8741
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8742
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8743 8744 8745 8746
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8747 8748 8749
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8750 8751
    Returns:
        Variable: The output sequence mask.
8752

S
sneaxiy 已提交
8753
    """
8754 8755
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8756

Q
qingqing01 已提交
8757
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8758
    if name is None:
X
Xin Pan 已提交
8759
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8760
    else:
X
Xin Pan 已提交
8761
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8762

Q
qingqing01 已提交
8763 8764 8765
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8766 8767
        outputs={'Y': out},
        attrs={
8768
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8769 8770 8771
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8772 8773


X
Xin Pan 已提交
8774
def stack(x, axis=0):
S
sneaxiy 已提交
8775 8776 8777 8778
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8779 8780 8781 8782 8783 8784 8785

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8786
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8787
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8788

C
chengduozh 已提交
8789 8790
    For Example:

C
chengduozh 已提交
8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8829
    Args:
8830
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8831
        axis (int|None): The axis along which all inputs are stacked.
8832

S
sneaxiy 已提交
8833 8834
    Returns:
        Variable: The stacked variable.
8835

S
sneaxiy 已提交
8836 8837
    """

X
Xin Pan 已提交
8838 8839 8840 8841 8842 8843
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8844
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8845
    helper.append_op(
S
sneaxiy 已提交
8846 8847
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8848

X
Xin Pan 已提交
8849
    return out
D
dzhwinter 已提交
8850 8851 8852 8853 8854 8855 8856


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8857

D
dzhwinter 已提交
8858 8859 8860
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8861
    raised.
D
dzhwinter 已提交
8862 8863

    Args:
M
minqiyang 已提交
8864
        x (Variable): Input variable.
D
dzhwinter 已提交
8865 8866
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8867

D
dzhwinter 已提交
8868 8869
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8870

D
dzhwinter 已提交
8871 8872 8873 8874 8875 8876 8877 8878 8879 8880
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8881
    for _ in range(num):
X
Xin Pan 已提交
8882
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8883 8884 8885 8886 8887 8888 8889 8890

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8903

W
whs 已提交
8904 8905 8906 8907
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8908

W
whs 已提交
8909
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8910

W
whs 已提交
8911
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8912

W
whs 已提交
8913 8914 8915 8916
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8917

W
whs 已提交
8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8934
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8935 8936 8937 8938 8939 8940
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8941 8942


G
fix  
gongweibao 已提交
8943 8944 8945
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8946
@templatedoc()
G
fix  
gongweibao 已提交
8947 8948 8949 8950 8951 8952 8953 8954 8955
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8956
    ${comment}
G
fix  
gongweibao 已提交
8957 8958

    Args:
G
gongweibao 已提交
8959 8960 8961
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8962
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8963 8964 8965
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8966 8967
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8968
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8969

8970 8971 8972 8973 8974
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8975 8976 8977
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8978
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8995 8996


G
gongweibao 已提交
8997
@templatedoc()
X
Xin Pan 已提交
8998
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8999
    """
G
gongweibao 已提交
9000
    ${comment}
G
fix  
gongweibao 已提交
9001 9002

    Args:
G
gongweibao 已提交
9003 9004 9005 9006
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9007 9008 9009
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9010
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9011

9012 9013 9014 9015
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9016 9017 9018
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9019
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9020 9021 9022 9023 9024 9025 9026 9027 9028 9029
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9030
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9031 9032 9033 9034 9035
        })

    return out


G
gongweibao 已提交
9036
@templatedoc()
G
fix  
gongweibao 已提交
9037
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9038
    """
G
gongweibao 已提交
9039
    ${comment}
G
fix  
gongweibao 已提交
9040 9041

    Args:
G
gongweibao 已提交
9042 9043 9044 9045
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9046
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9047 9048

    Returns:
G
gongweibao 已提交
9049
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9050

9051 9052 9053 9054 9055 9056 9057 9058 9059 9060
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9061 9062 9063
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9064
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9076
@templatedoc()
G
fix  
gongweibao 已提交
9077 9078 9079 9080 9081 9082 9083 9084 9085
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9086
    ${comment}
G
fix  
gongweibao 已提交
9087 9088

    Args:
G
gongweibao 已提交
9089 9090
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9091
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9092 9093 9094 9095
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9096
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9097 9098

    Returns:
G
gongweibao 已提交
9099
        out (Variable): ${out_comment}
9100 9101 9102 9103 9104 9105 9106 9107

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9108 9109 9110
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9111
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9130
@templatedoc()
X
Xin Pan 已提交
9131
def sum(x):
G
fix  
gongweibao 已提交
9132
    """
G
gongweibao 已提交
9133
    ${comment}
G
fix  
gongweibao 已提交
9134 9135

    Args:
G
gongweibao 已提交
9136
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9137 9138

    Returns:
G
gongweibao 已提交
9139
        out (Variable): ${out_comment}
9140 9141 9142 9143 9144 9145

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9146 9147 9148
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9149 9150
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9151 9152 9153 9154
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9155
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9156 9157 9158 9159

    return out


G
gongweibao 已提交
9160
@templatedoc()
G
fix  
gongweibao 已提交
9161 9162
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9163
    ${comment}
G
fix  
gongweibao 已提交
9164 9165

    Args:
G
gongweibao 已提交
9166 9167 9168 9169
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9170 9171

    Returns:
G
gongweibao 已提交
9172
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9173

9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9185 9186 9187
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9188 9189
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9203 9204
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9205
    Get the shape of the input.
G
fix  
gongweibao 已提交
9206 9207

    Args:
C
chengduozh 已提交
9208
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9209 9210

    Returns:
C
fix doc  
chengduozh 已提交
9211
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9212

9213 9214 9215 9216 9217 9218
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9219 9220 9221
    """

    helper = LayerHelper('shape', **locals())
9222
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9223
    helper.append_op(
G
fix  
gongweibao 已提交
9224
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9225 9226

    return out
G
merge  
gongweibao 已提交
9227 9228


S
sneaxiy 已提交
9229 9230 9231 9232
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9233
    if _in_dygraph_mode():
X
Xin Pan 已提交
9234 9235 9236
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9237 9238 9239 9240
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9241 9242
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9243
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9244 9245 9246
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9247

S
sneaxiy 已提交
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9259
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9260 9261 9262 9263 9264 9265 9266 9267
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9268
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9269
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9270 9271 9272 9273 9274 9275

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9276
    if name is None:
X
Xin Pan 已提交
9277
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9278 9279 9280
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9281 9282 9283 9284 9285 9286 9287 9288 9289 9290

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9291
    return helper.append_activation(out)
S
sneaxiy 已提交
9292 9293


X
Xin Pan 已提交
9294
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9295 9296 9297
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9298
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9299 9300 9301
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9302
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9303 9304 9305
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9306
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9307 9308 9309
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9310
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9311 9312 9313
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9314
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9315 9316 9317
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9318
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9319 9320 9321
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9322 9323 9324 9325 9326 9327 9328 9329
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9330
for func in [
9331 9332 9333 9334 9335 9336 9337 9338 9339
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9340 9341 9342 9343 9344
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9345 9346
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9347
        ])
M
minqiyang 已提交
9348 9349


9350
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9351 9352
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9353 9354
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9355 9356 9357

    if out is None:
        if name is None:
X
Xin Pan 已提交
9358
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9374
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9386 9387 9388 9389 9390 9391 9392 9393 9394

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9395 9396 9397 9398 9399 9400 9401
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9402
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9414 9415 9416 9417 9418 9419 9420 9421 9422

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9423 9424 9425 9426 9427 9428 9429
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9430
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9442 9443 9444 9445 9446 9447 9448 9449 9450

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9451 9452 9453 9454 9455 9456 9457
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9458
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9459 9460 9461 9462 9463 9464 9465 9466 9467 9468
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9469 9470 9471 9472 9473 9474 9475

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9476 9477 9478 9479
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9495 9496 9497 9498 9499 9500 9501

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9502 9503 9504 9505 9506
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9507 9508 9509 9510
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9534 9535 9536 9537 9538 9539 9540

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9541 9542 9543 9544 9545
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9546 9547 9548 9549
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9550 9551 9552 9553 9554 9555 9556 9557

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9576
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9577 9578 9579 9580 9581 9582 9583 9584 9585 9586
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9629
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9630 9631 9632 9633 9634 9635 9636 9637 9638
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9639 9640
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9641 9642 9643 9644 9645 9646
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9647 9648 9649
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9650 9651
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9652 9653 9654 9655 9656 9657
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9658
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9659
        name(basestring|None): Name of the output.
9660 9661
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9662 9663 9664

    Returns:
        out(${out_type}): ${out_comment}
9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9679 9680 9681 9682 9683
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9684
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9685 9686 9687 9688 9689 9690 9691 9692
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9693 9694
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9715
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9716 9717 9718 9719 9720 9721 9722 9723 9724 9725
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9726 9727


J
JiabinYang 已提交
9728
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9729
    """
J
JiabinYang 已提交
9730
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9731 9732 9733

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9734
    The attr blocksize indicates the input block size.
9735 9736

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9737
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9738 9739

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9740
    (but keeping all data)
J
JiabinYang 已提交
9741

J
JiabinYang 已提交
9742
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9743
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9744 9745 9746 9747 9748
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9749
    Args:
J
JiabinYang 已提交
9750
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9751
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9752 9753

    Returns:
J
JiabinYang 已提交
9754
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9755 9756

    Raises:
J
JiabinYang 已提交
9757
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9758 9759 9760 9761 9762

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9763
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9764
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9765
                x=data, blocksize=2)
9766 9767 9768 9769 9770 9771

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9772 9773
    """

J
JiabinYang 已提交
9774
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9775

J
JiabinYang 已提交
9776 9777
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9778 9779

    if name is None:
J
JiabinYang 已提交
9780 9781
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9782 9783 9784 9785 9786
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9787
        type="space_to_depth",
J
JiabinYang 已提交
9788
        inputs={"X": x},
J
JiabinYang 已提交
9789
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9790
        outputs={"Out": out})
J
JiabinYang 已提交
9791 9792
    return out

J
JiabinYang 已提交
9793

S
sneaxiy 已提交
9794 9795
@templatedoc()
def sequence_reverse(x, name=None):
9796
    """
S
sneaxiy 已提交
9797 9798 9799 9800 9801 9802 9803 9804 9805
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
9806 9807
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9808 9809
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9810
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9811 9812 9813 9814 9815 9816 9817 9818 9819 9820
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9821 9822


9823 9824 9825 9826 9827 9828
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9829 9830 9831 9832 9833
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9834

9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9847
        act (str, default None): Activation to be applied to the output of this layer.
9848 9849 9850 9851 9852 9853 9854

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9855
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9867
    return helper.append_activation(out)
9868 9869


B
barrierye 已提交
9870
def similarity_focus(input, axis, indexes, name=None):
9871
    """
B
barrierye 已提交
9872
    SimilarityFocus Operator
B
barrierye 已提交
9873 9874

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9875

9876 9877 9878
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9879
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9880 9881 9882 9883 9884 9885 9886
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9887
       each index.
B
barrierye 已提交
9888 9889 9890 9891
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9941
    Args:
9942
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9943
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9944
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9945
            1, 2 or 3.
B
barrierye 已提交
9946
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9947 9948

    Returns:
H
haowang101779990 已提交
9949 9950
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9951

B
barrierye 已提交
9952 9953
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9954

B
barrierye 已提交
9955
            data = fluid.layers.data(
B
barrierye 已提交
9956 9957
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9958

B
barrierye 已提交
9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9971 9972 9973 9974 9975
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9976 9977 9978 9979 9980 9981 9982
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9983 9984


M
minqiyang 已提交
9985 9986
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9987 9988
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9989 9990
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10029
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10030
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10031 10032 10033 10034 10035 10036

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10037

M
minqiyang 已提交
10038 10039 10040
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10041 10042
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10043 10044
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10045 10046 10047 10048 10049 10050 10051
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10052 10053


D
dengkaipeng 已提交
10054
@templatedoc()
10055 10056
def grid_sampler(x, grid, name=None):
    """
10057
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10058
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10059 10060 10061 10062
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10063
    interpolation value of 4 nearest corner points.
10064

H
haowang101779990 已提交
10065
    .. code-block:: text
10066

H
haowang101779990 已提交
10067 10068
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10069

H
haowang101779990 已提交
10070 10071
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10072

H
haowang101779990 已提交
10073 10074 10075
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10076

H
haowang101779990 已提交
10077 10078 10079 10080 10081 10082 10083 10084 10085
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10086

H
haowang101779990 已提交
10087 10088 10089 10090
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10091

H
haowang101779990 已提交
10092 10093 10094 10095
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10096

H
haowang101779990 已提交
10097 10098 10099 10100
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10101

H
haowang101779990 已提交
10102 10103
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10104 10105

    Args:
10106 10107 10108
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10109 10110

    Returns:
H
haowang101779990 已提交
10111
        Variable: Output of shape [N, C, H, W] data samples input X
10112 10113
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10114 10115 10116 10117 10118 10119 10120 10121
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10122

D
dengkaipeng 已提交
10123 10124 10125 10126 10127 10128 10129 10130 10131
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10132
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10133 10134
    ipts = {'X': x, 'Grid': grid}

10135
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10136 10137 10138
    return out


G
gmcather 已提交
10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10205
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10206 10207 10208 10209 10210 10211 10212
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10213

H
heqiaozhi 已提交
10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10228 10229 10230 10231
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10232
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10233 10234
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10235
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10236 10237

    .. math::
H
haowang101779990 已提交
10238 10239 10240
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10241 10242

    Where:
H
haowang101779990 已提交
10243 10244
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10259

G
gmcather 已提交
10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10276 10277 10278 10279 10280 10281 10282 10283 10284 10285


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10286
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10287

Q
Qiao Longfei 已提交
10288
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10289 10290 10291
    For example:

    .. math::
H
haowang101779990 已提交
10292
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10293

Q
Qiao Longfei 已提交
10294
    In this formula:
10295 10296
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10297
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10298
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10299 10300 10301
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10302 10303
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10304 10305 10306
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10307
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10308
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10309
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10310 10311 10312 10313
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10314
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10315 10316 10317 10318

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10319
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10320 10321
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10322
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10323 10324 10325 10326

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10327
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10368 10369


S
shippingwang 已提交
10370
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10371 10372
    """
    **Shuffle Channel Operator**
10373

S
shippingwang 已提交
10374 10375 10376 10377 10378 10379
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10380
    
S
shippingwang 已提交
10381
    .. code-block:: text
10382

S
shippingwang 已提交
10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10411
    Args: 
S
shippingwang 已提交
10412 10413
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10414 10415

    Returns:
S
shippingwang 已提交
10416 10417
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10418 10419

    Raises:
S
shippingwang 已提交
10420
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10421 10422 10423

    Examples:
        .. code-block:: python
10424 10425

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10426
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10427 10428 10429
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10430
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10431 10432 10433 10434 10435 10436 10437 10438 10439

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10440
    return out
S
Add  
shippingwang 已提交
10441 10442


10443
@templatedoc()
D
dengkaipeng 已提交
10444
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10445 10446 10447 10448 10449 10450 10451 10452
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10453
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10454
        name (str, default None): The name of this layer.
10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10467
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10480 10481
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10482 10483 10484
    return out


S
sneaxiy 已提交
10485
class PyFuncRegistry(object):
S
sneaxiy 已提交
10486 10487 10488
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10489
        if func is None or not callable(func):
S
sneaxiy 已提交
10490 10491 10492
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10493
        # find named args using reflection
S
sneaxiy 已提交
10494 10495 10496 10497 10498 10499 10500
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10501 10502 10503
        '''
        Why record self here?

M
minqiyang 已提交
10504 10505
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10506
           to find the registered function corresponding
M
minqiyang 已提交
10507
           to :code:`idx`.
S
sneaxiy 已提交
10508

M
minqiyang 已提交
10509 10510
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10511
           whose reference count is 1 would cause
M
minqiyang 已提交
10512
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10513 10514
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10515
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10530 10531 10532 10533 10534 10535 10536 10537 10538
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10539

S
sneaxiy 已提交
10540 10541
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10542 10543

        ret = []
S
sneaxiy 已提交
10544 10545 10546
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10547 10548
                continue

S
sneaxiy 已提交
10549 10550
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10551

S
sneaxiy 已提交
10552 10553 10554
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10555

S
sneaxiy 已提交
10556
        return tuple(ret)
S
sneaxiy 已提交
10557 10558


S
sneaxiy 已提交
10559 10560 10561 10562
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10563

S
sneaxiy 已提交
10564 10565 10566 10567 10568 10569 10570 10571
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10572
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10573

S
sneaxiy 已提交
10574 10575
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10576 10577 10578 10579
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10580
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10581
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10582 10583
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10584 10585 10586 10587 10588
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10589
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10590
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10591
                                       None means no backward. Default None.
S
sneaxiy 已提交
10592
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10593
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10594 10595
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10596
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10597 10598 10599

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10600 10601

    Examples:
M
minqiyang 已提交
10602

S
sneaxiy 已提交
10603 10604 10605 10606 10607
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10608
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10609 10610
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10611
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10612 10613 10614
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10615
        >>>
S
sneaxiy 已提交
10616 10617 10618 10619 10620
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10621
        >>>     print(x)
S
sneaxiy 已提交
10622 10623 10624 10625 10626 10627
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10628
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10629 10630
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10631 10632
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10633 10634 10635 10636 10637 10638 10639 10640
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10641
    """
S
sneaxiy 已提交
10642
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10643 10644 10645
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10646
        x = [x]
S
sneaxiy 已提交
10647 10648
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10649

S
sneaxiy 已提交
10650 10651 10652
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10653
        out_list = [out]
S
sneaxiy 已提交
10654
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10655
        out_list = out
S
sneaxiy 已提交
10656 10657 10658
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10659

S
sneaxiy 已提交
10660 10661
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10662
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10663 10664

    for each_out in out_list:
S
sneaxiy 已提交
10665 10666
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10667 10668
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10669

S
sneaxiy 已提交
10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10685 10686 10687 10688

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10689 10690
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10691 10692 10693
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10694
        })
S
sneaxiy 已提交
10695
    return out
S
sneaxiy 已提交
10696 10697 10698


# For debug usage
S
sneaxiy 已提交
10699 10700 10701 10702
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10755

M
minqiyang 已提交
10756

M
minqiyang 已提交
10757
def huber_loss(input, label, delta):
10758
    """
M
minqiyang 已提交
10759 10760 10761
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10762 10763 10764 10765

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10766
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10767 10768 10769 10770

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10771
        huber\_loss = 0.5 * (label - input) * (label - input)
10772 10773 10774 10775 10776 10777 10778


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10779
        delta (float): The parameter of huber loss, which controls
10780 10781 10782
                       the range of outliers

    Returns:
M
minqiyang 已提交
10783
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10784 10785 10786 10787 10788

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10789
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10790
    """
M
minqiyang 已提交
10791
    helper = LayerHelper('huber_loss', **locals())
10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10803 10804


D
dengkaipeng 已提交
10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10905 10906


C
ceci3 已提交
10907
from .ops import square
C
ceci3 已提交
10908
from .control_flow import equal
C
ceci3 已提交
10909 10910


C
ceci3 已提交
10911 10912 10913
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10914

C
ceci3 已提交
10915
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10916 10917

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10918
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10919 10920 10921 10922 10923
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10924 10925
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10926 10927 10928 10929 10930 10931 10932

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10933 10934 10935 10936 10937 10938 10939 10940
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10941 10942 10943 10944 10945 10946 10947
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10948
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10949 10950
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10951 10952
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10953 10954 10955 10956
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10957 10958 10959
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10960 10961 10962
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10963 10964


R
ruri 已提交
10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

        Out(Variable): the pixel shuffle result is a tensor variable with the same shape and the same type as the input.

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

            input = fluid.layers.data(shape=[9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out