Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3c8aa787
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3c8aa787
编写于
1月 30, 2019
作者:
X
xuezhong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
define sampled_softmax_with_cross_entropy
上级
15d52f09
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
31 addition
and
17 deletion
+31
-17
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+30
-16
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+1
-1
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
3c8aa787
...
...
@@ -87,7 +87,7 @@ __all__ = [
'transpose'
,
'im2sequence'
,
'nce'
,
'sample
_logits
'
,
'sample
d_softmax_with_cross_entropy
'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
...
...
@@ -5765,23 +5765,22 @@ def softmax_with_cross_entropy(logits,
return
loss
def
sample
_logits
(
logits
,
label
,
num_samples
,
uniq
=
T
rue
,
remove_accidental_hits
=
True
,
use_custom_samples
=
False
,
custom_samples
=
None
,
custom_probabilities
=
None
,
seed
=
0
):
def
sample
d_softmax_with_cross_entropy
(
logits
,
label
,
num_samples
,
num_true
=
num_t
rue
,
remove_accidental_hits
=
True
,
use_custom_samples
=
False
,
custom_samples
=
None
,
custom_probabilities
=
None
,
seed
=
0
):
"""
**Sampled Softmax With Cross Entropy Operator.**
Cross entropy loss with sampled softmax is used as the output layer for
larger output classes extensively. This operator samples a number of samples
for
each example(row)
, and computes the softmax normalized values for each
for
all examples
, and computes the softmax normalized values for each
row of the sampled tensor, after which cross-entropy loss is computed.
This provides a more numerically stable gradient.
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
...
...
@@ -5810,13 +5809,19 @@ def sample_logits(logits,
labels per example.
num_samples (int): The number for each example, num_samples should be
less than the number of class.
seed (int): The random seed for generating random number, which is used
in the process of sampling. Default is 0.
num_true(int): The number of target classes per training example.
remove_accidental_hits (bool): A flag indicating whether to remove
accidental hits when sampling. If True and if a sample[i, j]
accidentally hits true labels, then the corresponding
sampled_logits[i, j] is minus by 1e20 to make its softmax result
close to zero. Default is True.
use_custom_samples (bool): Whether to use custom samples and probabities to sample
logits.
custom_samples (Variable): User defined samples, which is a 1-D tensor with shape [S]. S is the num_samples.
custom_probabilities (Variable): User defined probabilities of samples, a 1-D tensor which has the same shape with custom_samples.
seed (int): The random seed for generating random number, which is used
in the process of sampling. Default is 0.
Returns:
Variable: Return the cross entropy loss which is a 2-D tensor with shape
...
...
@@ -5855,12 +5860,21 @@ def sample_logits(logits,
},
attrs
=
{
'use_custom_samples'
:
use_custom_samples
,
'uniq'
:
uniq
,
'uniq'
:
True
,
'remove_accidental_hits'
:
remove_accidental_hits
,
'num_samples'
:
num_samples
,
'seed'
:
seed
})
return
sampled_logits
,
sampled_label
,
samples
,
probabilities
helper
.
append_op
(
type
=
'softmax_with_cross_entropy'
,
inputs
=
{
'Logits'
:
sampled_logits
,
'Label'
:
sampled_label
,
'soft_label'
:
False
,
},
outputs
=
{
'loss'
:
samples
,
})
return
outputs
/
num_true
def
smooth_l1
(
x
,
y
,
inside_weight
=
None
,
outside_weight
=
None
,
sigma
=
None
):
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
3c8aa787
...
...
@@ -374,7 +374,7 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
output
)
print
(
str
(
program
))
def
test_sample
_logits
(
self
):
def
test_sample
d_softmax_with_cross_entropy
(
self
):
program
=
Program
()
with
program_guard
(
program
):
logits
=
layers
.
data
(
name
=
'Logits'
,
shape
=
[
256
],
dtype
=
'float64'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录