i915_gem.c 135.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63 64
static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65

66 67 68 69 70 71
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

72 73 74 75 76 77 78 79
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

80 81 82 83 84 85 86 87
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
88
	obj->fence_dirty = false;
89 90 91
	obj->fence_reg = I915_FENCE_REG_NONE;
}

92 93 94 95
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101 102 103 104
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
105
	spin_lock(&dev_priv->mm.object_stat_lock);
106 107
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
108
	spin_unlock(&dev_priv->mm.object_stat_lock);
109 110
}

111
static int
112
i915_gem_wait_for_error(struct i915_gpu_error *error)
113 114 115
{
	int ret;

116 117
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
118
	if (EXIT_COND)
119 120
		return 0;

121 122 123 124 125
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
126 127 128
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
129 130 131 132
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
133
		return ret;
134
	}
135
#undef EXIT_COND
136

137
	return 0;
138 139
}

140
int i915_mutex_lock_interruptible(struct drm_device *dev)
141
{
142
	struct drm_i915_private *dev_priv = dev->dev_private;
143 144
	int ret;

145
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 147 148 149 150 151 152
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

153
	WARN_ON(i915_verify_lists(dev));
154 155
	return 0;
}
156

157
static inline bool
158
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159
{
160
	return i915_gem_obj_bound_any(obj) && !obj->active;
161 162
}

J
Jesse Barnes 已提交
163 164
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
165
		    struct drm_file *file)
J
Jesse Barnes 已提交
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
J
Jesse Barnes 已提交
168
	struct drm_i915_gem_init *args = data;
169

170 171 172
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

173 174 175
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
176

177 178 179 180
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
181
	mutex_lock(&dev->struct_mutex);
182 183
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
				  args->gtt_end);
184
	dev_priv->gtt.mappable_end = args->gtt_end;
185 186
	mutex_unlock(&dev->struct_mutex);

187
	return 0;
188 189
}

190 191
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192
			    struct drm_file *file)
193
{
194
	struct drm_i915_private *dev_priv = dev->dev_private;
195
	struct drm_i915_gem_get_aperture *args = data;
196 197
	struct drm_i915_gem_object *obj;
	size_t pinned;
198

199
	pinned = 0;
200
	mutex_lock(&dev->struct_mutex);
201
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
202
		if (i915_gem_obj_is_pinned(obj))
203
			pinned += i915_gem_obj_ggtt_size(obj);
204
	mutex_unlock(&dev->struct_mutex);
205

206
	args->aper_size = dev_priv->gtt.base.total;
207
	args->aper_available_size = args->aper_size - pinned;
208

209 210 211
	return 0;
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
{
	drm_dma_handle_t *phys = obj->phys_handle;

	if (!phys)
		return;

	if (obj->madv == I915_MADV_WILLNEED) {
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
		char *vaddr = phys->vaddr;
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
			struct page *page = shmem_read_mapping_page(mapping, i);
			if (!IS_ERR(page)) {
				char *dst = kmap_atomic(page);
				memcpy(dst, vaddr, PAGE_SIZE);
				drm_clflush_virt_range(dst, PAGE_SIZE);
				kunmap_atomic(dst);

				set_page_dirty(page);
				mark_page_accessed(page);
				page_cache_release(page);
			}
			vaddr += PAGE_SIZE;
		}
		i915_gem_chipset_flush(obj->base.dev);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
	drm_pci_free(obj->base.dev, phys);
	obj->phys_handle = NULL;
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
	struct address_space *mapping;
	char *vaddr;
	int i;

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	vaddr = phys->vaddr;
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
#endif
	mapping = file_inode(obj->base.filp)->i_mapping;
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page)) {
#ifdef CONFIG_X86
			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
#endif
			drm_pci_free(obj->base.dev, phys);
			return PTR_ERR(page);
		}

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		kunmap_atomic(src);

		mark_page_accessed(page);
		page_cache_release(page);

		vaddr += PAGE_SIZE;
	}

	obj->phys_handle = phys;
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

	i915_gem_chipset_flush(dev);
	return 0;
}

334 335 336
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
337
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 339 340 341 342 343 344 345
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

346 347 348 349 350
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
351
{
352
	struct drm_i915_gem_object *obj;
353 354
	int ret;
	u32 handle;
355

356
	size = roundup(size, PAGE_SIZE);
357 358
	if (size == 0)
		return -EINVAL;
359 360

	/* Allocate the new object */
361
	obj = i915_gem_alloc_object(dev, size);
362 363 364
	if (obj == NULL)
		return -ENOMEM;

365
	ret = drm_gem_handle_create(file, &obj->base, &handle);
366
	/* drop reference from allocate - handle holds it now */
367 368 369
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
370

371
	*handle_p = handle;
372 373 374
	return 0;
}

375 376 377 378 379 380
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
381
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 383 384 385 386 387 388 389 390 391 392 393 394
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
395

396 397 398 399
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

426
static inline int
427 428
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
477 478

		i915_gem_object_retire(obj);
479 480 481 482 483 484 485 486 487 488 489
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

490 491 492
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
493
static int
494 495 496 497 498 499 500
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

501
	if (unlikely(page_do_bit17_swizzling))
502 503 504 505 506 507 508 509 510 511 512
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

513
	return ret ? -EFAULT : 0;
514 515
}

516 517 518 519
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
520
	if (unlikely(swizzled)) {
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

538 539 540 541 542 543 544 545 546 547 548 549
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
550 551 552
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
553 554 555 556 557 558 559 560 561 562 563

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

564
	return ret ? - EFAULT : 0;
565 566
}

567
static int
568 569 570 571
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
572
{
573
	char __user *user_data;
574
	ssize_t remain;
575
	loff_t offset;
576
	int shmem_page_offset, page_length, ret = 0;
577
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578
	int prefaulted = 0;
579
	int needs_clflush = 0;
580
	struct sg_page_iter sg_iter;
581

V
Ville Syrjälä 已提交
582
	user_data = to_user_ptr(args->data_ptr);
583 584
	remain = args->size;

585
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586

587
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 589 590
	if (ret)
		return ret;

591
	offset = args->offset;
592

593 594
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
595
		struct page *page = sg_page_iter_page(&sg_iter);
596 597 598 599

		if (remain <= 0)
			break;

600 601 602 603 604
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
605
		shmem_page_offset = offset_in_page(offset);
606 607 608 609
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

610 611 612
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

613 614 615 616 617
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
618 619 620

		mutex_unlock(&dev->struct_mutex);

621
		if (likely(!i915.prefault_disable) && !prefaulted) {
622
			ret = fault_in_multipages_writeable(user_data, remain);
623 624 625 626 627 628 629
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
630

631 632 633
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
634

635
		mutex_lock(&dev->struct_mutex);
636 637

		if (ret)
638 639
			goto out;

640
next_page:
641
		remain -= page_length;
642
		user_data += page_length;
643 644 645
		offset += page_length;
	}

646
out:
647 648
	i915_gem_object_unpin_pages(obj);

649 650 651
	return ret;
}

652 653 654 655 656 657 658
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659
		     struct drm_file *file)
660 661
{
	struct drm_i915_gem_pread *args = data;
662
	struct drm_i915_gem_object *obj;
663
	int ret = 0;
664

665 666 667 668
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
669
		       to_user_ptr(args->data_ptr),
670 671 672
		       args->size))
		return -EFAULT;

673
	ret = i915_mutex_lock_interruptible(dev);
674
	if (ret)
675
		return ret;
676

677
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678
	if (&obj->base == NULL) {
679 680
		ret = -ENOENT;
		goto unlock;
681
	}
682

683
	/* Bounds check source.  */
684 685
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
686
		ret = -EINVAL;
687
		goto out;
C
Chris Wilson 已提交
688 689
	}

690 691 692 693 694 695 696 697
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
698 699
	trace_i915_gem_object_pread(obj, args->offset, args->size);

700
	ret = i915_gem_shmem_pread(dev, obj, args, file);
701

702
out:
703
	drm_gem_object_unreference(&obj->base);
704
unlock:
705
	mutex_unlock(&dev->struct_mutex);
706
	return ret;
707 708
}

709 710
/* This is the fast write path which cannot handle
 * page faults in the source data
711
 */
712 713 714 715 716 717

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
718
{
719 720
	void __iomem *vaddr_atomic;
	void *vaddr;
721
	unsigned long unwritten;
722

P
Peter Zijlstra 已提交
723
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 725 726
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
727
						      user_data, length);
P
Peter Zijlstra 已提交
728
	io_mapping_unmap_atomic(vaddr_atomic);
729
	return unwritten;
730 731
}

732 733 734 735
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
736
static int
737 738
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
739
			 struct drm_i915_gem_pwrite *args,
740
			 struct drm_file *file)
741
{
742
	struct drm_i915_private *dev_priv = dev->dev_private;
743
	ssize_t remain;
744
	loff_t offset, page_base;
745
	char __user *user_data;
D
Daniel Vetter 已提交
746 747
	int page_offset, page_length, ret;

748
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
749 750 751 752 753 754 755 756 757 758
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
759

V
Ville Syrjälä 已提交
760
	user_data = to_user_ptr(args->data_ptr);
761 762
	remain = args->size;

763
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764 765 766 767

	while (remain > 0) {
		/* Operation in this page
		 *
768 769 770
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
771
		 */
772 773
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
774 775 776 777 778
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
779 780
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
781
		 */
B
Ben Widawsky 已提交
782
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
783 784 785 786
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
787

788 789 790
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
791 792
	}

D
Daniel Vetter 已提交
793
out_unpin:
B
Ben Widawsky 已提交
794
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
795
out:
796
	return ret;
797 798
}

799 800 801 802
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
803
static int
804 805 806 807 808
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
809
{
810
	char *vaddr;
811
	int ret;
812

813
	if (unlikely(page_do_bit17_swizzling))
814
		return -EINVAL;
815

816 817 818 819
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
820 821
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
822 823 824 825
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
826

827
	return ret ? -EFAULT : 0;
828 829
}

830 831
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
832
static int
833 834 835 836 837
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
838
{
839 840
	char *vaddr;
	int ret;
841

842
	vaddr = kmap(page);
843
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 845 846
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
847 848
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 850
						user_data,
						page_length);
851 852 853 854 855
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
856 857 858
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
859
	kunmap(page);
860

861
	return ret ? -EFAULT : 0;
862 863 864
}

static int
865 866 867 868
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
869 870
{
	ssize_t remain;
871 872
	loff_t offset;
	char __user *user_data;
873
	int shmem_page_offset, page_length, ret = 0;
874
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875
	int hit_slowpath = 0;
876 877
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
878
	struct sg_page_iter sg_iter;
879

V
Ville Syrjälä 已提交
880
	user_data = to_user_ptr(args->data_ptr);
881 882
	remain = args->size;

883
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884

885 886 887 888 889
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
890
		needs_clflush_after = cpu_write_needs_clflush(obj);
891 892 893
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
894 895

		i915_gem_object_retire(obj);
896
	}
897 898 899 900 901
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
902

903 904 905 906 907 908
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

909
	offset = args->offset;
910
	obj->dirty = 1;
911

912 913
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
914
		struct page *page = sg_page_iter_page(&sg_iter);
915
		int partial_cacheline_write;
916

917 918 919
		if (remain <= 0)
			break;

920 921 922 923 924
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
925
		shmem_page_offset = offset_in_page(offset);
926 927 928 929 930

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

931 932 933 934 935 936 937
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

938 939 940
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

941 942 943 944 945 946
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
947 948 949

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
950 951 952 953
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
954

955
		mutex_lock(&dev->struct_mutex);
956 957

		if (ret)
958 959
			goto out;

960
next_page:
961
		remain -= page_length;
962
		user_data += page_length;
963
		offset += page_length;
964 965
	}

966
out:
967 968
	i915_gem_object_unpin_pages(obj);

969
	if (hit_slowpath) {
970 971 972 973 974 975 976
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 978
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
979
		}
980
	}
981

982
	if (needs_clflush_after)
983
		i915_gem_chipset_flush(dev);
984

985
	return ret;
986 987 988 989 990 991 992 993 994
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995
		      struct drm_file *file)
996 997
{
	struct drm_i915_gem_pwrite *args = data;
998
	struct drm_i915_gem_object *obj;
999 1000 1001 1002 1003 1004
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1005
		       to_user_ptr(args->data_ptr),
1006 1007 1008
		       args->size))
		return -EFAULT;

1009
	if (likely(!i915.prefault_disable)) {
1010 1011 1012 1013 1014
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1015

1016
	ret = i915_mutex_lock_interruptible(dev);
1017
	if (ret)
1018
		return ret;
1019

1020
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021
	if (&obj->base == NULL) {
1022 1023
		ret = -ENOENT;
		goto unlock;
1024
	}
1025

1026
	/* Bounds check destination. */
1027 1028
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1029
		ret = -EINVAL;
1030
		goto out;
C
Chris Wilson 已提交
1031 1032
	}

1033 1034 1035 1036 1037 1038 1039 1040
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1041 1042
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1043
	ret = -EFAULT;
1044 1045 1046 1047 1048 1049
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1050 1051
	if (obj->phys_handle) {
		ret = i915_gem_phys_pwrite(obj, args, file);
1052 1053 1054
		goto out;
	}

1055 1056 1057
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1058
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1059 1060 1061
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1062
	}
1063

1064
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
1065
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066

1067
out:
1068
	drm_gem_object_unreference(&obj->base);
1069
unlock:
1070
	mutex_unlock(&dev->struct_mutex);
1071 1072 1073
	return ret;
}

1074
int
1075
i915_gem_check_wedge(struct i915_gpu_error *error,
1076 1077
		     bool interruptible)
{
1078
	if (i915_reset_in_progress(error)) {
1079 1080 1081 1082 1083
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1084 1085
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1086 1087
			return -EIO;

1088 1089 1090 1091 1092 1093 1094
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1095 1096 1097 1098 1099 1100 1101 1102 1103
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
1104
int
1105
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1106 1107 1108 1109 1110 1111
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
1112
	if (seqno == ring->outstanding_lazy_seqno)
1113
		ret = i915_add_request(ring, NULL);
1114 1115 1116 1117

	return ret;
}

1118 1119 1120 1121 1122 1123
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1124
		       struct intel_engine_cs *ring)
1125 1126 1127 1128
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1129 1130 1131 1132 1133 1134 1135 1136
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1137 1138 1139 1140
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
1141
 * @reset_counter: reset sequence associated with the given seqno
1142 1143 1144
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1145 1146 1147 1148 1149 1150 1151
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1152 1153 1154
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1155
static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1156
			unsigned reset_counter,
1157
			bool interruptible,
1158
			s64 *timeout,
1159
			struct drm_i915_file_private *file_priv)
1160
{
1161
	struct drm_device *dev = ring->dev;
1162
	struct drm_i915_private *dev_priv = dev->dev_private;
1163 1164
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1165
	DEFINE_WAIT(wait);
1166
	unsigned long timeout_expire;
1167
	s64 before, now;
1168 1169
	int ret;

1170
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1171

1172 1173 1174
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

1175
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1176

1177
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1178 1179 1180 1181 1182 1183 1184
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1185
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1186 1187
		return -ENODEV;

1188 1189
	/* Record current time in case interrupted by signal, or wedged */
	trace_i915_gem_request_wait_begin(ring, seqno);
1190
	before = ktime_get_raw_ns();
1191 1192
	for (;;) {
		struct timer_list timer;
1193

1194 1195
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1196

1197 1198
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1199 1200 1201 1202 1203 1204 1205 1206
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1207

1208 1209 1210 1211
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
			ret = 0;
			break;
		}
1212

1213 1214 1215 1216 1217
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1218
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1219 1220 1221 1222 1223 1224
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1225 1226
			unsigned long expire;

1227
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1228
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1229 1230 1231
			mod_timer(&timer, expire);
		}

1232
		io_schedule();
1233 1234 1235 1236 1237 1238

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1239
	now = ktime_get_raw_ns();
1240
	trace_i915_gem_request_wait_end(ring, seqno);
1241

1242 1243
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1244 1245

	finish_wait(&ring->irq_queue, &wait);
1246 1247

	if (timeout) {
1248 1249 1250
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1251 1252
	}

1253
	return ret;
1254 1255 1256 1257 1258 1259 1260
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
1261
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1262 1263 1264 1265 1266 1267 1268 1269 1270
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

1271
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1272 1273 1274 1275 1276 1277 1278
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1279 1280
	return __wait_seqno(ring, seqno,
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1281
			    interruptible, NULL, NULL);
1282 1283
}

1284 1285
static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1286
				     struct intel_engine_cs *ring)
1287
{
1288 1289
	if (!obj->active)
		return 0;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
	 * Note that the last_write_seqno is always the earlier of
	 * the two (read/write) seqno, so if we haved successfully waited,
	 * we know we have passed the last write.
	 */
	obj->last_write_seqno = 0;

	return 0;
}

1303 1304 1305 1306 1307 1308 1309 1310
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1311
	struct intel_engine_cs *ring = obj->ring;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

1323
	return i915_gem_object_wait_rendering__tail(obj, ring);
1324 1325
}

1326 1327 1328 1329 1330
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1331
					    struct drm_i915_file_private *file_priv,
1332 1333 1334 1335
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1336
	struct intel_engine_cs *ring = obj->ring;
1337
	unsigned reset_counter;
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

1348
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1349 1350 1351 1352 1353 1354 1355
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

1356
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1357
	mutex_unlock(&dev->struct_mutex);
1358
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1359
	mutex_lock(&dev->struct_mutex);
1360 1361
	if (ret)
		return ret;
1362

1363
	return i915_gem_object_wait_rendering__tail(obj, ring);
1364 1365
}

1366
/**
1367 1368
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1369 1370 1371
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1372
			  struct drm_file *file)
1373 1374
{
	struct drm_i915_gem_set_domain *args = data;
1375
	struct drm_i915_gem_object *obj;
1376 1377
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1378 1379
	int ret;

1380
	/* Only handle setting domains to types used by the CPU. */
1381
	if (write_domain & I915_GEM_GPU_DOMAINS)
1382 1383
		return -EINVAL;

1384
	if (read_domains & I915_GEM_GPU_DOMAINS)
1385 1386 1387 1388 1389 1390 1391 1392
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1393
	ret = i915_mutex_lock_interruptible(dev);
1394
	if (ret)
1395
		return ret;
1396

1397
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1398
	if (&obj->base == NULL) {
1399 1400
		ret = -ENOENT;
		goto unlock;
1401
	}
1402

1403 1404 1405 1406
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1407 1408 1409
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1410 1411 1412
	if (ret)
		goto unref;

1413 1414
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1415 1416 1417 1418 1419 1420 1421

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1422
	} else {
1423
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1424 1425
	}

1426
unref:
1427
	drm_gem_object_unreference(&obj->base);
1428
unlock:
1429 1430 1431 1432 1433 1434 1435 1436 1437
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1438
			 struct drm_file *file)
1439 1440
{
	struct drm_i915_gem_sw_finish *args = data;
1441
	struct drm_i915_gem_object *obj;
1442 1443
	int ret = 0;

1444
	ret = i915_mutex_lock_interruptible(dev);
1445
	if (ret)
1446
		return ret;
1447

1448
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1449
	if (&obj->base == NULL) {
1450 1451
		ret = -ENOENT;
		goto unlock;
1452 1453 1454
	}

	/* Pinned buffers may be scanout, so flush the cache */
1455 1456
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1457

1458
	drm_gem_object_unreference(&obj->base);
1459
unlock:
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1473
		    struct drm_file *file)
1474 1475 1476 1477 1478
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1479
	obj = drm_gem_object_lookup(dev, file, args->handle);
1480
	if (obj == NULL)
1481
		return -ENOENT;
1482

1483 1484 1485 1486 1487 1488 1489 1490
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1491
	addr = vm_mmap(obj->filp, 0, args->size,
1492 1493
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1494
	drm_gem_object_unreference_unlocked(obj);
1495 1496 1497 1498 1499 1500 1501 1502
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1521 1522
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1523
	struct drm_i915_private *dev_priv = dev->dev_private;
1524 1525 1526
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1527
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1528

1529 1530
	intel_runtime_pm_get(dev_priv);

1531 1532 1533 1534
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1535 1536 1537
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1538

C
Chris Wilson 已提交
1539 1540
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1541 1542 1543 1544 1545 1546 1547 1548 1549
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1550 1551
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1552
		ret = -EFAULT;
1553 1554 1555
		goto unlock;
	}

1556
	/* Now bind it into the GTT if needed */
1557
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1558 1559
	if (ret)
		goto unlock;
1560

1561 1562 1563
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1564

1565
	ret = i915_gem_object_get_fence(obj);
1566
	if (ret)
1567
		goto unpin;
1568

1569
	/* Finally, remap it using the new GTT offset */
1570 1571
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1572

1573
	if (!obj->fault_mappable) {
1574 1575 1576
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1577 1578
		int i;

1579
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1592
unpin:
B
Ben Widawsky 已提交
1593
	i915_gem_object_ggtt_unpin(obj);
1594
unlock:
1595
	mutex_unlock(&dev->struct_mutex);
1596
out:
1597
	switch (ret) {
1598
	case -EIO:
1599 1600 1601 1602 1603 1604 1605
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1606 1607 1608
			ret = VM_FAULT_SIGBUS;
			break;
		}
1609
	case -EAGAIN:
D
Daniel Vetter 已提交
1610 1611 1612 1613
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1614
		 */
1615 1616
	case 0:
	case -ERESTARTSYS:
1617
	case -EINTR:
1618 1619 1620 1621 1622
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1623 1624
		ret = VM_FAULT_NOPAGE;
		break;
1625
	case -ENOMEM:
1626 1627
		ret = VM_FAULT_OOM;
		break;
1628
	case -ENOSPC:
1629
	case -EFAULT:
1630 1631
		ret = VM_FAULT_SIGBUS;
		break;
1632
	default:
1633
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1634 1635
		ret = VM_FAULT_SIGBUS;
		break;
1636
	}
1637 1638 1639

	intel_runtime_pm_put(dev_priv);
	return ret;
1640 1641
}

1642 1643 1644 1645
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1646
 * Preserve the reservation of the mmapping with the DRM core code, but
1647 1648 1649 1650 1651 1652 1653 1654 1655
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1656
void
1657
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1658
{
1659 1660
	if (!obj->fault_mappable)
		return;
1661

1662 1663
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1664
	obj->fault_mappable = false;
1665 1666
}

1667 1668 1669 1670 1671 1672 1673 1674 1675
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1676
uint32_t
1677
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1678
{
1679
	uint32_t gtt_size;
1680 1681

	if (INTEL_INFO(dev)->gen >= 4 ||
1682 1683
	    tiling_mode == I915_TILING_NONE)
		return size;
1684 1685 1686

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1687
		gtt_size = 1024*1024;
1688
	else
1689
		gtt_size = 512*1024;
1690

1691 1692
	while (gtt_size < size)
		gtt_size <<= 1;
1693

1694
	return gtt_size;
1695 1696
}

1697 1698 1699 1700 1701
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1702
 * potential fence register mapping.
1703
 */
1704 1705 1706
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1707 1708 1709 1710 1711
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1712
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1713
	    tiling_mode == I915_TILING_NONE)
1714 1715
		return 4096;

1716 1717 1718 1719
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1720
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1721 1722
}

1723 1724 1725 1726 1727
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1728
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1729 1730
		return 0;

1731 1732
	dev_priv->mm.shrinker_no_lock_stealing = true;

1733 1734
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1735
		goto out;
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1747
		goto out;
1748 1749

	i915_gem_shrink_all(dev_priv);
1750 1751 1752 1753 1754
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1755 1756 1757 1758 1759 1760 1761
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1762
int
1763 1764 1765 1766
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1767
{
1768
	struct drm_i915_private *dev_priv = dev->dev_private;
1769
	struct drm_i915_gem_object *obj;
1770 1771
	int ret;

1772
	ret = i915_mutex_lock_interruptible(dev);
1773
	if (ret)
1774
		return ret;
1775

1776
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1777
	if (&obj->base == NULL) {
1778 1779 1780
		ret = -ENOENT;
		goto unlock;
	}
1781

B
Ben Widawsky 已提交
1782
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1783
		ret = -E2BIG;
1784
		goto out;
1785 1786
	}

1787
	if (obj->madv != I915_MADV_WILLNEED) {
1788
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1789
		ret = -EFAULT;
1790
		goto out;
1791 1792
	}

1793 1794 1795
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1796

1797
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1798

1799
out:
1800
	drm_gem_object_unreference(&obj->base);
1801
unlock:
1802
	mutex_unlock(&dev->struct_mutex);
1803
	return ret;
1804 1805
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1830 1831 1832 1833 1834 1835
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1836 1837 1838
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1839
{
1840
	i915_gem_object_free_mmap_offset(obj);
1841

1842 1843
	if (obj->base.filp == NULL)
		return;
1844

D
Daniel Vetter 已提交
1845 1846 1847 1848 1849
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1850
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1851 1852
	obj->madv = __I915_MADV_PURGED;
}
1853

1854 1855 1856
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1857
{
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1872 1873
}

1874
static void
1875
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1876
{
1877 1878
	struct sg_page_iter sg_iter;
	int ret;
1879

1880
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1881

C
Chris Wilson 已提交
1882 1883 1884 1885 1886 1887
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1888
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1889 1890 1891
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1892
	if (i915_gem_object_needs_bit17_swizzle(obj))
1893 1894
		i915_gem_object_save_bit_17_swizzle(obj);

1895 1896
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1897

1898
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1899
		struct page *page = sg_page_iter_page(&sg_iter);
1900

1901
		if (obj->dirty)
1902
			set_page_dirty(page);
1903

1904
		if (obj->madv == I915_MADV_WILLNEED)
1905
			mark_page_accessed(page);
1906

1907
		page_cache_release(page);
1908
	}
1909
	obj->dirty = 0;
1910

1911 1912
	sg_free_table(obj->pages);
	kfree(obj->pages);
1913
}
C
Chris Wilson 已提交
1914

1915
int
1916 1917 1918 1919
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1920
	if (obj->pages == NULL)
1921 1922
		return 0;

1923 1924 1925
	if (obj->pages_pin_count)
		return -EBUSY;

1926
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
1927

1928 1929 1930
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
1931
	list_del(&obj->global_list);
1932

1933
	ops->put_pages(obj);
1934
	obj->pages = NULL;
1935

1936
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
1937 1938 1939 1940

	return 0;
}

1941
static unsigned long
1942 1943
__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
		  bool purgeable_only)
C
Chris Wilson 已提交
1944
{
1945 1946
	struct list_head still_in_list;
	struct drm_i915_gem_object *obj;
1947
	unsigned long count = 0;
C
Chris Wilson 已提交
1948

1949
	/*
1950
	 * As we may completely rewrite the (un)bound list whilst unbinding
1951 1952 1953
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
1967
	 */
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	INIT_LIST_HEAD(&still_in_list);
	while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
		obj = list_first_entry(&dev_priv->mm.unbound_list,
				       typeof(*obj), global_list);
		list_move_tail(&obj->global_list, &still_in_list);

		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

		drm_gem_object_reference(&obj->base);

		if (i915_gem_object_put_pages(obj) == 0)
			count += obj->base.size >> PAGE_SHIFT;

		drm_gem_object_unreference(&obj->base);
	}
	list_splice(&still_in_list, &dev_priv->mm.unbound_list);

	INIT_LIST_HEAD(&still_in_list);
1987
	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1988
		struct i915_vma *vma, *v;
1989

1990 1991
		obj = list_first_entry(&dev_priv->mm.bound_list,
				       typeof(*obj), global_list);
1992
		list_move_tail(&obj->global_list, &still_in_list);
1993

1994 1995 1996
		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
			continue;

1997 1998
		drm_gem_object_reference(&obj->base);

1999 2000 2001
		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
			if (i915_vma_unbind(vma))
				break;
2002

2003
		if (i915_gem_object_put_pages(obj) == 0)
C
Chris Wilson 已提交
2004
			count += obj->base.size >> PAGE_SHIFT;
2005 2006

		drm_gem_object_unreference(&obj->base);
C
Chris Wilson 已提交
2007
	}
2008
	list_splice(&still_in_list, &dev_priv->mm.bound_list);
C
Chris Wilson 已提交
2009 2010 2011 2012

	return count;
}

2013
static unsigned long
2014 2015 2016 2017 2018
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	return __i915_gem_shrink(dev_priv, target, true);
}

2019
static unsigned long
C
Chris Wilson 已提交
2020 2021 2022
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2023
	return __i915_gem_shrink(dev_priv, LONG_MAX, false);
D
Daniel Vetter 已提交
2024 2025
}

2026
static int
C
Chris Wilson 已提交
2027
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2028
{
C
Chris Wilson 已提交
2029
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2030 2031
	int page_count, i;
	struct address_space *mapping;
2032 2033
	struct sg_table *st;
	struct scatterlist *sg;
2034
	struct sg_page_iter sg_iter;
2035
	struct page *page;
2036
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2037
	gfp_t gfp;
2038

C
Chris Wilson 已提交
2039 2040 2041 2042 2043 2044 2045
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2046 2047 2048 2049
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2050
	page_count = obj->base.size / PAGE_SIZE;
2051 2052
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2053
		return -ENOMEM;
2054
	}
2055

2056 2057 2058 2059 2060
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2061
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2062
	gfp = mapping_gfp_mask(mapping);
2063
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2064
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2065 2066 2067
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2079
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2080 2081 2082
			if (IS_ERR(page))
				goto err_pages;
		}
2083 2084 2085 2086 2087 2088 2089 2090
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2091 2092 2093 2094 2095 2096 2097 2098 2099
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2100 2101 2102

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2103
	}
2104 2105 2106 2107
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2108 2109
	obj->pages = st;

2110
	if (i915_gem_object_needs_bit17_swizzle(obj))
2111 2112 2113 2114 2115
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
2116 2117
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2118
		page_cache_release(sg_page_iter_page(&sg_iter));
2119 2120
	sg_free_table(st);
	kfree(st);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2134 2135
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2150
	if (obj->pages)
2151 2152
		return 0;

2153
	if (obj->madv != I915_MADV_WILLNEED) {
2154
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2155
		return -EFAULT;
2156 2157
	}

2158 2159
	BUG_ON(obj->pages_pin_count);

2160 2161 2162 2163
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2164
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2165
	return 0;
2166 2167
}

B
Ben Widawsky 已提交
2168
static void
2169
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2170
			       struct intel_engine_cs *ring)
2171
{
2172
	u32 seqno = intel_ring_get_seqno(ring);
2173

2174
	BUG_ON(ring == NULL);
2175 2176 2177 2178
	if (obj->ring != ring && obj->last_write_seqno) {
		/* Keep the seqno relative to the current ring */
		obj->last_write_seqno = seqno;
	}
2179
	obj->ring = ring;
2180 2181

	/* Add a reference if we're newly entering the active list. */
2182 2183 2184
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2185
	}
2186

2187
	list_move_tail(&obj->ring_list, &ring->active_list);
2188

2189
	obj->last_read_seqno = seqno;
2190 2191
}

B
Ben Widawsky 已提交
2192
void i915_vma_move_to_active(struct i915_vma *vma,
2193
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2194 2195 2196 2197 2198
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2199 2200
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2201
{
B
Ben Widawsky 已提交
2202
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2203 2204
	struct i915_address_space *vm;
	struct i915_vma *vma;
2205

2206
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2207
	BUG_ON(!obj->active);
2208

2209 2210 2211 2212 2213
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
		vma = i915_gem_obj_to_vma(obj, vm);
		if (vma && !list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vm->inactive_list);
	}
2214

2215 2216
	intel_fb_obj_flush(obj, true);

2217
	list_del_init(&obj->ring_list);
2218 2219
	obj->ring = NULL;

2220 2221 2222 2223 2224
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
2225 2226 2227 2228 2229

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2230
}
2231

2232 2233 2234
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2235
	struct intel_engine_cs *ring = obj->ring;
2236 2237 2238 2239 2240 2241 2242 2243 2244

	if (ring == NULL)
		return;

	if (i915_seqno_passed(ring->get_seqno(ring, true),
			      obj->last_read_seqno))
		i915_gem_object_move_to_inactive(obj);
}

2245
static int
2246
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2247
{
2248
	struct drm_i915_private *dev_priv = dev->dev_private;
2249
	struct intel_engine_cs *ring;
2250
	int ret, i, j;
2251

2252
	/* Carefully retire all requests without writing to the rings */
2253
	for_each_ring(ring, dev_priv, i) {
2254 2255 2256
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2257 2258
	}
	i915_gem_retire_requests(dev);
2259 2260

	/* Finally reset hw state */
2261
	for_each_ring(ring, dev_priv, i) {
2262
		intel_ring_init_seqno(ring, seqno);
2263

2264 2265
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2266
	}
2267

2268
	return 0;
2269 2270
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2297 2298
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2299
{
2300 2301 2302 2303
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2304
		int ret = i915_gem_init_seqno(dev, 0);
2305 2306
		if (ret)
			return ret;
2307

2308 2309
		dev_priv->next_seqno = 1;
	}
2310

2311
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2312
	return 0;
2313 2314
}

2315
int __i915_add_request(struct intel_engine_cs *ring,
2316
		       struct drm_file *file,
2317
		       struct drm_i915_gem_object *obj,
2318
		       u32 *out_seqno)
2319
{
2320
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2321
	struct drm_i915_gem_request *request;
2322
	struct intel_ringbuffer *ringbuf;
2323
	u32 request_ring_position, request_start;
2324 2325
	int ret;

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	request = ring->preallocated_lazy_request;
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2337 2338 2339 2340 2341 2342 2343
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2344 2345 2346 2347 2348 2349 2350 2351 2352
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2353

2354 2355 2356 2357 2358
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2359
	request_ring_position = intel_ring_get_tail(ringbuf);
2360

2361 2362 2363 2364 2365 2366 2367 2368 2369
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2370

2371
	request->seqno = intel_ring_get_seqno(ring);
2372
	request->ring = ring;
2373
	request->head = request_start;
2374
	request->tail = request_ring_position;
2375 2376 2377 2378 2379 2380 2381

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2382
	request->batch_obj = obj;
2383

2384 2385 2386 2387 2388 2389 2390 2391
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2392

2393
	request->emitted_jiffies = jiffies;
2394
	list_add_tail(&request->list, &ring->request_list);
2395
	request->file_priv = NULL;
2396

C
Chris Wilson 已提交
2397 2398 2399
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2400
		spin_lock(&file_priv->mm.lock);
2401
		request->file_priv = file_priv;
2402
		list_add_tail(&request->client_list,
2403
			      &file_priv->mm.request_list);
2404
		spin_unlock(&file_priv->mm.lock);
2405
	}
2406

2407
	trace_i915_gem_request_add(ring, request->seqno);
2408
	ring->outstanding_lazy_seqno = 0;
2409
	ring->preallocated_lazy_request = NULL;
C
Chris Wilson 已提交
2410

2411
	if (!dev_priv->ums.mm_suspended) {
2412 2413
		i915_queue_hangcheck(ring->dev);

2414 2415 2416 2417 2418
		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
		intel_mark_busy(dev_priv->dev);
B
Ben Gamari 已提交
2419
	}
2420

2421
	if (out_seqno)
2422
		*out_seqno = request->seqno;
2423
	return 0;
2424 2425
}

2426 2427
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2428
{
2429
	struct drm_i915_file_private *file_priv = request->file_priv;
2430

2431 2432
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2433

2434
	spin_lock(&file_priv->mm.lock);
2435 2436
	list_del(&request->client_list);
	request->file_priv = NULL;
2437
	spin_unlock(&file_priv->mm.lock);
2438 2439
}

2440
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2441
				   const struct intel_context *ctx)
2442
{
2443
	unsigned long elapsed;
2444

2445 2446 2447
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2448 2449 2450
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2451
		if (!i915_gem_context_is_default(ctx)) {
2452
			DRM_DEBUG("context hanging too fast, banning!\n");
2453
			return true;
2454 2455 2456
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2457
			return true;
2458
		}
2459 2460 2461 2462 2463
	}

	return false;
}

2464
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2465
				  struct intel_context *ctx,
2466
				  const bool guilty)
2467
{
2468 2469 2470 2471
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2472

2473 2474 2475
	hs = &ctx->hang_stats;

	if (guilty) {
2476
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2477 2478 2479 2480
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2481 2482 2483
	}
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

	if (request->ctx)
		i915_gem_context_unreference(request->ctx);

	kfree(request);
}

2495
struct drm_i915_gem_request *
2496
i915_gem_find_active_request(struct intel_engine_cs *ring)
2497
{
2498
	struct drm_i915_gem_request *request;
2499 2500 2501
	u32 completed_seqno;

	completed_seqno = ring->get_seqno(ring, false);
2502 2503 2504 2505

	list_for_each_entry(request, &ring->request_list, list) {
		if (i915_seqno_passed(completed_seqno, request->seqno))
			continue;
2506

2507
		return request;
2508
	}
2509 2510 2511 2512 2513

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2514
				       struct intel_engine_cs *ring)
2515 2516 2517 2518
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2519
	request = i915_gem_find_active_request(ring);
2520 2521 2522 2523 2524 2525

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2526
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2527 2528

	list_for_each_entry_continue(request, &ring->request_list, list)
2529
		i915_set_reset_status(dev_priv, request->ctx, false);
2530
}
2531

2532
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2533
					struct intel_engine_cs *ring)
2534
{
2535
	while (!list_empty(&ring->active_list)) {
2536
		struct drm_i915_gem_object *obj;
2537

2538 2539 2540
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2541

2542
		i915_gem_object_move_to_inactive(obj);
2543
	}
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2561

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2574 2575 2576 2577
	/* These may not have been flush before the reset, do so now */
	kfree(ring->preallocated_lazy_request);
	ring->preallocated_lazy_request = NULL;
	ring->outstanding_lazy_seqno = 0;
2578 2579
}

2580
void i915_gem_restore_fences(struct drm_device *dev)
2581 2582 2583 2584
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2585
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2586
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2587

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2598 2599 2600
	}
}

2601
void i915_gem_reset(struct drm_device *dev)
2602
{
2603
	struct drm_i915_private *dev_priv = dev->dev_private;
2604
	struct intel_engine_cs *ring;
2605
	int i;
2606

2607 2608 2609 2610 2611 2612 2613 2614
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2615
	for_each_ring(ring, dev_priv, i)
2616
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2617

2618 2619
	i915_gem_context_reset(dev);

2620
	i915_gem_restore_fences(dev);
2621 2622 2623 2624 2625
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2626
void
2627
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2628 2629 2630
{
	uint32_t seqno;

C
Chris Wilson 已提交
2631
	if (list_empty(&ring->request_list))
2632 2633
		return;

C
Chris Wilson 已提交
2634
	WARN_ON(i915_verify_lists(ring->dev));
2635

2636
	seqno = ring->get_seqno(ring, true);
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2656
	while (!list_empty(&ring->request_list)) {
2657
		struct drm_i915_gem_request *request;
2658
		struct intel_ringbuffer *ringbuf;
2659

2660
		request = list_first_entry(&ring->request_list,
2661 2662 2663
					   struct drm_i915_gem_request,
					   list);

2664
		if (!i915_seqno_passed(seqno, request->seqno))
2665 2666
			break;

C
Chris Wilson 已提交
2667
		trace_i915_gem_request_retire(ring, request->seqno);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2680 2681 2682 2683 2684
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2685
		ringbuf->last_retired_head = request->tail;
2686

2687
		i915_gem_free_request(request);
2688
	}
2689

C
Chris Wilson 已提交
2690 2691
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2692
		ring->irq_put(ring);
C
Chris Wilson 已提交
2693
		ring->trace_irq_seqno = 0;
2694
	}
2695

C
Chris Wilson 已提交
2696
	WARN_ON(i915_verify_lists(ring->dev));
2697 2698
}

2699
bool
2700 2701
i915_gem_retire_requests(struct drm_device *dev)
{
2702
	struct drm_i915_private *dev_priv = dev->dev_private;
2703
	struct intel_engine_cs *ring;
2704
	bool idle = true;
2705
	int i;
2706

2707
	for_each_ring(ring, dev_priv, i) {
2708
		i915_gem_retire_requests_ring(ring);
2709 2710 2711 2712 2713 2714 2715 2716 2717
		idle &= list_empty(&ring->request_list);
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2718 2719
}

2720
static void
2721 2722
i915_gem_retire_work_handler(struct work_struct *work)
{
2723 2724 2725
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2726
	bool idle;
2727

2728
	/* Come back later if the device is busy... */
2729 2730 2731 2732
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2733
	}
2734
	if (!idle)
2735 2736
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2737
}
2738

2739 2740 2741 2742 2743 2744 2745
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2746 2747
}

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2759
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2760 2761 2762 2763 2764 2765 2766 2767 2768
		if (ret)
			return ret;

		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2794
	struct drm_i915_private *dev_priv = dev->dev_private;
2795 2796
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2797
	struct intel_engine_cs *ring = NULL;
2798
	unsigned reset_counter;
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	u32 seqno = 0;
	int ret = 0;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2812 2813
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2814 2815 2816 2817
	if (ret)
		goto out;

	if (obj->active) {
2818
		seqno = obj->last_read_seqno;
2819 2820 2821 2822 2823 2824 2825
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
2826
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2827
	 */
2828
	if (args->timeout_ns <= 0) {
2829 2830 2831 2832 2833
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2834
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2835 2836
	mutex_unlock(&dev->struct_mutex);

2837 2838
	return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
			    file->driver_priv);
2839 2840 2841 2842 2843 2844 2845

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2858 2859
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2860
		     struct intel_engine_cs *to)
2861
{
2862
	struct intel_engine_cs *from = obj->ring;
2863 2864 2865 2866 2867 2868
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2869
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2870
		return i915_gem_object_wait_rendering(obj, false);
2871 2872 2873

	idx = intel_ring_sync_index(from, to);

2874
	seqno = obj->last_read_seqno;
R
Rodrigo Vivi 已提交
2875 2876
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2877
	if (seqno <= from->semaphore.sync_seqno[idx])
2878 2879
		return 0;

2880 2881 2882
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2883

2884
	trace_i915_gem_ring_sync_to(from, to, seqno);
2885
	ret = to->semaphore.sync_to(to, from, seqno);
2886
	if (!ret)
2887 2888 2889 2890
		/* We use last_read_seqno because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2891
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2892

2893
	return ret;
2894 2895
}

2896 2897 2898 2899 2900 2901 2902
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2903 2904 2905
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2906 2907 2908
	/* Wait for any direct GTT access to complete */
	mb();

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2920
int i915_vma_unbind(struct i915_vma *vma)
2921
{
2922
	struct drm_i915_gem_object *obj = vma->obj;
2923
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2924
	int ret;
2925

2926
	if (list_empty(&vma->vma_link))
2927 2928
		return 0;

2929 2930 2931 2932
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2933

B
Ben Widawsky 已提交
2934
	if (vma->pin_count)
2935
		return -EBUSY;
2936

2937 2938
	BUG_ON(obj->pages == NULL);

2939
	ret = i915_gem_object_finish_gpu(obj);
2940
	if (ret)
2941 2942 2943 2944 2945 2946
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2947 2948
	if (i915_is_ggtt(vma->vm)) {
		i915_gem_object_finish_gtt(obj);
2949

2950 2951 2952 2953 2954
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
2955

2956
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2957

2958 2959
	vma->unbind_vma(vma);

2960
	list_del_init(&vma->mm_list);
2961
	if (i915_is_ggtt(vma->vm))
2962
		obj->map_and_fenceable = false;
2963

B
Ben Widawsky 已提交
2964 2965 2966 2967
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
2968
	 * no more VMAs exist. */
2969 2970
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
2971
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2972
	}
2973

2974 2975 2976 2977 2978 2979
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2980
	return 0;
2981 2982
}

2983
int i915_gpu_idle(struct drm_device *dev)
2984
{
2985
	struct drm_i915_private *dev_priv = dev->dev_private;
2986
	struct intel_engine_cs *ring;
2987
	int ret, i;
2988 2989

	/* Flush everything onto the inactive list. */
2990
	for_each_ring(ring, dev_priv, i) {
2991 2992 2993 2994 2995
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
2996

2997
		ret = intel_ring_idle(ring);
2998 2999 3000
		if (ret)
			return ret;
	}
3001

3002
	return 0;
3003 3004
}

3005 3006
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3007
{
3008
	struct drm_i915_private *dev_priv = dev->dev_private;
3009 3010
	int fence_reg;
	int fence_pitch_shift;
3011

3012 3013 3014 3015 3016 3017 3018 3019
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3034
	if (obj) {
3035
		u32 size = i915_gem_obj_ggtt_size(obj);
3036
		uint64_t val;
3037

3038
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3039
				 0xfffff000) << 32;
3040
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3041
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3042 3043 3044
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3055 3056
}

3057 3058
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3059
{
3060
	struct drm_i915_private *dev_priv = dev->dev_private;
3061
	u32 val;
3062

3063
	if (obj) {
3064
		u32 size = i915_gem_obj_ggtt_size(obj);
3065 3066
		int pitch_val;
		int tile_width;
3067

3068
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3069
		     (size & -size) != size ||
3070 3071 3072
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3083
		val = i915_gem_obj_ggtt_offset(obj);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3099 3100
}

3101 3102
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3103
{
3104
	struct drm_i915_private *dev_priv = dev->dev_private;
3105 3106
	uint32_t val;

3107
	if (obj) {
3108
		u32 size = i915_gem_obj_ggtt_size(obj);
3109
		uint32_t pitch_val;
3110

3111
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3112
		     (size & -size) != size ||
3113 3114 3115
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3116

3117 3118
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3119

3120
		val = i915_gem_obj_ggtt_offset(obj);
3121 3122 3123 3124 3125 3126 3127
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3128

3129 3130 3131 3132
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3133 3134 3135 3136 3137
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3138 3139 3140
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3141 3142 3143 3144 3145 3146 3147 3148
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3149 3150 3151 3152
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3153
	switch (INTEL_INFO(dev)->gen) {
3154
	case 8:
3155
	case 7:
3156
	case 6:
3157 3158 3159 3160
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3161
	default: BUG();
3162
	}
3163 3164 3165 3166 3167 3168

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3169 3170
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3181
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3182 3183 3184
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3185 3186

	if (enable) {
3187
		obj->fence_reg = reg;
3188 3189 3190 3191 3192 3193 3194
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3195
	obj->fence_dirty = false;
3196 3197
}

3198
static int
3199
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3200
{
3201
	if (obj->last_fenced_seqno) {
3202
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3203 3204
		if (ret)
			return ret;
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

		obj->last_fenced_seqno = 0;
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3215
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3216
	struct drm_i915_fence_reg *fence;
3217 3218
	int ret;

3219
	ret = i915_gem_object_wait_fence(obj);
3220 3221 3222
	if (ret)
		return ret;

3223 3224
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3225

3226 3227
	fence = &dev_priv->fence_regs[obj->fence_reg];

3228 3229 3230
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3231
	i915_gem_object_fence_lost(obj);
3232
	i915_gem_object_update_fence(obj, fence, false);
3233 3234 3235 3236 3237

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3238
i915_find_fence_reg(struct drm_device *dev)
3239 3240
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3241
	struct drm_i915_fence_reg *reg, *avail;
3242
	int i;
3243 3244

	/* First try to find a free reg */
3245
	avail = NULL;
3246 3247 3248
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3249
			return reg;
3250

3251
		if (!reg->pin_count)
3252
			avail = reg;
3253 3254
	}

3255
	if (avail == NULL)
3256
		goto deadlock;
3257 3258

	/* None available, try to steal one or wait for a user to finish */
3259
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3260
		if (reg->pin_count)
3261 3262
			continue;

C
Chris Wilson 已提交
3263
		return reg;
3264 3265
	}

3266 3267 3268 3269 3270 3271
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3272 3273
}

3274
/**
3275
 * i915_gem_object_get_fence - set up fencing for an object
3276 3277 3278 3279 3280 3281 3282 3283 3284
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3285 3286
 *
 * For an untiled surface, this removes any existing fence.
3287
 */
3288
int
3289
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3290
{
3291
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3292
	struct drm_i915_private *dev_priv = dev->dev_private;
3293
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3294
	struct drm_i915_fence_reg *reg;
3295
	int ret;
3296

3297 3298 3299
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3300
	if (obj->fence_dirty) {
3301
		ret = i915_gem_object_wait_fence(obj);
3302 3303 3304
		if (ret)
			return ret;
	}
3305

3306
	/* Just update our place in the LRU if our fence is getting reused. */
3307 3308
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3309
		if (!obj->fence_dirty) {
3310 3311 3312 3313 3314
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3315 3316 3317
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3318
		reg = i915_find_fence_reg(dev);
3319 3320
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3321

3322 3323 3324
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3325
			ret = i915_gem_object_wait_fence(old);
3326 3327 3328
			if (ret)
				return ret;

3329
			i915_gem_object_fence_lost(old);
3330
		}
3331
	} else
3332 3333
		return 0;

3334 3335
	i915_gem_object_update_fence(obj, reg, enable);

3336
	return 0;
3337 3338
}

3339 3340 3341 3342 3343 3344 3345 3346
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
3347
	 * crossing memory domains and dying.
3348 3349 3350 3351
	 */
	if (HAS_LLC(dev))
		return true;

3352
	if (!drm_mm_node_allocated(gtt_space))
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

3376
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3377 3378 3379 3380 3381 3382 3383 3384
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3385 3386
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3397 3398
			       i915_gem_obj_ggtt_offset(obj),
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

3409 3410 3411
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3412
static struct i915_vma *
3413 3414 3415
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3416
			   uint64_t flags)
3417
{
3418
	struct drm_device *dev = obj->base.dev;
3419
	struct drm_i915_private *dev_priv = dev->dev_private;
3420
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3421 3422 3423
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3424
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3425
	struct i915_vma *vma;
3426
	int ret;
3427

3428 3429 3430 3431 3432
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3433
						     obj->tiling_mode, true);
3434
	unfenced_alignment =
3435
		i915_gem_get_gtt_alignment(dev,
3436 3437
					   obj->base.size,
					   obj->tiling_mode, false);
3438

3439
	if (alignment == 0)
3440
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3441
						unfenced_alignment;
3442
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3443
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3444
		return ERR_PTR(-EINVAL);
3445 3446
	}

3447
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3448

3449 3450 3451
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3452 3453
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3454
			  obj->base.size,
3455
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3456
			  end);
3457
		return ERR_PTR(-E2BIG);
3458 3459
	}

3460
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3461
	if (ret)
3462
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3463

3464 3465
	i915_gem_object_pin_pages(obj);

3466
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3467
	if (IS_ERR(vma))
3468
		goto err_unpin;
B
Ben Widawsky 已提交
3469

3470
search_free:
3471
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3472
						  size, alignment,
3473 3474
						  obj->cache_level,
						  start, end,
3475 3476
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3477
	if (ret) {
3478
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3479 3480 3481
					       obj->cache_level,
					       start, end,
					       flags);
3482 3483
		if (ret == 0)
			goto search_free;
3484

3485
		goto err_free_vma;
3486
	}
B
Ben Widawsky 已提交
3487
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3488
					      obj->cache_level))) {
B
Ben Widawsky 已提交
3489
		ret = -EINVAL;
3490
		goto err_remove_node;
3491 3492
	}

3493
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3494
	if (ret)
3495
		goto err_remove_node;
3496

3497
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3498
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3499

3500 3501
	if (i915_is_ggtt(vm)) {
		bool mappable, fenceable;
3502

3503 3504
		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);
3505

3506 3507
		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);
3508

3509
		obj->map_and_fenceable = mappable && fenceable;
3510
	}
3511

3512
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3513

3514
	trace_i915_vma_bind(vma, flags);
3515 3516 3517
	vma->bind_vma(vma, obj->cache_level,
		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);

3518
	i915_gem_verify_gtt(dev);
3519
	return vma;
B
Ben Widawsky 已提交
3520

3521
err_remove_node:
3522
	drm_mm_remove_node(&vma->node);
3523
err_free_vma:
B
Ben Widawsky 已提交
3524
	i915_gem_vma_destroy(vma);
3525
	vma = ERR_PTR(ret);
3526
err_unpin:
B
Ben Widawsky 已提交
3527
	i915_gem_object_unpin_pages(obj);
3528
	return vma;
3529 3530
}

3531
bool
3532 3533
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3534 3535 3536 3537 3538
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3539
	if (obj->pages == NULL)
3540
		return false;
3541

3542 3543 3544 3545 3546
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
	if (obj->stolen)
3547
		return false;
3548

3549 3550 3551 3552 3553 3554 3555 3556
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3557
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3558
		return false;
3559

C
Chris Wilson 已提交
3560
	trace_i915_gem_object_clflush(obj);
3561
	drm_clflush_sg(obj->pages);
3562 3563

	return true;
3564 3565 3566 3567
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3568
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3569
{
C
Chris Wilson 已提交
3570 3571
	uint32_t old_write_domain;

3572
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3573 3574
		return;

3575
	/* No actual flushing is required for the GTT write domain.  Writes
3576 3577
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3578 3579 3580 3581
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3582
	 */
3583 3584
	wmb();

3585 3586
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3587

3588 3589
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3590
	trace_i915_gem_object_change_domain(obj,
3591
					    obj->base.read_domains,
C
Chris Wilson 已提交
3592
					    old_write_domain);
3593 3594 3595 3596
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3597 3598
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3599
{
C
Chris Wilson 已提交
3600
	uint32_t old_write_domain;
3601

3602
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3603 3604
		return;

3605 3606 3607
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3608 3609
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3610

3611 3612
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3613
	trace_i915_gem_object_change_domain(obj,
3614
					    obj->base.read_domains,
C
Chris Wilson 已提交
3615
					    old_write_domain);
3616 3617
}

3618 3619 3620 3621 3622 3623
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3624
int
3625
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3626
{
3627
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3628
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
C
Chris Wilson 已提交
3629
	uint32_t old_write_domain, old_read_domains;
3630
	int ret;
3631

3632
	/* Not valid to be called on unbound objects. */
3633
	if (vma == NULL)
3634 3635
		return -EINVAL;

3636 3637 3638
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3639
	ret = i915_gem_object_wait_rendering(obj, !write);
3640 3641 3642
	if (ret)
		return ret;

3643
	i915_gem_object_retire(obj);
3644
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3645

3646 3647 3648 3649 3650 3651 3652
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3653 3654
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3655

3656 3657 3658
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3659 3660
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3661
	if (write) {
3662 3663 3664
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3665 3666
	}

3667 3668 3669
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3670 3671 3672 3673
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3674
	/* And bump the LRU for this access */
3675 3676 3677
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&vma->mm_list,
			       &dev_priv->gtt.base.inactive_list);
3678

3679 3680 3681
	return 0;
}

3682 3683 3684
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3685
	struct drm_device *dev = obj->base.dev;
3686
	struct i915_vma *vma, *next;
3687 3688 3689 3690 3691
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3692
	if (i915_gem_obj_is_pinned(obj)) {
3693 3694 3695 3696
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3697
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3698
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3699
			ret = i915_vma_unbind(vma);
3700 3701 3702
			if (ret)
				return ret;
		}
3703 3704
	}

3705
	if (i915_gem_obj_bound_any(obj)) {
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3716
		if (INTEL_INFO(dev)->gen < 6) {
3717 3718 3719 3720 3721
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3722
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3723 3724 3725
			if (drm_mm_node_allocated(&vma->node))
				vma->bind_vma(vma, cache_level,
					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3726 3727
	}

3728 3729 3730 3731 3732
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3733 3734 3735 3736 3737 3738 3739 3740
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3741
		i915_gem_object_retire(obj);
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

3755
	i915_gem_verify_gtt(dev);
3756 3757 3758
	return 0;
}

B
Ben Widawsky 已提交
3759 3760
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3761
{
B
Ben Widawsky 已提交
3762
	struct drm_i915_gem_caching *args = data;
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3776 3777 3778 3779 3780 3781
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3782 3783 3784 3785
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3786 3787 3788 3789
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3790 3791 3792 3793 3794 3795 3796

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3797 3798
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3799
{
B
Ben Widawsky 已提交
3800
	struct drm_i915_gem_caching *args = data;
3801 3802 3803 3804
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3805 3806
	switch (args->caching) {
	case I915_CACHING_NONE:
3807 3808
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3809
	case I915_CACHING_CACHED:
3810 3811
		level = I915_CACHE_LLC;
		break;
3812 3813 3814
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3815 3816 3817 3818
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3819 3820 3821 3822
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3837 3838
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3839 3840 3841 3842 3843 3844
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	/* There are 3 sources that pin objects:
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *   3. The user.
	 *
	 * We can ignore reservations as we hold the struct_mutex and
	 * are only called outside of the reservation path.  The user
	 * can only increment pin_count once, and so if after
	 * subtracting the potential reference by the user, any pin_count
	 * remains, it must be due to another use by the display engine.
	 */
3856
	return vma->pin_count - !!obj->user_pin_count;
3857 3858
}

3859
/*
3860 3861 3862
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3863 3864
 */
int
3865 3866
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3867
				     struct intel_engine_cs *pipelined)
3868
{
3869
	u32 old_read_domains, old_write_domain;
3870
	bool was_pin_display;
3871 3872
	int ret;

3873
	if (pipelined != obj->ring) {
3874 3875
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3876 3877 3878
			return ret;
	}

3879 3880 3881
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3882
	was_pin_display = obj->pin_display;
3883 3884
	obj->pin_display = true;

3885 3886 3887 3888 3889 3890 3891 3892 3893
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3894 3895
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3896
	if (ret)
3897
		goto err_unpin_display;
3898

3899 3900 3901 3902
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3903
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3904
	if (ret)
3905
		goto err_unpin_display;
3906

3907
	i915_gem_object_flush_cpu_write_domain(obj, true);
3908

3909
	old_write_domain = obj->base.write_domain;
3910
	old_read_domains = obj->base.read_domains;
3911 3912 3913 3914

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3915
	obj->base.write_domain = 0;
3916
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3917 3918 3919

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3920
					    old_write_domain);
3921 3922

	return 0;
3923 3924

err_unpin_display:
3925 3926
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3927 3928 3929 3930 3931 3932
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3933
	i915_gem_object_ggtt_unpin(obj);
3934
	obj->pin_display = is_pin_display(obj);
3935 3936
}

3937
int
3938
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3939
{
3940 3941
	int ret;

3942
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3943 3944
		return 0;

3945
	ret = i915_gem_object_wait_rendering(obj, false);
3946 3947 3948
	if (ret)
		return ret;

3949 3950
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3951
	return 0;
3952 3953
}

3954 3955 3956 3957 3958 3959
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3960
int
3961
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3962
{
C
Chris Wilson 已提交
3963
	uint32_t old_write_domain, old_read_domains;
3964 3965
	int ret;

3966 3967 3968
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3969
	ret = i915_gem_object_wait_rendering(obj, !write);
3970 3971 3972
	if (ret)
		return ret;

3973
	i915_gem_object_retire(obj);
3974
	i915_gem_object_flush_gtt_write_domain(obj);
3975

3976 3977
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3978

3979
	/* Flush the CPU cache if it's still invalid. */
3980
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3981
		i915_gem_clflush_object(obj, false);
3982

3983
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3984 3985 3986 3987 3988
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3989
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3990 3991 3992 3993 3994

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3995 3996
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3997
	}
3998

3999 4000 4001
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4002 4003 4004 4005
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4006 4007 4008
	return 0;
}

4009 4010 4011
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4012 4013 4014 4015
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4016 4017 4018
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4019
static int
4020
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4021
{
4022 4023
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4024
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4025
	struct drm_i915_gem_request *request;
4026
	struct intel_engine_cs *ring = NULL;
4027
	unsigned reset_counter;
4028 4029
	u32 seqno = 0;
	int ret;
4030

4031 4032 4033 4034 4035 4036 4037
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4038

4039
	spin_lock(&file_priv->mm.lock);
4040
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4041 4042
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4043

4044 4045
		ring = request->ring;
		seqno = request->seqno;
4046
	}
4047
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4048
	spin_unlock(&file_priv->mm.lock);
4049

4050 4051
	if (seqno == 0)
		return 0;
4052

4053
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4054 4055
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4056 4057 4058 4059

	return ret;
}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4079
int
4080
i915_gem_object_pin(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4081
		    struct i915_address_space *vm,
4082
		    uint32_t alignment,
4083
		    uint64_t flags)
4084
{
4085
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4086
	struct i915_vma *vma;
4087 4088
	int ret;

4089 4090 4091
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4092
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4093
		return -EINVAL;
4094 4095 4096

	vma = i915_gem_obj_to_vma(obj, vm);
	if (vma) {
B
Ben Widawsky 已提交
4097 4098 4099
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4100
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4101
			WARN(vma->pin_count,
4102
			     "bo is already pinned with incorrect alignment:"
4103
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4104
			     " obj->map_and_fenceable=%d\n",
4105
			     i915_gem_obj_offset(obj, vm), alignment,
4106
			     !!(flags & PIN_MAPPABLE),
4107
			     obj->map_and_fenceable);
4108
			ret = i915_vma_unbind(vma);
4109 4110
			if (ret)
				return ret;
4111 4112

			vma = NULL;
4113 4114 4115
		}
	}

4116
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4117 4118 4119
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4120
	}
J
Jesse Barnes 已提交
4121

4122 4123
	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4124

4125
	vma->pin_count++;
4126 4127
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4128 4129 4130 4131 4132

	return 0;
}

void
B
Ben Widawsky 已提交
4133
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4134
{
B
Ben Widawsky 已提交
4135
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4136

B
Ben Widawsky 已提交
4137 4138 4139 4140 4141
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4142
		obj->pin_mappable = false;
4143 4144
}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4171 4172
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4173
		   struct drm_file *file)
4174 4175
{
	struct drm_i915_gem_pin *args = data;
4176
	struct drm_i915_gem_object *obj;
4177 4178
	int ret;

4179 4180 4181
	if (INTEL_INFO(dev)->gen >= 6)
		return -ENODEV;

4182 4183 4184
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4185

4186
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4187
	if (&obj->base == NULL) {
4188 4189
		ret = -ENOENT;
		goto unlock;
4190 4191
	}

4192
	if (obj->madv != I915_MADV_WILLNEED) {
4193
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4194
		ret = -EFAULT;
4195
		goto out;
4196 4197
	}

4198
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4199
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4200
			  args->handle);
4201 4202
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4203 4204
	}

4205 4206 4207 4208 4209
	if (obj->user_pin_count == ULONG_MAX) {
		ret = -EBUSY;
		goto out;
	}

4210
	if (obj->user_pin_count == 0) {
4211
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4212 4213
		if (ret)
			goto out;
4214 4215
	}

4216 4217 4218
	obj->user_pin_count++;
	obj->pin_filp = file;

4219
	args->offset = i915_gem_obj_ggtt_offset(obj);
4220
out:
4221
	drm_gem_object_unreference(&obj->base);
4222
unlock:
4223
	mutex_unlock(&dev->struct_mutex);
4224
	return ret;
4225 4226 4227 4228
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4229
		     struct drm_file *file)
4230 4231
{
	struct drm_i915_gem_pin *args = data;
4232
	struct drm_i915_gem_object *obj;
4233
	int ret;
4234

4235 4236 4237
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4238

4239
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4240
	if (&obj->base == NULL) {
4241 4242
		ret = -ENOENT;
		goto unlock;
4243
	}
4244

4245
	if (obj->pin_filp != file) {
4246
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
J
Jesse Barnes 已提交
4247
			  args->handle);
4248 4249
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4250
	}
4251 4252 4253
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
B
Ben Widawsky 已提交
4254
		i915_gem_object_ggtt_unpin(obj);
J
Jesse Barnes 已提交
4255
	}
4256

4257
out:
4258
	drm_gem_object_unreference(&obj->base);
4259
unlock:
4260
	mutex_unlock(&dev->struct_mutex);
4261
	return ret;
4262 4263 4264 4265
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4266
		    struct drm_file *file)
4267 4268
{
	struct drm_i915_gem_busy *args = data;
4269
	struct drm_i915_gem_object *obj;
4270 4271
	int ret;

4272
	ret = i915_mutex_lock_interruptible(dev);
4273
	if (ret)
4274
		return ret;
4275

4276
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4277
	if (&obj->base == NULL) {
4278 4279
		ret = -ENOENT;
		goto unlock;
4280
	}
4281

4282 4283 4284 4285
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4286
	 */
4287
	ret = i915_gem_object_flush_active(obj);
4288

4289
	args->busy = obj->active;
4290 4291 4292 4293
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
4294

4295
	drm_gem_object_unreference(&obj->base);
4296
unlock:
4297
	mutex_unlock(&dev->struct_mutex);
4298
	return ret;
4299 4300 4301 4302 4303 4304
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4305
	return i915_gem_ring_throttle(dev, file_priv);
4306 4307
}

4308 4309 4310 4311 4312
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
4313
	struct drm_i915_gem_object *obj;
4314
	int ret;
4315 4316 4317 4318 4319 4320 4321 4322 4323

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4324 4325 4326 4327
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4328
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4329
	if (&obj->base == NULL) {
4330 4331
		ret = -ENOENT;
		goto unlock;
4332 4333
	}

B
Ben Widawsky 已提交
4334
	if (i915_gem_obj_is_pinned(obj)) {
4335 4336
		ret = -EINVAL;
		goto out;
4337 4338
	}

4339 4340
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4341

C
Chris Wilson 已提交
4342 4343
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4344 4345
		i915_gem_object_truncate(obj);

4346
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4347

4348
out:
4349
	drm_gem_object_unreference(&obj->base);
4350
unlock:
4351
	mutex_unlock(&dev->struct_mutex);
4352
	return ret;
4353 4354
}

4355 4356
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4357
{
4358
	INIT_LIST_HEAD(&obj->global_list);
4359
	INIT_LIST_HEAD(&obj->ring_list);
4360
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4361
	INIT_LIST_HEAD(&obj->vma_list);
4362

4363 4364
	obj->ops = ops;

4365 4366 4367 4368 4369 4370
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4371 4372 4373 4374 4375
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4376 4377
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4378
{
4379
	struct drm_i915_gem_object *obj;
4380
	struct address_space *mapping;
D
Daniel Vetter 已提交
4381
	gfp_t mask;
4382

4383
	obj = i915_gem_object_alloc(dev);
4384 4385
	if (obj == NULL)
		return NULL;
4386

4387
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4388
		i915_gem_object_free(obj);
4389 4390
		return NULL;
	}
4391

4392 4393 4394 4395 4396 4397 4398
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4399
	mapping = file_inode(obj->base.filp)->i_mapping;
4400
	mapping_set_gfp_mask(mapping, mask);
4401

4402
	i915_gem_object_init(obj, &i915_gem_object_ops);
4403

4404 4405
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4406

4407 4408
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4424 4425
	trace_i915_gem_object_create(obj);

4426
	return obj;
4427 4428
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4453
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4454
{
4455
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4456
	struct drm_device *dev = obj->base.dev;
4457
	struct drm_i915_private *dev_priv = dev->dev_private;
4458
	struct i915_vma *vma, *next;
4459

4460 4461
	intel_runtime_pm_get(dev_priv);

4462 4463
	trace_i915_gem_object_destroy(obj);

4464
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4465 4466 4467 4468
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4469 4470
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4471

4472 4473
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4474

4475
			WARN_ON(i915_vma_unbind(vma));
4476

4477 4478
			dev_priv->mm.interruptible = was_interruptible;
		}
4479 4480
	}

4481 4482
	i915_gem_object_detach_phys(obj);

B
Ben Widawsky 已提交
4483 4484 4485 4486 4487
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4488 4489
	WARN_ON(obj->frontbuffer_bits);

B
Ben Widawsky 已提交
4490 4491
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4492
	if (discard_backing_storage(obj))
4493
		obj->madv = I915_MADV_DONTNEED;
4494
	i915_gem_object_put_pages(obj);
4495
	i915_gem_object_free_mmap_offset(obj);
4496

4497 4498
	BUG_ON(obj->pages);

4499 4500
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4501

4502 4503 4504
	if (obj->ops->release)
		obj->ops->release(obj);

4505 4506
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4507

4508
	kfree(obj->bit_17);
4509
	i915_gem_object_free(obj);
4510 4511

	intel_runtime_pm_put(dev_priv);
4512 4513
}

4514
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
B
Ben Widawsky 已提交
4515
				     struct i915_address_space *vm)
4516 4517 4518 4519 4520 4521 4522 4523 4524
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == vm)
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4525 4526
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4527
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4528
	WARN_ON(vma->node.allocated);
4529 4530 4531 4532 4533

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4534 4535
	vm = vma->vm;

4536 4537
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4538

4539
	list_del(&vma->vma_link);
4540

B
Ben Widawsky 已提交
4541 4542 4543
	kfree(vma);
}

4544 4545 4546 4547
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4548
	struct intel_engine_cs *ring;
4549 4550 4551
	int i;

	for_each_ring(ring, dev_priv, i)
4552
		dev_priv->gt.stop_ring(ring);
4553 4554
}

4555
int
4556
i915_gem_suspend(struct drm_device *dev)
4557
{
4558
	struct drm_i915_private *dev_priv = dev->dev_private;
4559
	int ret = 0;
4560

4561
	mutex_lock(&dev->struct_mutex);
4562
	if (dev_priv->ums.mm_suspended)
4563
		goto err;
4564

4565
	ret = i915_gpu_idle(dev);
4566
	if (ret)
4567
		goto err;
4568

4569
	i915_gem_retire_requests(dev);
4570

4571
	/* Under UMS, be paranoid and evict. */
4572
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4573
		i915_gem_evict_everything(dev);
4574 4575

	i915_kernel_lost_context(dev);
4576
	i915_gem_stop_ringbuffers(dev);
4577

4578 4579 4580 4581 4582 4583 4584 4585 4586
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound ums.mm_suspended!
	 */
	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
							     DRIVER_MODESET);
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4587
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4588
	flush_delayed_work(&dev_priv->mm.idle_work);
4589

4590
	return 0;
4591 4592 4593 4594

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4595 4596
}

4597
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4598
{
4599
	struct drm_device *dev = ring->dev;
4600
	struct drm_i915_private *dev_priv = dev->dev_private;
4601 4602
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4603
	int i, ret;
B
Ben Widawsky 已提交
4604

4605
	if (!HAS_L3_DPF(dev) || !remap_info)
4606
		return 0;
B
Ben Widawsky 已提交
4607

4608 4609 4610
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4611

4612 4613 4614 4615 4616
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4617
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4618 4619 4620
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4621 4622
	}

4623
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4624

4625
	return ret;
B
Ben Widawsky 已提交
4626 4627
}

4628 4629
void i915_gem_init_swizzling(struct drm_device *dev)
{
4630
	struct drm_i915_private *dev_priv = dev->dev_private;
4631

4632
	if (INTEL_INFO(dev)->gen < 5 ||
4633 4634 4635 4636 4637 4638
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4639 4640 4641
	if (IS_GEN5(dev))
		return;

4642 4643
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4644
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4645
	else if (IS_GEN7(dev))
4646
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4647 4648
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4649 4650
	else
		BUG();
4651
}
D
Daniel Vetter 已提交
4652

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4696
int i915_gem_init_rings(struct drm_device *dev)
4697
{
4698
	struct drm_i915_private *dev_priv = dev->dev_private;
4699
	int ret;
4700

4701 4702 4703 4704 4705 4706 4707 4708
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4709
	ret = intel_init_render_ring_buffer(dev);
4710
	if (ret)
4711
		return ret;
4712 4713

	if (HAS_BSD(dev)) {
4714
		ret = intel_init_bsd_ring_buffer(dev);
4715 4716
		if (ret)
			goto cleanup_render_ring;
4717
	}
4718

4719
	if (intel_enable_blt(dev)) {
4720 4721 4722 4723 4724
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4725 4726 4727 4728 4729 4730
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4731 4732 4733 4734 4735
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4736

4737
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4738
	if (ret)
4739
		goto cleanup_bsd2_ring;
4740 4741 4742

	return 0;

4743 4744
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4745 4746
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4760
	struct drm_i915_private *dev_priv = dev->dev_private;
4761
	int ret, i;
4762 4763 4764 4765

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4766
	if (dev_priv->ellc_size)
4767
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4768

4769 4770 4771
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4772

4773
	if (HAS_PCH_NOP(dev)) {
4774 4775 4776 4777 4778 4779 4780 4781 4782
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4783 4784
	}

4785 4786
	i915_gem_init_swizzling(dev);

4787
	ret = dev_priv->gt.init_rings(dev);
4788 4789 4790
	if (ret)
		return ret;

4791 4792 4793
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4794
	/*
4795 4796 4797 4798 4799
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4800
	 */
4801
	ret = i915_gem_context_enable(dev_priv);
4802
	if (ret && ret != -EIO) {
4803
		DRM_ERROR("Context enable failed %d\n", ret);
4804
		i915_gem_cleanup_ringbuffer(dev);
4805 4806 4807 4808 4809 4810 4811 4812

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4813
	}
D
Daniel Vetter 已提交
4814

4815
	return ret;
4816 4817
}

4818 4819 4820 4821 4822
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4823 4824 4825
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4826
	mutex_lock(&dev->struct_mutex);
4827 4828 4829

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4830 4831 4832
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4833 4834 4835
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4836 4837 4838 4839 4840
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4841 4842 4843 4844 4845
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4846 4847
	}

4848 4849 4850 4851 4852 4853
	ret = i915_gem_init_userptr(dev);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

4854
	i915_gem_init_global_gtt(dev);
4855

4856
	ret = i915_gem_context_init(dev);
4857 4858
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4859
		return ret;
4860
	}
4861

4862
	ret = i915_gem_init_hw(dev);
4863 4864 4865 4866 4867 4868 4869 4870
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4871
	}
4872
	mutex_unlock(&dev->struct_mutex);
4873

4874 4875 4876
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4877
	return ret;
4878 4879
}

4880 4881 4882
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4883
	struct drm_i915_private *dev_priv = dev->dev_private;
4884
	struct intel_engine_cs *ring;
4885
	int i;
4886

4887
	for_each_ring(ring, dev_priv, i)
4888
		dev_priv->gt.cleanup_ring(ring);
4889 4890
}

4891 4892 4893 4894
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4895
	struct drm_i915_private *dev_priv = dev->dev_private;
4896
	int ret;
4897

J
Jesse Barnes 已提交
4898 4899 4900
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4901
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4902
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4903
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4904 4905 4906
	}

	mutex_lock(&dev->struct_mutex);
4907
	dev_priv->ums.mm_suspended = 0;
4908

4909
	ret = i915_gem_init_hw(dev);
4910 4911
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4912
		return ret;
4913
	}
4914

4915
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4916

4917
	ret = drm_irq_install(dev, dev->pdev->irq);
4918 4919
	if (ret)
		goto cleanup_ringbuffer;
4920
	mutex_unlock(&dev->struct_mutex);
4921

4922
	return 0;
4923 4924 4925

cleanup_ringbuffer:
	i915_gem_cleanup_ringbuffer(dev);
4926
	dev_priv->ums.mm_suspended = 1;
4927 4928 4929
	mutex_unlock(&dev->struct_mutex);

	return ret;
4930 4931 4932 4933 4934 4935
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4936 4937 4938
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4939
	mutex_lock(&dev->struct_mutex);
4940
	drm_irq_uninstall(dev);
4941
	mutex_unlock(&dev->struct_mutex);
4942

4943
	return i915_gem_suspend(dev);
4944 4945 4946 4947 4948 4949 4950
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4951 4952 4953
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4954
	ret = i915_gem_suspend(dev);
4955 4956
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4957 4958
}

4959
static void
4960
init_ring_lists(struct intel_engine_cs *ring)
4961 4962 4963 4964 4965
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4966 4967
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4968
{
4969 4970
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4971 4972 4973 4974
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4975
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4976 4977
}

4978 4979 4980
void
i915_gem_load(struct drm_device *dev)
{
4981
	struct drm_i915_private *dev_priv = dev->dev_private;
4982 4983 4984 4985 4986 4987 4988
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4989

B
Ben Widawsky 已提交
4990 4991 4992
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4993
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4994 4995
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4996
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4997 4998
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4999
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5000
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5001 5002
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5003 5004
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5005
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5006

5007
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5008
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5009 5010
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5011 5012
	}

5013 5014
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5015
	/* Old X drivers will take 0-2 for front, back, depth buffers */
5016 5017
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
5018

5019 5020 5021
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5022 5023 5024 5025
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5026
	/* Initialize fence registers to zero */
5027 5028
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5029

5030
	i915_gem_detect_bit_6_swizzle(dev);
5031
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5032

5033 5034
	dev_priv->mm.interruptible = true;

5035 5036 5037 5038
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5039 5040 5041

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5042 5043

	mutex_init(&dev_priv->fb_tracking.lock);
5044
}
5045

5046
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5047
{
5048
	struct drm_i915_file_private *file_priv = file->driver_priv;
5049

5050 5051
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5052 5053 5054 5055
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5056
	spin_lock(&file_priv->mm.lock);
5057 5058 5059 5060 5061 5062 5063 5064 5065
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5066
	spin_unlock(&file_priv->mm.lock);
5067
}
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5081
	int ret;
5082 5083 5084 5085 5086 5087 5088 5089 5090

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5091
	file_priv->file = file;
5092 5093 5094 5095 5096 5097

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5098 5099 5100
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5101

5102
	return ret;
5103 5104
}

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5163
static unsigned long
5164
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5165
{
5166
	struct drm_i915_private *dev_priv =
5167
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5168
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5169
	struct drm_i915_gem_object *obj;
5170
	unsigned long count;
5171
	bool unlock;
5172

5173 5174
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5175

5176
	count = 0;
5177
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5178
		if (obj->pages_pin_count == 0)
5179
			count += obj->base.size >> PAGE_SHIFT;
5180 5181

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5182 5183
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5184
			count += obj->base.size >> PAGE_SHIFT;
5185
	}
5186

5187 5188
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5189

5190
	return count;
5191
}
5192 5193 5194 5195 5196 5197 5198 5199

/* All the new VM stuff */
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
				  struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5200
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5201 5202 5203 5204 5205 5206

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (vma->vm == vm)
			return vma->node.start;

	}
5207 5208
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5209 5210 5211 5212 5213 5214 5215 5216 5217
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5218
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5219 5220 5221 5222 5223 5224 5225
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5226
	struct i915_vma *vma;
5227

5228 5229
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5241
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5252
static unsigned long
5253
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5254 5255
{
	struct drm_i915_private *dev_priv =
5256
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5257 5258
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5259
	bool unlock;
5260

5261 5262
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5263

5264 5265 5266 5267 5268
	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
	if (freed < sc->nr_to_scan)
		freed += __i915_gem_shrink(dev_priv,
					   sc->nr_to_scan - freed,
					   false);
5269 5270
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5271

5272 5273
	return freed;
}
5274

5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
	unsigned long pinned, bound, unbound, freed;
	bool was_interruptible;
	bool unlock;

5287
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5288
		schedule_timeout_killable(1);
5289 5290 5291
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

	freed = i915_gem_shrink_all(dev_priv);

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

	pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
		freed, pinned);
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

	*(unsigned long *)ptr += freed;
	return NOTIFY_DONE;
}

5342 5343 5344 5345 5346
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5347
	if (vma->vm != i915_obj_to_ggtt(obj))
5348 5349 5350 5351
		return NULL;

	return vma;
}