i915_gem.c 144.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/drm_pci.h>
30
#include <drm/i915_drm.h>
31
#include <linux/dma-fence-array.h>
32
#include <linux/kthread.h>
33
#include <linux/reservation.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/stop_machine.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40
#include <linux/mman.h>
41

42 43 44
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
45
#include "i915_globals.h"
46 47 48 49 50 51 52
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
53
#include "intel_pm.h"
54 55
#include "intel_workarounds.h"

56
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
57

58 59
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
60
	if (obj->cache_dirty)
61 62
		return false;

63
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
64 65
		return true;

66
	return obj->pin_global; /* currently in use by HW, keep flushed */
67 68
}

69
static int
70
insert_mappable_node(struct i915_ggtt *ggtt,
71 72 73
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
74
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
75 76 77
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
78 79 80 81 82 83 84 85
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88
				  u64 size)
89
{
90
	spin_lock(&dev_priv->mm.object_stat_lock);
91 92
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
93
	spin_unlock(&dev_priv->mm.object_stat_lock);
94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97
				     u64 size)
98
{
99
	spin_lock(&dev_priv->mm.object_stat_lock);
100 101
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
102
	spin_unlock(&dev_priv->mm.object_stat_lock);
103 104
}

105
static void __i915_gem_park(struct drm_i915_private *i915)
106
{
C
Chris Wilson 已提交
107 108
	intel_wakeref_t wakeref;

109 110
	GEM_TRACE("\n");

111 112
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
113
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
114 115

	if (!i915->gt.awake)
116
		return;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
132
	i915_timelines_park(i915);
133 134

	i915_pmu_gt_parked(i915);
135
	i915_vma_parked(i915);
136

C
Chris Wilson 已提交
137 138
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
139 140 141 142

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

143
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
144

145
	i915_globals_park();
146 147 148 149
}

void i915_gem_park(struct drm_i915_private *i915)
{
150 151
	GEM_TRACE("\n");

152 153 154 155 156 157 158 159 160 161 162 163
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
164 165
	GEM_TRACE("\n");

166 167
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
168
	assert_rpm_wakelock_held(i915);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
184 185
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
186

187 188
	i915_globals_unpark();

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

204 205
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
206
			    struct drm_file *file)
207
{
208
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
209
	struct drm_i915_gem_get_aperture *args = data;
210
	struct i915_vma *vma;
211
	u64 pinned;
212

213 214
	mutex_lock(&ggtt->vm.mutex);

215
	pinned = ggtt->vm.reserved;
216
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
217
		if (i915_vma_is_pinned(vma))
218
			pinned += vma->node.size;
219 220

	mutex_unlock(&ggtt->vm.mutex);
221

222
	args->aper_size = ggtt->vm.total;
223
	args->aper_available_size = args->aper_size - pinned;
224

225 226 227
	return 0;
}

228
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
229
{
230
	struct address_space *mapping = obj->base.filp->f_mapping;
231
	drm_dma_handle_t *phys;
232 233
	struct sg_table *st;
	struct scatterlist *sg;
234
	char *vaddr;
235
	int i;
236
	int err;
237

238
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
239
		return -EINVAL;
240

241 242 243 244 245
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
246
			     roundup_pow_of_two(obj->base.size),
247 248
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
249
		return -ENOMEM;
250 251

	vaddr = phys->vaddr;
252 253 254 255 256
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
257
		if (IS_ERR(page)) {
258
			err = PTR_ERR(page);
259 260
			goto err_phys;
		}
261 262 263 264 265 266

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

267
		put_page(page);
268 269 270
		vaddr += PAGE_SIZE;
	}

271
	i915_gem_chipset_flush(to_i915(obj->base.dev));
272 273

	st = kmalloc(sizeof(*st), GFP_KERNEL);
274
	if (!st) {
275
		err = -ENOMEM;
276 277
		goto err_phys;
	}
278 279 280

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
281
		err = -ENOMEM;
282
		goto err_phys;
283 284 285 286 287
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
288

289
	sg_dma_address(sg) = phys->busaddr;
290 291
	sg_dma_len(sg) = obj->base.size;

292
	obj->phys_handle = phys;
293

294
	__i915_gem_object_set_pages(obj, st, sg->length);
295 296

	return 0;
297 298 299

err_phys:
	drm_pci_free(obj->base.dev, phys);
300 301

	return err;
302 303
}

304 305
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
306 307
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
308 309 310 311
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

312
void
313
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
314 315
				struct sg_table *pages,
				bool needs_clflush)
316
{
C
Chris Wilson 已提交
317
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
318

C
Chris Wilson 已提交
319 320
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
321

322
	if (needs_clflush &&
323
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
324
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
325
		drm_clflush_sg(pages);
326

327
	__start_cpu_write(obj);
328 329 330 331 332 333
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
334
	__i915_gem_object_release_shmem(obj, pages, false);
335

C
Chris Wilson 已提交
336
	if (obj->mm.dirty) {
337
		struct address_space *mapping = obj->base.filp->f_mapping;
338
		char *vaddr = obj->phys_handle->vaddr;
339 340 341
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
342 343 344 345 346 347 348 349 350 351 352 353 354
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
355
			if (obj->mm.madv == I915_MADV_WILLNEED)
356
				mark_page_accessed(page);
357
			put_page(page);
358 359
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
360
		obj->mm.dirty = false;
361 362
	}

363 364
	sg_free_table(pages);
	kfree(pages);
365 366

	drm_pci_free(obj->base.dev, obj->phys_handle);
367 368 369 370 371
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
372
	i915_gem_object_unpin_pages(obj);
373 374 375 376 377 378 379 380
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

381 382
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

383
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
384 385 386
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
387 388 389
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
390

391 392 393 394
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
395
	 */
396
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
397 398 399
	if (ret)
		return ret;

400 401 402 403
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
404
		list_move_tail(&vma->obj_link, &still_in_list);
405 406
		spin_unlock(&obj->vma.lock);

407
		ret = i915_vma_unbind(vma);
408 409

		spin_lock(&obj->vma.lock);
410
	}
411 412
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
413 414 415 416

	return ret;
}

417 418 419
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
420
			   long timeout)
421
{
422
	struct i915_request *rq;
423

424
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
425

426 427 428 429 430 431 432 433 434
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
435
	if (i915_request_completed(rq))
436 437
		goto out;

438
	timeout = i915_request_wait(rq, flags, timeout);
439 440

out:
441 442
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
443 444 445 446 447 448 449

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
450
				 long timeout)
451
{
452
	unsigned int seq = __read_seqcount_begin(&resv->seq);
453
	struct dma_fence *excl;
454
	bool prune_fences = false;
455 456 457 458

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
459 460
		int ret;

461 462
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
463 464 465
		if (ret)
			return ret;

466 467
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
468
							     flags, timeout);
469
			if (timeout < 0)
470
				break;
471

472 473 474 475 476 477
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
478

479 480 481 482 483 484 485 486 487
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
488
		prune_fences = count && timeout >= 0;
489 490
	} else {
		excl = reservation_object_get_excl_rcu(resv);
491 492
	}

493
	if (excl && timeout >= 0)
494
		timeout = i915_gem_object_wait_fence(excl, flags, timeout);
495 496 497

	dma_fence_put(excl);

498 499
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
500 501 502
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
503
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
504 505 506 507 508
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
509 510
	}

511
	return timeout;
512 513
}

514 515
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
516
{
517
	struct i915_request *rq;
518 519
	struct intel_engine_cs *engine;

520
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
521 522 523 524 525
		return;

	rq = to_request(fence);
	engine = rq->engine;

526 527
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
528
	if (engine->schedule)
529
		engine->schedule(rq, attr);
530
	rcu_read_unlock();
531
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
532 533
}

534 535
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
536 537 538 539 540 541 542
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
543
			__fence_set_priority(array->fences[i], attr);
544
	} else {
545
		__fence_set_priority(fence, attr);
546 547 548 549 550 551
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
552
			      const struct i915_sched_attr *attr)
553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
567
			fence_set_priority(shared[i], attr);
568 569 570 571 572 573 574 575 576
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
577
		fence_set_priority(excl, attr);
578 579 580 581 582
		dma_fence_put(excl);
	}
	return 0;
}

583 584 585 586 587
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
588
 */
589 590 591
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
592
		     long timeout)
593
{
594 595
	might_sleep();
	GEM_BUG_ON(timeout < 0);
596

597
	timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
598
	return timeout < 0 ? timeout : 0;
599 600
}

601 602 603
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
604
		     struct drm_file *file)
605 606
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
607
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
608 609 610 611

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
612
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
613 614
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
615

616
	drm_clflush_virt_range(vaddr, args->size);
617
	i915_gem_chipset_flush(to_i915(obj->base.dev));
618

619
	intel_fb_obj_flush(obj, ORIGIN_CPU);
620
	return 0;
621 622
}

623 624
static int
i915_gem_create(struct drm_file *file,
625
		struct drm_i915_private *dev_priv,
626
		u64 *size_p,
627
		u32 *handle_p)
628
{
629
	struct drm_i915_gem_object *obj;
630
	u32 handle;
631 632
	u64 size;
	int ret;
633

634
	size = round_up(*size_p, PAGE_SIZE);
635 636
	if (size == 0)
		return -EINVAL;
637 638

	/* Allocate the new object */
639
	obj = i915_gem_object_create(dev_priv, size);
640 641
	if (IS_ERR(obj))
		return PTR_ERR(obj);
642

643
	ret = drm_gem_handle_create(file, &obj->base, &handle);
644
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
645
	i915_gem_object_put(obj);
646 647
	if (ret)
		return ret;
648

649
	*handle_p = handle;
650
	*size_p = size;
651 652 653
	return 0;
}

654 655 656 657 658 659
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
660
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
661
	args->size = args->pitch * args->height;
662
	return i915_gem_create(file, to_i915(dev),
663
			       &args->size, &args->handle);
664 665
}

666 667 668 669 670 671
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

672 673
/**
 * Creates a new mm object and returns a handle to it.
674 675 676
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
677 678 679 680 681
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
682
	struct drm_i915_private *dev_priv = to_i915(dev);
683
	struct drm_i915_gem_create *args = data;
684

685
	i915_gem_flush_free_objects(dev_priv);
686

687
	return i915_gem_create(file, dev_priv,
688
			       &args->size, &args->handle);
689 690
}

691 692 693 694 695 696 697
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

698
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
699
{
700 701
	intel_wakeref_t wakeref;

702 703 704 705 706
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
707 708 709 710 711 712 713 714 715 716
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
717 718
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
719
	 */
720

721 722 723 724 725
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

726
	i915_gem_chipset_flush(dev_priv);
727

728 729
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
730

731
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
732

733 734
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
735 736 737 738 739 740 741 742
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

743
	if (!(obj->write_domain & flush_domains))
744 745
		return;

746
	switch (obj->write_domain) {
747
	case I915_GEM_DOMAIN_GTT:
748
		i915_gem_flush_ggtt_writes(dev_priv);
749 750 751

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
752

753
		for_each_ggtt_vma(vma, obj) {
754 755 756 757 758
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
759 760
		break;

761 762 763 764
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

765 766 767
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
768 769 770 771 772

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
773 774
	}

775
	obj->write_domain = 0;
776 777
}

778 779 780 781 782 783
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
784
				    unsigned int *needs_clflush)
785 786 787
{
	int ret;

788
	lockdep_assert_held(&obj->base.dev->struct_mutex);
789

790
	*needs_clflush = 0;
791 792
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
793

794 795 796
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
797
				   MAX_SCHEDULE_TIMEOUT);
798 799 800
	if (ret)
		return ret;

C
Chris Wilson 已提交
801
	ret = i915_gem_object_pin_pages(obj);
802 803 804
	if (ret)
		return ret;

805 806
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
807 808 809 810 811 812 813
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

814
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
815

816 817 818 819 820
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
821
	if (!obj->cache_dirty &&
822
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
823
		*needs_clflush = CLFLUSH_BEFORE;
824

825
out:
826
	/* return with the pages pinned */
827
	return 0;
828 829 830 831

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
832 833 834 835 836 837 838
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

839 840
	lockdep_assert_held(&obj->base.dev->struct_mutex);

841 842 843 844
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

845 846 847 848
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
849
				   MAX_SCHEDULE_TIMEOUT);
850 851 852
	if (ret)
		return ret;

C
Chris Wilson 已提交
853
	ret = i915_gem_object_pin_pages(obj);
854 855 856
	if (ret)
		return ret;

857 858
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
859 860 861 862 863 864 865
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

866
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
867

868 869 870 871 872
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
873
	if (!obj->cache_dirty) {
874
		*needs_clflush |= CLFLUSH_AFTER;
875

876 877 878 879
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
880
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
881 882
			*needs_clflush |= CLFLUSH_BEFORE;
	}
883

884
out:
885
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
886
	obj->mm.dirty = true;
887
	/* return with the pages pinned */
888
	return 0;
889 890 891 892

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
893 894
}

895
static int
896 897
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
898 899 900 901 902 903
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

904 905
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
906

907
	ret = __copy_to_user(user_data, vaddr + offset, len);
908

909
	kunmap(page);
910

911
	return ret ? -EFAULT : 0;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
938
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
958
{
959
	void __iomem *vaddr;
960
	unsigned long unwritten;
961 962

	/* We can use the cpu mem copy function because this is X86. */
963 964 965 966
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
967 968
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
969 970 971 972
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
973 974
		io_mapping_unmap(vaddr);
	}
975 976 977 978
	return unwritten;
}

static int
979 980
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
981
{
982 983
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
984
	intel_wakeref_t wakeref;
985
	struct drm_mm_node node;
986 987 988
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
989 990
	int ret;

991 992 993 994
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

995
	wakeref = intel_runtime_pm_get(i915);
996
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
997 998 999
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1000 1001 1002
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1003
		ret = i915_vma_put_fence(vma);
1004 1005 1006 1007 1008
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1009
	if (IS_ERR(vma)) {
1010
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1011
		if (ret)
1012 1013
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1014 1015 1016 1017 1018 1019
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1020
	mutex_unlock(&i915->drm.struct_mutex);
1021

1022 1023 1024
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1039 1040 1041
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1042 1043 1044 1045
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1046

1047
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1048
				  user_data, page_length)) {
1049 1050 1051 1052 1053 1054 1055 1056 1057
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1058
	mutex_lock(&i915->drm.struct_mutex);
1059 1060 1061
out_unpin:
	if (node.allocated) {
		wmb();
1062
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1063 1064
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1065
		i915_vma_unpin(vma);
1066
	}
1067
out_unlock:
1068
	intel_runtime_pm_put(i915, wakeref);
1069
	mutex_unlock(&i915->drm.struct_mutex);
1070

1071 1072 1073
	return ret;
}

1074 1075
/**
 * Reads data from the object referenced by handle.
1076 1077 1078
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1079 1080 1081 1082 1083
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1084
		     struct drm_file *file)
1085 1086
{
	struct drm_i915_gem_pread *args = data;
1087
	struct drm_i915_gem_object *obj;
1088
	int ret;
1089

1090 1091 1092
	if (args->size == 0)
		return 0;

1093
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1094 1095 1096
		       args->size))
		return -EFAULT;

1097
	obj = i915_gem_object_lookup(file, args->handle);
1098 1099
	if (!obj)
		return -ENOENT;
1100

1101
	/* Bounds check source.  */
1102
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1103
		ret = -EINVAL;
1104
		goto out;
C
Chris Wilson 已提交
1105 1106
	}

C
Chris Wilson 已提交
1107 1108
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1109 1110
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1111
				   MAX_SCHEDULE_TIMEOUT);
1112
	if (ret)
1113
		goto out;
1114

1115
	ret = i915_gem_object_pin_pages(obj);
1116
	if (ret)
1117
		goto out;
1118

1119
	ret = i915_gem_shmem_pread(obj, args);
1120
	if (ret == -EFAULT || ret == -ENODEV)
1121
		ret = i915_gem_gtt_pread(obj, args);
1122

1123 1124
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1125
	i915_gem_object_put(obj);
1126
	return ret;
1127 1128
}

1129 1130
/* This is the fast write path which cannot handle
 * page faults in the source data
1131
 */
1132

1133 1134 1135 1136
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1137
{
1138
	void __iomem *vaddr;
1139
	unsigned long unwritten;
1140

1141
	/* We can use the cpu mem copy function because this is X86. */
1142 1143
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1144
						      user_data, length);
1145 1146
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1147 1148 1149
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1150 1151
		io_mapping_unmap(vaddr);
	}
1152 1153 1154 1155

	return unwritten;
}

1156 1157 1158
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1159
 * @obj: i915 GEM object
1160
 * @args: pwrite arguments structure
1161
 */
1162
static int
1163 1164
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1165
{
1166
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1167
	struct i915_ggtt *ggtt = &i915->ggtt;
1168
	intel_wakeref_t wakeref;
1169
	struct drm_mm_node node;
1170 1171 1172
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1173
	int ret;
1174

1175 1176 1177
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1178

1179 1180 1181 1182 1183 1184 1185 1186
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1187 1188
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1189 1190 1191 1192 1193
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1194
		wakeref = intel_runtime_pm_get(i915);
1195 1196
	}

C
Chris Wilson 已提交
1197
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1198 1199 1200
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1201 1202 1203
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1204
		ret = i915_vma_put_fence(vma);
1205 1206 1207 1208 1209
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1210
	if (IS_ERR(vma)) {
1211
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1212
		if (ret)
1213
			goto out_rpm;
1214
		GEM_BUG_ON(!node.allocated);
1215
	}
D
Daniel Vetter 已提交
1216 1217 1218 1219 1220

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1221 1222
	mutex_unlock(&i915->drm.struct_mutex);

1223
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1224

1225 1226 1227 1228
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1229 1230
		/* Operation in this page
		 *
1231 1232 1233
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1234
		 */
1235
		u32 page_base = node.start;
1236 1237
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1238 1239 1240
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1241 1242 1243
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1244 1245 1246 1247
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1248
		/* If we get a fault while copying data, then (presumably) our
1249 1250
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1251 1252
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1253
		 */
1254
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1255 1256 1257
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1258
		}
1259

1260 1261 1262
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1263
	}
1264
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1265 1266

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1267
out_unpin:
1268 1269
	if (node.allocated) {
		wmb();
1270
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1271 1272
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1273
		i915_vma_unpin(vma);
1274
	}
1275
out_rpm:
1276
	intel_runtime_pm_put(i915, wakeref);
1277
out_unlock:
1278
	mutex_unlock(&i915->drm.struct_mutex);
1279
	return ret;
1280 1281
}

1282 1283 1284 1285 1286
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1287
static int
1288 1289 1290
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1291
{
1292
	char *vaddr;
1293 1294
	int ret;

1295
	vaddr = kmap(page);
1296

1297 1298
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1299

1300 1301 1302
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1303

1304 1305 1306
	kunmap(page);

	return ret ? -EFAULT : 0;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1317
	unsigned int needs_clflush;
1318 1319
	unsigned int offset, idx;
	int ret;
1320

1321
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1322 1323 1324
	if (ret)
		return ret;

1325 1326 1327 1328
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1329

1330 1331 1332 1333 1334 1335 1336
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1337

1338 1339 1340 1341 1342
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1343
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1344

1345 1346 1347
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1348
		if (ret)
1349
			break;
1350

1351 1352 1353
		remain -= length;
		user_data += length;
		offset = 0;
1354
	}
1355

1356
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1357
	i915_gem_obj_finish_shmem_access(obj);
1358
	return ret;
1359 1360 1361 1362
}

/**
 * Writes data to the object referenced by handle.
1363 1364 1365
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1366 1367 1368 1369 1370
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1371
		      struct drm_file *file)
1372 1373
{
	struct drm_i915_gem_pwrite *args = data;
1374
	struct drm_i915_gem_object *obj;
1375 1376 1377 1378 1379
	int ret;

	if (args->size == 0)
		return 0;

1380
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1381 1382
		return -EFAULT;

1383
	obj = i915_gem_object_lookup(file, args->handle);
1384 1385
	if (!obj)
		return -ENOENT;
1386

1387
	/* Bounds check destination. */
1388
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1389
		ret = -EINVAL;
1390
		goto err;
C
Chris Wilson 已提交
1391 1392
	}

1393 1394 1395 1396 1397 1398
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1399 1400
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1401 1402 1403 1404 1405 1406
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1407 1408 1409
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
1410
				   MAX_SCHEDULE_TIMEOUT);
1411 1412 1413
	if (ret)
		goto err;

1414
	ret = i915_gem_object_pin_pages(obj);
1415
	if (ret)
1416
		goto err;
1417

D
Daniel Vetter 已提交
1418
	ret = -EFAULT;
1419 1420 1421 1422 1423 1424
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1425
	if (!i915_gem_object_has_struct_page(obj) ||
1426
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1427 1428
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1429 1430
		 * textures). Fallback to the shmem path in that case.
		 */
1431
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1432

1433
	if (ret == -EFAULT || ret == -ENOSPC) {
1434 1435
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1436
		else
1437
			ret = i915_gem_shmem_pwrite(obj, args);
1438
	}
1439

1440
	i915_gem_object_unpin_pages(obj);
1441
err:
C
Chris Wilson 已提交
1442
	i915_gem_object_put(obj);
1443
	return ret;
1444 1445
}

1446 1447
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1448
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1449 1450 1451
	struct list_head *list;
	struct i915_vma *vma;

1452 1453
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1454
	mutex_lock(&i915->ggtt.vm.mutex);
1455
	for_each_ggtt_vma(vma, obj) {
1456 1457 1458
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1459
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1460
	}
1461
	mutex_unlock(&i915->ggtt.vm.mutex);
1462

1463
	spin_lock(&i915->mm.obj_lock);
1464
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1465 1466
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1467 1468
}

1469
/**
1470 1471
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1472 1473 1474
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1475 1476 1477
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1478
			  struct drm_file *file)
1479 1480
{
	struct drm_i915_gem_set_domain *args = data;
1481
	struct drm_i915_gem_object *obj;
1482 1483
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1484
	int err;
1485

1486
	/* Only handle setting domains to types used by the CPU. */
1487
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1488 1489
		return -EINVAL;

1490 1491
	/*
	 * Having something in the write domain implies it's in the read
1492 1493
	 * domain, and only that read domain.  Enforce that in the request.
	 */
1494
	if (write_domain && read_domains != write_domain)
1495 1496
		return -EINVAL;

1497 1498 1499
	if (!read_domains)
		return 0;

1500
	obj = i915_gem_object_lookup(file, args->handle);
1501 1502
	if (!obj)
		return -ENOENT;
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * Already in the desired write domain? Nothing for us to do!
	 *
	 * We apply a little bit of cunning here to catch a broader set of
	 * no-ops. If obj->write_domain is set, we must be in the same
	 * obj->read_domains, and only that domain. Therefore, if that
	 * obj->write_domain matches the request read_domains, we are
	 * already in the same read/write domain and can skip the operation,
	 * without having to further check the requested write_domain.
	 */
	if (READ_ONCE(obj->write_domain) == read_domains) {
		err = 0;
		goto out;
	}

	/*
	 * Try to flush the object off the GPU without holding the lock.
1521 1522 1523
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1524
	err = i915_gem_object_wait(obj,
1525
				   I915_WAIT_INTERRUPTIBLE |
1526
				   I915_WAIT_PRIORITY |
1527
				   (write_domain ? I915_WAIT_ALL : 0),
1528
				   MAX_SCHEDULE_TIMEOUT);
1529
	if (err)
C
Chris Wilson 已提交
1530
		goto out;
1531

T
Tina Zhang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1545 1546 1547 1548 1549 1550 1551 1552 1553
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1554
		goto out;
1555 1556 1557

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1558
		goto out_unpin;
1559

1560 1561 1562 1563
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1564
	else
1565
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1566

1567 1568
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1569

1570
	mutex_unlock(&dev->struct_mutex);
1571

1572
	if (write_domain != 0)
1573 1574
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1575

C
Chris Wilson 已提交
1576
out_unpin:
1577
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1578 1579
out:
	i915_gem_object_put(obj);
1580
	return err;
1581 1582 1583 1584
}

/**
 * Called when user space has done writes to this buffer
1585 1586 1587
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1588 1589 1590
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1591
			 struct drm_file *file)
1592 1593
{
	struct drm_i915_gem_sw_finish *args = data;
1594
	struct drm_i915_gem_object *obj;
1595

1596
	obj = i915_gem_object_lookup(file, args->handle);
1597 1598
	if (!obj)
		return -ENOENT;
1599

T
Tina Zhang 已提交
1600 1601 1602 1603 1604
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1605
	/* Pinned buffers may be scanout, so flush the cache */
1606
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1607
	i915_gem_object_put(obj);
1608 1609

	return 0;
1610 1611
}

1612 1613 1614 1615 1616 1617 1618
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1619 1620
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1621 1622
}

1623
/**
1624 1625 1626 1627 1628
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1629 1630 1631
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1642 1643 1644
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1645
		    struct drm_file *file)
1646 1647
{
	struct drm_i915_gem_mmap *args = data;
1648
	struct drm_i915_gem_object *obj;
1649 1650
	unsigned long addr;

1651 1652 1653
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1654
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1655 1656
		return -ENODEV;

1657 1658
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1659
		return -ENOENT;
1660

1661 1662 1663
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1664
	if (!obj->base.filp) {
1665 1666 1667 1668 1669 1670 1671
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
1672 1673
	}

1674
	addr = vm_mmap(obj->base.filp, 0, args->size,
1675 1676
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1677 1678 1679
	if (IS_ERR_VALUE(addr))
		goto err;

1680 1681 1682 1683
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1684
		if (down_write_killable(&mm->mmap_sem)) {
1685 1686
			addr = -EINTR;
			goto err;
1687
		}
1688
		vma = find_vma(mm, addr);
1689
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1690 1691 1692 1693 1694
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1695 1696
		if (IS_ERR_VALUE(addr))
			goto err;
1697 1698

		/* This may race, but that's ok, it only gets set */
1699
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1700
	}
C
Chris Wilson 已提交
1701
	i915_gem_object_put(obj);
1702

1703
	args->addr_ptr = (u64)addr;
1704
	return 0;
1705 1706 1707 1708

err:
	i915_gem_object_put(obj);
	return addr;
1709 1710
}

1711
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1712
{
1713
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1714 1715
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1736 1737 1738
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1739 1740 1741
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1769
	return 3;
1770 1771
}

1772
static inline struct i915_ggtt_view
1773
compute_partial_view(const struct drm_i915_gem_object *obj,
1774 1775 1776 1777 1778 1779 1780 1781 1782
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1783 1784
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1785
		min_t(unsigned int, chunk,
1786
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1787 1788 1789 1790 1791 1792 1793 1794

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1795 1796
/**
 * i915_gem_fault - fault a page into the GTT
1797
 * @vmf: fault info
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1809 1810 1811
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1812
 */
1813
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1814
{
1815
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1816
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1817
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1818
	struct drm_device *dev = obj->base.dev;
1819 1820
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1821
	bool write = area->vm_flags & VM_WRITE;
1822
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1823
	struct i915_vma *vma;
1824
	pgoff_t page_offset;
1825
	int srcu;
1826
	int ret;
1827

1828 1829 1830 1831
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1832
	/* We don't use vmf->pgoff since that has the fake offset */
1833
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1834

C
Chris Wilson 已提交
1835 1836
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1837 1838 1839 1840
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1841
	wakeref = intel_runtime_pm_get(dev_priv);
1842

1843 1844 1845 1846 1847 1848
	srcu = i915_reset_trylock(dev_priv);
	if (srcu < 0) {
		ret = srcu;
		goto err_rpm;
	}

1849 1850
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
1851
		goto err_reset;
1852

1853
	/* Access to snoopable pages through the GTT is incoherent. */
1854
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1855
		ret = -EFAULT;
1856
		goto err_unlock;
1857 1858
	}

1859
	/* Now pin it into the GTT as needed */
1860 1861 1862 1863
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1864 1865
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1866
		struct i915_ggtt_view view =
1867
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1868
		unsigned int flags;
1869

1870 1871 1872 1873 1874 1875
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1876 1877 1878 1879
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1880 1881 1882 1883 1884 1885
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1886
	}
C
Chris Wilson 已提交
1887 1888
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1889
		goto err_unlock;
C
Chris Wilson 已提交
1890
	}
1891

1892 1893 1894 1895
	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

1896
	/* Finally, remap it using the new GTT offset */
1897
	ret = remap_io_mapping(area,
1898
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1899
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1900
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1901
			       &ggtt->iomap);
1902
	if (ret)
1903
		goto err_fence;
1904

1905 1906 1907 1908 1909 1910
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1911 1912
	i915_vma_set_ggtt_write(vma);

1913 1914
err_fence:
	i915_vma_unpin_fence(vma);
1915
err_unpin:
C
Chris Wilson 已提交
1916
	__i915_vma_unpin(vma);
1917
err_unlock:
1918
	mutex_unlock(&dev->struct_mutex);
1919 1920
err_reset:
	i915_reset_unlock(dev_priv, srcu);
1921
err_rpm:
1922
	intel_runtime_pm_put(dev_priv, wakeref);
1923
	i915_gem_object_unpin_pages(obj);
1924
err:
1925
	switch (ret) {
1926
	case -EIO:
1927 1928 1929 1930 1931 1932
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1933
		if (!i915_terminally_wedged(dev_priv))
1934
			return VM_FAULT_SIGBUS;
1935
		/* else: fall through */
1936
	case -EAGAIN:
D
Daniel Vetter 已提交
1937 1938 1939 1940
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1941
		 */
1942 1943
	case 0:
	case -ERESTARTSYS:
1944
	case -EINTR:
1945 1946 1947 1948 1949
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1950
		return VM_FAULT_NOPAGE;
1951
	case -ENOMEM:
1952
		return VM_FAULT_OOM;
1953
	case -ENOSPC:
1954
	case -EFAULT:
1955
		return VM_FAULT_SIGBUS;
1956
	default:
1957
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1958
		return VM_FAULT_SIGBUS;
1959 1960 1961
	}
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

1973
	for_each_ggtt_vma(vma, obj)
1974 1975 1976
		i915_vma_unset_userfault(vma);
}

1977 1978 1979 1980
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1981
 * Preserve the reservation of the mmapping with the DRM core code, but
1982 1983 1984 1985 1986 1987 1988 1989 1990
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1991
void
1992
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1993
{
1994
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1995
	intel_wakeref_t wakeref;
1996

1997 1998 1999
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2000 2001 2002 2003
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2004
	 */
2005
	lockdep_assert_held(&i915->drm.struct_mutex);
2006
	wakeref = intel_runtime_pm_get(i915);
2007

2008
	if (!obj->userfault_count)
2009
		goto out;
2010

2011
	__i915_gem_object_release_mmap(obj);
2012 2013 2014 2015 2016 2017 2018 2019 2020

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2021 2022

out:
2023
	intel_runtime_pm_put(i915, wakeref);
2024 2025
}

2026
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2027
{
2028
	struct drm_i915_gem_object *obj, *on;
2029
	int i;
2030

2031 2032 2033 2034 2035 2036
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2037

2038
	list_for_each_entry_safe(obj, on,
2039 2040
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2041 2042 2043 2044 2045 2046 2047 2048

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2059 2060 2061 2062

		if (!reg->vma)
			continue;

2063
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2064 2065
		reg->dirty = true;
	}
2066 2067
}

2068 2069
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2070
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2071
	int err;
2072

2073
	err = drm_gem_create_mmap_offset(&obj->base);
2074
	if (likely(!err))
2075
		return 0;
2076

2077 2078
	/* Attempt to reap some mmap space from dead objects */
	do {
2079 2080 2081
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2082 2083
		if (err)
			break;
2084

2085
		i915_gem_drain_freed_objects(dev_priv);
2086
		err = drm_gem_create_mmap_offset(&obj->base);
2087 2088 2089 2090
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2091

2092
	return err;
2093 2094 2095 2096 2097 2098 2099
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2100
int
2101 2102
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2103 2104
		  u32 handle,
		  u64 *offset)
2105
{
2106
	struct drm_i915_gem_object *obj;
2107 2108
	int ret;

2109
	obj = i915_gem_object_lookup(file, handle);
2110 2111
	if (!obj)
		return -ENOENT;
2112

2113
	ret = i915_gem_object_create_mmap_offset(obj);
2114 2115
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2116

C
Chris Wilson 已提交
2117
	i915_gem_object_put(obj);
2118
	return ret;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2142
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2143 2144
}

D
Daniel Vetter 已提交
2145 2146 2147
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2148
{
2149
	i915_gem_object_free_mmap_offset(obj);
2150

2151 2152
	if (obj->base.filp == NULL)
		return;
2153

D
Daniel Vetter 已提交
2154 2155 2156 2157 2158
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2159
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2160
	obj->mm.madv = __I915_MADV_PURGED;
2161
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2162
}
2163

2164
/* Try to discard unwanted pages */
2165
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2166
{
2167 2168
	struct address_space *mapping;

2169
	lockdep_assert_held(&obj->mm.lock);
2170
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2171

C
Chris Wilson 已提交
2172
	switch (obj->mm.madv) {
2173 2174 2175 2176 2177 2178 2179 2180 2181
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2182
	mapping = obj->base.filp->f_mapping,
2183
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2184 2185
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2197
static void
2198 2199
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2200
{
2201
	struct sgt_iter sgt_iter;
2202
	struct pagevec pvec;
2203
	struct page *page;
2204

2205
	__i915_gem_object_release_shmem(obj, pages, true);
2206
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2207

2208
	if (i915_gem_object_needs_bit17_swizzle(obj))
2209
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2210

2211 2212 2213
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2214
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2215
		if (obj->mm.dirty)
2216
			set_page_dirty(page);
2217

C
Chris Wilson 已提交
2218
		if (obj->mm.madv == I915_MADV_WILLNEED)
2219
			mark_page_accessed(page);
2220

2221 2222
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2223
	}
2224 2225
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2226
	obj->mm.dirty = false;
2227

2228 2229
	sg_free_table(pages);
	kfree(pages);
2230
}
C
Chris Wilson 已提交
2231

2232 2233 2234
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2235
	void __rcu **slot;
2236

2237
	rcu_read_lock();
C
Chris Wilson 已提交
2238 2239
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2240
	rcu_read_unlock();
2241 2242
}

2243 2244
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2245
{
2246
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2247
	struct sg_table *pages;
2248

2249
	pages = fetch_and_zero(&obj->mm.pages);
2250 2251
	if (IS_ERR_OR_NULL(pages))
		return pages;
2252

2253 2254 2255 2256
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2257
	if (obj->mm.mapping) {
2258 2259
		void *ptr;

2260
		ptr = page_mask_bits(obj->mm.mapping);
2261 2262
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2263
		else
2264 2265
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2266
		obj->mm.mapping = NULL;
2267 2268
	}

2269
	__i915_gem_object_reset_page_iter(obj);
2270 2271 2272 2273
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2274

2275 2276
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2277 2278
{
	struct sg_table *pages;
2279
	int ret;
2280 2281

	if (i915_gem_object_has_pinned_pages(obj))
2282
		return -EBUSY;
2283 2284 2285 2286 2287

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2288 2289
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2290
		goto unlock;
2291
	}
2292 2293 2294 2295 2296 2297 2298

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2309 2310 2311
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2312
	ret = 0;
2313 2314
unlock:
	mutex_unlock(&obj->mm.lock);
2315 2316

	return ret;
C
Chris Wilson 已提交
2317 2318
}

2319
bool i915_sg_trim(struct sg_table *orig_st)
2320 2321 2322 2323 2324 2325
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2326
		return false;
2327

2328
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2329
		return false;
2330 2331 2332 2333

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2334 2335 2336
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2337 2338
		new_sg = sg_next(new_sg);
	}
2339
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2340 2341 2342 2343

	sg_free_table(orig_st);

	*orig_st = new_st;
2344
	return true;
2345 2346
}

2347
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2348
{
2349
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2350 2351
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2352
	struct address_space *mapping;
2353 2354
	struct sg_table *st;
	struct scatterlist *sg;
2355
	struct sgt_iter sgt_iter;
2356
	struct page *page;
2357
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2358
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2359
	unsigned int sg_page_sizes;
2360
	struct pagevec pvec;
2361
	gfp_t noreclaim;
I
Imre Deak 已提交
2362
	int ret;
2363

2364 2365
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2366 2367 2368
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2369 2370
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2371

2372 2373 2374 2375
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2376
	if (page_count > totalram_pages())
2377 2378
		return -ENOMEM;

2379 2380
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2381
		return -ENOMEM;
2382

2383
rebuild_st:
2384 2385
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2386
		return -ENOMEM;
2387
	}
2388

2389 2390
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2391 2392 2393 2394
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2395
	mapping = obj->base.filp->f_mapping;
2396
	mapping_set_unevictable(mapping);
2397
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2398 2399
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2400 2401
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2402
	sg_page_sizes = 0;
2403
	for (i = 0; i < page_count; i++) {
2404 2405 2406 2407 2408 2409 2410
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2411
			cond_resched();
C
Chris Wilson 已提交
2412
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2413
			if (!IS_ERR(page))
2414 2415 2416 2417 2418 2419 2420
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2421
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2422

2423 2424
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2425 2426
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2427 2428 2429 2430
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2431
			 */
2432 2433 2434
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2435

2436 2437
				/*
				 * Our bo are always dirty and so we require
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2448
				 * this we want __GFP_RETRY_MAYFAIL.
2449
				 */
M
Michal Hocko 已提交
2450
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2451
			}
2452 2453
		} while (1);

2454 2455 2456
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2457
			if (i) {
M
Matthew Auld 已提交
2458
				sg_page_sizes |= sg->length;
2459
				sg = sg_next(sg);
2460
			}
2461 2462 2463 2464 2465 2466
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2467 2468 2469

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2470
	}
2471
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2472
		sg_page_sizes |= sg->length;
2473
		sg_mark_end(sg);
2474
	}
2475

2476 2477 2478
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2479
	ret = i915_gem_gtt_prepare_pages(obj, st);
2480
	if (ret) {
2481 2482
		/*
		 * DMA remapping failed? One possible cause is that
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2500

2501
	if (i915_gem_object_needs_bit17_swizzle(obj))
2502
		i915_gem_object_do_bit_17_swizzle(obj, st);
2503

M
Matthew Auld 已提交
2504
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2505 2506

	return 0;
2507

2508
err_sg:
2509
	sg_mark_end(sg);
2510
err_pages:
2511 2512 2513 2514 2515 2516 2517 2518
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2519 2520
	sg_free_table(st);
	kfree(st);
2521

2522 2523
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2524 2525 2526 2527 2528 2529 2530
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2531 2532 2533
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2534
	return ret;
2535 2536 2537
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2538
				 struct sg_table *pages,
M
Matthew Auld 已提交
2539
				 unsigned int sg_page_sizes)
2540
{
2541 2542 2543 2544
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2545
	lockdep_assert_held(&obj->mm.lock);
2546

2547 2548 2549 2550 2551 2552 2553 2554
	/* Make the pages coherent with the GPU (flushing any swapin). */
	if (obj->cache_dirty) {
		obj->write_domain = 0;
		if (i915_gem_object_has_struct_page(obj))
			drm_clflush_sg(pages);
		obj->cache_dirty = false;
	}

2555 2556 2557 2558
	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2559 2560

	if (i915_gem_object_is_tiled(obj) &&
2561
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2562 2563 2564 2565
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2566

M
Matthew Auld 已提交
2567 2568
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2569 2570

	/*
M
Matthew Auld 已提交
2571 2572 2573 2574 2575 2576
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2577 2578 2579 2580 2581 2582 2583
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2584 2585 2586 2587

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2588 2589 2590 2591
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2592
	int err;
2593 2594 2595 2596 2597 2598

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2599
	err = obj->ops->get_pages(obj);
2600
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2601

2602
	return err;
2603 2604
}

2605
/* Ensure that the associated pages are gathered from the backing storage
2606
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2607
 * multiple times before they are released by a single call to
2608
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2609 2610 2611
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2612
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2613
{
2614
	int err;
2615

2616 2617 2618
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2619

2620
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2621 2622
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2623 2624 2625
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2626

2627 2628 2629
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2630

2631 2632
unlock:
	mutex_unlock(&obj->mm.lock);
2633
	return err;
2634 2635
}

2636
/* The 'mapping' part of i915_gem_object_pin_map() below */
2637 2638
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2639 2640
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2641
	struct sg_table *sgt = obj->mm.pages;
2642 2643
	struct sgt_iter sgt_iter;
	struct page *page;
2644 2645
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2646
	unsigned long i = 0;
2647
	pgprot_t pgprot;
2648 2649 2650
	void *addr;

	/* A single page can always be kmapped */
2651
	if (n_pages == 1 && type == I915_MAP_WB)
2652 2653
		return kmap(sg_page(sgt->sgl));

2654 2655
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2656
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2657 2658 2659
		if (!pages)
			return NULL;
	}
2660

2661 2662
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2663 2664 2665 2666

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2667
	switch (type) {
2668 2669 2670
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2671 2672 2673 2674 2675 2676 2677 2678
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2679

2680
	if (pages != stack_pages)
M
Michal Hocko 已提交
2681
		kvfree(pages);
2682 2683 2684 2685 2686

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2687 2688
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2689
{
2690 2691 2692
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2693 2694
	int ret;

T
Tina Zhang 已提交
2695 2696
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2697

2698
	ret = mutex_lock_interruptible(&obj->mm.lock);
2699 2700 2701
	if (ret)
		return ERR_PTR(ret);

2702 2703 2704
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2705
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2706
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2707 2708
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2709 2710 2711
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2712

2713 2714 2715
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2716 2717
		pinned = false;
	}
2718
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2719

2720
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2721 2722 2723
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2724
			goto err_unpin;
2725
		}
2726 2727 2728 2729 2730 2731

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2732
		ptr = obj->mm.mapping = NULL;
2733 2734
	}

2735 2736 2737 2738
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2739
			goto err_unpin;
2740 2741
		}

2742
		obj->mm.mapping = page_pack_bits(ptr, type);
2743 2744
	}

2745 2746
out_unlock:
	mutex_unlock(&obj->mm.lock);
2747 2748
	return ptr;

2749 2750 2751 2752 2753
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2754 2755
}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
				 unsigned long offset,
				 unsigned long size)
{
	enum i915_map_type has_type;
	void *ptr;

	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
				     offset, size, obj->base.size));

	obj->mm.dirty = true;

	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
		return;

	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
	if (has_type == I915_MAP_WC)
		return;

	drm_clflush_virt_range(ptr + offset, size);
	if (size == obj->base.size) {
		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
		obj->cache_dirty = false;
	}
}

2783 2784 2785 2786 2787 2788 2789 2790 2791
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

2792 2793 2794 2795 2796
	/* Caller already validated user args */
	GEM_BUG_ON(!access_ok(user_data, arg->size));

	/*
	 * Before we instantiate/pin the backing store for our use, we
2797 2798 2799 2800 2801 2802 2803
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2804
	if (i915_gem_object_has_pages(obj))
2805 2806
		return -ENODEV;

2807 2808 2809
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2810 2811
	/*
	 * Before the pages are instantiated the object is treated as being
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;
2827
		char c;
2828 2829 2830 2831 2832

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

2833 2834 2835 2836 2837 2838 2839 2840 2841
		/* Prefault the user page to reduce potential recursion */
		err = __get_user(c, user_data);
		if (err)
			return err;

		err = __get_user(c, user_data + len - 1);
		if (err)
			return err;

2842 2843 2844 2845 2846 2847
		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

2848 2849 2850 2851 2852
		vaddr = kmap_atomic(page);
		unwritten = __copy_from_user_inatomic(vaddr + pg,
						      user_data,
						      len);
		kunmap_atomic(vaddr);
2853 2854 2855 2856 2857 2858 2859

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

2860
		/* We don't handle -EFAULT, leave it to the caller to check */
2861
		if (unwritten)
2862
			return -ENODEV;
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2873
static void
2874 2875
i915_gem_retire_work_handler(struct work_struct *work)
{
2876
	struct drm_i915_private *dev_priv =
2877
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2878
	struct drm_device *dev = &dev_priv->drm;
2879

2880
	/* Come back later if the device is busy... */
2881
	if (mutex_trylock(&dev->struct_mutex)) {
2882
		i915_retire_requests(dev_priv);
2883
		mutex_unlock(&dev->struct_mutex);
2884
	}
2885

2886 2887
	/*
	 * Keep the retire handler running until we are finally idle.
2888 2889 2890
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2891
	if (READ_ONCE(dev_priv->gt.awake))
2892 2893
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2894
				   round_jiffies_up_relative(HZ));
2895
}
2896

2897 2898
static bool switch_to_kernel_context_sync(struct drm_i915_private *i915,
					  unsigned long mask)
2899 2900 2901 2902 2903 2904 2905 2906
{
	bool result = true;

	/*
	 * Even if we fail to switch, give whatever is running a small chance
	 * to save itself before we report the failure. Yes, this may be a
	 * false positive due to e.g. ENOMEM, caveat emptor!
	 */
2907
	if (i915_gem_switch_to_kernel_context(i915, mask))
2908 2909 2910 2911 2912 2913 2914 2915
		result = false;

	if (i915_gem_wait_for_idle(i915,
				   I915_WAIT_LOCKED |
				   I915_WAIT_FOR_IDLE_BOOST,
				   I915_GEM_IDLE_TIMEOUT))
		result = false;

2916
	if (!result) {
2917 2918 2919 2920 2921 2922
		if (i915_modparams.reset) { /* XXX hide warning from gem_eio */
			dev_err(i915->drm.dev,
				"Failed to idle engines, declaring wedged!\n");
			GEM_TRACE_DUMP();
		}

2923 2924 2925 2926 2927 2928 2929 2930
		/* Forcibly cancel outstanding work and leave the gpu quiet. */
		i915_gem_set_wedged(i915);
	}

	i915_retire_requests(i915); /* ensure we flush after wedging */
	return result;
}

2931 2932
static bool load_power_context(struct drm_i915_private *i915)
{
2933 2934
	/* Force loading the kernel context on all engines */
	if (!switch_to_kernel_context_sync(i915, ALL_ENGINES))
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
		return false;

	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

	return true;
}

2948 2949 2950
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
2951 2952
	struct drm_i915_private *i915 =
		container_of(work, typeof(*i915), gt.idle_work.work);
2953 2954
	bool rearm_hangcheck;

2955
	if (!READ_ONCE(i915->gt.awake))
2956 2957
		return;

2958
	if (READ_ONCE(i915->gt.active_requests))
2959 2960
		return;

2961
	rearm_hangcheck =
2962
		cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
2963

2964
	if (!mutex_trylock(&i915->drm.struct_mutex)) {
2965
		/* Currently busy, come back later */
2966 2967
		mod_delayed_work(i915->wq,
				 &i915->gt.idle_work,
2968 2969 2970 2971
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2972
	/*
2973 2974 2975 2976
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. Should anything unfortunate happen
	 * while we are idle (such as the GPU being power cycled), no users
	 * will be harmed.
2977
	 */
2978 2979 2980
	if (!work_pending(&i915->gt.idle_work.work) &&
	    !i915->gt.active_requests) {
		++i915->gt.active_requests; /* don't requeue idle */
2981

2982
		switch_to_kernel_context_sync(i915, i915->gt.active_engines);
2983

2984 2985 2986 2987 2988
		if (!--i915->gt.active_requests) {
			__i915_gem_park(i915);
			rearm_hangcheck = false;
		}
	}
2989

2990
	mutex_unlock(&i915->drm.struct_mutex);
2991

2992 2993
out_rearm:
	if (rearm_hangcheck) {
2994 2995
		GEM_BUG_ON(!i915->gt.awake);
		i915_queue_hangcheck(i915);
2996
	}
2997 2998
}

2999 3000
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3001
	struct drm_i915_private *i915 = to_i915(gem->dev);
3002 3003
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3004
	struct i915_lut_handle *lut, *ln;
3005

3006 3007 3008 3009 3010 3011
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3012
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3013 3014 3015 3016
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3017 3018 3019 3020 3021 3022 3023
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3024
			i915_vma_close(vma);
3025

3026 3027
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3028

3029
		i915_lut_handle_free(lut);
3030
		__i915_gem_object_release_unless_active(obj);
3031
	}
3032 3033

	mutex_unlock(&i915->drm.struct_mutex);
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3047 3048
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3049 3050 3051
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3052 3053 3054 3055 3056 3057 3058
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3059
 *  -EAGAIN: incomplete, restart syscall
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3076 3077
	ktime_t start;
	long ret;
3078

3079 3080 3081
	if (args->flags != 0)
		return -EINVAL;

3082
	obj = i915_gem_object_lookup(file, args->bo_handle);
3083
	if (!obj)
3084 3085
		return -ENOENT;

3086 3087 3088
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3089 3090 3091
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3092
				   to_wait_timeout(args->timeout_ns));
3093 3094 3095 3096 3097

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3108 3109 3110 3111

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3112 3113
	}

C
Chris Wilson 已提交
3114
	i915_gem_object_put(obj);
3115
	return ret;
3116 3117
}

3118 3119
static int wait_for_engines(struct drm_i915_private *i915)
{
3120
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3121 3122
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3123
		GEM_TRACE_DUMP();
3124 3125
		i915_gem_set_wedged(i915);
		return -EIO;
3126 3127 3128 3129 3130
	}

	return 0;
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	if (!READ_ONCE(i915->gt.active_requests))
		return timeout;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3142
	list_for_each_entry(tl, &gt->active_list, link) {
3143 3144
		struct i915_request *rq;

3145
		rq = i915_active_request_get_unlocked(&tl->last_request);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
3161
			gen6_rps_boost(rq);
3162 3163 3164 3165 3166 3167 3168 3169

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3170
		tl = list_entry(&gt->active_list, typeof(*tl), link);
3171 3172 3173 3174 3175 3176
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

3177 3178
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3179
{
3180 3181 3182
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3183

3184 3185 3186 3187
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3188 3189 3190 3191
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

3192
	if (flags & I915_WAIT_LOCKED) {
3193
		int err;
3194 3195 3196

		lockdep_assert_held(&i915->drm.struct_mutex);

3197 3198 3199 3200
		err = wait_for_engines(i915);
		if (err)
			return err;

3201
		i915_retire_requests(i915);
3202
	}
3203 3204

	return 0;
3205 3206
}

3207 3208
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3209 3210 3211 3212 3213 3214 3215
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3216
	obj->write_domain = 0;
3217 3218 3219 3220
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3221
	if (!READ_ONCE(obj->pin_global))
3222 3223 3224 3225 3226 3227 3228
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3248
				   MAX_SCHEDULE_TIMEOUT);
3249 3250 3251
	if (ret)
		return ret;

3252
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3273
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3274 3275 3276 3277 3278
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3279 3280
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3281
	if (write) {
3282 3283
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3284 3285 3286 3287 3288 3289 3290
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3291 3292
/**
 * Moves a single object to the GTT read, and possibly write domain.
3293 3294
 * @obj: object to act on
 * @write: ask for write access or read only
3295 3296 3297 3298
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3299
int
3300
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3301
{
3302
	int ret;
3303

3304
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3305

3306 3307 3308 3309
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3310
				   MAX_SCHEDULE_TIMEOUT);
3311 3312 3313
	if (ret)
		return ret;

3314
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3315 3316
		return 0;

3317 3318 3319 3320 3321 3322 3323 3324
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3325
	ret = i915_gem_object_pin_pages(obj);
3326 3327 3328
	if (ret)
		return ret;

3329
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3330

3331 3332 3333 3334
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3335
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3336 3337
		mb();

3338 3339 3340
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3341 3342
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3343
	if (write) {
3344 3345
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3346
		obj->mm.dirty = true;
3347 3348
	}

C
Chris Wilson 已提交
3349
	i915_gem_object_unpin_pages(obj);
3350 3351 3352
	return 0;
}

3353 3354
/**
 * Changes the cache-level of an object across all VMA.
3355 3356
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3368 3369 3370
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3371
	struct i915_vma *vma;
3372
	int ret;
3373

3374 3375
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3376
	if (obj->cache_level == cache_level)
3377
		return 0;
3378

3379 3380 3381 3382 3383
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3384
restart:
3385
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3386 3387 3388
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3389
		if (i915_vma_is_pinned(vma)) {
3390 3391 3392 3393
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3394 3395
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3407 3408
	}

3409 3410 3411 3412 3413 3414 3415
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3416
	if (obj->bind_count) {
3417 3418 3419 3420
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3421 3422 3423 3424
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
3425
					   MAX_SCHEDULE_TIMEOUT);
3426 3427 3428
		if (ret)
			return ret;

3429 3430
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3447
			for_each_ggtt_vma(vma, obj) {
3448 3449 3450 3451
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3452 3453 3454 3455 3456 3457 3458 3459
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3460 3461
		}

3462
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3463 3464 3465 3466 3467 3468 3469
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3470 3471
	}

3472
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3473
		vma->node.color = cache_level;
3474
	i915_gem_object_set_cache_coherency(obj, cache_level);
3475
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3476

3477 3478 3479
	return 0;
}

B
Ben Widawsky 已提交
3480 3481
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3482
{
B
Ben Widawsky 已提交
3483
	struct drm_i915_gem_caching *args = data;
3484
	struct drm_i915_gem_object *obj;
3485
	int err = 0;
3486

3487 3488 3489 3490 3491 3492
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3493

3494 3495 3496 3497 3498 3499
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3500 3501 3502 3503
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3504 3505 3506 3507
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3508 3509 3510
out:
	rcu_read_unlock();
	return err;
3511 3512
}

B
Ben Widawsky 已提交
3513 3514
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3515
{
3516
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3517
	struct drm_i915_gem_caching *args = data;
3518 3519
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3520
	int ret = 0;
3521

B
Ben Widawsky 已提交
3522 3523
	switch (args->caching) {
	case I915_CACHING_NONE:
3524 3525
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3526
	case I915_CACHING_CACHED:
3527 3528 3529 3530 3531 3532
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3533
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3534 3535
			return -ENODEV;

3536 3537
		level = I915_CACHE_LLC;
		break;
3538
	case I915_CACHING_DISPLAY:
3539
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3540
		break;
3541 3542 3543 3544
	default:
		return -EINVAL;
	}

3545 3546 3547 3548
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3549 3550 3551 3552 3553 3554 3555 3556 3557
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3558 3559 3560 3561 3562
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
3563
				   MAX_SCHEDULE_TIMEOUT);
B
Ben Widawsky 已提交
3564
	if (ret)
3565
		goto out;
B
Ben Widawsky 已提交
3566

3567 3568 3569
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3570 3571 3572

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3573 3574 3575

out:
	i915_gem_object_put(obj);
3576 3577 3578
	return ret;
}

3579
/*
3580 3581 3582 3583
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3584
 */
C
Chris Wilson 已提交
3585
struct i915_vma *
3586 3587
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3588 3589
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3590
{
C
Chris Wilson 已提交
3591
	struct i915_vma *vma;
3592 3593
	int ret;

3594 3595
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3596
	/* Mark the global pin early so that we account for the
3597 3598
	 * display coherency whilst setting up the cache domains.
	 */
3599
	obj->pin_global++;
3600

3601 3602 3603 3604 3605 3606 3607 3608 3609
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3610
	ret = i915_gem_object_set_cache_level(obj,
3611 3612
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3613 3614
	if (ret) {
		vma = ERR_PTR(ret);
3615
		goto err_unpin_global;
C
Chris Wilson 已提交
3616
	}
3617

3618 3619
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3620 3621 3622 3623
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3624
	 */
3625
	vma = ERR_PTR(-ENOSPC);
3626 3627
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3628
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3629 3630 3631 3632
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3633
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3634
	if (IS_ERR(vma))
3635
		goto err_unpin_global;
3636

3637 3638
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3639
	__i915_gem_object_flush_for_display(obj);
3640

3641 3642 3643
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3644
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3645

C
Chris Wilson 已提交
3646
	return vma;
3647

3648 3649
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3650
	return vma;
3651 3652 3653
}

void
C
Chris Wilson 已提交
3654
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3655
{
3656
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3657

3658
	if (WARN_ON(vma->obj->pin_global == 0))
3659 3660
		return;

3661
	if (--vma->obj->pin_global == 0)
3662
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3663

3664
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3665
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3666

C
Chris Wilson 已提交
3667
	i915_vma_unpin(vma);
3668 3669
}

3670 3671
/**
 * Moves a single object to the CPU read, and possibly write domain.
3672 3673
 * @obj: object to act on
 * @write: requesting write or read-only access
3674 3675 3676 3677
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3678
int
3679
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3680 3681 3682
{
	int ret;

3683
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3684

3685 3686 3687 3688
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3689
				   MAX_SCHEDULE_TIMEOUT);
3690 3691 3692
	if (ret)
		return ret;

3693
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3694

3695
	/* Flush the CPU cache if it's still invalid. */
3696
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3697
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3698
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3699 3700 3701 3702 3703
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3704
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3705 3706 3707 3708

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3709 3710
	if (write)
		__start_cpu_write(obj);
3711 3712 3713 3714

	return 0;
}

3715 3716 3717
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3718 3719 3720 3721
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3722 3723 3724
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3725
static int
3726
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3727
{
3728
	struct drm_i915_private *dev_priv = to_i915(dev);
3729
	struct drm_i915_file_private *file_priv = file->driver_priv;
3730
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3731
	struct i915_request *request, *target = NULL;
3732
	long ret;
3733

3734
	/* ABI: return -EIO if already wedged */
3735 3736 3737
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
		return ret;
3738

3739
	spin_lock(&file_priv->mm.lock);
3740
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3741 3742
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3743

3744 3745 3746 3747
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3748

3749
		target = request;
3750
	}
3751
	if (target)
3752
		i915_request_get(target);
3753
	spin_unlock(&file_priv->mm.lock);
3754

3755
	if (target == NULL)
3756
		return 0;
3757

3758
	ret = i915_request_wait(target,
3759 3760
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3761
	i915_request_put(target);
3762

3763
	return ret < 0 ? ret : 0;
3764 3765
}

C
Chris Wilson 已提交
3766
struct i915_vma *
3767 3768
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3769
			 u64 size,
3770 3771
			 u64 alignment,
			 u64 flags)
3772
{
3773
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3774
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3775 3776
	struct i915_vma *vma;
	int ret;
3777

3778 3779
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3780 3781
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3812
	vma = i915_vma_instance(obj, vm, view);
3813
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3814
		return vma;
3815 3816

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3817 3818 3819
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3820

3821
			if (flags & PIN_MAPPABLE &&
3822
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3823 3824 3825
				return ERR_PTR(-ENOSPC);
		}

3826 3827
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3828 3829 3830
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3831
		     !!(flags & PIN_MAPPABLE),
3832
		     i915_vma_is_map_and_fenceable(vma));
3833 3834
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3835
			return ERR_PTR(ret);
3836 3837
	}

C
Chris Wilson 已提交
3838 3839 3840
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3841

C
Chris Wilson 已提交
3842
	return vma;
3843 3844
}

3845
static __always_inline u32 __busy_read_flag(u8 id)
3846
{
3847 3848
	if (id == (u8)I915_ENGINE_CLASS_INVALID)
		return 0xffff0000u;
3849 3850

	GEM_BUG_ON(id >= 16);
3851
	return 0x10000u << id;
3852 3853
}

3854
static __always_inline u32 __busy_write_id(u8 id)
3855
{
3856 3857
	/*
	 * The uABI guarantees an active writer is also amongst the read
3858 3859 3860 3861 3862 3863 3864
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
3865 3866
	if (id == (u8)I915_ENGINE_CLASS_INVALID)
		return 0xffffffffu;
3867 3868

	return (id + 1) | __busy_read_flag(id);
3869 3870
}

3871
static __always_inline unsigned int
3872
__busy_set_if_active(const struct dma_fence *fence, u32 (*flag)(u8 id))
3873
{
3874
	const struct i915_request *rq;
3875

3876 3877
	/*
	 * We have to check the current hw status of the fence as the uABI
3878 3879 3880
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3881
	 *
3882
	 * Note we only report on the status of native fences.
3883
	 */
3884 3885 3886 3887
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
3888
	rq = container_of(fence, const struct i915_request, fence);
3889
	if (i915_request_completed(rq))
3890 3891
		return 0;

3892 3893
	/* Beware type-expansion follies! */
	BUILD_BUG_ON(!typecheck(u8, rq->engine->uabi_class));
3894
	return flag(rq->engine->uabi_class);
3895 3896
}

3897
static __always_inline unsigned int
3898
busy_check_reader(const struct dma_fence *fence)
3899
{
3900
	return __busy_set_if_active(fence, __busy_read_flag);
3901 3902
}

3903
static __always_inline unsigned int
3904
busy_check_writer(const struct dma_fence *fence)
3905
{
3906 3907 3908 3909
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3910 3911
}

3912 3913
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3914
		    struct drm_file *file)
3915 3916
{
	struct drm_i915_gem_busy *args = data;
3917
	struct drm_i915_gem_object *obj;
3918 3919
	struct reservation_object_list *list;
	unsigned int seq;
3920
	int err;
3921

3922
	err = -ENOENT;
3923 3924
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3925
	if (!obj)
3926
		goto out;
3927

3928 3929
	/*
	 * A discrepancy here is that we do not report the status of
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3947

3948 3949
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3950

3951 3952 3953 3954
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3955

3956 3957 3958 3959 3960 3961
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3962
	}
3963

3964 3965 3966 3967
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3968 3969 3970
out:
	rcu_read_unlock();
	return err;
3971 3972 3973 3974 3975 3976
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3977
	return i915_gem_ring_throttle(dev, file_priv);
3978 3979
}

3980 3981 3982 3983
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3984
	struct drm_i915_private *dev_priv = to_i915(dev);
3985
	struct drm_i915_gem_madvise *args = data;
3986
	struct drm_i915_gem_object *obj;
3987
	int err;
3988 3989 3990 3991 3992 3993 3994 3995 3996

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3997
	obj = i915_gem_object_lookup(file_priv, args->handle);
3998 3999 4000 4001 4002 4003
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4004

4005
	if (i915_gem_object_has_pages(obj) &&
4006
	    i915_gem_object_is_tiled(obj) &&
4007
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4008 4009
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4010
			__i915_gem_object_unpin_pages(obj);
4011 4012 4013
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4014
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4015
			__i915_gem_object_pin_pages(obj);
4016 4017
			obj->mm.quirked = true;
		}
4018 4019
	}

C
Chris Wilson 已提交
4020 4021
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4022

C
Chris Wilson 已提交
4023
	/* if the object is no longer attached, discard its backing storage */
4024 4025
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4026 4027
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4028
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4029
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4030

4031
out:
4032
	i915_gem_object_put(obj);
4033
	return err;
4034 4035
}

4036
static void
4037 4038
frontbuffer_retire(struct i915_active_request *active,
		   struct i915_request *request)
4039 4040 4041 4042
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4043
	intel_fb_obj_flush(obj, ORIGIN_CS);
4044 4045
}

4046 4047
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4048
{
4049 4050
	mutex_init(&obj->mm.lock);

4051 4052 4053
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

4054
	INIT_LIST_HEAD(&obj->lut_list);
4055
	INIT_LIST_HEAD(&obj->batch_pool_link);
4056

4057 4058
	init_rcu_head(&obj->rcu);

4059 4060
	obj->ops = ops;

4061 4062 4063
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4064
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4065 4066
	i915_active_request_init(&obj->frontbuffer_write,
				 NULL, frontbuffer_retire);
C
Chris Wilson 已提交
4067 4068 4069 4070

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4071

4072
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4073 4074
}

4075
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4076 4077
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4078

4079 4080
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4081 4082

	.pwrite = i915_gem_object_pwrite_gtt,
4083 4084
};

M
Matthew Auld 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4109
struct drm_i915_gem_object *
4110
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4111
{
4112
	struct drm_i915_gem_object *obj;
4113
	struct address_space *mapping;
4114
	unsigned int cache_level;
D
Daniel Vetter 已提交
4115
	gfp_t mask;
4116
	int ret;
4117

4118 4119 4120 4121 4122
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4123
	if (size >> PAGE_SHIFT > INT_MAX)
4124 4125 4126 4127 4128
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4129
	obj = i915_gem_object_alloc();
4130
	if (obj == NULL)
4131
		return ERR_PTR(-ENOMEM);
4132

M
Matthew Auld 已提交
4133
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4134 4135
	if (ret)
		goto fail;
4136

4137
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4138
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4139 4140 4141 4142 4143
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4144
	mapping = obj->base.filp->f_mapping;
4145
	mapping_set_gfp_mask(mapping, mask);
4146
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4147

4148
	i915_gem_object_init(obj, &i915_gem_object_ops);
4149

4150 4151
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4152

4153
	if (HAS_LLC(dev_priv))
4154
		/* On some devices, we can have the GPU use the LLC (the CPU
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4166 4167 4168
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4169

4170
	i915_gem_object_set_cache_coherency(obj, cache_level);
4171

4172 4173
	trace_i915_gem_object_create(obj);

4174
	return obj;
4175 4176 4177 4178

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4179 4180
}

4181 4182 4183 4184 4185 4186 4187 4188
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4189
	if (obj->mm.madv != I915_MADV_WILLNEED)
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4205 4206
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4207
{
4208
	struct drm_i915_gem_object *obj, *on;
4209
	intel_wakeref_t wakeref;
4210

4211
	wakeref = intel_runtime_pm_get(i915);
4212
	llist_for_each_entry_safe(obj, on, freed, freed) {
4213 4214 4215 4216
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4217 4218
		mutex_lock(&i915->drm.struct_mutex);

4219
		GEM_BUG_ON(i915_gem_object_is_active(obj));
4220
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4221 4222
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4223
			i915_vma_destroy(vma);
4224
		}
4225 4226
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4227

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4240
		mutex_unlock(&i915->drm.struct_mutex);
4241 4242

		GEM_BUG_ON(obj->bind_count);
4243
		GEM_BUG_ON(obj->userfault_count);
4244
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4245
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4246 4247 4248

		if (obj->ops->release)
			obj->ops->release(obj);
4249

4250 4251
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4252
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4253
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4254 4255 4256 4257

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4258
		reservation_object_fini(&obj->__builtin_resv);
4259 4260 4261
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

4262
		bitmap_free(obj->bit_17);
4263
		i915_gem_object_free(obj);
4264

4265 4266 4267
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4268 4269
		if (on)
			cond_resched();
4270
	}
4271
	intel_runtime_pm_put(i915, wakeref);
4272 4273 4274 4275 4276 4277
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4288
		__i915_gem_free_objects(i915, freed);
4289
	}
4290 4291 4292 4293 4294 4295 4296
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4297

4298 4299
	/*
	 * All file-owned VMA should have been released by this point through
4300 4301 4302 4303 4304 4305
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4306

4307
	spin_lock(&i915->mm.free_lock);
4308
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4309 4310
		spin_unlock(&i915->mm.free_lock);

4311
		__i915_gem_free_objects(i915, freed);
4312
		if (need_resched())
4313 4314 4315
			return;

		spin_lock(&i915->mm.free_lock);
4316
	}
4317
	spin_unlock(&i915->mm.free_lock);
4318
}
4319

4320 4321 4322 4323 4324
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4325 4326 4327 4328 4329 4330 4331

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4332

4333 4334 4335 4336 4337 4338 4339 4340 4341
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4342 4343
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4344
		queue_work(i915->wq, &i915->mm.free_work);
4345
}
4346

4347 4348 4349
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4350

4351 4352 4353
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4354
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4355
		obj->mm.madv = I915_MADV_DONTNEED;
4356

4357 4358
	/*
	 * Before we free the object, make sure any pure RCU-only
4359 4360 4361 4362
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4363
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4364
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4365 4366
}

4367 4368 4369 4370
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4371 4372
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4373 4374 4375 4376 4377
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4378 4379
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4380 4381
	intel_wakeref_t wakeref;

4382 4383
	GEM_TRACE("\n");

4384
	wakeref = intel_runtime_pm_get(i915);
4385
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4386 4387 4388 4389 4390 4391 4392

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4393
	if (i915_terminally_wedged(i915))
4394 4395
		i915_gem_unset_wedged(i915);

4396 4397 4398 4399 4400 4401
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4402
	 * of the reset, so this could be applied to even earlier gen.
4403
	 */
4404
	intel_engines_sanitize(i915, false);
4405

4406
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4407
	intel_runtime_pm_put(i915, wakeref);
4408

4409
	mutex_lock(&i915->drm.struct_mutex);
4410 4411
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4412 4413
}

4414
void i915_gem_suspend(struct drm_i915_private *i915)
4415
{
4416
	intel_wakeref_t wakeref;
4417

4418 4419
	GEM_TRACE("\n");

4420
	wakeref = intel_runtime_pm_get(i915);
4421

4422 4423
	flush_workqueue(i915->wq);

C
Chris Wilson 已提交
4424
	mutex_lock(&i915->drm.struct_mutex);
4425

C
Chris Wilson 已提交
4426 4427
	/*
	 * We have to flush all the executing contexts to main memory so
4428 4429
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4430
	 * leaves the i915->kernel_context still active when
4431 4432 4433 4434
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4435
	switch_to_kernel_context_sync(i915, i915->gt.active_engines);
4436

C
Chris Wilson 已提交
4437
	mutex_unlock(&i915->drm.struct_mutex);
4438
	i915_reset_flush(i915);
4439

4440
	drain_delayed_work(&i915->gt.retire_work);
4441

C
Chris Wilson 已提交
4442 4443
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4444 4445
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4446
	drain_delayed_work(&i915->gt.idle_work);
4447

C
Chris Wilson 已提交
4448 4449
	/*
	 * Assert that we successfully flushed all the work and
4450 4451
	 * reset the GPU back to its idle, low power state.
	 */
4452
	GEM_BUG_ON(i915->gt.awake);
4453

4454 4455
	intel_uc_suspend(i915);

4456
	intel_runtime_pm_put(i915, wakeref);
4457 4458 4459 4460
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4461 4462 4463 4464 4465 4466 4467
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4488 4489 4490 4491 4492 4493 4494
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4495 4496
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4497 4498
}

4499
void i915_gem_resume(struct drm_i915_private *i915)
4500
{
4501 4502
	GEM_TRACE("\n");

4503
	WARN_ON(i915->gt.awake);
4504

4505
	mutex_lock(&i915->drm.struct_mutex);
4506
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4507

4508 4509
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4510

4511 4512
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4513 4514 4515
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4516
	intel_gt_resume(i915);
4517

4518 4519 4520
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4521
	intel_uc_resume(i915);
4522

4523
	/* Always reload a context for powersaving. */
4524
	if (!load_power_context(i915))
4525 4526 4527
		goto err_wedged;

out_unlock:
4528
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4529 4530 4531 4532
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4533 4534 4535
	if (!i915_reset_failed(i915)) {
		dev_err(i915->drm.dev,
			"Failed to re-initialize GPU, declaring it wedged!\n");
4536 4537
		i915_gem_set_wedged(i915);
	}
4538
	goto out_unlock;
4539 4540
}

4541
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4542
{
4543
	if (INTEL_GEN(dev_priv) < 5 ||
4544 4545 4546 4547 4548 4549
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4550
	if (IS_GEN(dev_priv, 5))
4551 4552
		return;

4553
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4554
	if (IS_GEN(dev_priv, 6))
4555
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4556
	else if (IS_GEN(dev_priv, 7))
4557
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4558
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4559
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4560 4561
	else
		BUG();
4562
}
D
Daniel Vetter 已提交
4563

4564
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4565 4566 4567 4568 4569 4570 4571
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4572
static void init_unused_rings(struct drm_i915_private *dev_priv)
4573
{
4574 4575 4576 4577 4578 4579
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4580
	} else if (IS_GEN(dev_priv, 2)) {
4581 4582
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4583
	} else if (IS_GEN(dev_priv, 3)) {
4584 4585
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4586 4587 4588
	}
}

4589
static int __i915_gem_restart_engines(void *data)
4590
{
4591
	struct drm_i915_private *i915 = data;
4592
	struct intel_engine_cs *engine;
4593
	enum intel_engine_id id;
4594 4595 4596 4597
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4598 4599 4600
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4601
			return err;
4602
		}
4603 4604
	}

4605 4606
	intel_engines_set_scheduler_caps(i915);

4607 4608 4609 4610 4611
	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4612
	int ret;
4613

4614 4615
	dev_priv->gt.last_init_time = ktime_get();

4616
	/* Double layer security blanket, see i915_gem_init() */
4617
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4618

4619
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4620
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4621

4622
	if (IS_HASWELL(dev_priv))
4623
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4624
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4625

4626
	/* Apply the GT workarounds... */
4627
	intel_gt_apply_workarounds(dev_priv);
4628 4629
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4630

4631
	i915_gem_init_swizzling(dev_priv);
4632

4633 4634 4635 4636 4637 4638
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4639
	init_unused_rings(dev_priv);
4640

4641
	BUG_ON(!dev_priv->kernel_context);
4642 4643
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
4644
		goto out;
4645

4646
	ret = i915_ppgtt_init_hw(dev_priv);
4647
	if (ret) {
4648
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4649 4650 4651
		goto out;
	}

4652 4653 4654 4655 4656 4657
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4658 4659
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4660 4661
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4662
		goto out;
4663
	}
4664

4665
	intel_mocs_init_l3cc_table(dev_priv);
4666

4667 4668
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4669 4670
	if (ret)
		goto cleanup_uc;
4671

4672
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4673 4674

	return 0;
4675 4676 4677

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4678
out:
4679
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4680 4681

	return ret;
4682 4683
}

4684 4685 4686 4687 4688
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
4689
	int err = 0;
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4705
		struct i915_request *rq;
4706

4707
		rq = i915_request_alloc(engine, ctx);
4708 4709 4710 4711 4712
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4713
		err = 0;
4714 4715 4716
		if (engine->init_context)
			err = engine->init_context(rq);

4717
		i915_request_add(rq);
4718 4719 4720 4721
		if (err)
			goto err_active;
	}

4722 4723 4724
	/* Flush the default context image to memory, and enable powersaving. */
	if (!load_power_context(i915)) {
		err = -EIO;
4725
		goto err_active;
4726
	}
4727 4728

	for_each_engine(engine, i915, id) {
4729
		struct intel_context *ce;
4730
		struct i915_vma *state;
4731
		void *vaddr;
4732

4733 4734 4735
		ce = intel_context_lookup(ctx, engine);
		if (!ce)
			continue;
4736

4737
		state = ce->state;
4738 4739 4740
		if (!state)
			continue;

4741
		GEM_BUG_ON(intel_context_is_pinned(ce));
4742

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4760 4761
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
4762 4763 4764

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4765
						I915_MAP_FORCE_WB);
4766 4767 4768 4769 4770 4771
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
4800 4801
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
4802
	 */
4803
	i915_gem_set_wedged(i915);
4804 4805 4806
	goto out_ctx;
}

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

4862
int i915_gem_init(struct drm_i915_private *dev_priv)
4863 4864 4865
{
	int ret;

4866 4867
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4868 4869 4870
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4871
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4872

4873
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
4874
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4875
	else
4876
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4877

4878 4879
	i915_timelines_init(dev_priv);

4880 4881 4882 4883
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

4884
	ret = intel_uc_init_misc(dev_priv);
4885 4886 4887
	if (ret)
		return ret;

4888
	ret = intel_wopcm_init(&dev_priv->wopcm);
4889
	if (ret)
4890
		goto err_uc_misc;
4891

4892 4893 4894 4895 4896 4897
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
4898
	mutex_lock(&dev_priv->drm.struct_mutex);
4899
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4900

4901
	ret = i915_gem_init_ggtt(dev_priv);
4902 4903 4904 4905
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
4906

4907
	ret = i915_gem_init_scratch(dev_priv,
4908
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
4909 4910 4911 4912
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
4913

4914 4915 4916 4917 4918 4919
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

4920
	ret = intel_engines_init(dev_priv);
4921 4922 4923 4924
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
4925

4926 4927
	intel_init_gt_powersave(dev_priv);

4928
	ret = intel_uc_init(dev_priv);
4929
	if (ret)
4930
		goto err_pm;
4931

4932 4933 4934 4935
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

4947 4948 4949 4950
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
		goto err_init_hw;

4951
	ret = __intel_engines_record_defaults(dev_priv);
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

4965
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
4977 4978
	mutex_unlock(&dev_priv->drm.struct_mutex);

4979
	i915_gem_suspend(dev_priv);
4980 4981
	i915_gem_suspend_late(dev_priv);

4982 4983
	i915_gem_drain_workqueue(dev_priv);

4984
	mutex_lock(&dev_priv->drm.struct_mutex);
4985
	intel_uc_fini_hw(dev_priv);
4986 4987
err_uc_init:
	intel_uc_fini(dev_priv);
4988 4989 4990 4991 4992 4993 4994 4995
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
4996 4997
err_scratch:
	i915_gem_fini_scratch(dev_priv);
4998 4999
err_ggtt:
err_unlock:
5000
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
5001 5002
	mutex_unlock(&dev_priv->drm.struct_mutex);

5003
err_uc_misc:
5004
	intel_uc_fini_misc(dev_priv);
5005

5006
	if (ret != -EIO) {
5007
		i915_gem_cleanup_userptr(dev_priv);
5008 5009
		i915_timelines_fini(dev_priv);
	}
5010

5011
	if (ret == -EIO) {
5012 5013
		mutex_lock(&dev_priv->drm.struct_mutex);

5014 5015
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5016 5017 5018
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5019
		if (!i915_reset_failed(dev_priv)) {
5020 5021
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5022 5023
			i915_gem_set_wedged(dev_priv);
		}
5024 5025 5026 5027 5028 5029 5030 5031

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5032 5033
	}

5034
	i915_gem_drain_freed_objects(dev_priv);
5035
	return ret;
5036 5037
}

5038 5039 5040
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5041
	intel_disable_gt_powersave(dev_priv);
5042 5043 5044 5045 5046 5047 5048 5049 5050

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5051
	i915_gem_fini_scratch(dev_priv);
5052 5053
	mutex_unlock(&dev_priv->drm.struct_mutex);

5054 5055
	intel_wa_list_free(&dev_priv->gt_wa_list);

5056 5057
	intel_cleanup_gt_powersave(dev_priv);

5058 5059
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
5060
	i915_timelines_fini(dev_priv);
5061 5062 5063 5064 5065 5066

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5067 5068 5069 5070 5071
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5072
void
5073
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5074
{
5075
	struct intel_engine_cs *engine;
5076
	enum intel_engine_id id;
5077

5078
	for_each_engine(engine, dev_priv, id)
5079
		dev_priv->gt.cleanup_engine(engine);
5080 5081
}

5082 5083 5084
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5085
	int i;
5086

5087
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5088 5089
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5090
	else if (INTEL_GEN(dev_priv) >= 4 ||
5091 5092
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5093 5094 5095 5096
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5097
	if (intel_vgpu_active(dev_priv))
5098 5099 5100 5101
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5102 5103 5104 5105 5106 5107 5108
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5109
	i915_gem_restore_fences(dev_priv);
5110

5111
	i915_gem_detect_bit_6_swizzle(dev_priv);
5112 5113
}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5130
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5131
{
5132
	int err;
5133

5134
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5135
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5136

5137
	i915_gem_init__mm(dev_priv);
5138

5139
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5140
			  i915_gem_retire_work_handler);
5141
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5142
			  i915_gem_idle_work_handler);
5143
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5144
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5145
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5146
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
5147

5148 5149
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5150
	spin_lock_init(&dev_priv->fb_tracking.lock);
5151

M
Matthew Auld 已提交
5152 5153 5154 5155
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5156
	return 0;
5157
}
5158

5159
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5160
{
5161
	i915_gem_drain_freed_objects(dev_priv);
5162 5163
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5164
	WARN_ON(dev_priv->mm.object_count);
5165

5166 5167
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
5168
	i915_gemfs_fini(dev_priv);
5169 5170
}

5171 5172
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5173 5174 5175
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5176 5177 5178 5179 5180
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5181
int i915_gem_freeze_late(struct drm_i915_private *i915)
5182 5183
{
	struct drm_i915_gem_object *obj;
5184
	struct list_head *phases[] = {
5185 5186
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5187
		NULL
5188
	}, **phase;
5189

5190 5191
	/*
	 * Called just before we write the hibernation image.
5192 5193 5194 5195 5196 5197 5198 5199
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5200 5201
	 *
	 * To try and reduce the hibernation image, we manually shrink
5202
	 * the objects as well, see i915_gem_freeze()
5203 5204
	 */

5205 5206
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5207

5208 5209 5210 5211
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5212
	}
5213
	mutex_unlock(&i915->drm.struct_mutex);
5214 5215 5216 5217

	return 0;
}

5218
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5219
{
5220
	struct drm_i915_file_private *file_priv = file->driver_priv;
5221
	struct i915_request *request;
5222 5223 5224 5225 5226

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5227
	spin_lock(&file_priv->mm.lock);
5228
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5229
		request->file_priv = NULL;
5230
	spin_unlock(&file_priv->mm.lock);
5231 5232
}

5233
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5234 5235
{
	struct drm_i915_file_private *file_priv;
5236
	int ret;
5237

5238
	DRM_DEBUG("\n");
5239 5240 5241 5242 5243 5244

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5245
	file_priv->dev_priv = i915;
5246
	file_priv->file = file;
5247 5248 5249 5250

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5251
	file_priv->bsd_engine = -1;
5252
	file_priv->hang_timestamp = jiffies;
5253

5254
	ret = i915_gem_context_open(i915, file);
5255 5256
	if (ret)
		kfree(file_priv);
5257

5258
	return ret;
5259 5260
}

5261 5262
/**
 * i915_gem_track_fb - update frontbuffer tracking
5263 5264 5265
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5266 5267 5268 5269
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5270 5271 5272 5273
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5274 5275 5276 5277 5278 5279 5280
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5281
		     BITS_PER_TYPE(atomic_t));
5282

5283
	if (old) {
5284 5285
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5286 5287 5288
	}

	if (new) {
5289 5290
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5291 5292 5293
	}
}

5294 5295
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5296
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5297 5298 5299
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5300 5301 5302
	struct file *file;
	size_t offset;
	int err;
5303

5304
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5305
	if (IS_ERR(obj))
5306 5307
		return obj;

5308
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5309

5310 5311 5312 5313 5314 5315
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5316

5317 5318 5319 5320 5321
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5322

5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5337 5338 5339 5340

	return obj;

fail:
5341
	i915_gem_object_put(obj);
5342
	return ERR_PTR(err);
5343
}
5344 5345 5346 5347 5348 5349

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5350
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5351 5352 5353 5354 5355
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5356
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5382 5383
		void *entry;
		unsigned long i;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5398
		entry = xa_mk_value(idx);
5399
		for (i = 1; i < count; i++) {
5400
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5438
	 * the radix tree will contain a value entry that points
5439 5440 5441 5442 5443
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5444 5445
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5478
	if (!obj->mm.dirty)
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5494

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5530
	pages = __i915_gem_object_unset_pages(obj);
5531

5532 5533
	obj->ops = &i915_gem_phys_ops;

5534
	err = ____i915_gem_object_get_pages(obj);
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5548 5549 5550 5551 5552
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5553 5554 5555 5556 5557
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5558 5559
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5560
#include "selftests/mock_gem_device.c"
5561
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5562
#include "selftests/huge_pages.c"
5563
#include "selftests/i915_gem_object.c"
5564
#include "selftests/i915_gem_coherency.c"
5565
#include "selftests/i915_gem.c"
5566
#endif