i915_gem.c 162.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include "i915_drv.h"
31
#include "i915_gem_clflush.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include "intel_workarounds.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58
		return true;

59
	return obj->pin_global; /* currently in use by HW, keep flushed */
60 61
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
68 69 70
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
C
Chris Wilson 已提交
141 142
	intel_wakeref_t wakeref;

143 144
	GEM_TRACE("\n");

145 146
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
147
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
168
	i915_timelines_park(i915);
169 170

	i915_pmu_gt_parked(i915);
171
	i915_vma_parked(i915);
172

C
Chris Wilson 已提交
173 174
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
175 176 177 178

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

179
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
180 181 182 183 184 185

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
204
	assert_rpm_wakelock_held(i915);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
220 221
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

241 242
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
243
			    struct drm_file *file)
244
{
245
	struct drm_i915_private *dev_priv = to_i915(dev);
246
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
247
	struct drm_i915_gem_get_aperture *args = data;
248
	struct i915_vma *vma;
249
	u64 pinned;
250

251
	pinned = ggtt->vm.reserved;
252
	mutex_lock(&dev->struct_mutex);
253
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
254
		if (i915_vma_is_pinned(vma))
255
			pinned += vma->node.size;
256
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
257
		if (i915_vma_is_pinned(vma))
258
			pinned += vma->node.size;
259
	mutex_unlock(&dev->struct_mutex);
260

261
	args->aper_size = ggtt->vm.total;
262
	args->aper_available_size = args->aper_size - pinned;
263

264 265 266
	return 0;
}

267
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
268
{
269
	struct address_space *mapping = obj->base.filp->f_mapping;
270
	drm_dma_handle_t *phys;
271 272
	struct sg_table *st;
	struct scatterlist *sg;
273
	char *vaddr;
274
	int i;
275
	int err;
276

277
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
278
		return -EINVAL;
279

280 281 282 283 284
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
285
			     roundup_pow_of_two(obj->base.size),
286 287
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
288
		return -ENOMEM;
289 290

	vaddr = phys->vaddr;
291 292 293 294 295
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
296
		if (IS_ERR(page)) {
297
			err = PTR_ERR(page);
298 299
			goto err_phys;
		}
300 301 302 303 304 305

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

306
		put_page(page);
307 308 309
		vaddr += PAGE_SIZE;
	}

310
	i915_gem_chipset_flush(to_i915(obj->base.dev));
311 312

	st = kmalloc(sizeof(*st), GFP_KERNEL);
313
	if (!st) {
314
		err = -ENOMEM;
315 316
		goto err_phys;
	}
317 318 319

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
320
		err = -ENOMEM;
321
		goto err_phys;
322 323 324 325 326
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
327

328
	sg_dma_address(sg) = phys->busaddr;
329 330
	sg_dma_len(sg) = obj->base.size;

331
	obj->phys_handle = phys;
332

333
	__i915_gem_object_set_pages(obj, st, sg->length);
334 335

	return 0;
336 337 338

err_phys:
	drm_pci_free(obj->base.dev, phys);
339 340

	return err;
341 342
}

343 344
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
345 346
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
347 348 349 350
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

351
static void
352
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
353 354
				struct sg_table *pages,
				bool needs_clflush)
355
{
C
Chris Wilson 已提交
356
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
357

C
Chris Wilson 已提交
358 359
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
360

361
	if (needs_clflush &&
362
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
363
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
364
		drm_clflush_sg(pages);
365

366
	__start_cpu_write(obj);
367 368 369 370 371 372
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
373
	__i915_gem_object_release_shmem(obj, pages, false);
374

C
Chris Wilson 已提交
375
	if (obj->mm.dirty) {
376
		struct address_space *mapping = obj->base.filp->f_mapping;
377
		char *vaddr = obj->phys_handle->vaddr;
378 379 380
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
381 382 383 384 385 386 387 388 389 390 391 392 393
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
394
			if (obj->mm.madv == I915_MADV_WILLNEED)
395
				mark_page_accessed(page);
396
			put_page(page);
397 398
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
399
		obj->mm.dirty = false;
400 401
	}

402 403
	sg_free_table(pages);
	kfree(pages);
404 405

	drm_pci_free(obj->base.dev, obj->phys_handle);
406 407 408 409 410
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
411
	i915_gem_object_unpin_pages(obj);
412 413 414 415 416 417 418 419
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

420 421
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

422
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
423 424 425
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
426 427 428
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
429

430 431 432 433
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
434
	 */
435
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
436 437 438
	if (ret)
		return ret;

439 440 441 442 443 444 445 446 447 448 449 450 451
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

452 453 454 455
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
456
			   struct intel_rps_client *rps_client)
457
{
458
	struct i915_request *rq;
459

460
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
461

462 463 464 465 466 467 468 469 470
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
471
	if (i915_request_completed(rq))
472 473
		goto out;

474 475
	/*
	 * This client is about to stall waiting for the GPU. In many cases
476 477 478 479 480 481 482 483 484 485 486 487 488 489
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
490
	if (rps_client && !i915_request_started(rq)) {
491
		if (INTEL_GEN(rq->i915) >= 6)
492
			gen6_rps_boost(rq, rps_client);
493 494
	}

495
	timeout = i915_request_wait(rq, flags, timeout);
496 497

out:
498 499
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
500 501 502 503 504 505 506 507

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
508
				 struct intel_rps_client *rps_client)
509
{
510
	unsigned int seq = __read_seqcount_begin(&resv->seq);
511
	struct dma_fence *excl;
512
	bool prune_fences = false;
513 514 515 516

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
517 518
		int ret;

519 520
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
521 522 523
		if (ret)
			return ret;

524 525 526
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
527
							     rps_client);
528
			if (timeout < 0)
529
				break;
530

531 532 533 534 535 536
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
537

538 539 540 541 542 543 544 545 546
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
547
		prune_fences = count && timeout >= 0;
548 549
	} else {
		excl = reservation_object_get_excl_rcu(resv);
550 551
	}

552
	if (excl && timeout >= 0)
553 554
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
555 556 557

	dma_fence_put(excl);

558 559
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
560 561 562
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
563
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
564 565 566 567 568
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
569 570
	}

571
	return timeout;
572 573
}

574 575
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
576
{
577
	struct i915_request *rq;
578 579
	struct intel_engine_cs *engine;

580
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
581 582 583 584 585
		return;

	rq = to_request(fence);
	engine = rq->engine;

586 587
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
588
	if (engine->schedule)
589
		engine->schedule(rq, attr);
590
	rcu_read_unlock();
591
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
592 593
}

594 595
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
596 597 598 599 600 601 602
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
603
			__fence_set_priority(array->fences[i], attr);
604
	} else {
605
		__fence_set_priority(fence, attr);
606 607 608 609 610 611
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
612
			      const struct i915_sched_attr *attr)
613 614 615 616 617 618 619 620 621 622 623 624 625 626
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
627
			fence_set_priority(shared[i], attr);
628 629 630 631 632 633 634 635 636
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
637
		fence_set_priority(excl, attr);
638 639 640 641 642
		dma_fence_put(excl);
	}
	return 0;
}

643 644 645 646 647
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
648
 * @rps_client: client (user process) to charge for any waitboosting
649
 */
650 651 652 653
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
654
		     struct intel_rps_client *rps_client)
655
{
656 657 658 659 660 661 662
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
663

664 665
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
666
						   rps_client);
667
	return timeout < 0 ? timeout : 0;
668 669 670 671 672 673
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

674
	return &fpriv->rps_client;
675 676
}

677 678 679
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
680
		     struct drm_file *file)
681 682
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
683
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
684 685 686 687

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
688
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
689 690
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
691

692
	drm_clflush_virt_range(vaddr, args->size);
693
	i915_gem_chipset_flush(to_i915(obj->base.dev));
694

695
	intel_fb_obj_flush(obj, ORIGIN_CPU);
696
	return 0;
697 698
}

699
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
700
{
701
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
702 703 704 705
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
706
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
707
	kmem_cache_free(dev_priv->objects, obj);
708 709
}

710 711
static int
i915_gem_create(struct drm_file *file,
712
		struct drm_i915_private *dev_priv,
713 714
		uint64_t size,
		uint32_t *handle_p)
715
{
716
	struct drm_i915_gem_object *obj;
717 718
	int ret;
	u32 handle;
719

720
	size = roundup(size, PAGE_SIZE);
721 722
	if (size == 0)
		return -EINVAL;
723 724

	/* Allocate the new object */
725
	obj = i915_gem_object_create(dev_priv, size);
726 727
	if (IS_ERR(obj))
		return PTR_ERR(obj);
728

729
	ret = drm_gem_handle_create(file, &obj->base, &handle);
730
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
731
	i915_gem_object_put(obj);
732 733
	if (ret)
		return ret;
734

735
	*handle_p = handle;
736 737 738
	return 0;
}

739 740 741 742 743 744
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
745
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
746
	args->size = args->pitch * args->height;
747
	return i915_gem_create(file, to_i915(dev),
748
			       args->size, &args->handle);
749 750
}

751 752 753 754 755 756
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

757 758
/**
 * Creates a new mm object and returns a handle to it.
759 760 761
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
762 763 764 765 766
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
767
	struct drm_i915_private *dev_priv = to_i915(dev);
768
	struct drm_i915_gem_create *args = data;
769

770
	i915_gem_flush_free_objects(dev_priv);
771

772
	return i915_gem_create(file, dev_priv,
773
			       args->size, &args->handle);
774 775
}

776 777 778 779 780 781 782
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

783
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
784
{
785 786
	intel_wakeref_t wakeref;

787 788 789 790 791
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
792 793 794 795 796 797 798 799 800 801
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
802 803
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
804
	 */
805

806 807 808 809 810
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

811
	i915_gem_chipset_flush(dev_priv);
812

813 814
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
815

816
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
817

818 819
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
820 821 822 823 824 825 826 827
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

828
	if (!(obj->write_domain & flush_domains))
829 830
		return;

831
	switch (obj->write_domain) {
832
	case I915_GEM_DOMAIN_GTT:
833
		i915_gem_flush_ggtt_writes(dev_priv);
834 835 836

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
837

838
		for_each_ggtt_vma(vma, obj) {
839 840 841 842 843
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
844 845
		break;

846 847 848 849
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

850 851 852
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
853 854 855 856 857

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
858 859
	}

860
	obj->write_domain = 0;
861 862
}

863 864 865 866 867 868
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
869
				    unsigned int *needs_clflush)
870 871 872
{
	int ret;

873
	lockdep_assert_held(&obj->base.dev->struct_mutex);
874

875
	*needs_clflush = 0;
876 877
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
878

879 880 881 882 883
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
884 885 886
	if (ret)
		return ret;

C
Chris Wilson 已提交
887
	ret = i915_gem_object_pin_pages(obj);
888 889 890
	if (ret)
		return ret;

891 892
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
893 894 895 896 897 898 899
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

900
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
901

902 903 904 905 906
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
907
	if (!obj->cache_dirty &&
908
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
909
		*needs_clflush = CLFLUSH_BEFORE;
910

911
out:
912
	/* return with the pages pinned */
913
	return 0;
914 915 916 917

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
918 919 920 921 922 923 924
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

925 926
	lockdep_assert_held(&obj->base.dev->struct_mutex);

927 928 929 930
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

931 932 933 934 935 936
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
937 938 939
	if (ret)
		return ret;

C
Chris Wilson 已提交
940
	ret = i915_gem_object_pin_pages(obj);
941 942 943
	if (ret)
		return ret;

944 945
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
946 947 948 949 950 951 952
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

953
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
954

955 956 957 958 959
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
960
	if (!obj->cache_dirty) {
961
		*needs_clflush |= CLFLUSH_AFTER;
962

963 964 965 966
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
967
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
968 969
			*needs_clflush |= CLFLUSH_BEFORE;
	}
970

971
out:
972
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
973
	obj->mm.dirty = true;
974
	/* return with the pages pinned */
975
	return 0;
976 977 978 979

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
980 981
}

982
static int
983 984
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
985 986 987 988 989 990
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

991 992
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
993

994
	ret = __copy_to_user(user_data, vaddr + offset, len);
995

996
	kunmap(page);
997

998
	return ret ? -EFAULT : 0;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1025
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1045
{
1046
	void __iomem *vaddr;
1047
	unsigned long unwritten;
1048 1049

	/* We can use the cpu mem copy function because this is X86. */
1050 1051 1052 1053
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1054 1055
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1056 1057 1058 1059
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1060 1061
		io_mapping_unmap(vaddr);
	}
1062 1063 1064 1065
	return unwritten;
}

static int
1066 1067
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1068
{
1069 1070
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1071
	intel_wakeref_t wakeref;
1072
	struct drm_mm_node node;
1073 1074 1075
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1076 1077
	int ret;

1078 1079 1080 1081
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

1082
	wakeref = intel_runtime_pm_get(i915);
1083
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1084 1085 1086
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1087 1088 1089
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1090
		ret = i915_vma_put_fence(vma);
1091 1092 1093 1094 1095
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1096
	if (IS_ERR(vma)) {
1097
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1098
		if (ret)
1099 1100
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1101 1102 1103 1104 1105 1106
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1107
	mutex_unlock(&i915->drm.struct_mutex);
1108

1109 1110 1111
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1126 1127 1128
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1129 1130 1131 1132
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1133

1134
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1135
				  user_data, page_length)) {
1136 1137 1138 1139 1140 1141 1142 1143 1144
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1145
	mutex_lock(&i915->drm.struct_mutex);
1146 1147 1148
out_unpin:
	if (node.allocated) {
		wmb();
1149
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1150 1151
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1152
		i915_vma_unpin(vma);
1153
	}
1154
out_unlock:
1155
	intel_runtime_pm_put(i915, wakeref);
1156
	mutex_unlock(&i915->drm.struct_mutex);
1157

1158 1159 1160
	return ret;
}

1161 1162
/**
 * Reads data from the object referenced by handle.
1163 1164 1165
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1166 1167 1168 1169 1170
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1171
		     struct drm_file *file)
1172 1173
{
	struct drm_i915_gem_pread *args = data;
1174
	struct drm_i915_gem_object *obj;
1175
	int ret;
1176

1177 1178 1179
	if (args->size == 0)
		return 0;

1180
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1181 1182 1183
		       args->size))
		return -EFAULT;

1184
	obj = i915_gem_object_lookup(file, args->handle);
1185 1186
	if (!obj)
		return -ENOENT;
1187

1188
	/* Bounds check source.  */
1189
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1190
		ret = -EINVAL;
1191
		goto out;
C
Chris Wilson 已提交
1192 1193
	}

C
Chris Wilson 已提交
1194 1195
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1196 1197 1198 1199
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1200
	if (ret)
1201
		goto out;
1202

1203
	ret = i915_gem_object_pin_pages(obj);
1204
	if (ret)
1205
		goto out;
1206

1207
	ret = i915_gem_shmem_pread(obj, args);
1208
	if (ret == -EFAULT || ret == -ENODEV)
1209
		ret = i915_gem_gtt_pread(obj, args);
1210

1211 1212
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1213
	i915_gem_object_put(obj);
1214
	return ret;
1215 1216
}

1217 1218
/* This is the fast write path which cannot handle
 * page faults in the source data
1219
 */
1220

1221 1222 1223 1224
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1225
{
1226
	void __iomem *vaddr;
1227
	unsigned long unwritten;
1228

1229
	/* We can use the cpu mem copy function because this is X86. */
1230 1231
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1232
						      user_data, length);
1233 1234
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1235 1236 1237
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1238 1239
		io_mapping_unmap(vaddr);
	}
1240 1241 1242 1243

	return unwritten;
}

1244 1245 1246
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1247
 * @obj: i915 GEM object
1248
 * @args: pwrite arguments structure
1249
 */
1250
static int
1251 1252
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1253
{
1254
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1255
	struct i915_ggtt *ggtt = &i915->ggtt;
1256
	intel_wakeref_t wakeref;
1257
	struct drm_mm_node node;
1258 1259 1260
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1261
	int ret;
1262

1263 1264 1265
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1266

1267 1268 1269 1270 1271 1272 1273 1274
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1275 1276
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1277 1278 1279 1280 1281
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1282
		wakeref = intel_runtime_pm_get(i915);
1283 1284
	}

C
Chris Wilson 已提交
1285
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1286 1287 1288
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1289 1290 1291
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1292
		ret = i915_vma_put_fence(vma);
1293 1294 1295 1296 1297
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1298
	if (IS_ERR(vma)) {
1299
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1300
		if (ret)
1301
			goto out_rpm;
1302
		GEM_BUG_ON(!node.allocated);
1303
	}
D
Daniel Vetter 已提交
1304 1305 1306 1307 1308

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1309 1310
	mutex_unlock(&i915->drm.struct_mutex);

1311
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1312

1313 1314 1315 1316
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1317 1318
		/* Operation in this page
		 *
1319 1320 1321
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1322
		 */
1323
		u32 page_base = node.start;
1324 1325
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1326 1327 1328
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1329 1330 1331
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1332 1333 1334 1335
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1336
		/* If we get a fault while copying data, then (presumably) our
1337 1338
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1339 1340
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1341
		 */
1342
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1343 1344 1345
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1346
		}
1347

1348 1349 1350
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1351
	}
1352
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1353 1354

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1355
out_unpin:
1356 1357
	if (node.allocated) {
		wmb();
1358
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1359 1360
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1361
		i915_vma_unpin(vma);
1362
	}
1363
out_rpm:
1364
	intel_runtime_pm_put(i915, wakeref);
1365
out_unlock:
1366
	mutex_unlock(&i915->drm.struct_mutex);
1367
	return ret;
1368 1369
}

1370 1371 1372 1373 1374
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1375
static int
1376 1377 1378
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1379
{
1380
	char *vaddr;
1381 1382
	int ret;

1383
	vaddr = kmap(page);
1384

1385 1386
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1387

1388 1389 1390
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1391

1392 1393 1394
	kunmap(page);

	return ret ? -EFAULT : 0;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1405
	unsigned int needs_clflush;
1406 1407
	unsigned int offset, idx;
	int ret;
1408

1409
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1410 1411 1412
	if (ret)
		return ret;

1413 1414 1415 1416
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1417

1418 1419 1420 1421 1422 1423 1424
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1425

1426 1427 1428 1429 1430
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1431
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1432

1433 1434 1435
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1436
		if (ret)
1437
			break;
1438

1439 1440 1441
		remain -= length;
		user_data += length;
		offset = 0;
1442
	}
1443

1444
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1445
	i915_gem_obj_finish_shmem_access(obj);
1446
	return ret;
1447 1448 1449 1450
}

/**
 * Writes data to the object referenced by handle.
1451 1452 1453
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1454 1455 1456 1457 1458
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1459
		      struct drm_file *file)
1460 1461
{
	struct drm_i915_gem_pwrite *args = data;
1462
	struct drm_i915_gem_object *obj;
1463 1464 1465 1466 1467
	int ret;

	if (args->size == 0)
		return 0;

1468
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1469 1470
		return -EFAULT;

1471
	obj = i915_gem_object_lookup(file, args->handle);
1472 1473
	if (!obj)
		return -ENOENT;
1474

1475
	/* Bounds check destination. */
1476
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1477
		ret = -EINVAL;
1478
		goto err;
C
Chris Wilson 已提交
1479 1480
	}

1481 1482 1483 1484 1485 1486
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1487 1488
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1489 1490 1491 1492 1493 1494
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1495 1496 1497 1498 1499
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1500 1501 1502
	if (ret)
		goto err;

1503
	ret = i915_gem_object_pin_pages(obj);
1504
	if (ret)
1505
		goto err;
1506

D
Daniel Vetter 已提交
1507
	ret = -EFAULT;
1508 1509 1510 1511 1512 1513
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1514
	if (!i915_gem_object_has_struct_page(obj) ||
1515
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1516 1517
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1518 1519
		 * textures). Fallback to the shmem path in that case.
		 */
1520
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1521

1522
	if (ret == -EFAULT || ret == -ENOSPC) {
1523 1524
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1525
		else
1526
			ret = i915_gem_shmem_pwrite(obj, args);
1527
	}
1528

1529
	i915_gem_object_unpin_pages(obj);
1530
err:
C
Chris Wilson 已提交
1531
	i915_gem_object_put(obj);
1532
	return ret;
1533 1534
}

1535 1536 1537 1538 1539 1540
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1541 1542
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1543
	for_each_ggtt_vma(vma, obj) {
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1554
	spin_lock(&i915->mm.obj_lock);
1555
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1556 1557
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1558 1559
}

1560
/**
1561 1562
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1563 1564 1565
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1566 1567 1568
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1569
			  struct drm_file *file)
1570 1571
{
	struct drm_i915_gem_set_domain *args = data;
1572
	struct drm_i915_gem_object *obj;
1573 1574
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1575
	int err;
1576

1577
	/* Only handle setting domains to types used by the CPU. */
1578
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1579 1580 1581 1582 1583 1584 1585 1586
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1587
	obj = i915_gem_object_lookup(file, args->handle);
1588 1589
	if (!obj)
		return -ENOENT;
1590

1591 1592 1593 1594
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1595
	err = i915_gem_object_wait(obj,
1596
				   I915_WAIT_INTERRUPTIBLE |
1597
				   I915_WAIT_PRIORITY |
1598 1599 1600
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1601
	if (err)
C
Chris Wilson 已提交
1602
		goto out;
1603

T
Tina Zhang 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1617 1618 1619 1620 1621 1622 1623 1624 1625
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1626
		goto out;
1627 1628 1629

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1630
		goto out_unpin;
1631

1632 1633 1634 1635
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1636
	else
1637
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1638

1639 1640
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1641

1642
	mutex_unlock(&dev->struct_mutex);
1643

1644
	if (write_domain != 0)
1645 1646
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1647

C
Chris Wilson 已提交
1648
out_unpin:
1649
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1650 1651
out:
	i915_gem_object_put(obj);
1652
	return err;
1653 1654 1655 1656
}

/**
 * Called when user space has done writes to this buffer
1657 1658 1659
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1660 1661 1662
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1663
			 struct drm_file *file)
1664 1665
{
	struct drm_i915_gem_sw_finish *args = data;
1666
	struct drm_i915_gem_object *obj;
1667

1668
	obj = i915_gem_object_lookup(file, args->handle);
1669 1670
	if (!obj)
		return -ENOENT;
1671

T
Tina Zhang 已提交
1672 1673 1674 1675 1676
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1677
	/* Pinned buffers may be scanout, so flush the cache */
1678
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1679
	i915_gem_object_put(obj);
1680 1681

	return 0;
1682 1683 1684
}

/**
1685 1686 1687 1688 1689
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1690 1691 1692
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1703 1704 1705
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1706
		    struct drm_file *file)
1707 1708
{
	struct drm_i915_gem_mmap *args = data;
1709
	struct drm_i915_gem_object *obj;
1710 1711
	unsigned long addr;

1712 1713 1714
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1715
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1716 1717
		return -ENODEV;

1718 1719
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1720
		return -ENOENT;
1721

1722 1723 1724
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1725
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1726
		i915_gem_object_put(obj);
1727
		return -ENXIO;
1728 1729
	}

1730
	addr = vm_mmap(obj->base.filp, 0, args->size,
1731 1732
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1733 1734 1735 1736
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1737
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1738
			i915_gem_object_put(obj);
1739 1740
			return -EINTR;
		}
1741 1742 1743 1744 1745 1746 1747
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1748 1749

		/* This may race, but that's ok, it only gets set */
1750
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1751
	}
C
Chris Wilson 已提交
1752
	i915_gem_object_put(obj);
1753 1754 1755 1756 1757 1758 1759 1760
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1761
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1762
{
1763
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1786 1787 1788
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1816
	return 2;
1817 1818
}

1819
static inline struct i915_ggtt_view
1820
compute_partial_view(const struct drm_i915_gem_object *obj,
1821 1822 1823 1824 1825 1826 1827 1828 1829
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1830 1831
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1832
		min_t(unsigned int, chunk,
1833
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1834 1835 1836 1837 1838 1839 1840 1841

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1842 1843
/**
 * i915_gem_fault - fault a page into the GTT
1844
 * @vmf: fault info
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1856 1857 1858
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1859
 */
1860
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1861
{
1862
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1863
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1864
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1865
	struct drm_device *dev = obj->base.dev;
1866 1867
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1868
	bool write = area->vm_flags & VM_WRITE;
1869
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1870
	struct i915_vma *vma;
1871
	pgoff_t page_offset;
1872
	int ret;
1873

1874 1875 1876 1877
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1878
	/* We don't use vmf->pgoff since that has the fake offset */
1879
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1880

C
Chris Wilson 已提交
1881 1882
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1883
	/* Try to flush the object off the GPU first without holding the lock.
1884
	 * Upon acquiring the lock, we will perform our sanity checks and then
1885 1886 1887
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1888 1889 1890 1891
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1892
	if (ret)
1893 1894
		goto err;

1895 1896 1897 1898
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1899
	wakeref = intel_runtime_pm_get(dev_priv);
1900 1901 1902 1903

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1904

1905
	/* Access to snoopable pages through the GTT is incoherent. */
1906
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1907
		ret = -EFAULT;
1908
		goto err_unlock;
1909 1910
	}

1911

1912
	/* Now pin it into the GTT as needed */
1913 1914 1915 1916
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1917 1918
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1919
		struct i915_ggtt_view view =
1920
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1921
		unsigned int flags;
1922

1923 1924 1925 1926 1927 1928
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1929 1930 1931 1932
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1933 1934 1935 1936 1937 1938
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1939
	}
C
Chris Wilson 已提交
1940 1941
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1942
		goto err_unlock;
C
Chris Wilson 已提交
1943
	}
1944

1945 1946
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1947
		goto err_unpin;
1948

1949
	ret = i915_vma_pin_fence(vma);
1950
	if (ret)
1951
		goto err_unpin;
1952

1953
	/* Finally, remap it using the new GTT offset */
1954
	ret = remap_io_mapping(area,
1955
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1956
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1957
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1958
			       &ggtt->iomap);
1959 1960
	if (ret)
		goto err_fence;
1961

1962 1963 1964 1965 1966 1967
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1968 1969
	i915_vma_set_ggtt_write(vma);

1970
err_fence:
1971
	i915_vma_unpin_fence(vma);
1972
err_unpin:
C
Chris Wilson 已提交
1973
	__i915_vma_unpin(vma);
1974
err_unlock:
1975
	mutex_unlock(&dev->struct_mutex);
1976
err_rpm:
1977
	intel_runtime_pm_put(dev_priv, wakeref);
1978
	i915_gem_object_unpin_pages(obj);
1979
err:
1980
	switch (ret) {
1981
	case -EIO:
1982 1983 1984 1985 1986 1987
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1988 1989
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
1990
		/* else: fall through */
1991
	case -EAGAIN:
D
Daniel Vetter 已提交
1992 1993 1994 1995
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1996
		 */
1997 1998
	case 0:
	case -ERESTARTSYS:
1999
	case -EINTR:
2000 2001 2002 2003 2004
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2005
		return VM_FAULT_NOPAGE;
2006
	case -ENOMEM:
2007
		return VM_FAULT_OOM;
2008
	case -ENOSPC:
2009
	case -EFAULT:
2010
		return VM_FAULT_SIGBUS;
2011
	default:
2012
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2013
		return VM_FAULT_SIGBUS;
2014 2015 2016
	}
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2028
	for_each_ggtt_vma(vma, obj)
2029 2030 2031
		i915_vma_unset_userfault(vma);
}

2032 2033 2034 2035
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2036
 * Preserve the reservation of the mmapping with the DRM core code, but
2037 2038 2039 2040 2041 2042 2043 2044 2045
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2046
void
2047
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2048
{
2049
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2050
	intel_wakeref_t wakeref;
2051

2052 2053 2054
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2055 2056 2057 2058
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2059
	 */
2060
	lockdep_assert_held(&i915->drm.struct_mutex);
2061
	wakeref = intel_runtime_pm_get(i915);
2062

2063
	if (!obj->userfault_count)
2064
		goto out;
2065

2066
	__i915_gem_object_release_mmap(obj);
2067 2068 2069 2070 2071 2072 2073 2074 2075

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2076 2077

out:
2078
	intel_runtime_pm_put(i915, wakeref);
2079 2080
}

2081
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2082
{
2083
	struct drm_i915_gem_object *obj, *on;
2084
	int i;
2085

2086 2087 2088 2089 2090 2091
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2092

2093
	list_for_each_entry_safe(obj, on,
2094 2095
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2096 2097 2098 2099 2100 2101 2102 2103

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2114 2115 2116 2117

		if (!reg->vma)
			continue;

2118
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2119 2120
		reg->dirty = true;
	}
2121 2122
}

2123 2124
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2125
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2126
	int err;
2127

2128
	err = drm_gem_create_mmap_offset(&obj->base);
2129
	if (likely(!err))
2130
		return 0;
2131

2132 2133
	/* Attempt to reap some mmap space from dead objects */
	do {
2134 2135 2136
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2137 2138
		if (err)
			break;
2139

2140
		i915_gem_drain_freed_objects(dev_priv);
2141
		err = drm_gem_create_mmap_offset(&obj->base);
2142 2143 2144 2145
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2146

2147
	return err;
2148 2149 2150 2151 2152 2153 2154
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2155
int
2156 2157
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2158
		  uint32_t handle,
2159
		  uint64_t *offset)
2160
{
2161
	struct drm_i915_gem_object *obj;
2162 2163
	int ret;

2164
	obj = i915_gem_object_lookup(file, handle);
2165 2166
	if (!obj)
		return -ENOENT;
2167

2168
	ret = i915_gem_object_create_mmap_offset(obj);
2169 2170
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2171

C
Chris Wilson 已提交
2172
	i915_gem_object_put(obj);
2173
	return ret;
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2197
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2198 2199
}

D
Daniel Vetter 已提交
2200 2201 2202
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2203
{
2204
	i915_gem_object_free_mmap_offset(obj);
2205

2206 2207
	if (obj->base.filp == NULL)
		return;
2208

D
Daniel Vetter 已提交
2209 2210 2211 2212 2213
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2214
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2215
	obj->mm.madv = __I915_MADV_PURGED;
2216
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2217
}
2218

2219
/* Try to discard unwanted pages */
2220
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2221
{
2222 2223
	struct address_space *mapping;

2224
	lockdep_assert_held(&obj->mm.lock);
2225
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2226

C
Chris Wilson 已提交
2227
	switch (obj->mm.madv) {
2228 2229 2230 2231 2232 2233 2234 2235 2236
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2237
	mapping = obj->base.filp->f_mapping,
2238
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2239 2240
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2252
static void
2253 2254
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2255
{
2256
	struct sgt_iter sgt_iter;
2257
	struct pagevec pvec;
2258
	struct page *page;
2259

2260
	__i915_gem_object_release_shmem(obj, pages, true);
2261

2262
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2263

2264
	if (i915_gem_object_needs_bit17_swizzle(obj))
2265
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2266

2267 2268 2269
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2270
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2271
		if (obj->mm.dirty)
2272
			set_page_dirty(page);
2273

C
Chris Wilson 已提交
2274
		if (obj->mm.madv == I915_MADV_WILLNEED)
2275
			mark_page_accessed(page);
2276

2277 2278
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2279
	}
2280 2281
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2282
	obj->mm.dirty = false;
2283

2284 2285
	sg_free_table(pages);
	kfree(pages);
2286
}
C
Chris Wilson 已提交
2287

2288 2289 2290
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2291
	void __rcu **slot;
2292

2293
	rcu_read_lock();
C
Chris Wilson 已提交
2294 2295
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2296
	rcu_read_unlock();
2297 2298
}

2299 2300
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2301
{
2302
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2303
	struct sg_table *pages;
2304

2305
	pages = fetch_and_zero(&obj->mm.pages);
2306 2307
	if (IS_ERR_OR_NULL(pages))
		return pages;
2308

2309 2310 2311 2312
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2313
	if (obj->mm.mapping) {
2314 2315
		void *ptr;

2316
		ptr = page_mask_bits(obj->mm.mapping);
2317 2318
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2319
		else
2320 2321
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2322
		obj->mm.mapping = NULL;
2323 2324
	}

2325
	__i915_gem_object_reset_page_iter(obj);
2326 2327 2328 2329
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2330

2331 2332
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2333 2334
{
	struct sg_table *pages;
2335
	int ret;
2336 2337

	if (i915_gem_object_has_pinned_pages(obj))
2338
		return -EBUSY;
2339 2340 2341 2342 2343

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2344 2345
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2346
		goto unlock;
2347
	}
2348 2349 2350 2351 2352 2353 2354

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2365 2366 2367
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2368
	ret = 0;
2369 2370
unlock:
	mutex_unlock(&obj->mm.lock);
2371 2372

	return ret;
C
Chris Wilson 已提交
2373 2374
}

2375
bool i915_sg_trim(struct sg_table *orig_st)
2376 2377 2378 2379 2380 2381
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2382
		return false;
2383

2384
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2385
		return false;
2386 2387 2388 2389

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2390 2391 2392
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2393 2394
		new_sg = sg_next(new_sg);
	}
2395
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2396 2397 2398 2399

	sg_free_table(orig_st);

	*orig_st = new_st;
2400
	return true;
2401 2402
}

2403
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2404
{
2405
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2406 2407
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2408
	struct address_space *mapping;
2409 2410
	struct sg_table *st;
	struct scatterlist *sg;
2411
	struct sgt_iter sgt_iter;
2412
	struct page *page;
2413
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2414
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2415
	unsigned int sg_page_sizes;
2416
	struct pagevec pvec;
2417
	gfp_t noreclaim;
I
Imre Deak 已提交
2418
	int ret;
2419

2420 2421
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2422 2423 2424
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2425 2426
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2427

2428 2429 2430 2431
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2432
	if (page_count > totalram_pages())
2433 2434
		return -ENOMEM;

2435 2436
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2437
		return -ENOMEM;
2438

2439
rebuild_st:
2440 2441
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2442
		return -ENOMEM;
2443
	}
2444

2445 2446
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2447 2448 2449 2450
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2451
	mapping = obj->base.filp->f_mapping;
2452
	mapping_set_unevictable(mapping);
2453
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2454 2455
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2456 2457
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2458
	sg_page_sizes = 0;
2459
	for (i = 0; i < page_count; i++) {
2460 2461 2462 2463 2464 2465 2466
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2467
			cond_resched();
C
Chris Wilson 已提交
2468
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2469 2470 2471 2472 2473 2474 2475 2476
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2477
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2478

2479 2480
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2481 2482
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2483 2484 2485 2486
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2487
			 */
2488 2489 2490
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2491

2492 2493
				/*
				 * Our bo are always dirty and so we require
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2504
				 * this we want __GFP_RETRY_MAYFAIL.
2505
				 */
M
Michal Hocko 已提交
2506
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2507
			}
2508 2509
		} while (1);

2510 2511 2512
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2513
			if (i) {
M
Matthew Auld 已提交
2514
				sg_page_sizes |= sg->length;
2515
				sg = sg_next(sg);
2516
			}
2517 2518 2519 2520 2521 2522
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2523 2524 2525

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2526
	}
2527
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2528
		sg_page_sizes |= sg->length;
2529
		sg_mark_end(sg);
2530
	}
2531

2532 2533 2534
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2535
	ret = i915_gem_gtt_prepare_pages(obj, st);
2536
	if (ret) {
2537 2538
		/*
		 * DMA remapping failed? One possible cause is that
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2556

2557
	if (i915_gem_object_needs_bit17_swizzle(obj))
2558
		i915_gem_object_do_bit_17_swizzle(obj, st);
2559

M
Matthew Auld 已提交
2560
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2561 2562

	return 0;
2563

2564
err_sg:
2565
	sg_mark_end(sg);
2566
err_pages:
2567 2568 2569 2570 2571 2572 2573 2574
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2575 2576
	sg_free_table(st);
	kfree(st);
2577

2578 2579
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2580 2581 2582 2583 2584 2585 2586
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2587 2588 2589
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2590
	return ret;
2591 2592 2593
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2594
				 struct sg_table *pages,
M
Matthew Auld 已提交
2595
				 unsigned int sg_page_sizes)
2596
{
2597 2598 2599 2600
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2601
	lockdep_assert_held(&obj->mm.lock);
2602 2603 2604 2605 2606

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2607 2608

	if (i915_gem_object_is_tiled(obj) &&
2609
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2610 2611 2612 2613
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2614

M
Matthew Auld 已提交
2615 2616
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2617 2618

	/*
M
Matthew Auld 已提交
2619 2620 2621 2622 2623 2624
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2625 2626 2627 2628 2629 2630 2631
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2632 2633 2634 2635

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2636 2637 2638 2639
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2640
	int err;
2641 2642 2643 2644 2645 2646

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2647
	err = obj->ops->get_pages(obj);
2648
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2649

2650
	return err;
2651 2652
}

2653
/* Ensure that the associated pages are gathered from the backing storage
2654
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2655
 * multiple times before they are released by a single call to
2656
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2657 2658 2659
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2660
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2661
{
2662
	int err;
2663

2664 2665 2666
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2667

2668
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2669 2670
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2671 2672 2673
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2674

2675 2676 2677
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2678

2679 2680
unlock:
	mutex_unlock(&obj->mm.lock);
2681
	return err;
2682 2683
}

2684
/* The 'mapping' part of i915_gem_object_pin_map() below */
2685 2686
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2687 2688
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2689
	struct sg_table *sgt = obj->mm.pages;
2690 2691
	struct sgt_iter sgt_iter;
	struct page *page;
2692 2693
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2694
	unsigned long i = 0;
2695
	pgprot_t pgprot;
2696 2697 2698
	void *addr;

	/* A single page can always be kmapped */
2699
	if (n_pages == 1 && type == I915_MAP_WB)
2700 2701
		return kmap(sg_page(sgt->sgl));

2702 2703
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2704
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2705 2706 2707
		if (!pages)
			return NULL;
	}
2708

2709 2710
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2711 2712 2713 2714

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2715
	switch (type) {
2716 2717 2718
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2719 2720 2721 2722 2723 2724 2725 2726
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2727

2728
	if (pages != stack_pages)
M
Michal Hocko 已提交
2729
		kvfree(pages);
2730 2731 2732 2733 2734

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2735 2736
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2737
{
2738 2739 2740
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2741 2742
	int ret;

T
Tina Zhang 已提交
2743 2744
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2745

2746
	ret = mutex_lock_interruptible(&obj->mm.lock);
2747 2748 2749
	if (ret)
		return ERR_PTR(ret);

2750 2751 2752
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2753
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2754
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2755 2756
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2757 2758 2759
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2760

2761 2762 2763
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2764 2765
		pinned = false;
	}
2766
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2767

2768
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2769 2770 2771
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2772
			goto err_unpin;
2773
		}
2774 2775 2776 2777 2778 2779

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2780
		ptr = obj->mm.mapping = NULL;
2781 2782
	}

2783 2784 2785 2786
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2787
			goto err_unpin;
2788 2789
		}

2790
		obj->mm.mapping = page_pack_bits(ptr, type);
2791 2792
	}

2793 2794
out_unlock:
	mutex_unlock(&obj->mm.lock);
2795 2796
	return ptr;

2797 2798 2799 2800 2801
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2802 2803
}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2821
	if (i915_gem_object_has_pages(obj))
2822 2823
		return -ENODEV;

2824 2825 2826
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

2900
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2901
{
2902 2903
	unsigned int score;
	bool banned, bannable;
2904

2905
	atomic_inc(&ctx->guilty_count);
2906

2907 2908 2909
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2910

2911 2912
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
2913 2914
		return;

2915 2916 2917 2918
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
2919
		i915_gem_context_set_banned(ctx);
2920
	}
2921 2922 2923

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
2924 2925 2926 2927
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2928
	atomic_inc(&ctx->active_count);
2929 2930
}

2931
struct i915_request *
2932
i915_gem_find_active_request(struct intel_engine_cs *engine)
2933
{
2934
	struct i915_request *request, *active = NULL;
2935
	unsigned long flags;
2936

2937 2938 2939 2940 2941 2942
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
2943 2944
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2945 2946
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
2947
	 */
2948 2949
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2950
		if (__i915_request_completed(request, request->global_seqno))
2951
			continue;
2952

2953 2954
		active = request;
		break;
2955
	}
2956
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2957

2958
	return active;
2959 2960
}

2961 2962 2963 2964
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
2965
struct i915_request *
2966 2967
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
2968
	struct i915_request *request;
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

2979
	request = engine->reset.prepare(engine);
2980 2981
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2982 2983 2984 2985

	return request;
}

2986
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2987 2988
{
	struct intel_engine_cs *engine;
2989
	struct i915_request *request;
2990
	enum intel_engine_id id;
2991
	int err = 0;
2992

2993
	for_each_engine(engine, dev_priv, id) {
2994 2995 2996 2997
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2998
		}
2999 3000

		engine->hangcheck.active_request = request;
3001 3002
	}

3003
	i915_gem_revoke_fences(dev_priv);
3004
	intel_uc_sanitize(dev_priv);
3005 3006

	return err;
3007 3008
}

3009
static void engine_skip_context(struct i915_request *request)
3010 3011
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3012
	struct i915_gem_context *hung_ctx = request->gem_context;
3013
	struct i915_timeline *timeline = request->timeline;
3014 3015
	unsigned long flags;

3016
	GEM_BUG_ON(timeline == &engine->timeline);
3017

3018
	spin_lock_irqsave(&engine->timeline.lock, flags);
3019
	spin_lock(&timeline->lock);
3020

3021
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3022
		if (request->gem_context == hung_ctx)
3023
			i915_request_skip(request, -EIO);
3024 3025

	list_for_each_entry(request, &timeline->requests, link)
3026
		i915_request_skip(request, -EIO);
3027 3028

	spin_unlock(&timeline->lock);
3029
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3030 3031
}

3032
/* Returns the request if it was guilty of the hang */
3033
static struct i915_request *
3034
i915_gem_reset_request(struct intel_engine_cs *engine,
3035 3036
		       struct i915_request *request,
		       bool stalled)
3037
{
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3059 3060 3061 3062 3063 3064 3065 3066 3067
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3068
		i915_gem_context_mark_guilty(request->gem_context);
3069
		i915_request_skip(request, -EIO);
3070 3071

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3072
		if (i915_gem_context_is_banned(request->gem_context))
3073
			engine_skip_context(request);
3074
	} else {
3075 3076 3077 3078 3079 3080 3081
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3082 3083
			unsigned long flags;

C
Chris Wilson 已提交
3084
			i915_gem_context_mark_innocent(request->gem_context);
3085 3086 3087
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3088
			spin_lock_irqsave(&engine->timeline.lock, flags);
3089
			request = list_prev_entry(request, link);
3090
			if (&request->link == &engine->timeline.requests)
3091
				request = NULL;
C
Chris Wilson 已提交
3092
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3093
		}
3094 3095
	}

3096
	return request;
3097 3098
}

3099
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3100 3101
			   struct i915_request *request,
			   bool stalled)
3102
{
3103
	if (request)
3104
		request = i915_gem_reset_request(engine, request, stalled);
3105

3106
	/* Setup the CS to resume from the breadcrumb of the hung request */
3107
	engine->reset.reset(engine, request);
3108
}
3109

3110 3111
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3112
{
3113
	struct intel_engine_cs *engine;
3114
	enum intel_engine_id id;
3115

3116 3117
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3118
	i915_retire_requests(dev_priv);
3119

3120
	for_each_engine(engine, dev_priv, id) {
3121
		struct intel_context *ce;
3122

3123 3124
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3125
				      stalled_mask & ENGINE_MASK(id));
3126 3127 3128
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3140
		if (intel_engine_is_idle(engine)) {
3141
			struct i915_request *rq;
3142

3143 3144
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3145
			if (!IS_ERR(rq))
3146
				i915_request_add(rq);
3147
		}
3148
	}
3149

3150
	i915_gem_restore_fences(dev_priv);
3151 3152
}

3153 3154
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3155 3156
	engine->reset.finish(engine);

3157
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3158 3159
}

3160 3161
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3162 3163 3164
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3165
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3166

3167
	for_each_engine(engine, dev_priv, id) {
3168
		engine->hangcheck.active_request = NULL;
3169
		i915_gem_reset_finish_engine(engine);
3170
	}
3171 3172
}

3173
static void nop_submit_request(struct i915_request *request)
3174
{
3175 3176
	unsigned long flags;

3177 3178 3179
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3180
	dma_fence_set_error(&request->fence, -EIO);
3181

3182
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3183
	__i915_request_submit(request);
3184
	intel_engine_write_global_seqno(request->engine, request->global_seqno);
3185
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3186 3187
}

3188
void i915_gem_set_wedged(struct drm_i915_private *i915)
3189
{
3190
	struct i915_gpu_error *error = &i915->gpu_error;
3191 3192 3193
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3194 3195 3196 3197 3198
	mutex_lock(&error->wedge_mutex);
	if (test_bit(I915_WEDGED, &error->flags)) {
		mutex_unlock(&error->wedge_mutex);
		return;
	}
3199

3200
	if (GEM_SHOW_DEBUG() && !intel_engines_are_idle(i915)) {
3201 3202 3203 3204 3205 3206
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3207
	GEM_TRACE("start\n");
3208

3209 3210 3211 3212 3213
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3214
	for_each_engine(engine, i915, id)
3215
		i915_gem_reset_prepare_engine(engine);
3216

3217
	/* Even if the GPU reset fails, it should still stop the engines */
3218 3219
	if (INTEL_GEN(i915) >= 5)
		intel_gpu_reset(i915, ALL_ENGINES);
3220

3221
	for_each_engine(engine, i915, id) {
3222 3223
		engine->submit_request = nop_submit_request;
		engine->schedule = NULL;
3224
	}
3225
	i915->caps.scheduler = 0;
3226 3227 3228

	/*
	 * Make sure no request can slip through without getting completed by
3229
	 * either this call here to intel_engine_write_global_seqno, or the one
3230
	 * in nop_submit_request.
3231
	 */
3232
	synchronize_rcu();
3233

3234 3235 3236
	/* Mark all executing requests as skipped */
	for_each_engine(engine, i915, id)
		engine->cancel_requests(engine);
3237

3238
	for_each_engine(engine, i915, id) {
3239
		i915_gem_reset_finish_engine(engine);
3240
		intel_engine_wakeup(engine);
3241
	}
3242

3243 3244 3245
	smp_mb__before_atomic();
	set_bit(I915_WEDGED, &error->flags);

3246
	GEM_TRACE("end\n");
3247
	mutex_unlock(&error->wedge_mutex);
3248

3249
	wake_up_all(&error->reset_queue);
3250 3251
}

3252 3253
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3254
	struct i915_gpu_error *error = &i915->gpu_error;
3255
	struct i915_timeline *tl;
3256
	bool ret = false;
3257 3258

	lockdep_assert_held(&i915->drm.struct_mutex);
3259 3260

	if (!test_bit(I915_WEDGED, &error->flags))
3261 3262
		return true;

3263 3264 3265
	if (!i915->gt.scratch) /* Never full initialised, recovery impossible */
		return false;

3266 3267
	mutex_lock(&error->wedge_mutex);

3268 3269
	GEM_TRACE("start\n");

3270 3271
	/*
	 * Before unwedging, make sure that all pending operations
3272 3273 3274 3275 3276 3277 3278 3279 3280
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3281
		struct i915_request *rq;
3282

3283 3284 3285 3286
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
3301
			goto unlock;
3302
	}
3303 3304
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3305

3306
	intel_engines_sanitize(i915, false);
3307

3308 3309
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3310 3311 3312 3313 3314 3315 3316 3317
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3318
	i915_gem_contexts_lost(i915);
3319

3320 3321
	GEM_TRACE("end\n");

3322 3323
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3324 3325 3326
	ret = true;
unlock:
	mutex_unlock(&i915->gpu_error.wedge_mutex);
3327

3328
	return ret;
3329 3330
}

3331
static void
3332 3333
i915_gem_retire_work_handler(struct work_struct *work)
{
3334
	struct drm_i915_private *dev_priv =
3335
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3336
	struct drm_device *dev = &dev_priv->drm;
3337

3338
	/* Come back later if the device is busy... */
3339
	if (mutex_trylock(&dev->struct_mutex)) {
3340
		i915_retire_requests(dev_priv);
3341
		mutex_unlock(&dev->struct_mutex);
3342
	}
3343

3344 3345
	/*
	 * Keep the retire handler running until we are finally idle.
3346 3347 3348
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3349
	if (READ_ONCE(dev_priv->gt.awake))
3350 3351
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3352
				   round_jiffies_up_relative(HZ));
3353
}
3354

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

3406 3407
	destroy_rcu_head(&s->rcu);

3408 3409 3410 3411 3412 3413 3414 3415
	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3416 3417 3418 3419 3420 3421 3422
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3439 3440 3441 3442
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3443
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3444
	unsigned int epoch = I915_EPOCH_INVALID;
3445 3446 3447 3448 3449
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3468 3469
	/*
	 * Wait for last execlists context complete, but bail out in case a
3470 3471 3472 3473 3474
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3475
	 */
3476 3477 3478 3479
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3480 3481 3482 3483

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3484
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3485 3486 3487 3488 3489 3490 3491
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3492 3493 3494 3495
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3496
	if (new_requests_since_last_retire(dev_priv))
3497
		goto out_unlock;
3498

3499
	epoch = __i915_gem_park(dev_priv);
3500

3501 3502
	assert_kernel_context_is_current(dev_priv);

3503 3504
	rearm_hangcheck = false;
out_unlock:
3505
	mutex_unlock(&dev_priv->drm.struct_mutex);
3506

3507 3508 3509 3510
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3511
	}
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
3524
			init_rcu_head(&s->rcu);
3525 3526 3527 3528 3529
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3530 3531
}

3532 3533
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3534
	struct drm_i915_private *i915 = to_i915(gem->dev);
3535 3536
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3537
	struct i915_lut_handle *lut, *ln;
3538

3539 3540 3541 3542 3543 3544
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3545
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3546 3547 3548 3549
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3550 3551 3552 3553 3554 3555 3556
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3557
			i915_vma_close(vma);
3558

3559 3560
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3561

3562 3563
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3564
	}
3565 3566

	mutex_unlock(&i915->drm.struct_mutex);
3567 3568
}

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3580 3581
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3582 3583 3584
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3585 3586 3587 3588 3589 3590 3591
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3592
 *  -EAGAIN: incomplete, restart syscall
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3609 3610
	ktime_t start;
	long ret;
3611

3612 3613 3614
	if (args->flags != 0)
		return -EINVAL;

3615
	obj = i915_gem_object_lookup(file, args->bo_handle);
3616
	if (!obj)
3617 3618
		return -ENOENT;

3619 3620 3621
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3622 3623 3624
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3625 3626 3627 3628 3629 3630 3631
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3642 3643 3644 3645

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3646 3647
	}

C
Chris Wilson 已提交
3648
	i915_gem_object_put(obj);
3649
	return ret;
3650 3651
}

3652 3653
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3654
{
3655 3656 3657 3658
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3659
		return timeout;
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3673
	timeout = i915_request_wait(rq, flags, timeout);
3674 3675
	i915_request_put(rq);

3676
	return timeout;
3677 3678
}

3679 3680
static int wait_for_engines(struct drm_i915_private *i915)
{
3681
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3682 3683
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3684
		GEM_TRACE_DUMP();
3685 3686
		i915_gem_set_wedged(i915);
		return -EIO;
3687 3688 3689 3690 3691
	}

	return 0;
}

3692 3693
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3694
{
3695 3696 3697
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3698

3699 3700 3701 3702
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3703
	if (flags & I915_WAIT_LOCKED) {
3704 3705
		struct i915_timeline *tl;
		int err;
3706 3707 3708 3709

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3710 3711 3712
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3713
		}
3714 3715 3716 3717 3718 3719
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3720 3721 3722 3723 3724

		err = wait_for_engines(i915);
		if (err)
			return err;

3725
		i915_retire_requests(i915);
3726
		GEM_BUG_ON(i915->gt.active_requests);
3727
	} else {
3728 3729
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3730

3731
		for_each_engine(engine, i915, id) {
3732 3733 3734 3735 3736
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3737 3738
		}
	}
3739 3740

	return 0;
3741 3742
}

3743 3744
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3745 3746 3747 3748 3749 3750 3751
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3752
	obj->write_domain = 0;
3753 3754 3755 3756
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3757
	if (!READ_ONCE(obj->pin_global))
3758 3759 3760 3761 3762 3763 3764
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3789
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3810
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3811 3812 3813 3814 3815
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3816 3817
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3818
	if (write) {
3819 3820
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3821 3822 3823 3824 3825 3826 3827
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3828 3829
/**
 * Moves a single object to the GTT read, and possibly write domain.
3830 3831
 * @obj: object to act on
 * @write: ask for write access or read only
3832 3833 3834 3835
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3836
int
3837
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3838
{
3839
	int ret;
3840

3841
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3842

3843 3844 3845 3846 3847 3848
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3849 3850 3851
	if (ret)
		return ret;

3852
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3853 3854
		return 0;

3855 3856 3857 3858 3859 3860 3861 3862
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3863
	ret = i915_gem_object_pin_pages(obj);
3864 3865 3866
	if (ret)
		return ret;

3867
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3868

3869 3870 3871 3872
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3873
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3874 3875
		mb();

3876 3877 3878
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3879 3880
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3881
	if (write) {
3882 3883
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3884
		obj->mm.dirty = true;
3885 3886
	}

C
Chris Wilson 已提交
3887
	i915_gem_object_unpin_pages(obj);
3888 3889 3890
	return 0;
}

3891 3892
/**
 * Changes the cache-level of an object across all VMA.
3893 3894
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3906 3907 3908
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3909
	struct i915_vma *vma;
3910
	int ret;
3911

3912 3913
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3914
	if (obj->cache_level == cache_level)
3915
		return 0;
3916

3917 3918 3919 3920 3921
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3922 3923
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3924 3925 3926
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3927
		if (i915_vma_is_pinned(vma)) {
3928 3929 3930 3931
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3932 3933
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3945 3946
	}

3947 3948 3949 3950 3951 3952 3953
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3954
	if (obj->bind_count) {
3955 3956 3957 3958
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3959 3960 3961 3962 3963 3964
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3965 3966 3967
		if (ret)
			return ret;

3968 3969
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3986
			for_each_ggtt_vma(vma, obj) {
3987 3988 3989 3990
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3991 3992 3993 3994 3995 3996 3997 3998
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3999 4000
		}

4001
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4002 4003 4004 4005 4006 4007 4008
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4009 4010
	}

4011
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4012
		vma->node.color = cache_level;
4013
	i915_gem_object_set_cache_coherency(obj, cache_level);
4014
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4015

4016 4017 4018
	return 0;
}

B
Ben Widawsky 已提交
4019 4020
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4021
{
B
Ben Widawsky 已提交
4022
	struct drm_i915_gem_caching *args = data;
4023
	struct drm_i915_gem_object *obj;
4024
	int err = 0;
4025

4026 4027 4028 4029 4030 4031
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4032

4033 4034 4035 4036 4037 4038
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4039 4040 4041 4042
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4043 4044 4045 4046
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4047 4048 4049
out:
	rcu_read_unlock();
	return err;
4050 4051
}

B
Ben Widawsky 已提交
4052 4053
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4054
{
4055
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4056
	struct drm_i915_gem_caching *args = data;
4057 4058
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4059
	int ret = 0;
4060

B
Ben Widawsky 已提交
4061 4062
	switch (args->caching) {
	case I915_CACHING_NONE:
4063 4064
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4065
	case I915_CACHING_CACHED:
4066 4067 4068 4069 4070 4071
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4072
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4073 4074
			return -ENODEV;

4075 4076
		level = I915_CACHE_LLC;
		break;
4077
	case I915_CACHING_DISPLAY:
4078
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4079
		break;
4080 4081 4082 4083
	default:
		return -EINVAL;
	}

4084 4085 4086 4087
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4097 4098 4099 4100 4101 4102 4103
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4104
	if (ret)
4105
		goto out;
B
Ben Widawsky 已提交
4106

4107 4108 4109
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4110 4111 4112

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4113 4114 4115

out:
	i915_gem_object_put(obj);
4116 4117 4118
	return ret;
}

4119
/*
4120 4121 4122 4123
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4124
 */
C
Chris Wilson 已提交
4125
struct i915_vma *
4126 4127
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4128 4129
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4130
{
C
Chris Wilson 已提交
4131
	struct i915_vma *vma;
4132 4133
	int ret;

4134 4135
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4136
	/* Mark the global pin early so that we account for the
4137 4138
	 * display coherency whilst setting up the cache domains.
	 */
4139
	obj->pin_global++;
4140

4141 4142 4143 4144 4145 4146 4147 4148 4149
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4150
	ret = i915_gem_object_set_cache_level(obj,
4151 4152
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4153 4154
	if (ret) {
		vma = ERR_PTR(ret);
4155
		goto err_unpin_global;
C
Chris Wilson 已提交
4156
	}
4157

4158 4159
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4160 4161 4162 4163
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4164
	 */
4165
	vma = ERR_PTR(-ENOSPC);
4166 4167
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4168
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4169 4170 4171 4172
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4173
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4174
	if (IS_ERR(vma))
4175
		goto err_unpin_global;
4176

4177 4178
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4179
	__i915_gem_object_flush_for_display(obj);
4180

4181 4182 4183
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4184
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4185

C
Chris Wilson 已提交
4186
	return vma;
4187

4188 4189
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4190
	return vma;
4191 4192 4193
}

void
C
Chris Wilson 已提交
4194
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4195
{
4196
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4197

4198
	if (WARN_ON(vma->obj->pin_global == 0))
4199 4200
		return;

4201
	if (--vma->obj->pin_global == 0)
4202
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4203

4204
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4205
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4206

C
Chris Wilson 已提交
4207
	i915_vma_unpin(vma);
4208 4209
}

4210 4211
/**
 * Moves a single object to the CPU read, and possibly write domain.
4212 4213
 * @obj: object to act on
 * @write: requesting write or read-only access
4214 4215 4216 4217
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4218
int
4219
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4220 4221 4222
{
	int ret;

4223
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4224

4225 4226 4227 4228 4229 4230
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4231 4232 4233
	if (ret)
		return ret;

4234
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4235

4236
	/* Flush the CPU cache if it's still invalid. */
4237
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4238
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4239
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4240 4241 4242 4243 4244
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4245
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4246 4247 4248 4249

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4250 4251
	if (write)
		__start_cpu_write(obj);
4252 4253 4254 4255

	return 0;
}

4256 4257 4258
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4259 4260 4261 4262
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4263 4264 4265
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4266
static int
4267
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4268
{
4269
	struct drm_i915_private *dev_priv = to_i915(dev);
4270
	struct drm_i915_file_private *file_priv = file->driver_priv;
4271
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4272
	struct i915_request *request, *target = NULL;
4273
	long ret;
4274

4275 4276 4277
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4278

4279
	spin_lock(&file_priv->mm.lock);
4280
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4281 4282
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4283

4284 4285 4286 4287
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4288

4289
		target = request;
4290
	}
4291
	if (target)
4292
		i915_request_get(target);
4293
	spin_unlock(&file_priv->mm.lock);
4294

4295
	if (target == NULL)
4296
		return 0;
4297

4298
	ret = i915_request_wait(target,
4299 4300
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4301
	i915_request_put(target);
4302

4303
	return ret < 0 ? ret : 0;
4304 4305
}

C
Chris Wilson 已提交
4306
struct i915_vma *
4307 4308
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4309
			 u64 size,
4310 4311
			 u64 alignment,
			 u64 flags)
4312
{
4313
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4314
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4315 4316
	struct i915_vma *vma;
	int ret;
4317

4318 4319
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4320 4321
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4352
	vma = i915_vma_instance(obj, vm, view);
4353
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4354
		return vma;
4355 4356

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4357 4358 4359
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4360

4361
			if (flags & PIN_MAPPABLE &&
4362
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4363 4364 4365
				return ERR_PTR(-ENOSPC);
		}

4366 4367
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4368 4369 4370
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4371
		     !!(flags & PIN_MAPPABLE),
4372
		     i915_vma_is_map_and_fenceable(vma));
4373 4374
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4375
			return ERR_PTR(ret);
4376 4377
	}

C
Chris Wilson 已提交
4378 4379 4380
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4381

C
Chris Wilson 已提交
4382
	return vma;
4383 4384
}

4385
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4400 4401 4402 4403 4404 4405 4406 4407 4408
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4409 4410
}

4411
static __always_inline unsigned int
4412
__busy_set_if_active(const struct dma_fence *fence,
4413 4414
		     unsigned int (*flag)(unsigned int id))
{
4415
	struct i915_request *rq;
4416

4417 4418 4419 4420
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4421
	 *
4422
	 * Note we only report on the status of native fences.
4423
	 */
4424 4425 4426 4427
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4428 4429
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4430 4431
		return 0;

4432
	return flag(rq->engine->uabi_id);
4433 4434
}

4435
static __always_inline unsigned int
4436
busy_check_reader(const struct dma_fence *fence)
4437
{
4438
	return __busy_set_if_active(fence, __busy_read_flag);
4439 4440
}

4441
static __always_inline unsigned int
4442
busy_check_writer(const struct dma_fence *fence)
4443
{
4444 4445 4446 4447
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4448 4449
}

4450 4451
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4452
		    struct drm_file *file)
4453 4454
{
	struct drm_i915_gem_busy *args = data;
4455
	struct drm_i915_gem_object *obj;
4456 4457
	struct reservation_object_list *list;
	unsigned int seq;
4458
	int err;
4459

4460
	err = -ENOENT;
4461 4462
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4463
	if (!obj)
4464
		goto out;
4465

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4484

4485 4486
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4487

4488 4489 4490 4491
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4492

4493 4494 4495 4496 4497 4498
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4499
	}
4500

4501 4502 4503 4504
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4505 4506 4507
out:
	rcu_read_unlock();
	return err;
4508 4509 4510 4511 4512 4513
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4514
	return i915_gem_ring_throttle(dev, file_priv);
4515 4516
}

4517 4518 4519 4520
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4521
	struct drm_i915_private *dev_priv = to_i915(dev);
4522
	struct drm_i915_gem_madvise *args = data;
4523
	struct drm_i915_gem_object *obj;
4524
	int err;
4525 4526 4527 4528 4529 4530 4531 4532 4533

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4534
	obj = i915_gem_object_lookup(file_priv, args->handle);
4535 4536 4537 4538 4539 4540
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4541

4542
	if (i915_gem_object_has_pages(obj) &&
4543
	    i915_gem_object_is_tiled(obj) &&
4544
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4545 4546
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4547
			__i915_gem_object_unpin_pages(obj);
4548 4549 4550
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4551
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4552
			__i915_gem_object_pin_pages(obj);
4553 4554
			obj->mm.quirked = true;
		}
4555 4556
	}

C
Chris Wilson 已提交
4557 4558
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4559

C
Chris Wilson 已提交
4560
	/* if the object is no longer attached, discard its backing storage */
4561 4562
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4563 4564
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4565
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4566
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4567

4568
out:
4569
	i915_gem_object_put(obj);
4570
	return err;
4571 4572
}

4573
static void
4574
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4575 4576 4577 4578
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4579
	intel_fb_obj_flush(obj, ORIGIN_CS);
4580 4581
}

4582 4583
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4584
{
4585 4586
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4587
	INIT_LIST_HEAD(&obj->vma_list);
4588
	INIT_LIST_HEAD(&obj->lut_list);
4589
	INIT_LIST_HEAD(&obj->batch_pool_link);
4590

4591 4592
	init_rcu_head(&obj->rcu);

4593 4594
	obj->ops = ops;

4595 4596 4597
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4598
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4599
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4600 4601 4602 4603

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4604

4605
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4606 4607
}

4608
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4609 4610
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4611

4612 4613
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4614 4615

	.pwrite = i915_gem_object_pwrite_gtt,
4616 4617
};

M
Matthew Auld 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4642
struct drm_i915_gem_object *
4643
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4644
{
4645
	struct drm_i915_gem_object *obj;
4646
	struct address_space *mapping;
4647
	unsigned int cache_level;
D
Daniel Vetter 已提交
4648
	gfp_t mask;
4649
	int ret;
4650

4651 4652 4653 4654 4655
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4656
	if (size >> PAGE_SHIFT > INT_MAX)
4657 4658 4659 4660 4661
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4662
	obj = i915_gem_object_alloc(dev_priv);
4663
	if (obj == NULL)
4664
		return ERR_PTR(-ENOMEM);
4665

M
Matthew Auld 已提交
4666
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4667 4668
	if (ret)
		goto fail;
4669

4670
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4671
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4672 4673 4674 4675 4676
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4677
	mapping = obj->base.filp->f_mapping;
4678
	mapping_set_gfp_mask(mapping, mask);
4679
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4680

4681
	i915_gem_object_init(obj, &i915_gem_object_ops);
4682

4683 4684
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4685

4686
	if (HAS_LLC(dev_priv))
4687
		/* On some devices, we can have the GPU use the LLC (the CPU
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4699 4700 4701
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4702

4703
	i915_gem_object_set_cache_coherency(obj, cache_level);
4704

4705 4706
	trace_i915_gem_object_create(obj);

4707
	return obj;
4708 4709 4710 4711

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4712 4713
}

4714 4715 4716 4717 4718 4719 4720 4721
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4722
	if (obj->mm.madv != I915_MADV_WILLNEED)
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4738 4739
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4740
{
4741
	struct drm_i915_gem_object *obj, *on;
4742
	intel_wakeref_t wakeref;
4743

4744
	wakeref = intel_runtime_pm_get(i915);
4745
	llist_for_each_entry_safe(obj, on, freed, freed) {
4746 4747 4748 4749
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4750 4751
		mutex_lock(&i915->drm.struct_mutex);

4752 4753 4754 4755 4756
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4757
			i915_vma_destroy(vma);
4758
		}
4759 4760
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4761

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4774
		mutex_unlock(&i915->drm.struct_mutex);
4775 4776

		GEM_BUG_ON(obj->bind_count);
4777
		GEM_BUG_ON(obj->userfault_count);
4778
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4779
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4780 4781 4782

		if (obj->ops->release)
			obj->ops->release(obj);
4783

4784 4785
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4786
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4787
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4788 4789 4790 4791

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4792
		reservation_object_fini(&obj->__builtin_resv);
4793 4794 4795 4796 4797
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4798

4799 4800 4801
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4802 4803
		if (on)
			cond_resched();
4804
	}
4805
	intel_runtime_pm_put(i915, wakeref);
4806 4807 4808 4809 4810 4811
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4822
		__i915_gem_free_objects(i915, freed);
4823
	}
4824 4825 4826 4827 4828 4829 4830
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4831

4832 4833
	/*
	 * All file-owned VMA should have been released by this point through
4834 4835 4836 4837 4838 4839
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4840

4841
	spin_lock(&i915->mm.free_lock);
4842
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4843 4844
		spin_unlock(&i915->mm.free_lock);

4845
		__i915_gem_free_objects(i915, freed);
4846
		if (need_resched())
4847 4848 4849
			return;

		spin_lock(&i915->mm.free_lock);
4850
	}
4851
	spin_unlock(&i915->mm.free_lock);
4852
}
4853

4854 4855 4856 4857 4858
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4859 4860 4861 4862 4863 4864 4865

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4866

4867 4868 4869 4870 4871 4872 4873 4874 4875
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4876 4877
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4878
		queue_work(i915->wq, &i915->mm.free_work);
4879
}
4880

4881 4882 4883
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4884

4885 4886 4887
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4888
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4889
		obj->mm.madv = I915_MADV_DONTNEED;
4890

4891 4892
	/*
	 * Before we free the object, make sure any pure RCU-only
4893 4894 4895 4896
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4897
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4898
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4899 4900
}

4901 4902 4903 4904
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4905 4906
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4907 4908 4909 4910 4911
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4912 4913
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4914 4915
	intel_wakeref_t wakeref;

4916 4917
	GEM_TRACE("\n");

4918
	mutex_lock(&i915->drm.struct_mutex);
4919

4920
	wakeref = intel_runtime_pm_get(i915);
4921 4922 4923 4924 4925 4926 4927 4928
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4929
	if (i915_terminally_wedged(&i915->gpu_error))
4930 4931
		i915_gem_unset_wedged(i915);

4932 4933 4934 4935 4936 4937
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4938
	 * of the reset, so this could be applied to even earlier gen.
4939
	 */
4940
	intel_engines_sanitize(i915, false);
4941 4942

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4943
	intel_runtime_pm_put(i915, wakeref);
4944

4945 4946
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4947 4948
}

C
Chris Wilson 已提交
4949
int i915_gem_suspend(struct drm_i915_private *i915)
4950
{
4951
	intel_wakeref_t wakeref;
4952
	int ret;
4953

4954 4955
	GEM_TRACE("\n");

4956
	wakeref = intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
4957
	intel_suspend_gt_powersave(i915);
4958

C
Chris Wilson 已提交
4959
	mutex_lock(&i915->drm.struct_mutex);
4960

C
Chris Wilson 已提交
4961 4962
	/*
	 * We have to flush all the executing contexts to main memory so
4963 4964
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4965
	 * leaves the i915->kernel_context still active when
4966 4967 4968 4969
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
4970 4971
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
4972 4973
		if (ret)
			goto err_unlock;
4974

C
Chris Wilson 已提交
4975
		ret = i915_gem_wait_for_idle(i915,
4976
					     I915_WAIT_INTERRUPTIBLE |
4977
					     I915_WAIT_LOCKED |
4978 4979
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
4980 4981
		if (ret && ret != -EIO)
			goto err_unlock;
4982

C
Chris Wilson 已提交
4983
		assert_kernel_context_is_current(i915);
4984
	}
4985 4986
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
4987
	mutex_unlock(&i915->drm.struct_mutex);
4988

C
Chris Wilson 已提交
4989
	intel_uc_suspend(i915);
4990

C
Chris Wilson 已提交
4991 4992
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
4993

C
Chris Wilson 已提交
4994 4995
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4996 4997
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4998
	drain_delayed_work(&i915->gt.idle_work);
4999

C
Chris Wilson 已提交
5000 5001
	/*
	 * Assert that we successfully flushed all the work and
5002 5003
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
5004 5005 5006
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
5007

5008
	intel_runtime_pm_put(i915, wakeref);
5009 5010 5011
	return 0;

err_unlock:
C
Chris Wilson 已提交
5012
	mutex_unlock(&i915->drm.struct_mutex);
5013
	intel_runtime_pm_put(i915, wakeref);
5014 5015 5016 5017 5018
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5019 5020 5021 5022 5023 5024 5025
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5046 5047 5048 5049 5050 5051 5052
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5053 5054
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5055 5056
}

5057
void i915_gem_resume(struct drm_i915_private *i915)
5058
{
5059 5060
	GEM_TRACE("\n");

5061
	WARN_ON(i915->gt.awake);
5062

5063 5064
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5065

5066 5067
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5068

5069 5070
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5071 5072 5073
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5074
	i915->gt.resume(i915);
5075

5076 5077 5078
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5079
	intel_uc_resume(i915);
5080

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5091 5092 5093 5094
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5095
	goto out_unlock;
5096 5097
}

5098
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5099
{
5100
	if (INTEL_GEN(dev_priv) < 5 ||
5101 5102 5103 5104 5105 5106
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5107
	if (IS_GEN(dev_priv, 5))
5108 5109
		return;

5110
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5111
	if (IS_GEN(dev_priv, 6))
5112
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5113
	else if (IS_GEN(dev_priv, 7))
5114
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5115
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
5116
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5117 5118
	else
		BUG();
5119
}
D
Daniel Vetter 已提交
5120

5121
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5122 5123 5124 5125 5126 5127 5128
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5129
static void init_unused_rings(struct drm_i915_private *dev_priv)
5130
{
5131 5132 5133 5134 5135 5136
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
5137
	} else if (IS_GEN(dev_priv, 2)) {
5138 5139
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
5140
	} else if (IS_GEN(dev_priv, 3)) {
5141 5142
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5143 5144 5145
	}
}

5146
static int __i915_gem_restart_engines(void *data)
5147
{
5148
	struct drm_i915_private *i915 = data;
5149
	struct intel_engine_cs *engine;
5150
	enum intel_engine_id id;
5151 5152 5153 5154
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5155 5156 5157
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5158
			return err;
5159
		}
5160 5161 5162 5163 5164 5165 5166
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5167
	int ret;
5168

5169 5170
	dev_priv->gt.last_init_time = ktime_get();

5171 5172 5173
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5174
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5175
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5176

5177
	if (IS_HASWELL(dev_priv))
5178
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5179
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5180

5181
	/* Apply the GT workarounds... */
5182
	intel_gt_apply_workarounds(dev_priv);
5183 5184
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
5185

5186
	i915_gem_init_swizzling(dev_priv);
5187

5188 5189 5190 5191 5192 5193
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5194
	init_unused_rings(dev_priv);
5195

5196
	BUG_ON(!dev_priv->kernel_context);
5197 5198 5199 5200
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5201

5202
	ret = i915_ppgtt_init_hw(dev_priv);
5203
	if (ret) {
5204
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5205 5206 5207
		goto out;
	}

5208 5209 5210 5211 5212 5213
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5214 5215
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5216 5217
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5218
		goto out;
5219
	}
5220

5221
	intel_mocs_init_l3cc_table(dev_priv);
5222

5223 5224
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5225 5226
	if (ret)
		goto cleanup_uc;
5227

5228
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5229 5230

	return 0;
5231 5232 5233

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
5234 5235 5236 5237
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
5238 5239
}

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5261
		struct i915_request *rq;
5262

5263
		rq = i915_request_alloc(engine, ctx);
5264 5265 5266 5267 5268
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5269
		err = 0;
5270 5271 5272
		if (engine->init_context)
			err = engine->init_context(rq);

5273
		i915_request_add(rq);
5274 5275 5276 5277 5278 5279 5280 5281
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5282 5283 5284
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5285
		goto err_active;
5286
	}
5287 5288 5289

	assert_kernel_context_is_current(i915);

5290 5291 5292 5293 5294 5295 5296 5297
	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

5298 5299
	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
5300
		void *vaddr;
5301

5302 5303
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

5304
		state = to_intel_context(ctx, engine)->state;
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
5325 5326 5327

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
5328
						I915_MAP_FORCE_WB);
5329 5330 5331 5332 5333 5334
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5370 5371 5372
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5373 5374 5375 5376 5377 5378
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

5417
int i915_gem_init(struct drm_i915_private *dev_priv)
5418 5419 5420
{
	int ret;

5421 5422
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5423 5424 5425
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5426
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5427

5428
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5429
		dev_priv->gt.resume = intel_lr_context_resume;
5430
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5431 5432 5433
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5434 5435
	}

5436 5437 5438 5439
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5440
	ret = intel_uc_init_misc(dev_priv);
5441 5442 5443
	if (ret)
		return ret;

5444
	ret = intel_wopcm_init(&dev_priv->wopcm);
5445
	if (ret)
5446
		goto err_uc_misc;
5447

5448 5449 5450 5451 5452 5453
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5454
	mutex_lock(&dev_priv->drm.struct_mutex);
5455 5456
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5457
	ret = i915_gem_init_ggtt(dev_priv);
5458 5459 5460 5461
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5462

5463
	ret = i915_gem_init_scratch(dev_priv,
5464
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
5465 5466 5467 5468
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5469

5470 5471 5472 5473 5474 5475
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

5476
	ret = intel_engines_init(dev_priv);
5477 5478 5479 5480
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5481

5482 5483
	intel_init_gt_powersave(dev_priv);

5484
	ret = intel_uc_init(dev_priv);
5485
	if (ret)
5486
		goto err_pm;
5487

5488 5489 5490 5491
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5503
	ret = __intel_engines_record_defaults(dev_priv);
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5529 5530 5531 5532 5533
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5534 5535
	i915_gem_drain_workqueue(dev_priv);

5536
	mutex_lock(&dev_priv->drm.struct_mutex);
5537
	intel_uc_fini_hw(dev_priv);
5538 5539
err_uc_init:
	intel_uc_fini(dev_priv);
5540 5541 5542 5543 5544 5545 5546 5547
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
5548 5549
err_scratch:
	i915_gem_fini_scratch(dev_priv);
5550 5551 5552 5553 5554
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5555
err_uc_misc:
5556
	intel_uc_fini_misc(dev_priv);
5557

5558 5559 5560
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5561
	if (ret == -EIO) {
5562 5563
		mutex_lock(&dev_priv->drm.struct_mutex);

5564 5565
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5566 5567 5568
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5569
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5570 5571
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5572 5573
			i915_gem_set_wedged(dev_priv);
		}
5574 5575 5576 5577 5578 5579 5580 5581

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5582 5583
	}

5584
	i915_gem_drain_freed_objects(dev_priv);
5585
	return ret;
5586 5587
}

5588 5589 5590
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5591
	intel_disable_gt_powersave(dev_priv);
5592 5593 5594 5595 5596 5597 5598 5599 5600

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5601
	i915_gem_fini_scratch(dev_priv);
5602 5603
	mutex_unlock(&dev_priv->drm.struct_mutex);

5604 5605
	intel_wa_list_free(&dev_priv->gt_wa_list);

5606 5607
	intel_cleanup_gt_powersave(dev_priv);

5608 5609 5610 5611 5612 5613 5614 5615
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5616 5617 5618 5619 5620
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5621
void
5622
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5623
{
5624
	struct intel_engine_cs *engine;
5625
	enum intel_engine_id id;
5626

5627
	for_each_engine(engine, dev_priv, id)
5628
		dev_priv->gt.cleanup_engine(engine);
5629 5630
}

5631 5632 5633
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5634
	int i;
5635

5636
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5637 5638
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5639
	else if (INTEL_GEN(dev_priv) >= 4 ||
5640 5641
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5642 5643 5644 5645
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5646
	if (intel_vgpu_active(dev_priv))
5647 5648 5649 5650
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5651 5652 5653 5654 5655 5656 5657
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5658
	i915_gem_restore_fences(dev_priv);
5659

5660
	i915_gem_detect_bit_6_swizzle(dev_priv);
5661 5662
}

5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5679
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5680
{
5681
	int err = -ENOMEM;
5682

5683 5684
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5685 5686
		goto err_out;

5687 5688
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5689 5690
		goto err_objects;

5691 5692 5693 5694
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5695
	dev_priv->requests = KMEM_CACHE(i915_request,
5696 5697
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5698
					SLAB_TYPESAFE_BY_RCU);
5699
	if (!dev_priv->requests)
5700
		goto err_luts;
5701

5702 5703 5704 5705 5706 5707
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5708 5709 5710 5711
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5712
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5713
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5714
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5715

5716
	i915_gem_init__mm(dev_priv);
5717

5718
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5719
			  i915_gem_retire_work_handler);
5720
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5721
			  i915_gem_idle_work_handler);
5722
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5723
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5724
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5725

5726 5727
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5728
	spin_lock_init(&dev_priv->fb_tracking.lock);
5729

M
Matthew Auld 已提交
5730 5731 5732 5733
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5734 5735
	return 0;

5736 5737
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5738 5739
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5740 5741
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5742 5743 5744 5745 5746 5747
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5748
}
5749

5750
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5751
{
5752
	i915_gem_drain_freed_objects(dev_priv);
5753 5754
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5755
	WARN_ON(dev_priv->mm.object_count);
5756 5757
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5758
	kmem_cache_destroy(dev_priv->priorities);
5759
	kmem_cache_destroy(dev_priv->dependencies);
5760
	kmem_cache_destroy(dev_priv->requests);
5761
	kmem_cache_destroy(dev_priv->luts);
5762 5763
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5764 5765 5766

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5767 5768

	i915_gemfs_fini(dev_priv);
5769 5770
}

5771 5772
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5773 5774 5775
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5776 5777 5778 5779 5780
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5781
int i915_gem_freeze_late(struct drm_i915_private *i915)
5782 5783
{
	struct drm_i915_gem_object *obj;
5784
	struct list_head *phases[] = {
5785 5786
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5787
		NULL
5788
	}, **phase;
5789

5790 5791
	/*
	 * Called just before we write the hibernation image.
5792 5793 5794 5795 5796 5797 5798 5799
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5800 5801
	 *
	 * To try and reduce the hibernation image, we manually shrink
5802
	 * the objects as well, see i915_gem_freeze()
5803 5804
	 */

5805 5806
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5807

5808 5809 5810 5811
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5812
	}
5813
	mutex_unlock(&i915->drm.struct_mutex);
5814 5815 5816 5817

	return 0;
}

5818
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5819
{
5820
	struct drm_i915_file_private *file_priv = file->driver_priv;
5821
	struct i915_request *request;
5822 5823 5824 5825 5826

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5827
	spin_lock(&file_priv->mm.lock);
5828
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5829
		request->file_priv = NULL;
5830
	spin_unlock(&file_priv->mm.lock);
5831 5832
}

5833
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5834 5835
{
	struct drm_i915_file_private *file_priv;
5836
	int ret;
5837

5838
	DRM_DEBUG("\n");
5839 5840 5841 5842 5843 5844

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5845
	file_priv->dev_priv = i915;
5846
	file_priv->file = file;
5847 5848 5849 5850

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5851
	file_priv->bsd_engine = -1;
5852
	file_priv->hang_timestamp = jiffies;
5853

5854
	ret = i915_gem_context_open(i915, file);
5855 5856
	if (ret)
		kfree(file_priv);
5857

5858
	return ret;
5859 5860
}

5861 5862
/**
 * i915_gem_track_fb - update frontbuffer tracking
5863 5864 5865
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5866 5867 5868 5869
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5870 5871 5872 5873
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5874 5875 5876 5877 5878 5879 5880
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5881
		     BITS_PER_TYPE(atomic_t));
5882

5883
	if (old) {
5884 5885
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5886 5887 5888
	}

	if (new) {
5889 5890
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5891 5892 5893
	}
}

5894 5895
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5896
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5897 5898 5899
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5900 5901 5902
	struct file *file;
	size_t offset;
	int err;
5903

5904
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5905
	if (IS_ERR(obj))
5906 5907
		return obj;

5908
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5909

5910 5911 5912 5913 5914 5915
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5916

5917 5918 5919 5920 5921
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5922

5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5937 5938 5939 5940

	return obj;

fail:
5941
	i915_gem_object_put(obj);
5942
	return ERR_PTR(err);
5943
}
5944 5945 5946 5947 5948 5949

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5950
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5951 5952 5953 5954 5955
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5956
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5982 5983
		void *entry;
		unsigned long i;
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5998
		entry = xa_mk_value(idx);
5999
		for (i = 1; i < count; i++) {
6000
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
6038
	 * the radix tree will contain a value entry that points
6039 6040 6041 6042 6043
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
6044 6045
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6078
	if (!obj->mm.dirty)
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6094

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6130
	pages = __i915_gem_object_unset_pages(obj);
6131

6132 6133
	obj->ops = &i915_gem_phys_ops;

6134
	err = ____i915_gem_object_get_pages(obj);
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6148 6149 6150 6151 6152
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6153 6154 6155 6156 6157
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6158 6159
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6160
#include "selftests/mock_gem_device.c"
6161
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6162
#include "selftests/huge_pages.c"
6163
#include "selftests/i915_gem_object.c"
6164
#include "selftests/i915_gem_coherency.c"
6165
#include "selftests/i915_gem.c"
6166
#endif