i915_gem.c 135.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/oom.h>
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156 157
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158
			    struct drm_file *file)
159
{
160
	struct drm_i915_private *dev_priv = dev->dev_private;
161
	struct drm_i915_gem_get_aperture *args = data;
162 163
	struct drm_i915_gem_object *obj;
	size_t pinned;
164

165
	pinned = 0;
166
	mutex_lock(&dev->struct_mutex);
167
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
168
		if (i915_gem_obj_is_pinned(obj))
169
			pinned += i915_gem_obj_ggtt_size(obj);
170
	mutex_unlock(&dev->struct_mutex);
171

172
	args->aper_size = dev_priv->gtt.base.total;
173
	args->aper_available_size = args->aper_size - pinned;
174

175 176 177
	return 0;
}

178 179
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180
{
181 182 183 184 185
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
236

237 238 239 240 241 242 243 244 245 246 247 248 249
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
250
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251
		char *vaddr = obj->phys_handle->vaddr;
252 253 254
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255 256 257 258 259 260 261 262 263 264 265 266 267 268
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
269
				mark_page_accessed(page);
270
			page_cache_release(page);
271 272
			vaddr += PAGE_SIZE;
		}
273
		obj->dirty = 0;
274 275
	}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
309 310 311 312 313 314 315
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
316
	int ret;
317 318 319 320 321 322 323 324 325 326 327 328 329 330

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

331 332 333 334
	ret = drop_pages(obj);
	if (ret)
		return ret;

335 336 337 338 339 340
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
341 342 343
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
344 345 346 347 348 349 350 351 352 353
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
354
	int ret = 0;
355 356 357 358 359 360 361

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
362

363
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
364 365 366 367 368 369 370 371 372 373
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
374 375 376 377
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
378 379
	}

380
	drm_clflush_virt_range(vaddr, args->size);
381
	i915_gem_chipset_flush(dev);
382 383 384 385

out:
	intel_fb_obj_flush(obj, false);
	return ret;
386 387
}

388 389 390
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
391
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 393 394 395 396 397 398 399
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

400 401 402 403 404
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
405
{
406
	struct drm_i915_gem_object *obj;
407 408
	int ret;
	u32 handle;
409

410
	size = roundup(size, PAGE_SIZE);
411 412
	if (size == 0)
		return -EINVAL;
413 414

	/* Allocate the new object */
415
	obj = i915_gem_alloc_object(dev, size);
416 417 418
	if (obj == NULL)
		return -ENOMEM;

419
	ret = drm_gem_handle_create(file, &obj->base, &handle);
420
	/* drop reference from allocate - handle holds it now */
421 422 423
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
424

425
	*handle_p = handle;
426 427 428
	return 0;
}

429 430 431 432 433 434
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
435
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
436 437
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
438
			       args->size, &args->handle);
439 440 441 442 443 444 445 446 447 448
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
449

450
	return i915_gem_create(file, dev,
451
			       args->size, &args->handle);
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480
static inline int
481 482
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
531 532

		i915_gem_object_retire(obj);
533 534 535 536 537 538 539 540 541 542 543
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

544 545 546
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
547
static int
548 549 550 551 552 553 554
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

555
	if (unlikely(page_do_bit17_swizzling))
556 557 558 559 560 561 562 563 564 565 566
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

567
	return ret ? -EFAULT : 0;
568 569
}

570 571 572 573
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
574
	if (unlikely(swizzled)) {
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

592 593 594 595 596 597 598 599 600 601 602 603
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
604 605 606
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
607 608 609 610 611 612 613 614 615 616 617

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

618
	return ret ? - EFAULT : 0;
619 620
}

621
static int
622 623 624 625
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
626
{
627
	char __user *user_data;
628
	ssize_t remain;
629
	loff_t offset;
630
	int shmem_page_offset, page_length, ret = 0;
631
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
632
	int prefaulted = 0;
633
	int needs_clflush = 0;
634
	struct sg_page_iter sg_iter;
635

V
Ville Syrjälä 已提交
636
	user_data = to_user_ptr(args->data_ptr);
637 638
	remain = args->size;

639
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
640

641
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
642 643 644
	if (ret)
		return ret;

645
	offset = args->offset;
646

647 648
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
649
		struct page *page = sg_page_iter_page(&sg_iter);
650 651 652 653

		if (remain <= 0)
			break;

654 655 656 657 658
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
659
		shmem_page_offset = offset_in_page(offset);
660 661 662 663
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

664 665 666
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

667 668 669 670 671
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
672 673 674

		mutex_unlock(&dev->struct_mutex);

675
		if (likely(!i915.prefault_disable) && !prefaulted) {
676
			ret = fault_in_multipages_writeable(user_data, remain);
677 678 679 680 681 682 683
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
684

685 686 687
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
688

689
		mutex_lock(&dev->struct_mutex);
690 691

		if (ret)
692 693
			goto out;

694
next_page:
695
		remain -= page_length;
696
		user_data += page_length;
697 698 699
		offset += page_length;
	}

700
out:
701 702
	i915_gem_object_unpin_pages(obj);

703 704 705
	return ret;
}

706 707 708 709 710 711 712
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
713
		     struct drm_file *file)
714 715
{
	struct drm_i915_gem_pread *args = data;
716
	struct drm_i915_gem_object *obj;
717
	int ret = 0;
718

719 720 721 722
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
723
		       to_user_ptr(args->data_ptr),
724 725 726
		       args->size))
		return -EFAULT;

727
	ret = i915_mutex_lock_interruptible(dev);
728
	if (ret)
729
		return ret;
730

731
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
732
	if (&obj->base == NULL) {
733 734
		ret = -ENOENT;
		goto unlock;
735
	}
736

737
	/* Bounds check source.  */
738 739
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
740
		ret = -EINVAL;
741
		goto out;
C
Chris Wilson 已提交
742 743
	}

744 745 746 747 748 749 750 751
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
752 753
	trace_i915_gem_object_pread(obj, args->offset, args->size);

754
	ret = i915_gem_shmem_pread(dev, obj, args, file);
755

756
out:
757
	drm_gem_object_unreference(&obj->base);
758
unlock:
759
	mutex_unlock(&dev->struct_mutex);
760
	return ret;
761 762
}

763 764
/* This is the fast write path which cannot handle
 * page faults in the source data
765
 */
766 767 768 769 770 771

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
772
{
773 774
	void __iomem *vaddr_atomic;
	void *vaddr;
775
	unsigned long unwritten;
776

P
Peter Zijlstra 已提交
777
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
778 779 780
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
781
						      user_data, length);
P
Peter Zijlstra 已提交
782
	io_mapping_unmap_atomic(vaddr_atomic);
783
	return unwritten;
784 785
}

786 787 788 789
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
790
static int
791 792
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
793
			 struct drm_i915_gem_pwrite *args,
794
			 struct drm_file *file)
795
{
796
	struct drm_i915_private *dev_priv = dev->dev_private;
797
	ssize_t remain;
798
	loff_t offset, page_base;
799
	char __user *user_data;
D
Daniel Vetter 已提交
800 801
	int page_offset, page_length, ret;

802
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
803 804 805 806 807 808 809 810 811 812
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
813

V
Ville Syrjälä 已提交
814
	user_data = to_user_ptr(args->data_ptr);
815 816
	remain = args->size;

817
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
818

819 820
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

821 822 823
	while (remain > 0) {
		/* Operation in this page
		 *
824 825 826
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
827
		 */
828 829
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
830 831 832 833 834
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
835 836
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
837
		 */
B
Ben Widawsky 已提交
838
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
839 840
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
841
			goto out_flush;
D
Daniel Vetter 已提交
842
		}
843

844 845 846
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
847 848
	}

849 850
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
851
out_unpin:
B
Ben Widawsky 已提交
852
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
853
out:
854
	return ret;
855 856
}

857 858 859 860
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
861
static int
862 863 864 865 866
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
867
{
868
	char *vaddr;
869
	int ret;
870

871
	if (unlikely(page_do_bit17_swizzling))
872
		return -EINVAL;
873

874 875 876 877
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
878 879
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
880 881 882 883
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
884

885
	return ret ? -EFAULT : 0;
886 887
}

888 889
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
890
static int
891 892 893 894 895
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
896
{
897 898
	char *vaddr;
	int ret;
899

900
	vaddr = kmap(page);
901
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905 906
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
907 908
						user_data,
						page_length);
909 910 911 912 913
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
914 915 916
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
917
	kunmap(page);
918

919
	return ret ? -EFAULT : 0;
920 921 922
}

static int
923 924 925 926
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
927 928
{
	ssize_t remain;
929 930
	loff_t offset;
	char __user *user_data;
931
	int shmem_page_offset, page_length, ret = 0;
932
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
933
	int hit_slowpath = 0;
934 935
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
936
	struct sg_page_iter sg_iter;
937

V
Ville Syrjälä 已提交
938
	user_data = to_user_ptr(args->data_ptr);
939 940
	remain = args->size;

941
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
942

943 944 945 946 947
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
948
		needs_clflush_after = cpu_write_needs_clflush(obj);
949 950 951
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
952 953

		i915_gem_object_retire(obj);
954
	}
955 956 957 958 959
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
960

961 962 963 964
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

965 966
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

967 968
	i915_gem_object_pin_pages(obj);

969
	offset = args->offset;
970
	obj->dirty = 1;
971

972 973
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
974
		struct page *page = sg_page_iter_page(&sg_iter);
975
		int partial_cacheline_write;
976

977 978 979
		if (remain <= 0)
			break;

980 981 982 983 984
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
985
		shmem_page_offset = offset_in_page(offset);
986 987 988 989 990

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

991 992 993 994 995 996 997
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

998 999 1000
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1001 1002 1003 1004 1005 1006
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1007 1008 1009

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1010 1011 1012 1013
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1014

1015
		mutex_lock(&dev->struct_mutex);
1016 1017

		if (ret)
1018 1019
			goto out;

1020
next_page:
1021
		remain -= page_length;
1022
		user_data += page_length;
1023
		offset += page_length;
1024 1025
	}

1026
out:
1027 1028
	i915_gem_object_unpin_pages(obj);

1029
	if (hit_slowpath) {
1030 1031 1032 1033 1034 1035 1036
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1037 1038
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1039
		}
1040
	}
1041

1042
	if (needs_clflush_after)
1043
		i915_gem_chipset_flush(dev);
1044

1045
	intel_fb_obj_flush(obj, false);
1046
	return ret;
1047 1048 1049 1050 1051 1052 1053 1054 1055
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1056
		      struct drm_file *file)
1057
{
1058
	struct drm_i915_private *dev_priv = dev->dev_private;
1059
	struct drm_i915_gem_pwrite *args = data;
1060
	struct drm_i915_gem_object *obj;
1061 1062 1063 1064 1065 1066
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1067
		       to_user_ptr(args->data_ptr),
1068 1069 1070
		       args->size))
		return -EFAULT;

1071
	if (likely(!i915.prefault_disable)) {
1072 1073 1074 1075 1076
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1077

1078 1079
	intel_runtime_pm_get(dev_priv);

1080
	ret = i915_mutex_lock_interruptible(dev);
1081
	if (ret)
1082
		goto put_rpm;
1083

1084
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1085
	if (&obj->base == NULL) {
1086 1087
		ret = -ENOENT;
		goto unlock;
1088
	}
1089

1090
	/* Bounds check destination. */
1091 1092
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1093
		ret = -EINVAL;
1094
		goto out;
C
Chris Wilson 已提交
1095 1096
	}

1097 1098 1099 1100 1101 1102 1103 1104
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1105 1106
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1107
	ret = -EFAULT;
1108 1109 1110 1111 1112 1113
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1114 1115 1116
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1117
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1118 1119 1120
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1121
	}
1122

1123 1124 1125 1126 1127 1128
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1129

1130
out:
1131
	drm_gem_object_unreference(&obj->base);
1132
unlock:
1133
	mutex_unlock(&dev->struct_mutex);
1134 1135 1136
put_rpm:
	intel_runtime_pm_put(dev_priv);

1137 1138 1139
	return ret;
}

1140
int
1141
i915_gem_check_wedge(struct i915_gpu_error *error,
1142 1143
		     bool interruptible)
{
1144
	if (i915_reset_in_progress(error)) {
1145 1146 1147 1148 1149
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1150 1151
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1152 1153
			return -EIO;

1154 1155 1156 1157 1158 1159 1160
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1161 1162 1163 1164 1165 1166
	}

	return 0;
}

/*
1167
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1168
 */
1169
int
1170
i915_gem_check_olr(struct drm_i915_gem_request *req)
1171 1172 1173
{
	int ret;

1174
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1175 1176

	ret = 0;
1177
	if (req == req->ring->outstanding_lazy_request)
1178
		ret = i915_add_request(req->ring);
1179 1180 1181 1182

	return ret;
}

1183 1184 1185 1186 1187 1188
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1189
		       struct intel_engine_cs *ring)
1190 1191 1192 1193
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1194 1195 1196 1197 1198 1199 1200 1201
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1202
/**
1203 1204 1205
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1206 1207 1208
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1209 1210 1211 1212 1213 1214 1215
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1216
 * Returns 0 if the request was found within the alloted time. Else returns the
1217 1218
 * errno with remaining time filled in timeout argument.
 */
1219
int __i915_wait_request(struct drm_i915_gem_request *req,
1220
			unsigned reset_counter,
1221
			bool interruptible,
1222
			s64 *timeout,
1223
			struct drm_i915_file_private *file_priv)
1224
{
1225
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1226
	struct drm_device *dev = ring->dev;
1227
	struct drm_i915_private *dev_priv = dev->dev_private;
1228 1229
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1230
	DEFINE_WAIT(wait);
1231
	unsigned long timeout_expire;
1232
	s64 before, now;
1233 1234
	int ret;

1235
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1236

1237
	if (i915_gem_request_completed(req, true))
1238 1239
		return 0;

1240 1241
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1242

1243
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1244 1245 1246 1247 1248 1249 1250
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1251
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1252 1253
		return -ENODEV;

1254
	/* Record current time in case interrupted by signal, or wedged */
1255
	trace_i915_gem_request_wait_begin(req);
1256
	before = ktime_get_raw_ns();
1257 1258
	for (;;) {
		struct timer_list timer;
1259

1260 1261
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1262

1263 1264
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1265 1266 1267 1268 1269 1270 1271 1272
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1273

1274
		if (i915_gem_request_completed(req, false)) {
1275 1276 1277
			ret = 0;
			break;
		}
1278

1279 1280 1281 1282 1283
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1284
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1285 1286 1287 1288 1289 1290
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1291 1292
			unsigned long expire;

1293
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1294
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1295 1296 1297
			mod_timer(&timer, expire);
		}

1298
		io_schedule();
1299 1300 1301 1302 1303 1304

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1305
	now = ktime_get_raw_ns();
1306
	trace_i915_gem_request_wait_end(req);
1307

1308 1309
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1310 1311

	finish_wait(&ring->irq_queue, &wait);
1312 1313

	if (timeout) {
1314 1315 1316
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1327 1328
	}

1329
	return ret;
1330 1331 1332
}

/**
1333
 * Waits for a request to be signaled, and cleans up the
1334 1335 1336
 * request and object lists appropriately for that event.
 */
int
1337
i915_wait_request(struct drm_i915_gem_request *req)
1338
{
1339 1340 1341
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1342
	unsigned reset_counter;
1343 1344
	int ret;

1345 1346 1347 1348 1349 1350
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1351 1352
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1353
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1354 1355 1356
	if (ret)
		return ret;

1357
	ret = i915_gem_check_olr(req);
1358 1359 1360
	if (ret)
		return ret;

1361
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1362
	i915_gem_request_reference(req);
1363 1364
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1365 1366
	i915_gem_request_unreference(req);
	return ret;
1367 1368
}

1369
static int
1370
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1371
{
1372 1373
	if (!obj->active)
		return 0;
1374 1375 1376 1377

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1378 1379
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1380 1381
	 * we know we have passed the last write.
	 */
1382
	i915_gem_request_assign(&obj->last_write_req, NULL);
1383 1384 1385 1386

	return 0;
}

1387 1388 1389 1390 1391 1392 1393 1394
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1395
	struct drm_i915_gem_request *req;
1396 1397
	int ret;

1398 1399
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1400 1401
		return 0;

1402
	ret = i915_wait_request(req);
1403 1404 1405
	if (ret)
		return ret;

1406
	return i915_gem_object_wait_rendering__tail(obj);
1407 1408
}

1409 1410 1411 1412 1413
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1414
					    struct drm_i915_file_private *file_priv,
1415 1416
					    bool readonly)
{
1417
	struct drm_i915_gem_request *req;
1418 1419
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1420
	unsigned reset_counter;
1421 1422 1423 1424 1425
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1426 1427
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1428 1429
		return 0;

1430
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1431 1432 1433
	if (ret)
		return ret;

1434
	ret = i915_gem_check_olr(req);
1435 1436 1437
	if (ret)
		return ret;

1438
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1439
	i915_gem_request_reference(req);
1440
	mutex_unlock(&dev->struct_mutex);
1441
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1442
	mutex_lock(&dev->struct_mutex);
1443
	i915_gem_request_unreference(req);
1444 1445
	if (ret)
		return ret;
1446

1447
	return i915_gem_object_wait_rendering__tail(obj);
1448 1449
}

1450
/**
1451 1452
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1453 1454 1455
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1456
			  struct drm_file *file)
1457 1458
{
	struct drm_i915_gem_set_domain *args = data;
1459
	struct drm_i915_gem_object *obj;
1460 1461
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1462 1463
	int ret;

1464
	/* Only handle setting domains to types used by the CPU. */
1465
	if (write_domain & I915_GEM_GPU_DOMAINS)
1466 1467
		return -EINVAL;

1468
	if (read_domains & I915_GEM_GPU_DOMAINS)
1469 1470 1471 1472 1473 1474 1475 1476
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1477
	ret = i915_mutex_lock_interruptible(dev);
1478
	if (ret)
1479
		return ret;
1480

1481
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1482
	if (&obj->base == NULL) {
1483 1484
		ret = -ENOENT;
		goto unlock;
1485
	}
1486

1487 1488 1489 1490
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1491 1492 1493
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1494 1495 1496
	if (ret)
		goto unref;

1497
	if (read_domains & I915_GEM_DOMAIN_GTT)
1498
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1499
	else
1500
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1501

1502
unref:
1503
	drm_gem_object_unreference(&obj->base);
1504
unlock:
1505 1506 1507 1508 1509 1510 1511 1512 1513
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1514
			 struct drm_file *file)
1515 1516
{
	struct drm_i915_gem_sw_finish *args = data;
1517
	struct drm_i915_gem_object *obj;
1518 1519
	int ret = 0;

1520
	ret = i915_mutex_lock_interruptible(dev);
1521
	if (ret)
1522
		return ret;
1523

1524
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1525
	if (&obj->base == NULL) {
1526 1527
		ret = -ENOENT;
		goto unlock;
1528 1529 1530
	}

	/* Pinned buffers may be scanout, so flush the cache */
1531
	if (obj->pin_display)
1532
		i915_gem_object_flush_cpu_write_domain(obj);
1533

1534
	drm_gem_object_unreference(&obj->base);
1535
unlock:
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1556 1557 1558
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1559
		    struct drm_file *file)
1560 1561 1562 1563 1564
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1565 1566 1567 1568 1569 1570
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1571
	obj = drm_gem_object_lookup(dev, file, args->handle);
1572
	if (obj == NULL)
1573
		return -ENOENT;
1574

1575 1576 1577 1578 1579 1580 1581 1582
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1583
	addr = vm_mmap(obj->filp, 0, args->size,
1584 1585
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1599
	drm_gem_object_unreference_unlocked(obj);
1600 1601 1602 1603 1604 1605 1606 1607
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1626 1627
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1628
	struct drm_i915_private *dev_priv = dev->dev_private;
1629 1630 1631
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1632
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1633

1634 1635
	intel_runtime_pm_get(dev_priv);

1636 1637 1638 1639
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1640 1641 1642
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1643

C
Chris Wilson 已提交
1644 1645
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1646 1647 1648 1649 1650 1651 1652 1653 1654
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1655 1656
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1657
		ret = -EFAULT;
1658 1659 1660
		goto unlock;
	}

1661
	/* Now bind it into the GTT if needed */
1662
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1663 1664
	if (ret)
		goto unlock;
1665

1666 1667 1668
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1669

1670
	ret = i915_gem_object_get_fence(obj);
1671
	if (ret)
1672
		goto unpin;
1673

1674
	/* Finally, remap it using the new GTT offset */
1675 1676
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1677

1678
	if (!obj->fault_mappable) {
1679 1680 1681
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1682 1683
		int i;

1684
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1697
unpin:
B
Ben Widawsky 已提交
1698
	i915_gem_object_ggtt_unpin(obj);
1699
unlock:
1700
	mutex_unlock(&dev->struct_mutex);
1701
out:
1702
	switch (ret) {
1703
	case -EIO:
1704 1705 1706 1707 1708 1709 1710
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1711 1712 1713
			ret = VM_FAULT_SIGBUS;
			break;
		}
1714
	case -EAGAIN:
D
Daniel Vetter 已提交
1715 1716 1717 1718
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1719
		 */
1720 1721
	case 0:
	case -ERESTARTSYS:
1722
	case -EINTR:
1723 1724 1725 1726 1727
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1728 1729
		ret = VM_FAULT_NOPAGE;
		break;
1730
	case -ENOMEM:
1731 1732
		ret = VM_FAULT_OOM;
		break;
1733
	case -ENOSPC:
1734
	case -EFAULT:
1735 1736
		ret = VM_FAULT_SIGBUS;
		break;
1737
	default:
1738
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1739 1740
		ret = VM_FAULT_SIGBUS;
		break;
1741
	}
1742 1743 1744

	intel_runtime_pm_put(dev_priv);
	return ret;
1745 1746
}

1747 1748 1749 1750
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1751
 * Preserve the reservation of the mmapping with the DRM core code, but
1752 1753 1754 1755 1756 1757 1758 1759 1760
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1761
void
1762
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1763
{
1764 1765
	if (!obj->fault_mappable)
		return;
1766

1767 1768
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1769
	obj->fault_mappable = false;
1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779 1780
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1781
uint32_t
1782
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1783
{
1784
	uint32_t gtt_size;
1785 1786

	if (INTEL_INFO(dev)->gen >= 4 ||
1787 1788
	    tiling_mode == I915_TILING_NONE)
		return size;
1789 1790 1791

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1792
		gtt_size = 1024*1024;
1793
	else
1794
		gtt_size = 512*1024;
1795

1796 1797
	while (gtt_size < size)
		gtt_size <<= 1;
1798

1799
	return gtt_size;
1800 1801
}

1802 1803 1804 1805 1806
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1807
 * potential fence register mapping.
1808
 */
1809 1810 1811
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1812 1813 1814 1815 1816
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1817
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1818
	    tiling_mode == I915_TILING_NONE)
1819 1820
		return 4096;

1821 1822 1823 1824
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1825
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1826 1827
}

1828 1829 1830 1831 1832
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1833
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1834 1835
		return 0;

1836 1837
	dev_priv->mm.shrinker_no_lock_stealing = true;

1838 1839
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1840
		goto out;
1841 1842 1843 1844 1845 1846 1847 1848

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1849 1850 1851 1852 1853
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1854 1855
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1856
		goto out;
1857 1858

	i915_gem_shrink_all(dev_priv);
1859 1860 1861 1862 1863
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1864 1865 1866 1867 1868 1869 1870
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1871
int
1872 1873
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1874
		  uint32_t handle,
1875
		  uint64_t *offset)
1876
{
1877
	struct drm_i915_private *dev_priv = dev->dev_private;
1878
	struct drm_i915_gem_object *obj;
1879 1880
	int ret;

1881
	ret = i915_mutex_lock_interruptible(dev);
1882
	if (ret)
1883
		return ret;
1884

1885
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1886
	if (&obj->base == NULL) {
1887 1888 1889
		ret = -ENOENT;
		goto unlock;
	}
1890

B
Ben Widawsky 已提交
1891
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1892
		ret = -E2BIG;
1893
		goto out;
1894 1895
	}

1896
	if (obj->madv != I915_MADV_WILLNEED) {
1897
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1898
		ret = -EFAULT;
1899
		goto out;
1900 1901
	}

1902 1903 1904
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1905

1906
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1907

1908
out:
1909
	drm_gem_object_unreference(&obj->base);
1910
unlock:
1911
	mutex_unlock(&dev->struct_mutex);
1912
	return ret;
1913 1914
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1936
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1937 1938
}

1939 1940 1941 1942 1943 1944
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1945 1946 1947
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1948
{
1949
	i915_gem_object_free_mmap_offset(obj);
1950

1951 1952
	if (obj->base.filp == NULL)
		return;
1953

D
Daniel Vetter 已提交
1954 1955 1956 1957 1958
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1959
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1960 1961
	obj->madv = __I915_MADV_PURGED;
}
1962

1963 1964 1965
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1966
{
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1981 1982
}

1983
static void
1984
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1985
{
1986 1987
	struct sg_page_iter sg_iter;
	int ret;
1988

1989
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1990

C
Chris Wilson 已提交
1991 1992 1993 1994 1995 1996
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1997
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1998 1999 2000
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2001
	if (i915_gem_object_needs_bit17_swizzle(obj))
2002 2003
		i915_gem_object_save_bit_17_swizzle(obj);

2004 2005
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2006

2007
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2008
		struct page *page = sg_page_iter_page(&sg_iter);
2009

2010
		if (obj->dirty)
2011
			set_page_dirty(page);
2012

2013
		if (obj->madv == I915_MADV_WILLNEED)
2014
			mark_page_accessed(page);
2015

2016
		page_cache_release(page);
2017
	}
2018
	obj->dirty = 0;
2019

2020 2021
	sg_free_table(obj->pages);
	kfree(obj->pages);
2022
}
C
Chris Wilson 已提交
2023

2024
int
2025 2026 2027 2028
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2029
	if (obj->pages == NULL)
2030 2031
		return 0;

2032 2033 2034
	if (obj->pages_pin_count)
		return -EBUSY;

2035
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2036

2037 2038 2039
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2040
	list_del(&obj->global_list);
2041

2042
	ops->put_pages(obj);
2043
	obj->pages = NULL;
2044

2045
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2046 2047 2048 2049

	return 0;
}

2050 2051 2052
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2053
{
2054 2055 2056 2057 2058 2059 2060 2061
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2062
	unsigned long count = 0;
C
Chris Wilson 已提交
2063

2064
	/*
2065
	 * As we may completely rewrite the (un)bound list whilst unbinding
2066 2067 2068
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2082
	 */
2083
	for (phase = phases; phase->list; phase++) {
2084
		struct list_head still_in_list;
2085

2086 2087
		if ((flags & phase->bit) == 0)
			continue;
2088

2089
		INIT_LIST_HEAD(&still_in_list);
2090
		while (count < target && !list_empty(phase->list)) {
2091 2092
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2093

2094
			obj = list_first_entry(phase->list,
2095 2096
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2097

2098 2099
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2100
				continue;
2101

2102
			drm_gem_object_reference(&obj->base);
2103

2104 2105 2106
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2107 2108
				if (i915_vma_unbind(vma))
					break;
2109

2110 2111 2112 2113 2114
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2115
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2116 2117 2118 2119 2120
	}

	return count;
}

2121
static unsigned long
C
Chris Wilson 已提交
2122 2123 2124
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2125 2126
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2127 2128
}

2129
static int
C
Chris Wilson 已提交
2130
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2131
{
C
Chris Wilson 已提交
2132
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2133 2134
	int page_count, i;
	struct address_space *mapping;
2135 2136
	struct sg_table *st;
	struct scatterlist *sg;
2137
	struct sg_page_iter sg_iter;
2138
	struct page *page;
2139
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2140
	gfp_t gfp;
2141

C
Chris Wilson 已提交
2142 2143 2144 2145 2146 2147 2148
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2149 2150 2151 2152
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2153
	page_count = obj->base.size / PAGE_SIZE;
2154 2155
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2156
		return -ENOMEM;
2157
	}
2158

2159 2160 2161 2162 2163
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2164
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2165
	gfp = mapping_gfp_mask(mapping);
2166
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2167
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2168 2169 2170
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2171 2172
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2173 2174 2175 2176 2177
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2178 2179 2180 2181 2182 2183 2184 2185
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2186
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2187 2188 2189
			if (IS_ERR(page))
				goto err_pages;
		}
2190 2191 2192 2193 2194 2195 2196 2197
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2198 2199 2200 2201 2202 2203 2204 2205 2206
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2207 2208 2209

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2210
	}
2211 2212 2213 2214
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2215 2216
	obj->pages = st;

2217
	if (i915_gem_object_needs_bit17_swizzle(obj))
2218 2219
		i915_gem_object_do_bit_17_swizzle(obj);

2220 2221 2222 2223
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2224 2225 2226
	return 0;

err_pages:
2227 2228
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2229
		page_cache_release(sg_page_iter_page(&sg_iter));
2230 2231
	sg_free_table(st);
	kfree(st);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2261
	if (obj->pages)
2262 2263
		return 0;

2264
	if (obj->madv != I915_MADV_WILLNEED) {
2265
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2266
		return -EFAULT;
2267 2268
	}

2269 2270
	BUG_ON(obj->pages_pin_count);

2271 2272 2273 2274
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2275
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2276
	return 0;
2277 2278
}

B
Ben Widawsky 已提交
2279
static void
2280
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2281
			       struct intel_engine_cs *ring)
2282
{
2283 2284
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2285

2286
	BUG_ON(ring == NULL);
2287 2288 2289 2290 2291

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2292 2293
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2294
	}
2295 2296

	/* Add a reference if we're newly entering the active list. */
2297 2298 2299
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2300
	}
2301

2302
	list_move_tail(&obj->ring_list, &ring->active_list);
2303

2304
	i915_gem_request_assign(&obj->last_read_req, req);
2305 2306
}

B
Ben Widawsky 已提交
2307
void i915_vma_move_to_active(struct i915_vma *vma,
2308
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2309 2310 2311 2312 2313
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2314 2315
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2316
{
2317
	struct i915_vma *vma;
2318

2319
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2320
	BUG_ON(!obj->active);
2321

2322 2323 2324
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2325
	}
2326

2327 2328
	intel_fb_obj_flush(obj, true);

2329
	list_del_init(&obj->ring_list);
2330

2331 2332
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2333 2334
	obj->base.write_domain = 0;

2335
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2336 2337 2338 2339 2340

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2341
}
2342

2343 2344 2345
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2346
	if (obj->last_read_req == NULL)
2347 2348
		return;

2349
	if (i915_gem_request_completed(obj->last_read_req, true))
2350 2351 2352
		i915_gem_object_move_to_inactive(obj);
}

2353
static int
2354
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2355
{
2356
	struct drm_i915_private *dev_priv = dev->dev_private;
2357
	struct intel_engine_cs *ring;
2358
	int ret, i, j;
2359

2360
	/* Carefully retire all requests without writing to the rings */
2361
	for_each_ring(ring, dev_priv, i) {
2362 2363 2364
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2365 2366
	}
	i915_gem_retire_requests(dev);
2367 2368

	/* Finally reset hw state */
2369
	for_each_ring(ring, dev_priv, i) {
2370
		intel_ring_init_seqno(ring, seqno);
2371

2372 2373
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2374
	}
2375

2376
	return 0;
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2405 2406
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2407
{
2408 2409 2410 2411
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2412
		int ret = i915_gem_init_seqno(dev, 0);
2413 2414
		if (ret)
			return ret;
2415

2416 2417
		dev_priv->next_seqno = 1;
	}
2418

2419
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2420
	return 0;
2421 2422
}

2423
int __i915_add_request(struct intel_engine_cs *ring,
2424
		       struct drm_file *file,
2425
		       struct drm_i915_gem_object *obj)
2426
{
2427
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2428
	struct drm_i915_gem_request *request;
2429
	struct intel_ringbuffer *ringbuf;
2430
	u32 request_start;
2431 2432
	int ret;

2433
	request = ring->outstanding_lazy_request;
2434 2435 2436 2437
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2438
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2439 2440 2441 2442
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2443 2444 2445 2446 2447 2448 2449
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2450
	if (i915.enable_execlists) {
2451
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2452 2453 2454 2455 2456 2457 2458
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2459

2460 2461 2462 2463 2464
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2465
	request->postfix = intel_ring_get_tail(ringbuf);
2466

2467
	if (i915.enable_execlists) {
2468
		ret = ring->emit_request(ringbuf, request);
2469 2470 2471 2472 2473 2474 2475
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2476

2477
	request->head = request_start;
2478
	request->tail = intel_ring_get_tail(ringbuf);
2479 2480 2481 2482 2483 2484 2485

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2486
	request->batch_obj = obj;
2487

2488 2489 2490 2491 2492 2493 2494 2495
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2496

2497
	request->emitted_jiffies = jiffies;
2498
	list_add_tail(&request->list, &ring->request_list);
2499
	request->file_priv = NULL;
2500

C
Chris Wilson 已提交
2501 2502 2503
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2504
		spin_lock(&file_priv->mm.lock);
2505
		request->file_priv = file_priv;
2506
		list_add_tail(&request->client_list,
2507
			      &file_priv->mm.request_list);
2508
		spin_unlock(&file_priv->mm.lock);
2509 2510

		request->pid = get_pid(task_pid(current));
2511
	}
2512

2513
	trace_i915_gem_request_add(request);
2514
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2515

2516
	i915_queue_hangcheck(ring->dev);
2517

2518 2519 2520 2521 2522
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2523

2524
	return 0;
2525 2526
}

2527 2528
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2529
{
2530
	struct drm_i915_file_private *file_priv = request->file_priv;
2531

2532 2533
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2534

2535
	spin_lock(&file_priv->mm.lock);
2536 2537
	list_del(&request->client_list);
	request->file_priv = NULL;
2538
	spin_unlock(&file_priv->mm.lock);
2539 2540
}

2541
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2542
				   const struct intel_context *ctx)
2543
{
2544
	unsigned long elapsed;
2545

2546 2547 2548
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2549 2550
		return true;

2551 2552
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2553
		if (!i915_gem_context_is_default(ctx)) {
2554
			DRM_DEBUG("context hanging too fast, banning!\n");
2555
			return true;
2556 2557 2558
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2559
			return true;
2560
		}
2561 2562 2563 2564 2565
	}

	return false;
}

2566
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2567
				  struct intel_context *ctx,
2568
				  const bool guilty)
2569
{
2570 2571 2572 2573
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2574

2575 2576 2577
	hs = &ctx->hang_stats;

	if (guilty) {
2578
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2579 2580 2581 2582
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2583 2584 2585
	}
}

2586 2587 2588 2589 2590
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2591 2592
	put_pid(request->pid);

2593 2594 2595 2596 2597 2598 2599 2600 2601
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2602 2603
	if (ctx) {
		if (i915.enable_execlists) {
2604
			struct intel_engine_cs *ring = req->ring;
2605

2606 2607 2608
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2609

2610 2611
		i915_gem_context_unreference(ctx);
	}
2612 2613

	kfree(req);
2614 2615
}

2616
struct drm_i915_gem_request *
2617
i915_gem_find_active_request(struct intel_engine_cs *ring)
2618
{
2619 2620 2621
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2622
		if (i915_gem_request_completed(request, false))
2623
			continue;
2624

2625
		return request;
2626
	}
2627 2628 2629 2630 2631

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2632
				       struct intel_engine_cs *ring)
2633 2634 2635 2636
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2637
	request = i915_gem_find_active_request(ring);
2638 2639 2640 2641 2642 2643

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2644
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2645 2646

	list_for_each_entry_continue(request, &ring->request_list, list)
2647
		i915_set_reset_status(dev_priv, request->ctx, false);
2648
}
2649

2650
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2651
					struct intel_engine_cs *ring)
2652
{
2653
	while (!list_empty(&ring->active_list)) {
2654
		struct drm_i915_gem_object *obj;
2655

2656 2657 2658
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2659

2660
		i915_gem_object_move_to_inactive(obj);
2661
	}
2662

2663 2664 2665 2666 2667 2668
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2669
		struct drm_i915_gem_request *submit_req;
2670 2671

		submit_req = list_first_entry(&ring->execlist_queue,
2672
				struct drm_i915_gem_request,
2673 2674 2675
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
2676 2677 2678 2679

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2680
		i915_gem_request_unreference(submit_req);
2681 2682
	}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2699

2700 2701
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2702 2703
}

2704
void i915_gem_restore_fences(struct drm_device *dev)
2705 2706 2707 2708
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2709
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2710
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2711

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2722 2723 2724
	}
}

2725
void i915_gem_reset(struct drm_device *dev)
2726
{
2727
	struct drm_i915_private *dev_priv = dev->dev_private;
2728
	struct intel_engine_cs *ring;
2729
	int i;
2730

2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2739
	for_each_ring(ring, dev_priv, i)
2740
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2741

2742 2743
	i915_gem_context_reset(dev);

2744
	i915_gem_restore_fences(dev);
2745 2746 2747 2748 2749
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2750
void
2751
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2752
{
C
Chris Wilson 已提交
2753
	if (list_empty(&ring->request_list))
2754 2755
		return;

C
Chris Wilson 已提交
2756
	WARN_ON(i915_verify_lists(ring->dev));
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2769
		if (!i915_gem_request_completed(obj->last_read_req, true))
2770 2771 2772 2773 2774 2775
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2776
	while (!list_empty(&ring->request_list)) {
2777 2778
		struct drm_i915_gem_request *request;

2779
		request = list_first_entry(&ring->request_list,
2780 2781 2782
					   struct drm_i915_gem_request,
					   list);

2783
		if (!i915_gem_request_completed(request, true))
2784 2785
			break;

2786
		trace_i915_gem_request_retire(request);
2787

2788 2789 2790 2791 2792
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2793
		request->ringbuf->last_retired_head = request->postfix;
2794

2795
		i915_gem_free_request(request);
2796
	}
2797

2798 2799
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2800
		ring->irq_put(ring);
2801
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2802
	}
2803

C
Chris Wilson 已提交
2804
	WARN_ON(i915_verify_lists(ring->dev));
2805 2806
}

2807
bool
2808 2809
i915_gem_retire_requests(struct drm_device *dev)
{
2810
	struct drm_i915_private *dev_priv = dev->dev_private;
2811
	struct intel_engine_cs *ring;
2812
	bool idle = true;
2813
	int i;
2814

2815
	for_each_ring(ring, dev_priv, i) {
2816
		i915_gem_retire_requests_ring(ring);
2817
		idle &= list_empty(&ring->request_list);
2818 2819 2820 2821 2822 2823 2824 2825 2826
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2827 2828 2829 2830 2831 2832 2833 2834
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2835 2836
}

2837
static void
2838 2839
i915_gem_retire_work_handler(struct work_struct *work)
{
2840 2841 2842
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2843
	bool idle;
2844

2845
	/* Come back later if the device is busy... */
2846 2847 2848 2849
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2850
	}
2851
	if (!idle)
2852 2853
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2854
}
2855

2856 2857 2858 2859 2860 2861 2862
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2863 2864
}

2865 2866 2867 2868 2869 2870 2871 2872
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2873
	struct intel_engine_cs *ring;
2874 2875 2876
	int ret;

	if (obj->active) {
2877 2878
		ring = i915_gem_request_get_ring(obj->last_read_req);

2879
		ret = i915_gem_check_olr(obj->last_read_req);
2880 2881 2882
		if (ret)
			return ret;

2883
		i915_gem_retire_requests_ring(ring);
2884 2885 2886 2887 2888
	}

	return 0;
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2914
	struct drm_i915_private *dev_priv = dev->dev_private;
2915 2916
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2917
	struct drm_i915_gem_request *req;
2918
	unsigned reset_counter;
2919 2920
	int ret = 0;

2921 2922 2923
	if (args->flags != 0)
		return -EINVAL;

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2934 2935
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2936 2937 2938
	if (ret)
		goto out;

2939 2940
	if (!obj->active || !obj->last_read_req)
		goto out;
2941

2942
	req = obj->last_read_req;
2943 2944

	/* Do this after OLR check to make sure we make forward progress polling
2945
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2946
	 */
2947
	if (args->timeout_ns == 0) {
2948 2949 2950 2951 2952
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2953
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2954
	i915_gem_request_reference(req);
2955 2956
	mutex_unlock(&dev->struct_mutex);

2957 2958
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2959
				  file->driver_priv);
2960 2961 2962 2963
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2964 2965 2966 2967 2968 2969 2970

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2983 2984
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2985
		     struct intel_engine_cs *to)
2986
{
2987
	struct intel_engine_cs *from;
2988 2989 2990
	u32 seqno;
	int ret, idx;

2991 2992
	from = i915_gem_request_get_ring(obj->last_read_req);

2993 2994 2995
	if (from == NULL || to == from)
		return 0;

2996
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2997
		return i915_gem_object_wait_rendering(obj, false);
2998 2999 3000

	idx = intel_ring_sync_index(from, to);

3001
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
3002 3003
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
3004
	if (seqno <= from->semaphore.sync_seqno[idx])
3005 3006
		return 0;

3007
	ret = i915_gem_check_olr(obj->last_read_req);
3008 3009
	if (ret)
		return ret;
3010

3011
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3012
	ret = to->semaphore.sync_to(to, from, seqno);
3013
	if (!ret)
3014
		/* We use last_read_req because sync_to()
3015 3016 3017
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3018 3019
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3020

3021
	return ret;
3022 3023
}

3024 3025 3026 3027 3028 3029 3030
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3031 3032 3033
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3034 3035 3036
	/* Wait for any direct GTT access to complete */
	mb();

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3048
int i915_vma_unbind(struct i915_vma *vma)
3049
{
3050
	struct drm_i915_gem_object *obj = vma->obj;
3051
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3052
	int ret;
3053

3054
	if (list_empty(&vma->vma_link))
3055 3056
		return 0;

3057 3058 3059 3060
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3061

B
Ben Widawsky 已提交
3062
	if (vma->pin_count)
3063
		return -EBUSY;
3064

3065 3066
	BUG_ON(obj->pages == NULL);

3067
	ret = i915_gem_object_finish_gpu(obj);
3068
	if (ret)
3069 3070 3071 3072 3073 3074
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3075 3076
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3077
		i915_gem_object_finish_gtt(obj);
3078

3079 3080 3081 3082 3083
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3084

3085
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3086

3087 3088
	vma->unbind_vma(vma);

3089
	list_del_init(&vma->mm_list);
3090 3091 3092 3093 3094 3095 3096 3097 3098
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3099

B
Ben Widawsky 已提交
3100 3101 3102 3103
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3104
	 * no more VMAs exist. */
3105
	if (list_empty(&obj->vma_list)) {
3106 3107 3108 3109
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3110
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3111
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3112
	}
3113

3114 3115 3116 3117 3118 3119
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3120
	return 0;
3121 3122
}

3123
int i915_gpu_idle(struct drm_device *dev)
3124
{
3125
	struct drm_i915_private *dev_priv = dev->dev_private;
3126
	struct intel_engine_cs *ring;
3127
	int ret, i;
3128 3129

	/* Flush everything onto the inactive list. */
3130
	for_each_ring(ring, dev_priv, i) {
3131 3132 3133 3134 3135
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3136

3137
		ret = intel_ring_idle(ring);
3138 3139 3140
		if (ret)
			return ret;
	}
3141

3142
	return 0;
3143 3144
}

3145 3146
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3147
{
3148
	struct drm_i915_private *dev_priv = dev->dev_private;
3149 3150
	int fence_reg;
	int fence_pitch_shift;
3151

3152 3153 3154 3155 3156 3157 3158 3159
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3174
	if (obj) {
3175
		u32 size = i915_gem_obj_ggtt_size(obj);
3176
		uint64_t val;
3177

3178 3179 3180 3181 3182 3183 3184
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3185
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3186
				 0xfffff000) << 32;
3187
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3188
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3189 3190 3191
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3202 3203
}

3204 3205
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3206
{
3207
	struct drm_i915_private *dev_priv = dev->dev_private;
3208
	u32 val;
3209

3210
	if (obj) {
3211
		u32 size = i915_gem_obj_ggtt_size(obj);
3212 3213
		int pitch_val;
		int tile_width;
3214

3215
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3216
		     (size & -size) != size ||
3217 3218 3219
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3220

3221 3222 3223 3224 3225 3226 3227 3228 3229
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3230
		val = i915_gem_obj_ggtt_offset(obj);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3246 3247
}

3248 3249
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3250
{
3251
	struct drm_i915_private *dev_priv = dev->dev_private;
3252 3253
	uint32_t val;

3254
	if (obj) {
3255
		u32 size = i915_gem_obj_ggtt_size(obj);
3256
		uint32_t pitch_val;
3257

3258
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3259
		     (size & -size) != size ||
3260 3261 3262
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3263

3264 3265
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3266

3267
		val = i915_gem_obj_ggtt_offset(obj);
3268 3269 3270 3271 3272 3273 3274
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3275

3276 3277 3278 3279
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3280 3281 3282 3283 3284
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3285 3286 3287
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3288 3289 3290 3291 3292 3293 3294 3295
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3296 3297 3298 3299
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3300 3301 3302 3303 3304 3305
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3306 3307 3308 3309 3310 3311

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3312 3313
}

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3324
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3325 3326 3327
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3328 3329

	if (enable) {
3330
		obj->fence_reg = reg;
3331 3332 3333 3334 3335 3336 3337
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3338
	obj->fence_dirty = false;
3339 3340
}

3341
static int
3342
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3343
{
3344
	if (obj->last_fenced_req) {
3345
		int ret = i915_wait_request(obj->last_fenced_req);
3346 3347
		if (ret)
			return ret;
3348

3349
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3350 3351 3352 3353 3354 3355 3356 3357
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3358
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3359
	struct drm_i915_fence_reg *fence;
3360 3361
	int ret;

3362
	ret = i915_gem_object_wait_fence(obj);
3363 3364 3365
	if (ret)
		return ret;

3366 3367
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3368

3369 3370
	fence = &dev_priv->fence_regs[obj->fence_reg];

3371 3372 3373
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3374
	i915_gem_object_fence_lost(obj);
3375
	i915_gem_object_update_fence(obj, fence, false);
3376 3377 3378 3379 3380

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3381
i915_find_fence_reg(struct drm_device *dev)
3382 3383
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3384
	struct drm_i915_fence_reg *reg, *avail;
3385
	int i;
3386 3387

	/* First try to find a free reg */
3388
	avail = NULL;
3389 3390 3391
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3392
			return reg;
3393

3394
		if (!reg->pin_count)
3395
			avail = reg;
3396 3397
	}

3398
	if (avail == NULL)
3399
		goto deadlock;
3400 3401

	/* None available, try to steal one or wait for a user to finish */
3402
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3403
		if (reg->pin_count)
3404 3405
			continue;

C
Chris Wilson 已提交
3406
		return reg;
3407 3408
	}

3409 3410 3411 3412 3413 3414
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3415 3416
}

3417
/**
3418
 * i915_gem_object_get_fence - set up fencing for an object
3419 3420 3421 3422 3423 3424 3425 3426 3427
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3428 3429
 *
 * For an untiled surface, this removes any existing fence.
3430
 */
3431
int
3432
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3433
{
3434
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3435
	struct drm_i915_private *dev_priv = dev->dev_private;
3436
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3437
	struct drm_i915_fence_reg *reg;
3438
	int ret;
3439

3440 3441 3442
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3443
	if (obj->fence_dirty) {
3444
		ret = i915_gem_object_wait_fence(obj);
3445 3446 3447
		if (ret)
			return ret;
	}
3448

3449
	/* Just update our place in the LRU if our fence is getting reused. */
3450 3451
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3452
		if (!obj->fence_dirty) {
3453 3454 3455 3456 3457
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3458 3459 3460
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3461
		reg = i915_find_fence_reg(dev);
3462 3463
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3464

3465 3466 3467
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3468
			ret = i915_gem_object_wait_fence(old);
3469 3470 3471
			if (ret)
				return ret;

3472
			i915_gem_object_fence_lost(old);
3473
		}
3474
	} else
3475 3476
		return 0;

3477 3478
	i915_gem_object_update_fence(obj, reg, enable);

3479
	return 0;
3480 3481
}

3482
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3483 3484
				     unsigned long cache_level)
{
3485
	struct drm_mm_node *gtt_space = &vma->node;
3486 3487
	struct drm_mm_node *other;

3488 3489 3490 3491 3492 3493
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3494
	 */
3495
	if (vma->vm->mm.color_adjust == NULL)
3496 3497
		return true;

3498
	if (!drm_mm_node_allocated(gtt_space))
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3515 3516 3517
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3518
static struct i915_vma *
3519 3520 3521
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3522 3523
			   uint64_t flags,
			   const struct i915_ggtt_view *view)
3524
{
3525
	struct drm_device *dev = obj->base.dev;
3526
	struct drm_i915_private *dev_priv = dev->dev_private;
3527
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3528 3529 3530
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3531
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3532
	struct i915_vma *vma;
3533
	int ret;
3534

3535 3536 3537 3538 3539
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3540
						     obj->tiling_mode, true);
3541
	unfenced_alignment =
3542
		i915_gem_get_gtt_alignment(dev,
3543 3544
					   obj->base.size,
					   obj->tiling_mode, false);
3545

3546
	if (alignment == 0)
3547
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3548
						unfenced_alignment;
3549
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3550
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3551
		return ERR_PTR(-EINVAL);
3552 3553
	}

3554
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3555

3556 3557 3558
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3559 3560
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3561
			  obj->base.size,
3562
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3563
			  end);
3564
		return ERR_PTR(-E2BIG);
3565 3566
	}

3567
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3568
	if (ret)
3569
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3570

3571 3572
	i915_gem_object_pin_pages(obj);

3573
	vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3574
	if (IS_ERR(vma))
3575
		goto err_unpin;
B
Ben Widawsky 已提交
3576

3577
search_free:
3578
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3579
						  size, alignment,
3580 3581
						  obj->cache_level,
						  start, end,
3582 3583
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3584
	if (ret) {
3585
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3586 3587 3588
					       obj->cache_level,
					       start, end,
					       flags);
3589 3590
		if (ret == 0)
			goto search_free;
3591

3592
		goto err_free_vma;
3593
	}
3594
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3595
		ret = -EINVAL;
3596
		goto err_remove_node;
3597 3598
	}

3599
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3600
	if (ret)
3601
		goto err_remove_node;
3602

3603 3604 3605 3606 3607 3608
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3609
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3610
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3611

3612
	return vma;
B
Ben Widawsky 已提交
3613

3614 3615
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3616
err_remove_node:
3617
	drm_mm_remove_node(&vma->node);
3618
err_free_vma:
B
Ben Widawsky 已提交
3619
	i915_gem_vma_destroy(vma);
3620
	vma = ERR_PTR(ret);
3621
err_unpin:
B
Ben Widawsky 已提交
3622
	i915_gem_object_unpin_pages(obj);
3623
	return vma;
3624 3625
}

3626
bool
3627 3628
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3629 3630 3631 3632 3633
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3634
	if (obj->pages == NULL)
3635
		return false;
3636

3637 3638 3639 3640
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3641
	if (obj->stolen || obj->phys_handle)
3642
		return false;
3643

3644 3645 3646 3647 3648 3649 3650 3651
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3652 3653
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3654
		return false;
3655
	}
3656

C
Chris Wilson 已提交
3657
	trace_i915_gem_object_clflush(obj);
3658
	drm_clflush_sg(obj->pages);
3659
	obj->cache_dirty = false;
3660 3661

	return true;
3662 3663 3664 3665
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3666
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3667
{
C
Chris Wilson 已提交
3668 3669
	uint32_t old_write_domain;

3670
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3671 3672
		return;

3673
	/* No actual flushing is required for the GTT write domain.  Writes
3674 3675
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3676 3677 3678 3679
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3680
	 */
3681 3682
	wmb();

3683 3684
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3685

3686 3687
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3688
	trace_i915_gem_object_change_domain(obj,
3689
					    obj->base.read_domains,
C
Chris Wilson 已提交
3690
					    old_write_domain);
3691 3692 3693 3694
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3695
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3696
{
C
Chris Wilson 已提交
3697
	uint32_t old_write_domain;
3698

3699
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3700 3701
		return;

3702
	if (i915_gem_clflush_object(obj, obj->pin_display))
3703 3704
		i915_gem_chipset_flush(obj->base.dev);

3705 3706
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3707

3708 3709
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3710
	trace_i915_gem_object_change_domain(obj,
3711
					    obj->base.read_domains,
C
Chris Wilson 已提交
3712
					    old_write_domain);
3713 3714
}

3715 3716 3717 3718 3719 3720
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3721
int
3722
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3723
{
C
Chris Wilson 已提交
3724
	uint32_t old_write_domain, old_read_domains;
3725
	struct i915_vma *vma;
3726
	int ret;
3727

3728 3729 3730
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3731
	ret = i915_gem_object_wait_rendering(obj, !write);
3732 3733 3734
	if (ret)
		return ret;

3735
	i915_gem_object_retire(obj);
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3749
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3750

3751 3752 3753 3754 3755 3756 3757
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3758 3759
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3760

3761 3762 3763
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3764 3765
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3766
	if (write) {
3767 3768 3769
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3770 3771
	}

3772
	if (write)
3773
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3774

C
Chris Wilson 已提交
3775 3776 3777 3778
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3779
	/* And bump the LRU for this access */
3780 3781
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3782
		list_move_tail(&vma->mm_list,
3783
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3784

3785 3786 3787
	return 0;
}

3788 3789 3790
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3791
	struct drm_device *dev = obj->base.dev;
3792
	struct i915_vma *vma, *next;
3793 3794 3795 3796 3797
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3798
	if (i915_gem_obj_is_pinned(obj)) {
3799 3800 3801 3802
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3803
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3804
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3805
			ret = i915_vma_unbind(vma);
3806 3807 3808
			if (ret)
				return ret;
		}
3809 3810
	}

3811
	if (i915_gem_obj_bound_any(obj)) {
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3822
		if (INTEL_INFO(dev)->gen < 6) {
3823 3824 3825 3826 3827
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3828
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3829 3830 3831 3832 3833 3834
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3835 3836
	}

3837 3838 3839 3840
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3841 3842 3843 3844 3845
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3846 3847 3848 3849 3850
	}

	return 0;
}

B
Ben Widawsky 已提交
3851 3852
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3853
{
B
Ben Widawsky 已提交
3854
	struct drm_i915_gem_caching *args = data;
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3868 3869 3870 3871 3872 3873
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3874 3875 3876 3877
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3878 3879 3880 3881
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3882 3883 3884 3885 3886 3887 3888

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3889 3890
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3891
{
B
Ben Widawsky 已提交
3892
	struct drm_i915_gem_caching *args = data;
3893 3894 3895 3896
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3897 3898
	switch (args->caching) {
	case I915_CACHING_NONE:
3899 3900
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3901
	case I915_CACHING_CACHED:
3902 3903
		level = I915_CACHE_LLC;
		break;
3904 3905 3906
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3907 3908 3909 3910
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3911 3912 3913 3914
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3929 3930
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3931 3932 3933 3934 3935 3936
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3937
	/* There are 2 sources that pin objects:
3938 3939 3940 3941
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3942
	 * are only called outside of the reservation path.
3943
	 */
D
Daniel Vetter 已提交
3944
	return vma->pin_count;
3945 3946
}

3947
/*
3948 3949 3950
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3951 3952
 */
int
3953 3954
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3955
				     struct intel_engine_cs *pipelined)
3956
{
3957
	u32 old_read_domains, old_write_domain;
3958
	bool was_pin_display;
3959 3960
	int ret;

3961
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3962 3963
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3964 3965 3966
			return ret;
	}

3967 3968 3969
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3970
	was_pin_display = obj->pin_display;
3971 3972
	obj->pin_display = true;

3973 3974 3975 3976 3977 3978 3979 3980 3981
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3982 3983
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3984
	if (ret)
3985
		goto err_unpin_display;
3986

3987 3988 3989 3990
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3991
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3992
	if (ret)
3993
		goto err_unpin_display;
3994

3995
	i915_gem_object_flush_cpu_write_domain(obj);
3996

3997
	old_write_domain = obj->base.write_domain;
3998
	old_read_domains = obj->base.read_domains;
3999 4000 4001 4002

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4003
	obj->base.write_domain = 0;
4004
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4005 4006 4007

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4008
					    old_write_domain);
4009 4010

	return 0;
4011 4012

err_unpin_display:
4013 4014
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
4015 4016 4017 4018 4019 4020
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4021
	i915_gem_object_ggtt_unpin(obj);
4022
	obj->pin_display = is_pin_display(obj);
4023 4024
}

4025
int
4026
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4027
{
4028 4029
	int ret;

4030
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4031 4032
		return 0;

4033
	ret = i915_gem_object_wait_rendering(obj, false);
4034 4035 4036
	if (ret)
		return ret;

4037 4038
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4039
	return 0;
4040 4041
}

4042 4043 4044 4045 4046 4047
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4048
int
4049
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4050
{
C
Chris Wilson 已提交
4051
	uint32_t old_write_domain, old_read_domains;
4052 4053
	int ret;

4054 4055 4056
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4057
	ret = i915_gem_object_wait_rendering(obj, !write);
4058 4059 4060
	if (ret)
		return ret;

4061
	i915_gem_object_retire(obj);
4062
	i915_gem_object_flush_gtt_write_domain(obj);
4063

4064 4065
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4066

4067
	/* Flush the CPU cache if it's still invalid. */
4068
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4069
		i915_gem_clflush_object(obj, false);
4070

4071
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4072 4073 4074 4075 4076
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4077
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4078 4079 4080 4081 4082

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4083 4084
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4085
	}
4086

4087
	if (write)
4088
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4089

C
Chris Wilson 已提交
4090 4091 4092 4093
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4094 4095 4096
	return 0;
}

4097 4098 4099
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4100 4101 4102 4103
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4104 4105 4106
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4107
static int
4108
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4109
{
4110 4111
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4112
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4113
	struct drm_i915_gem_request *request, *target = NULL;
4114
	unsigned reset_counter;
4115
	int ret;
4116

4117 4118 4119 4120 4121 4122 4123
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4124

4125
	spin_lock(&file_priv->mm.lock);
4126
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4127 4128
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4129

4130
		target = request;
4131
	}
4132
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4133 4134
	if (target)
		i915_gem_request_reference(target);
4135
	spin_unlock(&file_priv->mm.lock);
4136

4137
	if (target == NULL)
4138
		return 0;
4139

4140
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4141 4142
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4143

4144 4145 4146 4147
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4148 4149 4150
	return ret;
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4170
int
4171 4172 4173 4174 4175
i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
			 struct i915_address_space *vm,
			 uint32_t alignment,
			 uint64_t flags,
			 const struct i915_ggtt_view *view)
4176
{
4177
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4178
	struct i915_vma *vma;
4179
	unsigned bound;
4180 4181
	int ret;

4182 4183 4184
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4185
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4186
		return -EINVAL;
4187

4188 4189 4190
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4191
	vma = i915_gem_obj_to_vma_view(obj, vm, view);
4192
	if (vma) {
B
Ben Widawsky 已提交
4193 4194 4195
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4196
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4197
			WARN(vma->pin_count,
4198
			     "bo is already pinned with incorrect alignment:"
4199
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4200
			     " obj->map_and_fenceable=%d\n",
4201 4202
			     i915_gem_obj_offset_view(obj, vm, view->type),
			     alignment,
4203
			     !!(flags & PIN_MAPPABLE),
4204
			     obj->map_and_fenceable);
4205
			ret = i915_vma_unbind(vma);
4206 4207
			if (ret)
				return ret;
4208 4209

			vma = NULL;
4210 4211 4212
		}
	}

4213
	bound = vma ? vma->bound : 0;
4214
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4215 4216
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
						 flags, view);
4217 4218
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4219
	}
J
Jesse Barnes 已提交
4220

4221 4222 4223 4224 4225
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4226

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4242
		mappable = (vma->node.start + fence_size <=
4243 4244 4245 4246 4247 4248 4249
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4250
	vma->pin_count++;
4251 4252
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4253 4254 4255 4256 4257

	return 0;
}

void
B
Ben Widawsky 已提交
4258
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4259
{
B
Ben Widawsky 已提交
4260
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4261

B
Ben Widawsky 已提交
4262 4263 4264 4265 4266
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4267
		obj->pin_mappable = false;
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4296 4297
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4298
		    struct drm_file *file)
4299 4300
{
	struct drm_i915_gem_busy *args = data;
4301
	struct drm_i915_gem_object *obj;
4302 4303
	int ret;

4304
	ret = i915_mutex_lock_interruptible(dev);
4305
	if (ret)
4306
		return ret;
4307

4308
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4309
	if (&obj->base == NULL) {
4310 4311
		ret = -ENOENT;
		goto unlock;
4312
	}
4313

4314 4315 4316 4317
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4318
	 */
4319
	ret = i915_gem_object_flush_active(obj);
4320

4321
	args->busy = obj->active;
4322 4323
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4324
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4325 4326
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4327
	}
4328

4329
	drm_gem_object_unreference(&obj->base);
4330
unlock:
4331
	mutex_unlock(&dev->struct_mutex);
4332
	return ret;
4333 4334 4335 4336 4337 4338
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4339
	return i915_gem_ring_throttle(dev, file_priv);
4340 4341
}

4342 4343 4344 4345
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4346
	struct drm_i915_private *dev_priv = dev->dev_private;
4347
	struct drm_i915_gem_madvise *args = data;
4348
	struct drm_i915_gem_object *obj;
4349
	int ret;
4350 4351 4352 4353 4354 4355 4356 4357 4358

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4359 4360 4361 4362
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4363
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4364
	if (&obj->base == NULL) {
4365 4366
		ret = -ENOENT;
		goto unlock;
4367 4368
	}

B
Ben Widawsky 已提交
4369
	if (i915_gem_obj_is_pinned(obj)) {
4370 4371
		ret = -EINVAL;
		goto out;
4372 4373
	}

4374 4375 4376 4377 4378 4379 4380 4381 4382
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4383 4384
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4385

C
Chris Wilson 已提交
4386 4387
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4388 4389
		i915_gem_object_truncate(obj);

4390
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4391

4392
out:
4393
	drm_gem_object_unreference(&obj->base);
4394
unlock:
4395
	mutex_unlock(&dev->struct_mutex);
4396
	return ret;
4397 4398
}

4399 4400
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4401
{
4402
	INIT_LIST_HEAD(&obj->global_list);
4403
	INIT_LIST_HEAD(&obj->ring_list);
4404
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4405
	INIT_LIST_HEAD(&obj->vma_list);
4406
	INIT_LIST_HEAD(&obj->batch_pool_list);
4407

4408 4409
	obj->ops = ops;

4410 4411 4412 4413 4414 4415
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4416 4417 4418 4419 4420
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4421 4422
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4423
{
4424
	struct drm_i915_gem_object *obj;
4425
	struct address_space *mapping;
D
Daniel Vetter 已提交
4426
	gfp_t mask;
4427

4428
	obj = i915_gem_object_alloc(dev);
4429 4430
	if (obj == NULL)
		return NULL;
4431

4432
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4433
		i915_gem_object_free(obj);
4434 4435
		return NULL;
	}
4436

4437 4438 4439 4440 4441 4442 4443
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4444
	mapping = file_inode(obj->base.filp)->i_mapping;
4445
	mapping_set_gfp_mask(mapping, mask);
4446

4447
	i915_gem_object_init(obj, &i915_gem_object_ops);
4448

4449 4450
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4451

4452 4453
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4469 4470
	trace_i915_gem_object_create(obj);

4471
	return obj;
4472 4473
}

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4498
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4499
{
4500
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4501
	struct drm_device *dev = obj->base.dev;
4502
	struct drm_i915_private *dev_priv = dev->dev_private;
4503
	struct i915_vma *vma, *next;
4504

4505 4506
	intel_runtime_pm_get(dev_priv);

4507 4508
	trace_i915_gem_object_destroy(obj);

4509
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4510 4511 4512 4513
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4514 4515
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4516

4517 4518
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4519

4520
			WARN_ON(i915_vma_unbind(vma));
4521

4522 4523
			dev_priv->mm.interruptible = was_interruptible;
		}
4524 4525
	}

B
Ben Widawsky 已提交
4526 4527 4528 4529 4530
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4531 4532
	WARN_ON(obj->frontbuffer_bits);

4533 4534 4535 4536 4537
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4538 4539
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4540
	if (discard_backing_storage(obj))
4541
		obj->madv = I915_MADV_DONTNEED;
4542
	i915_gem_object_put_pages(obj);
4543
	i915_gem_object_free_mmap_offset(obj);
4544

4545 4546
	BUG_ON(obj->pages);

4547 4548
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4549

4550 4551 4552
	if (obj->ops->release)
		obj->ops->release(obj);

4553 4554
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4555

4556
	kfree(obj->bit_17);
4557
	i915_gem_object_free(obj);
4558 4559

	intel_runtime_pm_put(dev_priv);
4560 4561
}

4562 4563 4564
struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
					  struct i915_address_space *vm,
					  const struct i915_ggtt_view *view)
4565 4566 4567
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4568
		if (vma->vm == vm && vma->ggtt_view.type == view->type)
4569 4570 4571 4572 4573
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4574 4575
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4576
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4577
	WARN_ON(vma->node.allocated);
4578 4579 4580 4581 4582

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4583 4584
	vm = vma->vm;

4585 4586
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4587

4588
	list_del(&vma->vma_link);
4589

B
Ben Widawsky 已提交
4590 4591 4592
	kfree(vma);
}

4593 4594 4595 4596
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4597
	struct intel_engine_cs *ring;
4598 4599 4600
	int i;

	for_each_ring(ring, dev_priv, i)
4601
		dev_priv->gt.stop_ring(ring);
4602 4603
}

4604
int
4605
i915_gem_suspend(struct drm_device *dev)
4606
{
4607
	struct drm_i915_private *dev_priv = dev->dev_private;
4608
	int ret = 0;
4609

4610
	mutex_lock(&dev->struct_mutex);
4611
	ret = i915_gpu_idle(dev);
4612
	if (ret)
4613
		goto err;
4614

4615
	i915_gem_retire_requests(dev);
4616

4617
	i915_gem_stop_ringbuffers(dev);
4618 4619
	mutex_unlock(&dev->struct_mutex);

4620
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4621
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4622
	flush_delayed_work(&dev_priv->mm.idle_work);
4623

4624 4625 4626 4627 4628
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4629
	return 0;
4630 4631 4632 4633

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4634 4635
}

4636
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4637
{
4638
	struct drm_device *dev = ring->dev;
4639
	struct drm_i915_private *dev_priv = dev->dev_private;
4640 4641
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4642
	int i, ret;
B
Ben Widawsky 已提交
4643

4644
	if (!HAS_L3_DPF(dev) || !remap_info)
4645
		return 0;
B
Ben Widawsky 已提交
4646

4647 4648 4649
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4650

4651 4652 4653 4654 4655
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4656
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4657 4658 4659
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4660 4661
	}

4662
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4663

4664
	return ret;
B
Ben Widawsky 已提交
4665 4666
}

4667 4668
void i915_gem_init_swizzling(struct drm_device *dev)
{
4669
	struct drm_i915_private *dev_priv = dev->dev_private;
4670

4671
	if (INTEL_INFO(dev)->gen < 5 ||
4672 4673 4674 4675 4676 4677
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4678 4679 4680
	if (IS_GEN5(dev))
		return;

4681 4682
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4683
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4684
	else if (IS_GEN7(dev))
4685
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4686 4687
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4688 4689
	else
		BUG();
4690
}
D
Daniel Vetter 已提交
4691

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4735
int i915_gem_init_rings(struct drm_device *dev)
4736
{
4737
	struct drm_i915_private *dev_priv = dev->dev_private;
4738
	int ret;
4739

4740
	ret = intel_init_render_ring_buffer(dev);
4741
	if (ret)
4742
		return ret;
4743 4744

	if (HAS_BSD(dev)) {
4745
		ret = intel_init_bsd_ring_buffer(dev);
4746 4747
		if (ret)
			goto cleanup_render_ring;
4748
	}
4749

4750
	if (intel_enable_blt(dev)) {
4751 4752 4753 4754 4755
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4756 4757 4758 4759 4760 4761
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4762 4763 4764 4765 4766
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4767

4768
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4769
	if (ret)
4770
		goto cleanup_bsd2_ring;
4771 4772 4773

	return 0;

4774 4775
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4776 4777
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4791
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4792
	struct intel_engine_cs *ring;
4793
	int ret, i;
4794 4795 4796 4797

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4798 4799 4800
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4801
	if (dev_priv->ellc_size)
4802
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4803

4804 4805 4806
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4807

4808
	if (HAS_PCH_NOP(dev)) {
4809 4810 4811 4812 4813 4814 4815 4816 4817
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4818 4819
	}

4820 4821
	i915_gem_init_swizzling(dev);

4822 4823 4824 4825 4826 4827 4828 4829
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4830 4831 4832
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4833
			goto out;
D
Daniel Vetter 已提交
4834
	}
4835

4836 4837 4838
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4839
	ret = i915_ppgtt_init_hw(dev);
4840
	if (ret && ret != -EIO) {
4841
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4842
		i915_gem_cleanup_ringbuffer(dev);
4843 4844
	}

4845
	ret = i915_gem_context_enable(dev_priv);
4846
	if (ret && ret != -EIO) {
4847
		DRM_ERROR("Context enable failed %d\n", ret);
4848
		i915_gem_cleanup_ringbuffer(dev);
4849

4850
		goto out;
4851
	}
D
Daniel Vetter 已提交
4852

4853 4854
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4855
	return ret;
4856 4857
}

4858 4859 4860 4861 4862
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4863 4864 4865
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4866
	mutex_lock(&dev->struct_mutex);
4867 4868 4869

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4870 4871 4872
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4873 4874 4875
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4876 4877 4878 4879 4880
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4881 4882 4883 4884 4885
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4886 4887
	}

4888 4889 4890 4891 4892 4893 4894 4895
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4896
	ret = i915_gem_init_userptr(dev);
4897 4898
	if (ret)
		goto out_unlock;
4899

4900
	i915_gem_init_global_gtt(dev);
4901

4902
	ret = i915_gem_context_init(dev);
4903 4904
	if (ret)
		goto out_unlock;
4905

D
Daniel Vetter 已提交
4906 4907
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4908
		goto out_unlock;
4909

4910
	ret = i915_gem_init_hw(dev);
4911 4912 4913 4914 4915 4916 4917 4918
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4919
	}
4920 4921

out_unlock:
4922
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4923
	mutex_unlock(&dev->struct_mutex);
4924

4925
	return ret;
4926 4927
}

4928 4929 4930
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4931
	struct drm_i915_private *dev_priv = dev->dev_private;
4932
	struct intel_engine_cs *ring;
4933
	int i;
4934

4935
	for_each_ring(ring, dev_priv, i)
4936
		dev_priv->gt.cleanup_ring(ring);
4937 4938
}

4939
static void
4940
init_ring_lists(struct intel_engine_cs *ring)
4941 4942 4943 4944 4945
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4946 4947
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4948
{
4949 4950
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4951 4952 4953 4954
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4955
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4956 4957
}

4958 4959 4960
void
i915_gem_load(struct drm_device *dev)
{
4961
	struct drm_i915_private *dev_priv = dev->dev_private;
4962 4963 4964 4965 4966 4967 4968
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4969

B
Ben Widawsky 已提交
4970 4971 4972
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4973
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4974 4975
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4976
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4977 4978
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4979
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4980
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4981 4982
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4983 4984
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4985
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4986

4987 4988
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4989 4990 4991
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4992 4993 4994 4995
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4996 4997 4998 4999
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5000
	/* Initialize fence registers to zero */
5001 5002
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5003

5004
	i915_gem_detect_bit_6_swizzle(dev);
5005
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5006

5007 5008
	dev_priv->mm.interruptible = true;

5009 5010 5011 5012
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
5013 5014 5015

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
5016

5017 5018
	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);

5019
	mutex_init(&dev_priv->fb_tracking.lock);
5020
}
5021

5022
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5023
{
5024
	struct drm_i915_file_private *file_priv = file->driver_priv;
5025

5026 5027
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5028 5029 5030 5031
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5032
	spin_lock(&file_priv->mm.lock);
5033 5034 5035 5036 5037 5038 5039 5040 5041
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5042
	spin_unlock(&file_priv->mm.lock);
5043
}
5044

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5057
	int ret;
5058 5059 5060 5061 5062 5063 5064 5065 5066

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5067
	file_priv->file = file;
5068 5069 5070 5071 5072 5073

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5074 5075 5076
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5077

5078
	return ret;
5079 5080
}

5081 5082 5083 5084 5085 5086 5087 5088 5089
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5107 5108 5109 5110 5111
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

5112
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5113 5114 5115 5116 5117 5118 5119
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5148
static unsigned long
5149
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5150
{
5151
	struct drm_i915_private *dev_priv =
5152
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5153
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5154
	struct drm_i915_gem_object *obj;
5155
	unsigned long count;
5156
	bool unlock;
5157

5158 5159
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5160

5161
	count = 0;
5162
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5163
		if (obj->pages_pin_count == 0)
5164
			count += obj->base.size >> PAGE_SHIFT;
5165 5166

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5167 5168
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5169
			count += obj->base.size >> PAGE_SHIFT;
5170
	}
5171

5172 5173
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5174

5175
	return count;
5176
}
5177 5178

/* All the new VM stuff */
5179 5180 5181
unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
				       struct i915_address_space *vm,
				       enum i915_ggtt_view_type view)
5182 5183 5184 5185
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5186
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5187 5188

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5189
		if (vma->vm == vm && vma->ggtt_view.type == view)
5190 5191 5192
			return vma->node.start;

	}
5193 5194
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5195 5196 5197
	return -1;
}

5198 5199 5200
bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
			     struct i915_address_space *vm,
			     enum i915_ggtt_view_type view)
5201 5202 5203 5204
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5205 5206 5207
		if (vma->vm == vm &&
		    vma->ggtt_view.type == view &&
		    drm_mm_node_allocated(&vma->node))
5208 5209 5210 5211 5212 5213 5214
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5215
	struct i915_vma *vma;
5216

5217 5218
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5230
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5241
static unsigned long
5242
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5243 5244
{
	struct drm_i915_private *dev_priv =
5245
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5246 5247
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5248
	bool unlock;
5249

5250 5251
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5252

5253 5254 5255 5256 5257
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5258
	if (freed < sc->nr_to_scan)
5259 5260 5261 5262
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5263 5264
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5265

5266 5267
	return freed;
}
5268

5269 5270 5271 5272 5273 5274 5275 5276
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5277
	unsigned long pinned, bound, unbound, freed_pages;
5278 5279 5280
	bool was_interruptible;
	bool unlock;

5281
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5282
		schedule_timeout_killable(1);
5283 5284 5285
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5286 5287 5288 5289 5290 5291 5292 5293
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5294
	freed_pages = i915_gem_shrink_all(dev_priv);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5325 5326 5327
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5328 5329 5330 5331 5332
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5333
	*(unsigned long *)ptr += freed_pages;
5334 5335 5336
	return NOTIFY_DONE;
}

5337 5338
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
5339
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5340 5341
	struct i915_vma *vma;

5342 5343 5344
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == ggtt &&
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5345
			return vma;
5346

5347
	return NULL;
5348
}