i915_gem.c 147.2 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/drm_pci.h>
30
#include <drm/i915_drm.h>
31
#include <linux/dma-fence-array.h>
32
#include <linux/kthread.h>
33
#include <linux/reservation.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/stop_machine.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40
#include <linux/mman.h>
41

42 43 44
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
45
#include "i915_globals.h"
46 47 48 49 50 51 52 53 54
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"

55
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
56

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59
	if (obj->cache_dirty)
60 61
		return false;

62
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
63 64
		return true;

65
	return obj->pin_global; /* currently in use by HW, keep flushed */
66 67
}

68
static int
69
insert_mappable_node(struct i915_ggtt *ggtt,
70 71 72
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
73
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 75 76
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
77 78 79 80 81 82 83 84
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87
				  u64 size)
88
{
89
	spin_lock(&dev_priv->mm.object_stat_lock);
90 91
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
92
	spin_unlock(&dev_priv->mm.object_stat_lock);
93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96
				     u64 size)
97
{
98
	spin_lock(&dev_priv->mm.object_stat_lock);
99 100
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
101
	spin_unlock(&dev_priv->mm.object_stat_lock);
102 103
}

104 105
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
C
Chris Wilson 已提交
106 107
	intel_wakeref_t wakeref;

108 109
	GEM_TRACE("\n");

110 111
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
112
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
133
	i915_timelines_park(i915);
134 135

	i915_pmu_gt_parked(i915);
136
	i915_vma_parked(i915);
137

C
Chris Wilson 已提交
138 139
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
140 141 142 143

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

144
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
145 146 147 148 149 150

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
151 152
	GEM_TRACE("\n");

153 154 155 156 157 158 159 160 161 162 163 164
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
165 166
	GEM_TRACE("\n");

167 168
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
169
	assert_rpm_wakelock_held(i915);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
185 186
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
187 188 189 190

	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

191 192
	i915_globals_unpark();

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

208 209
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210
			    struct drm_file *file)
211
{
212
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
213
	struct drm_i915_gem_get_aperture *args = data;
214
	struct i915_vma *vma;
215
	u64 pinned;
216

217 218
	mutex_lock(&ggtt->vm.mutex);

219
	pinned = ggtt->vm.reserved;
220
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
221
		if (i915_vma_is_pinned(vma))
222
			pinned += vma->node.size;
223 224

	mutex_unlock(&ggtt->vm.mutex);
225

226
	args->aper_size = ggtt->vm.total;
227
	args->aper_available_size = args->aper_size - pinned;
228

229 230 231
	return 0;
}

232
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
233
{
234
	struct address_space *mapping = obj->base.filp->f_mapping;
235
	drm_dma_handle_t *phys;
236 237
	struct sg_table *st;
	struct scatterlist *sg;
238
	char *vaddr;
239
	int i;
240
	int err;
241

242
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
243
		return -EINVAL;
244

245 246 247 248 249
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
250
			     roundup_pow_of_two(obj->base.size),
251 252
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
253
		return -ENOMEM;
254 255

	vaddr = phys->vaddr;
256 257 258 259 260
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
261
		if (IS_ERR(page)) {
262
			err = PTR_ERR(page);
263 264
			goto err_phys;
		}
265 266 267 268 269 270

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

271
		put_page(page);
272 273 274
		vaddr += PAGE_SIZE;
	}

275
	i915_gem_chipset_flush(to_i915(obj->base.dev));
276 277

	st = kmalloc(sizeof(*st), GFP_KERNEL);
278
	if (!st) {
279
		err = -ENOMEM;
280 281
		goto err_phys;
	}
282 283 284

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
285
		err = -ENOMEM;
286
		goto err_phys;
287 288 289 290 291
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
292

293
	sg_dma_address(sg) = phys->busaddr;
294 295
	sg_dma_len(sg) = obj->base.size;

296
	obj->phys_handle = phys;
297

298
	__i915_gem_object_set_pages(obj, st, sg->length);
299 300

	return 0;
301 302 303

err_phys:
	drm_pci_free(obj->base.dev, phys);
304 305

	return err;
306 307
}

308 309
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
310 311
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
312 313 314 315
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

316
static void
317
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
318 319
				struct sg_table *pages,
				bool needs_clflush)
320
{
C
Chris Wilson 已提交
321
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
322

C
Chris Wilson 已提交
323 324
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
325

326
	if (needs_clflush &&
327
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
328
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
329
		drm_clflush_sg(pages);
330

331
	__start_cpu_write(obj);
332 333 334 335 336 337
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
338
	__i915_gem_object_release_shmem(obj, pages, false);
339

C
Chris Wilson 已提交
340
	if (obj->mm.dirty) {
341
		struct address_space *mapping = obj->base.filp->f_mapping;
342
		char *vaddr = obj->phys_handle->vaddr;
343 344 345
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
346 347 348 349 350 351 352 353 354 355 356 357 358
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
359
			if (obj->mm.madv == I915_MADV_WILLNEED)
360
				mark_page_accessed(page);
361
			put_page(page);
362 363
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
364
		obj->mm.dirty = false;
365 366
	}

367 368
	sg_free_table(pages);
	kfree(pages);
369 370

	drm_pci_free(obj->base.dev, obj->phys_handle);
371 372 373 374 375
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
376
	i915_gem_object_unpin_pages(obj);
377 378 379 380 381 382 383 384
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

385 386
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

387
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
388 389 390
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
391 392 393
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
394

395 396 397 398
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
399
	 */
400
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
401 402 403
	if (ret)
		return ret;

404 405 406 407
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
408
		list_move_tail(&vma->obj_link, &still_in_list);
409 410
		spin_unlock(&obj->vma.lock);

411
		ret = i915_vma_unbind(vma);
412 413

		spin_lock(&obj->vma.lock);
414
	}
415 416
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
417 418 419 420

	return ret;
}

421 422 423
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
424
			   long timeout)
425
{
426
	struct i915_request *rq;
427

428
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
429

430 431 432 433 434 435 436 437 438
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
439
	if (i915_request_completed(rq))
440 441
		goto out;

442
	timeout = i915_request_wait(rq, flags, timeout);
443 444

out:
445 446
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
447 448 449 450 451 452 453

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
454
				 long timeout)
455
{
456
	unsigned int seq = __read_seqcount_begin(&resv->seq);
457
	struct dma_fence *excl;
458
	bool prune_fences = false;
459 460 461 462

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
463 464
		int ret;

465 466
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
467 468 469
		if (ret)
			return ret;

470 471
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
472
							     flags, timeout);
473
			if (timeout < 0)
474
				break;
475

476 477 478 479 480 481
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
482

483 484 485 486 487 488 489 490 491
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
492
		prune_fences = count && timeout >= 0;
493 494
	} else {
		excl = reservation_object_get_excl_rcu(resv);
495 496
	}

497
	if (excl && timeout >= 0)
498
		timeout = i915_gem_object_wait_fence(excl, flags, timeout);
499 500 501

	dma_fence_put(excl);

502 503
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
504 505 506
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
507
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
508 509 510 511 512
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
513 514
	}

515
	return timeout;
516 517
}

518 519
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
520
{
521
	struct i915_request *rq;
522 523
	struct intel_engine_cs *engine;

524
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
525 526 527 528 529
		return;

	rq = to_request(fence);
	engine = rq->engine;

530 531
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
532
	if (engine->schedule)
533
		engine->schedule(rq, attr);
534
	rcu_read_unlock();
535
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
536 537
}

538 539
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
540 541 542 543 544 545 546
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
547
			__fence_set_priority(array->fences[i], attr);
548
	} else {
549
		__fence_set_priority(fence, attr);
550 551 552 553 554 555
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
556
			      const struct i915_sched_attr *attr)
557 558 559 560 561 562 563 564 565 566 567 568 569 570
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
571
			fence_set_priority(shared[i], attr);
572 573 574 575 576 577 578 579 580
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
581
		fence_set_priority(excl, attr);
582 583 584 585 586
		dma_fence_put(excl);
	}
	return 0;
}

587 588 589 590 591
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
592
 */
593 594 595
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
596
		     long timeout)
597
{
598 599
	might_sleep();
	GEM_BUG_ON(timeout < 0);
600

601
	timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
602
	return timeout < 0 ? timeout : 0;
603 604
}

605 606 607
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
608
		     struct drm_file *file)
609 610
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
611
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
612 613 614 615

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
616
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
617 618
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
619

620
	drm_clflush_virt_range(vaddr, args->size);
621
	i915_gem_chipset_flush(to_i915(obj->base.dev));
622

623
	intel_fb_obj_flush(obj, ORIGIN_CPU);
624
	return 0;
625 626
}

627 628
static int
i915_gem_create(struct drm_file *file,
629
		struct drm_i915_private *dev_priv,
630 631
		u64 size,
		u32 *handle_p)
632
{
633
	struct drm_i915_gem_object *obj;
634 635
	int ret;
	u32 handle;
636

637
	size = roundup(size, PAGE_SIZE);
638 639
	if (size == 0)
		return -EINVAL;
640 641

	/* Allocate the new object */
642
	obj = i915_gem_object_create(dev_priv, size);
643 644
	if (IS_ERR(obj))
		return PTR_ERR(obj);
645

646
	ret = drm_gem_handle_create(file, &obj->base, &handle);
647
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
648
	i915_gem_object_put(obj);
649 650
	if (ret)
		return ret;
651

652
	*handle_p = handle;
653 654 655
	return 0;
}

656 657 658 659 660 661
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
662
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
663
	args->size = args->pitch * args->height;
664
	return i915_gem_create(file, to_i915(dev),
665
			       args->size, &args->handle);
666 667
}

668 669 670 671 672 673
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

674 675
/**
 * Creates a new mm object and returns a handle to it.
676 677 678
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
679 680 681 682 683
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
684
	struct drm_i915_private *dev_priv = to_i915(dev);
685
	struct drm_i915_gem_create *args = data;
686

687
	i915_gem_flush_free_objects(dev_priv);
688

689
	return i915_gem_create(file, dev_priv,
690
			       args->size, &args->handle);
691 692
}

693 694 695 696 697 698 699
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

700
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
701
{
702 703
	intel_wakeref_t wakeref;

704 705 706 707 708
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
709 710 711 712 713 714 715 716 717 718
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
719 720
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
721
	 */
722

723 724 725 726 727
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

728
	i915_gem_chipset_flush(dev_priv);
729

730 731
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
732

733
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
734

735 736
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
737 738 739 740 741 742 743 744
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

745
	if (!(obj->write_domain & flush_domains))
746 747
		return;

748
	switch (obj->write_domain) {
749
	case I915_GEM_DOMAIN_GTT:
750
		i915_gem_flush_ggtt_writes(dev_priv);
751 752 753

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
754

755
		for_each_ggtt_vma(vma, obj) {
756 757 758 759 760
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
761 762
		break;

763 764 765 766
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

767 768 769
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
770 771 772 773 774

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
775 776
	}

777
	obj->write_domain = 0;
778 779
}

780 781 782 783 784 785
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
786
				    unsigned int *needs_clflush)
787 788 789
{
	int ret;

790
	lockdep_assert_held(&obj->base.dev->struct_mutex);
791

792
	*needs_clflush = 0;
793 794
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
795

796 797 798
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
799
				   MAX_SCHEDULE_TIMEOUT);
800 801 802
	if (ret)
		return ret;

C
Chris Wilson 已提交
803
	ret = i915_gem_object_pin_pages(obj);
804 805 806
	if (ret)
		return ret;

807 808
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
809 810 811 812 813 814 815
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

816
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
817

818 819 820 821 822
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
823
	if (!obj->cache_dirty &&
824
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
825
		*needs_clflush = CLFLUSH_BEFORE;
826

827
out:
828
	/* return with the pages pinned */
829
	return 0;
830 831 832 833

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
834 835 836 837 838 839 840
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

841 842
	lockdep_assert_held(&obj->base.dev->struct_mutex);

843 844 845 846
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

847 848 849 850
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
851
				   MAX_SCHEDULE_TIMEOUT);
852 853 854
	if (ret)
		return ret;

C
Chris Wilson 已提交
855
	ret = i915_gem_object_pin_pages(obj);
856 857 858
	if (ret)
		return ret;

859 860
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
861 862 863 864 865 866 867
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

868
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
869

870 871 872 873 874
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
875
	if (!obj->cache_dirty) {
876
		*needs_clflush |= CLFLUSH_AFTER;
877

878 879 880 881
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
882
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
883 884
			*needs_clflush |= CLFLUSH_BEFORE;
	}
885

886
out:
887
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
888
	obj->mm.dirty = true;
889
	/* return with the pages pinned */
890
	return 0;
891 892 893 894

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
895 896
}

897
static int
898 899
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
900 901 902 903 904 905
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

906 907
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
908

909
	ret = __copy_to_user(user_data, vaddr + offset, len);
910

911
	kunmap(page);
912

913
	return ret ? -EFAULT : 0;
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
940
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
960
{
961
	void __iomem *vaddr;
962
	unsigned long unwritten;
963 964

	/* We can use the cpu mem copy function because this is X86. */
965 966 967 968
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
969 970
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
971 972 973 974
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
975 976
		io_mapping_unmap(vaddr);
	}
977 978 979 980
	return unwritten;
}

static int
981 982
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
983
{
984 985
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
986
	intel_wakeref_t wakeref;
987
	struct drm_mm_node node;
988 989 990
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
991 992
	int ret;

993 994 995 996
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

997
	wakeref = intel_runtime_pm_get(i915);
998
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
999 1000 1001
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1002 1003 1004
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1005
		ret = i915_vma_put_fence(vma);
1006 1007 1008 1009 1010
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1011
	if (IS_ERR(vma)) {
1012
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1013
		if (ret)
1014 1015
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1016 1017 1018 1019 1020 1021
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1022
	mutex_unlock(&i915->drm.struct_mutex);
1023

1024 1025 1026
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1041 1042 1043
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1044 1045 1046 1047
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1048

1049
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1050
				  user_data, page_length)) {
1051 1052 1053 1054 1055 1056 1057 1058 1059
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1060
	mutex_lock(&i915->drm.struct_mutex);
1061 1062 1063
out_unpin:
	if (node.allocated) {
		wmb();
1064
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1065 1066
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1067
		i915_vma_unpin(vma);
1068
	}
1069
out_unlock:
1070
	intel_runtime_pm_put(i915, wakeref);
1071
	mutex_unlock(&i915->drm.struct_mutex);
1072

1073 1074 1075
	return ret;
}

1076 1077
/**
 * Reads data from the object referenced by handle.
1078 1079 1080
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1081 1082 1083 1084 1085
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1086
		     struct drm_file *file)
1087 1088
{
	struct drm_i915_gem_pread *args = data;
1089
	struct drm_i915_gem_object *obj;
1090
	int ret;
1091

1092 1093 1094
	if (args->size == 0)
		return 0;

1095
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1096 1097 1098
		       args->size))
		return -EFAULT;

1099
	obj = i915_gem_object_lookup(file, args->handle);
1100 1101
	if (!obj)
		return -ENOENT;
1102

1103
	/* Bounds check source.  */
1104
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1105
		ret = -EINVAL;
1106
		goto out;
C
Chris Wilson 已提交
1107 1108
	}

C
Chris Wilson 已提交
1109 1110
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1111 1112
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1113
				   MAX_SCHEDULE_TIMEOUT);
1114
	if (ret)
1115
		goto out;
1116

1117
	ret = i915_gem_object_pin_pages(obj);
1118
	if (ret)
1119
		goto out;
1120

1121
	ret = i915_gem_shmem_pread(obj, args);
1122
	if (ret == -EFAULT || ret == -ENODEV)
1123
		ret = i915_gem_gtt_pread(obj, args);
1124

1125 1126
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1127
	i915_gem_object_put(obj);
1128
	return ret;
1129 1130
}

1131 1132
/* This is the fast write path which cannot handle
 * page faults in the source data
1133
 */
1134

1135 1136 1137 1138
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1139
{
1140
	void __iomem *vaddr;
1141
	unsigned long unwritten;
1142

1143
	/* We can use the cpu mem copy function because this is X86. */
1144 1145
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1146
						      user_data, length);
1147 1148
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1149 1150 1151
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1152 1153
		io_mapping_unmap(vaddr);
	}
1154 1155 1156 1157

	return unwritten;
}

1158 1159 1160
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1161
 * @obj: i915 GEM object
1162
 * @args: pwrite arguments structure
1163
 */
1164
static int
1165 1166
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1167
{
1168
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1169
	struct i915_ggtt *ggtt = &i915->ggtt;
1170
	intel_wakeref_t wakeref;
1171
	struct drm_mm_node node;
1172 1173 1174
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1175
	int ret;
1176

1177 1178 1179
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1180

1181 1182 1183 1184 1185 1186 1187 1188
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1189 1190
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1191 1192 1193 1194 1195
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1196
		wakeref = intel_runtime_pm_get(i915);
1197 1198
	}

C
Chris Wilson 已提交
1199
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1200 1201 1202
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1203 1204 1205
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1206
		ret = i915_vma_put_fence(vma);
1207 1208 1209 1210 1211
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1212
	if (IS_ERR(vma)) {
1213
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1214
		if (ret)
1215
			goto out_rpm;
1216
		GEM_BUG_ON(!node.allocated);
1217
	}
D
Daniel Vetter 已提交
1218 1219 1220 1221 1222

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1223 1224
	mutex_unlock(&i915->drm.struct_mutex);

1225
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1226

1227 1228 1229 1230
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1231 1232
		/* Operation in this page
		 *
1233 1234 1235
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1236
		 */
1237
		u32 page_base = node.start;
1238 1239
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1240 1241 1242
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1243 1244 1245
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1246 1247 1248 1249
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1250
		/* If we get a fault while copying data, then (presumably) our
1251 1252
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1253 1254
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1255
		 */
1256
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1257 1258 1259
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1260
		}
1261

1262 1263 1264
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1265
	}
1266
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1267 1268

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1269
out_unpin:
1270 1271
	if (node.allocated) {
		wmb();
1272
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1273 1274
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1275
		i915_vma_unpin(vma);
1276
	}
1277
out_rpm:
1278
	intel_runtime_pm_put(i915, wakeref);
1279
out_unlock:
1280
	mutex_unlock(&i915->drm.struct_mutex);
1281
	return ret;
1282 1283
}

1284 1285 1286 1287 1288
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1289
static int
1290 1291 1292
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1293
{
1294
	char *vaddr;
1295 1296
	int ret;

1297
	vaddr = kmap(page);
1298

1299 1300
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1301

1302 1303 1304
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1305

1306 1307 1308
	kunmap(page);

	return ret ? -EFAULT : 0;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1319
	unsigned int needs_clflush;
1320 1321
	unsigned int offset, idx;
	int ret;
1322

1323
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1324 1325 1326
	if (ret)
		return ret;

1327 1328 1329 1330
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1331

1332 1333 1334 1335 1336 1337 1338
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1339

1340 1341 1342 1343 1344
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1345
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1346

1347 1348 1349
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1350
		if (ret)
1351
			break;
1352

1353 1354 1355
		remain -= length;
		user_data += length;
		offset = 0;
1356
	}
1357

1358
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1359
	i915_gem_obj_finish_shmem_access(obj);
1360
	return ret;
1361 1362 1363 1364
}

/**
 * Writes data to the object referenced by handle.
1365 1366 1367
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1368 1369 1370 1371 1372
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1373
		      struct drm_file *file)
1374 1375
{
	struct drm_i915_gem_pwrite *args = data;
1376
	struct drm_i915_gem_object *obj;
1377 1378 1379 1380 1381
	int ret;

	if (args->size == 0)
		return 0;

1382
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1383 1384
		return -EFAULT;

1385
	obj = i915_gem_object_lookup(file, args->handle);
1386 1387
	if (!obj)
		return -ENOENT;
1388

1389
	/* Bounds check destination. */
1390
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1391
		ret = -EINVAL;
1392
		goto err;
C
Chris Wilson 已提交
1393 1394
	}

1395 1396 1397 1398 1399 1400
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1401 1402
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1403 1404 1405 1406 1407 1408
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1409 1410 1411
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
1412
				   MAX_SCHEDULE_TIMEOUT);
1413 1414 1415
	if (ret)
		goto err;

1416
	ret = i915_gem_object_pin_pages(obj);
1417
	if (ret)
1418
		goto err;
1419

D
Daniel Vetter 已提交
1420
	ret = -EFAULT;
1421 1422 1423 1424 1425 1426
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1427
	if (!i915_gem_object_has_struct_page(obj) ||
1428
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1429 1430
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1431 1432
		 * textures). Fallback to the shmem path in that case.
		 */
1433
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1434

1435
	if (ret == -EFAULT || ret == -ENOSPC) {
1436 1437
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1438
		else
1439
			ret = i915_gem_shmem_pwrite(obj, args);
1440
	}
1441

1442
	i915_gem_object_unpin_pages(obj);
1443
err:
C
Chris Wilson 已提交
1444
	i915_gem_object_put(obj);
1445
	return ret;
1446 1447
}

1448 1449
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1450
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1451 1452 1453
	struct list_head *list;
	struct i915_vma *vma;

1454 1455
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1456
	mutex_lock(&i915->ggtt.vm.mutex);
1457
	for_each_ggtt_vma(vma, obj) {
1458 1459 1460
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1461
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1462
	}
1463
	mutex_unlock(&i915->ggtt.vm.mutex);
1464

1465
	spin_lock(&i915->mm.obj_lock);
1466
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1467 1468
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1469 1470
}

1471
/**
1472 1473
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1474 1475 1476
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1477 1478 1479
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1480
			  struct drm_file *file)
1481 1482
{
	struct drm_i915_gem_set_domain *args = data;
1483
	struct drm_i915_gem_object *obj;
1484 1485
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1486
	int err;
1487

1488
	/* Only handle setting domains to types used by the CPU. */
1489
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1490 1491 1492 1493 1494 1495 1496 1497
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1498
	obj = i915_gem_object_lookup(file, args->handle);
1499 1500
	if (!obj)
		return -ENOENT;
1501

1502 1503 1504 1505
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1506
	err = i915_gem_object_wait(obj,
1507
				   I915_WAIT_INTERRUPTIBLE |
1508
				   I915_WAIT_PRIORITY |
1509
				   (write_domain ? I915_WAIT_ALL : 0),
1510
				   MAX_SCHEDULE_TIMEOUT);
1511
	if (err)
C
Chris Wilson 已提交
1512
		goto out;
1513

T
Tina Zhang 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1527 1528 1529 1530 1531 1532 1533 1534 1535
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1536
		goto out;
1537 1538 1539

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1540
		goto out_unpin;
1541

1542 1543 1544 1545
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1546
	else
1547
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1548

1549 1550
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1551

1552
	mutex_unlock(&dev->struct_mutex);
1553

1554
	if (write_domain != 0)
1555 1556
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1557

C
Chris Wilson 已提交
1558
out_unpin:
1559
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1560 1561
out:
	i915_gem_object_put(obj);
1562
	return err;
1563 1564 1565 1566
}

/**
 * Called when user space has done writes to this buffer
1567 1568 1569
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1570 1571 1572
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1573
			 struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_sw_finish *args = data;
1576
	struct drm_i915_gem_object *obj;
1577

1578
	obj = i915_gem_object_lookup(file, args->handle);
1579 1580
	if (!obj)
		return -ENOENT;
1581

T
Tina Zhang 已提交
1582 1583 1584 1585 1586
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1587
	/* Pinned buffers may be scanout, so flush the cache */
1588
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1589
	i915_gem_object_put(obj);
1590 1591

	return 0;
1592 1593
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

	return vma->vm_start == addr && (vma->vm_end - vma->vm_start) == size;
}

1604
/**
1605 1606 1607 1608 1609
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1610 1611 1612
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1623 1624 1625
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1626
		    struct drm_file *file)
1627 1628
{
	struct drm_i915_gem_mmap *args = data;
1629
	struct drm_i915_gem_object *obj;
1630 1631
	unsigned long addr;

1632 1633 1634
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1635
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1636 1637
		return -ENODEV;

1638 1639
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1640
		return -ENOENT;
1641

1642 1643 1644
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1645
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1646
		i915_gem_object_put(obj);
1647
		return -ENXIO;
1648 1649
	}

1650
	addr = vm_mmap(obj->base.filp, 0, args->size,
1651 1652
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1653 1654 1655
	if (IS_ERR_VALUE(addr))
		goto err;

1656 1657 1658 1659
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1660
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1661
			i915_gem_object_put(obj);
1662 1663
			return -EINTR;
		}
1664
		vma = find_vma(mm, addr);
1665
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1666 1667 1668 1669 1670
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1671 1672
		if (IS_ERR_VALUE(addr))
			goto err;
1673 1674

		/* This may race, but that's ok, it only gets set */
1675
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1676
	}
C
Chris Wilson 已提交
1677
	i915_gem_object_put(obj);
1678

1679
	args->addr_ptr = (u64)addr;
1680 1681

	return 0;
1682 1683 1684 1685 1686

err:
	i915_gem_object_put(obj);

	return addr;
1687 1688
}

1689
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1690
{
1691
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1692 1693
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1714 1715 1716
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1744
	return 2;
1745 1746
}

1747
static inline struct i915_ggtt_view
1748
compute_partial_view(const struct drm_i915_gem_object *obj,
1749 1750 1751 1752 1753 1754 1755 1756 1757
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1758 1759
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1760
		min_t(unsigned int, chunk,
1761
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1762 1763 1764 1765 1766 1767 1768 1769

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1770 1771
/**
 * i915_gem_fault - fault a page into the GTT
1772
 * @vmf: fault info
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1784 1785 1786
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1787
 */
1788
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1789
{
1790
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1791
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1792
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1793
	struct drm_device *dev = obj->base.dev;
1794 1795
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1796
	bool write = area->vm_flags & VM_WRITE;
1797
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1798
	struct i915_vma *vma;
1799
	pgoff_t page_offset;
1800
	int srcu;
1801
	int ret;
1802

1803 1804 1805 1806
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1807
	/* We don't use vmf->pgoff since that has the fake offset */
1808
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1809

C
Chris Wilson 已提交
1810 1811
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1812
	/* Try to flush the object off the GPU first without holding the lock.
1813
	 * Upon acquiring the lock, we will perform our sanity checks and then
1814 1815 1816
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1817 1818
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1819
				   MAX_SCHEDULE_TIMEOUT);
1820
	if (ret)
1821 1822
		goto err;

1823 1824 1825 1826
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1827
	wakeref = intel_runtime_pm_get(dev_priv);
1828

1829 1830 1831 1832 1833 1834
	srcu = i915_reset_trylock(dev_priv);
	if (srcu < 0) {
		ret = srcu;
		goto err_rpm;
	}

1835 1836
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
1837
		goto err_reset;
1838

1839
	/* Access to snoopable pages through the GTT is incoherent. */
1840
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1841
		ret = -EFAULT;
1842
		goto err_unlock;
1843 1844
	}

1845
	/* Now pin it into the GTT as needed */
1846 1847 1848 1849
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1850 1851
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1852
		struct i915_ggtt_view view =
1853
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1854
		unsigned int flags;
1855

1856 1857 1858 1859 1860 1861
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1862 1863 1864 1865
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1866 1867 1868 1869 1870 1871
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1872
	}
C
Chris Wilson 已提交
1873 1874
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1875
		goto err_unlock;
C
Chris Wilson 已提交
1876
	}
1877

1878 1879
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1880
		goto err_unpin;
1881

1882 1883 1884 1885
	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

1886
	/* Finally, remap it using the new GTT offset */
1887
	ret = remap_io_mapping(area,
1888
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1889
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1890
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1891
			       &ggtt->iomap);
1892
	if (ret)
1893
		goto err_fence;
1894

1895 1896 1897 1898 1899 1900
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1901 1902
	i915_vma_set_ggtt_write(vma);

1903 1904
err_fence:
	i915_vma_unpin_fence(vma);
1905
err_unpin:
C
Chris Wilson 已提交
1906
	__i915_vma_unpin(vma);
1907
err_unlock:
1908
	mutex_unlock(&dev->struct_mutex);
1909 1910
err_reset:
	i915_reset_unlock(dev_priv, srcu);
1911
err_rpm:
1912
	intel_runtime_pm_put(dev_priv, wakeref);
1913
	i915_gem_object_unpin_pages(obj);
1914
err:
1915
	switch (ret) {
1916
	case -EIO:
1917 1918 1919 1920 1921 1922
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1923
		if (!i915_terminally_wedged(dev_priv))
1924
			return VM_FAULT_SIGBUS;
1925
		/* else: fall through */
1926
	case -EAGAIN:
D
Daniel Vetter 已提交
1927 1928 1929 1930
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1931
		 */
1932 1933
	case 0:
	case -ERESTARTSYS:
1934
	case -EINTR:
1935 1936 1937 1938 1939
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1940
		return VM_FAULT_NOPAGE;
1941
	case -ENOMEM:
1942
		return VM_FAULT_OOM;
1943
	case -ENOSPC:
1944
	case -EFAULT:
1945
		return VM_FAULT_SIGBUS;
1946
	default:
1947
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1948
		return VM_FAULT_SIGBUS;
1949 1950 1951
	}
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

1963
	for_each_ggtt_vma(vma, obj)
1964 1965 1966
		i915_vma_unset_userfault(vma);
}

1967 1968 1969 1970
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1971
 * Preserve the reservation of the mmapping with the DRM core code, but
1972 1973 1974 1975 1976 1977 1978 1979 1980
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1981
void
1982
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1983
{
1984
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1985
	intel_wakeref_t wakeref;
1986

1987 1988 1989
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1990 1991 1992 1993
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1994
	 */
1995
	lockdep_assert_held(&i915->drm.struct_mutex);
1996
	wakeref = intel_runtime_pm_get(i915);
1997

1998
	if (!obj->userfault_count)
1999
		goto out;
2000

2001
	__i915_gem_object_release_mmap(obj);
2002 2003 2004 2005 2006 2007 2008 2009 2010

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2011 2012

out:
2013
	intel_runtime_pm_put(i915, wakeref);
2014 2015
}

2016
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2017
{
2018
	struct drm_i915_gem_object *obj, *on;
2019
	int i;
2020

2021 2022 2023 2024 2025 2026
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2027

2028
	list_for_each_entry_safe(obj, on,
2029 2030
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2031 2032 2033 2034 2035 2036 2037 2038

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2049 2050 2051 2052

		if (!reg->vma)
			continue;

2053
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2054 2055
		reg->dirty = true;
	}
2056 2057
}

2058 2059
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2060
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2061
	int err;
2062

2063
	err = drm_gem_create_mmap_offset(&obj->base);
2064
	if (likely(!err))
2065
		return 0;
2066

2067 2068
	/* Attempt to reap some mmap space from dead objects */
	do {
2069 2070 2071
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2072 2073
		if (err)
			break;
2074

2075
		i915_gem_drain_freed_objects(dev_priv);
2076
		err = drm_gem_create_mmap_offset(&obj->base);
2077 2078 2079 2080
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2081

2082
	return err;
2083 2084 2085 2086 2087 2088 2089
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2090
int
2091 2092
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2093 2094
		  u32 handle,
		  u64 *offset)
2095
{
2096
	struct drm_i915_gem_object *obj;
2097 2098
	int ret;

2099
	obj = i915_gem_object_lookup(file, handle);
2100 2101
	if (!obj)
		return -ENOENT;
2102

2103
	ret = i915_gem_object_create_mmap_offset(obj);
2104 2105
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2106

C
Chris Wilson 已提交
2107
	i915_gem_object_put(obj);
2108
	return ret;
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2132
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2133 2134
}

D
Daniel Vetter 已提交
2135 2136 2137
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2138
{
2139
	i915_gem_object_free_mmap_offset(obj);
2140

2141 2142
	if (obj->base.filp == NULL)
		return;
2143

D
Daniel Vetter 已提交
2144 2145 2146 2147 2148
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2149
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2150
	obj->mm.madv = __I915_MADV_PURGED;
2151
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2152
}
2153

2154
/* Try to discard unwanted pages */
2155
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2156
{
2157 2158
	struct address_space *mapping;

2159
	lockdep_assert_held(&obj->mm.lock);
2160
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2161

C
Chris Wilson 已提交
2162
	switch (obj->mm.madv) {
2163 2164 2165 2166 2167 2168 2169 2170 2171
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2172
	mapping = obj->base.filp->f_mapping,
2173
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2187
static void
2188 2189
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2190
{
2191
	struct sgt_iter sgt_iter;
2192
	struct pagevec pvec;
2193
	struct page *page;
2194

2195
	__i915_gem_object_release_shmem(obj, pages, true);
2196

2197
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2198

2199
	if (i915_gem_object_needs_bit17_swizzle(obj))
2200
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2201

2202 2203 2204
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2205
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2206
		if (obj->mm.dirty)
2207
			set_page_dirty(page);
2208

C
Chris Wilson 已提交
2209
		if (obj->mm.madv == I915_MADV_WILLNEED)
2210
			mark_page_accessed(page);
2211

2212 2213
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2214
	}
2215 2216
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2217
	obj->mm.dirty = false;
2218

2219 2220
	sg_free_table(pages);
	kfree(pages);
2221
}
C
Chris Wilson 已提交
2222

2223 2224 2225
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2226
	void __rcu **slot;
2227

2228
	rcu_read_lock();
C
Chris Wilson 已提交
2229 2230
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2231
	rcu_read_unlock();
2232 2233
}

2234 2235
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2236
{
2237
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2238
	struct sg_table *pages;
2239

2240
	pages = fetch_and_zero(&obj->mm.pages);
2241 2242
	if (IS_ERR_OR_NULL(pages))
		return pages;
2243

2244 2245 2246 2247
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2248
	if (obj->mm.mapping) {
2249 2250
		void *ptr;

2251
		ptr = page_mask_bits(obj->mm.mapping);
2252 2253
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2254
		else
2255 2256
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2257
		obj->mm.mapping = NULL;
2258 2259
	}

2260
	__i915_gem_object_reset_page_iter(obj);
2261 2262 2263 2264
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2265

2266 2267
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2268 2269
{
	struct sg_table *pages;
2270
	int ret;
2271 2272

	if (i915_gem_object_has_pinned_pages(obj))
2273
		return -EBUSY;
2274 2275 2276 2277 2278

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2279 2280
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2281
		goto unlock;
2282
	}
2283 2284 2285 2286 2287 2288 2289

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2300 2301 2302
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2303
	ret = 0;
2304 2305
unlock:
	mutex_unlock(&obj->mm.lock);
2306 2307

	return ret;
C
Chris Wilson 已提交
2308 2309
}

2310
bool i915_sg_trim(struct sg_table *orig_st)
2311 2312 2313 2314 2315 2316
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2317
		return false;
2318

2319
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2320
		return false;
2321 2322 2323 2324

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2325 2326 2327
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2328 2329
		new_sg = sg_next(new_sg);
	}
2330
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2331 2332 2333 2334

	sg_free_table(orig_st);

	*orig_st = new_st;
2335
	return true;
2336 2337
}

2338
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2339
{
2340
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2341 2342
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2343
	struct address_space *mapping;
2344 2345
	struct sg_table *st;
	struct scatterlist *sg;
2346
	struct sgt_iter sgt_iter;
2347
	struct page *page;
2348
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2349
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2350
	unsigned int sg_page_sizes;
2351
	struct pagevec pvec;
2352
	gfp_t noreclaim;
I
Imre Deak 已提交
2353
	int ret;
2354

2355 2356
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2357 2358 2359
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2360 2361
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2362

2363 2364 2365 2366
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2367
	if (page_count > totalram_pages())
2368 2369
		return -ENOMEM;

2370 2371
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2372
		return -ENOMEM;
2373

2374
rebuild_st:
2375 2376
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2377
		return -ENOMEM;
2378
	}
2379

2380 2381
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2382 2383 2384 2385
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2386
	mapping = obj->base.filp->f_mapping;
2387
	mapping_set_unevictable(mapping);
2388
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2389 2390
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2391 2392
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2393
	sg_page_sizes = 0;
2394
	for (i = 0; i < page_count; i++) {
2395 2396 2397 2398 2399 2400 2401
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2402
			cond_resched();
C
Chris Wilson 已提交
2403
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2404
			if (!IS_ERR(page))
2405 2406 2407 2408 2409 2410 2411
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2412
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2413

2414 2415
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2416 2417
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2418 2419 2420 2421
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2422
			 */
2423 2424 2425
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2426

2427 2428
				/*
				 * Our bo are always dirty and so we require
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2439
				 * this we want __GFP_RETRY_MAYFAIL.
2440
				 */
M
Michal Hocko 已提交
2441
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2442
			}
2443 2444
		} while (1);

2445 2446 2447
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2448
			if (i) {
M
Matthew Auld 已提交
2449
				sg_page_sizes |= sg->length;
2450
				sg = sg_next(sg);
2451
			}
2452 2453 2454 2455 2456 2457
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2458 2459 2460

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2461
	}
2462
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2463
		sg_page_sizes |= sg->length;
2464
		sg_mark_end(sg);
2465
	}
2466

2467 2468 2469
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2470
	ret = i915_gem_gtt_prepare_pages(obj, st);
2471
	if (ret) {
2472 2473
		/*
		 * DMA remapping failed? One possible cause is that
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2491

2492
	if (i915_gem_object_needs_bit17_swizzle(obj))
2493
		i915_gem_object_do_bit_17_swizzle(obj, st);
2494

M
Matthew Auld 已提交
2495
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2496 2497

	return 0;
2498

2499
err_sg:
2500
	sg_mark_end(sg);
2501
err_pages:
2502 2503 2504 2505 2506 2507 2508 2509
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2510 2511
	sg_free_table(st);
	kfree(st);
2512

2513 2514
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2515 2516 2517 2518 2519 2520 2521
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2522 2523 2524
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2525
	return ret;
2526 2527 2528
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2529
				 struct sg_table *pages,
M
Matthew Auld 已提交
2530
				 unsigned int sg_page_sizes)
2531
{
2532 2533 2534 2535
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2536
	lockdep_assert_held(&obj->mm.lock);
2537 2538 2539 2540 2541

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2542 2543

	if (i915_gem_object_is_tiled(obj) &&
2544
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2545 2546 2547 2548
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2549

M
Matthew Auld 已提交
2550 2551
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2552 2553

	/*
M
Matthew Auld 已提交
2554 2555 2556 2557 2558 2559
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2560 2561 2562 2563 2564 2565 2566
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2567 2568 2569 2570

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2571 2572 2573 2574
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2575
	int err;
2576 2577 2578 2579 2580 2581

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2582
	err = obj->ops->get_pages(obj);
2583
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2584

2585
	return err;
2586 2587
}

2588
/* Ensure that the associated pages are gathered from the backing storage
2589
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2590
 * multiple times before they are released by a single call to
2591
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2592 2593 2594
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2595
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2596
{
2597
	int err;
2598

2599 2600 2601
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2602

2603
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2604 2605
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2606 2607 2608
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2609

2610 2611 2612
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2613

2614 2615
unlock:
	mutex_unlock(&obj->mm.lock);
2616
	return err;
2617 2618
}

2619
/* The 'mapping' part of i915_gem_object_pin_map() below */
2620 2621
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2622 2623
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2624
	struct sg_table *sgt = obj->mm.pages;
2625 2626
	struct sgt_iter sgt_iter;
	struct page *page;
2627 2628
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2629
	unsigned long i = 0;
2630
	pgprot_t pgprot;
2631 2632 2633
	void *addr;

	/* A single page can always be kmapped */
2634
	if (n_pages == 1 && type == I915_MAP_WB)
2635 2636
		return kmap(sg_page(sgt->sgl));

2637 2638
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2639
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2640 2641 2642
		if (!pages)
			return NULL;
	}
2643

2644 2645
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2646 2647 2648 2649

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2650
	switch (type) {
2651 2652 2653
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2654 2655 2656 2657 2658 2659 2660 2661
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2662

2663
	if (pages != stack_pages)
M
Michal Hocko 已提交
2664
		kvfree(pages);
2665 2666 2667 2668 2669

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2670 2671
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2672
{
2673 2674 2675
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2676 2677
	int ret;

T
Tina Zhang 已提交
2678 2679
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2680

2681
	ret = mutex_lock_interruptible(&obj->mm.lock);
2682 2683 2684
	if (ret)
		return ERR_PTR(ret);

2685 2686 2687
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2688
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2689
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2690 2691
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2692 2693 2694
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2695

2696 2697 2698
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2699 2700
		pinned = false;
	}
2701
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2702

2703
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2704 2705 2706
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2707
			goto err_unpin;
2708
		}
2709 2710 2711 2712 2713 2714

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2715
		ptr = obj->mm.mapping = NULL;
2716 2717
	}

2718 2719 2720 2721
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2722
			goto err_unpin;
2723 2724
		}

2725
		obj->mm.mapping = page_pack_bits(ptr, type);
2726 2727
	}

2728 2729
out_unlock:
	mutex_unlock(&obj->mm.lock);
2730 2731
	return ptr;

2732 2733 2734 2735 2736
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2737 2738
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2756
	if (i915_gem_object_has_pages(obj))
2757 2758
		return -ENODEV;

2759 2760 2761
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2811 2812 2813 2814 2815 2816 2817 2818
static bool match_ring(struct i915_request *rq)
{
	struct drm_i915_private *dev_priv = rq->i915;
	u32 ring = I915_READ(RING_START(rq->engine->mmio_base));

	return ring == i915_ggtt_offset(rq->ring->vma);
}

2819
struct i915_request *
2820
i915_gem_find_active_request(struct intel_engine_cs *engine)
2821
{
2822
	struct i915_request *request, *active = NULL;
2823
	unsigned long flags;
2824

2825 2826 2827 2828 2829 2830
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
2831 2832
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2833 2834
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
2835
	 */
2836 2837
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2838
		if (i915_request_completed(request))
2839
			continue;
2840

2841 2842 2843 2844 2845 2846 2847
		if (!i915_request_started(request))
			break;

		/* More than one preemptible request may match! */
		if (!match_ring(request))
			break;

2848 2849
		active = request;
		break;
2850
	}
2851
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2852

2853
	return active;
2854 2855
}

2856
static void
2857 2858
i915_gem_retire_work_handler(struct work_struct *work)
{
2859
	struct drm_i915_private *dev_priv =
2860
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2861
	struct drm_device *dev = &dev_priv->drm;
2862

2863
	/* Come back later if the device is busy... */
2864
	if (mutex_trylock(&dev->struct_mutex)) {
2865
		i915_retire_requests(dev_priv);
2866
		mutex_unlock(&dev->struct_mutex);
2867
	}
2868

2869 2870
	/*
	 * Keep the retire handler running until we are finally idle.
2871 2872 2873
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2874
	if (READ_ONCE(dev_priv->gt.awake))
2875 2876
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2877
				   round_jiffies_up_relative(HZ));
2878
}
2879

2880 2881 2882 2883 2884 2885 2886
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
2887
	i915_globals_park();
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

2926 2927
	destroy_rcu_head(&s->rcu);

2928 2929 2930 2931 2932 2933 2934 2935
	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

2936 2937 2938 2939 2940 2941 2942
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

2943 2944 2945 2946 2947
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2948
	if (i915_reset_failed(i915))
2949 2950 2951 2952
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
2953
		GEM_BUG_ON(__i915_active_request_peek(&engine->timeline.last_request));
2954 2955 2956 2957 2958
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

2959 2960 2961 2962
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2963
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2964
	unsigned int epoch = I915_EPOCH_INVALID;
2965 2966 2967 2968 2969
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

2988 2989
	/*
	 * Wait for last execlists context complete, but bail out in case a
2990 2991 2992 2993 2994
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
2995
	 */
2996 2997 2998 2999
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3000 3001 3002 3003

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3004
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3005 3006 3007 3008 3009 3010 3011
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3012 3013 3014 3015
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3016
	if (new_requests_since_last_retire(dev_priv))
3017
		goto out_unlock;
3018

3019
	epoch = __i915_gem_park(dev_priv);
3020

3021 3022
	assert_kernel_context_is_current(dev_priv);

3023 3024
	rearm_hangcheck = false;
out_unlock:
3025
	mutex_unlock(&dev_priv->drm.struct_mutex);
3026

3027 3028 3029 3030
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3031
	}
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
3044
			init_rcu_head(&s->rcu);
3045 3046 3047 3048 3049
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3050 3051
}

3052 3053
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3054
	struct drm_i915_private *i915 = to_i915(gem->dev);
3055 3056
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3057
	struct i915_lut_handle *lut, *ln;
3058

3059 3060 3061 3062 3063 3064
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3065
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3066 3067 3068 3069
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3070 3071 3072 3073 3074 3075 3076
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3077
			i915_vma_close(vma);
3078

3079 3080
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3081

3082
		i915_lut_handle_free(lut);
3083
		__i915_gem_object_release_unless_active(obj);
3084
	}
3085 3086

	mutex_unlock(&i915->drm.struct_mutex);
3087 3088
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3100 3101
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3102 3103 3104
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3105 3106 3107 3108 3109 3110 3111
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3112
 *  -EAGAIN: incomplete, restart syscall
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3129 3130
	ktime_t start;
	long ret;
3131

3132 3133 3134
	if (args->flags != 0)
		return -EINVAL;

3135
	obj = i915_gem_object_lookup(file, args->bo_handle);
3136
	if (!obj)
3137 3138
		return -ENOENT;

3139 3140 3141
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3142 3143 3144
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3145
				   to_wait_timeout(args->timeout_ns));
3146 3147 3148 3149 3150

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3161 3162 3163 3164

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3165 3166
	}

C
Chris Wilson 已提交
3167
	i915_gem_object_put(obj);
3168
	return ret;
3169 3170
}

3171 3172
static int wait_for_engines(struct drm_i915_private *i915)
{
3173
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3174 3175
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3176
		GEM_TRACE_DUMP();
3177 3178
		i915_gem_set_wedged(i915);
		return -EIO;
3179 3180 3181 3182 3183
	}

	return 0;
}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	if (!READ_ONCE(i915->gt.active_requests))
		return timeout;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3195
	list_for_each_entry(tl, &gt->active_list, link) {
3196 3197
		struct i915_request *rq;

3198
		rq = i915_active_request_get_unlocked(&tl->last_request);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
3214
			gen6_rps_boost(rq);
3215 3216 3217 3218 3219 3220 3221 3222

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3223
		tl = list_entry(&gt->active_list, typeof(*tl), link);
3224 3225 3226 3227 3228 3229
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

3230 3231
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3232
{
3233 3234 3235
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3236

3237 3238 3239 3240
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3241 3242 3243 3244
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

3245
	if (flags & I915_WAIT_LOCKED) {
3246
		int err;
3247 3248 3249

		lockdep_assert_held(&i915->drm.struct_mutex);

3250 3251 3252 3253 3254 3255
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3256 3257 3258 3259 3260

		err = wait_for_engines(i915);
		if (err)
			return err;

3261
		i915_retire_requests(i915);
3262
		GEM_BUG_ON(i915->gt.active_requests);
3263
	}
3264 3265

	return 0;
3266 3267
}

3268 3269
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3270 3271 3272 3273 3274 3275 3276
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3277
	obj->write_domain = 0;
3278 3279 3280 3281
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3282
	if (!READ_ONCE(obj->pin_global))
3283 3284 3285 3286 3287 3288 3289
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3309
				   MAX_SCHEDULE_TIMEOUT);
3310 3311 3312
	if (ret)
		return ret;

3313
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3334
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3335 3336 3337 3338 3339
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3340 3341
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3342
	if (write) {
3343 3344
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3345 3346 3347 3348 3349 3350 3351
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3352 3353
/**
 * Moves a single object to the GTT read, and possibly write domain.
3354 3355
 * @obj: object to act on
 * @write: ask for write access or read only
3356 3357 3358 3359
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3360
int
3361
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3362
{
3363
	int ret;
3364

3365
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3366

3367 3368 3369 3370
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3371
				   MAX_SCHEDULE_TIMEOUT);
3372 3373 3374
	if (ret)
		return ret;

3375
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3376 3377
		return 0;

3378 3379 3380 3381 3382 3383 3384 3385
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3386
	ret = i915_gem_object_pin_pages(obj);
3387 3388 3389
	if (ret)
		return ret;

3390
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3391

3392 3393 3394 3395
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3396
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3397 3398
		mb();

3399 3400 3401
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3402 3403
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3404
	if (write) {
3405 3406
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3407
		obj->mm.dirty = true;
3408 3409
	}

C
Chris Wilson 已提交
3410
	i915_gem_object_unpin_pages(obj);
3411 3412 3413
	return 0;
}

3414 3415
/**
 * Changes the cache-level of an object across all VMA.
3416 3417
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3429 3430 3431
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3432
	struct i915_vma *vma;
3433
	int ret;
3434

3435 3436
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3437
	if (obj->cache_level == cache_level)
3438
		return 0;
3439

3440 3441 3442 3443 3444
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3445
restart:
3446
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3447 3448 3449
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3450
		if (i915_vma_is_pinned(vma)) {
3451 3452 3453 3454
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3455 3456
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3468 3469
	}

3470 3471 3472 3473 3474 3475 3476
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3477
	if (obj->bind_count) {
3478 3479 3480 3481
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3482 3483 3484 3485
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
3486
					   MAX_SCHEDULE_TIMEOUT);
3487 3488 3489
		if (ret)
			return ret;

3490 3491
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3508
			for_each_ggtt_vma(vma, obj) {
3509 3510 3511 3512
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3513 3514 3515 3516 3517 3518 3519 3520
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3521 3522
		}

3523
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3524 3525 3526 3527 3528 3529 3530
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3531 3532
	}

3533
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3534
		vma->node.color = cache_level;
3535
	i915_gem_object_set_cache_coherency(obj, cache_level);
3536
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3537

3538 3539 3540
	return 0;
}

B
Ben Widawsky 已提交
3541 3542
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3543
{
B
Ben Widawsky 已提交
3544
	struct drm_i915_gem_caching *args = data;
3545
	struct drm_i915_gem_object *obj;
3546
	int err = 0;
3547

3548 3549 3550 3551 3552 3553
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3554

3555 3556 3557 3558 3559 3560
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3561 3562 3563 3564
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3565 3566 3567 3568
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3569 3570 3571
out:
	rcu_read_unlock();
	return err;
3572 3573
}

B
Ben Widawsky 已提交
3574 3575
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3576
{
3577
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3578
	struct drm_i915_gem_caching *args = data;
3579 3580
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3581
	int ret = 0;
3582

B
Ben Widawsky 已提交
3583 3584
	switch (args->caching) {
	case I915_CACHING_NONE:
3585 3586
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3587
	case I915_CACHING_CACHED:
3588 3589 3590 3591 3592 3593
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3594
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3595 3596
			return -ENODEV;

3597 3598
		level = I915_CACHE_LLC;
		break;
3599
	case I915_CACHING_DISPLAY:
3600
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3601
		break;
3602 3603 3604 3605
	default:
		return -EINVAL;
	}

3606 3607 3608 3609
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3619 3620 3621 3622 3623
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
3624
				   MAX_SCHEDULE_TIMEOUT);
B
Ben Widawsky 已提交
3625
	if (ret)
3626
		goto out;
B
Ben Widawsky 已提交
3627

3628 3629 3630
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3631 3632 3633

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3634 3635 3636

out:
	i915_gem_object_put(obj);
3637 3638 3639
	return ret;
}

3640
/*
3641 3642 3643 3644
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3645
 */
C
Chris Wilson 已提交
3646
struct i915_vma *
3647 3648
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3649 3650
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3651
{
C
Chris Wilson 已提交
3652
	struct i915_vma *vma;
3653 3654
	int ret;

3655 3656
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3657
	/* Mark the global pin early so that we account for the
3658 3659
	 * display coherency whilst setting up the cache domains.
	 */
3660
	obj->pin_global++;
3661

3662 3663 3664 3665 3666 3667 3668 3669 3670
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3671
	ret = i915_gem_object_set_cache_level(obj,
3672 3673
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3674 3675
	if (ret) {
		vma = ERR_PTR(ret);
3676
		goto err_unpin_global;
C
Chris Wilson 已提交
3677
	}
3678

3679 3680
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3681 3682 3683 3684
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3685
	 */
3686
	vma = ERR_PTR(-ENOSPC);
3687 3688
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3689
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3690 3691 3692 3693
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3694
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3695
	if (IS_ERR(vma))
3696
		goto err_unpin_global;
3697

3698 3699
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3700
	__i915_gem_object_flush_for_display(obj);
3701

3702 3703 3704
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3705
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3706

C
Chris Wilson 已提交
3707
	return vma;
3708

3709 3710
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3711
	return vma;
3712 3713 3714
}

void
C
Chris Wilson 已提交
3715
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3716
{
3717
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3718

3719
	if (WARN_ON(vma->obj->pin_global == 0))
3720 3721
		return;

3722
	if (--vma->obj->pin_global == 0)
3723
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3724

3725
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3726
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3727

C
Chris Wilson 已提交
3728
	i915_vma_unpin(vma);
3729 3730
}

3731 3732
/**
 * Moves a single object to the CPU read, and possibly write domain.
3733 3734
 * @obj: object to act on
 * @write: requesting write or read-only access
3735 3736 3737 3738
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3739
int
3740
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3741 3742 3743
{
	int ret;

3744
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3745

3746 3747 3748 3749
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3750
				   MAX_SCHEDULE_TIMEOUT);
3751 3752 3753
	if (ret)
		return ret;

3754
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3755

3756
	/* Flush the CPU cache if it's still invalid. */
3757
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3758
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3759
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3760 3761 3762 3763 3764
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3765
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3766 3767 3768 3769

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3770 3771
	if (write)
		__start_cpu_write(obj);
3772 3773 3774 3775

	return 0;
}

3776 3777 3778
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3779 3780 3781 3782
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3783 3784 3785
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3786
static int
3787
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3788
{
3789
	struct drm_i915_private *dev_priv = to_i915(dev);
3790
	struct drm_i915_file_private *file_priv = file->driver_priv;
3791
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3792
	struct i915_request *request, *target = NULL;
3793
	long ret;
3794

3795
	/* ABI: return -EIO if already wedged */
3796 3797 3798
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
		return ret;
3799

3800
	spin_lock(&file_priv->mm.lock);
3801
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3802 3803
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3804

3805 3806 3807 3808
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3809

3810
		target = request;
3811
	}
3812
	if (target)
3813
		i915_request_get(target);
3814
	spin_unlock(&file_priv->mm.lock);
3815

3816
	if (target == NULL)
3817
		return 0;
3818

3819
	ret = i915_request_wait(target,
3820 3821
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3822
	i915_request_put(target);
3823

3824
	return ret < 0 ? ret : 0;
3825 3826
}

C
Chris Wilson 已提交
3827
struct i915_vma *
3828 3829
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3830
			 u64 size,
3831 3832
			 u64 alignment,
			 u64 flags)
3833
{
3834
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3835
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3836 3837
	struct i915_vma *vma;
	int ret;
3838

3839 3840
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3841 3842
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3873
	vma = i915_vma_instance(obj, vm, view);
3874
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3875
		return vma;
3876 3877

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3878 3879 3880
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3881

3882
			if (flags & PIN_MAPPABLE &&
3883
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3884 3885 3886
				return ERR_PTR(-ENOSPC);
		}

3887 3888
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3889 3890 3891
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3892
		     !!(flags & PIN_MAPPABLE),
3893
		     i915_vma_is_map_and_fenceable(vma));
3894 3895
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3896
			return ERR_PTR(ret);
3897 3898
	}

C
Chris Wilson 已提交
3899 3900 3901
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3902

C
Chris Wilson 已提交
3903
	return vma;
3904 3905
}

3906
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3921 3922 3923 3924 3925 3926 3927 3928 3929
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3930 3931
}

3932
static __always_inline unsigned int
3933
__busy_set_if_active(const struct dma_fence *fence,
3934 3935
		     unsigned int (*flag)(unsigned int id))
{
3936
	struct i915_request *rq;
3937

3938 3939 3940 3941
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3942
	 *
3943
	 * Note we only report on the status of native fences.
3944
	 */
3945 3946 3947 3948
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
3949 3950
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
3951 3952
		return 0;

3953
	return flag(rq->engine->uabi_id);
3954 3955
}

3956
static __always_inline unsigned int
3957
busy_check_reader(const struct dma_fence *fence)
3958
{
3959
	return __busy_set_if_active(fence, __busy_read_flag);
3960 3961
}

3962
static __always_inline unsigned int
3963
busy_check_writer(const struct dma_fence *fence)
3964
{
3965 3966 3967 3968
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3969 3970
}

3971 3972
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3973
		    struct drm_file *file)
3974 3975
{
	struct drm_i915_gem_busy *args = data;
3976
	struct drm_i915_gem_object *obj;
3977 3978
	struct reservation_object_list *list;
	unsigned int seq;
3979
	int err;
3980

3981
	err = -ENOENT;
3982 3983
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3984
	if (!obj)
3985
		goto out;
3986

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4005

4006 4007
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4008

4009 4010 4011 4012
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4013

4014 4015 4016 4017 4018 4019
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4020
	}
4021

4022 4023 4024 4025
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4026 4027 4028
out:
	rcu_read_unlock();
	return err;
4029 4030 4031 4032 4033 4034
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4035
	return i915_gem_ring_throttle(dev, file_priv);
4036 4037
}

4038 4039 4040 4041
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4042
	struct drm_i915_private *dev_priv = to_i915(dev);
4043
	struct drm_i915_gem_madvise *args = data;
4044
	struct drm_i915_gem_object *obj;
4045
	int err;
4046 4047 4048 4049 4050 4051 4052 4053 4054

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4055
	obj = i915_gem_object_lookup(file_priv, args->handle);
4056 4057 4058 4059 4060 4061
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4062

4063
	if (i915_gem_object_has_pages(obj) &&
4064
	    i915_gem_object_is_tiled(obj) &&
4065
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4066 4067
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4068
			__i915_gem_object_unpin_pages(obj);
4069 4070 4071
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4072
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4073
			__i915_gem_object_pin_pages(obj);
4074 4075
			obj->mm.quirked = true;
		}
4076 4077
	}

C
Chris Wilson 已提交
4078 4079
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4080

C
Chris Wilson 已提交
4081
	/* if the object is no longer attached, discard its backing storage */
4082 4083
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4084 4085
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4086
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4087
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4088

4089
out:
4090
	i915_gem_object_put(obj);
4091
	return err;
4092 4093
}

4094
static void
4095 4096
frontbuffer_retire(struct i915_active_request *active,
		   struct i915_request *request)
4097 4098 4099 4100
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4101
	intel_fb_obj_flush(obj, ORIGIN_CS);
4102 4103
}

4104 4105
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4106
{
4107 4108
	mutex_init(&obj->mm.lock);

4109 4110 4111
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

4112
	INIT_LIST_HEAD(&obj->lut_list);
4113
	INIT_LIST_HEAD(&obj->batch_pool_link);
4114

4115 4116
	init_rcu_head(&obj->rcu);

4117 4118
	obj->ops = ops;

4119 4120 4121
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4122
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4123 4124
	i915_active_request_init(&obj->frontbuffer_write,
				 NULL, frontbuffer_retire);
C
Chris Wilson 已提交
4125 4126 4127 4128

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4129

4130
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4131 4132
}

4133
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4134 4135
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4136

4137 4138
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4139 4140

	.pwrite = i915_gem_object_pwrite_gtt,
4141 4142
};

M
Matthew Auld 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4167
struct drm_i915_gem_object *
4168
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4169
{
4170
	struct drm_i915_gem_object *obj;
4171
	struct address_space *mapping;
4172
	unsigned int cache_level;
D
Daniel Vetter 已提交
4173
	gfp_t mask;
4174
	int ret;
4175

4176 4177 4178 4179 4180
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4181
	if (size >> PAGE_SHIFT > INT_MAX)
4182 4183 4184 4185 4186
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4187
	obj = i915_gem_object_alloc();
4188
	if (obj == NULL)
4189
		return ERR_PTR(-ENOMEM);
4190

M
Matthew Auld 已提交
4191
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4192 4193
	if (ret)
		goto fail;
4194

4195
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4196
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4197 4198 4199 4200 4201
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4202
	mapping = obj->base.filp->f_mapping;
4203
	mapping_set_gfp_mask(mapping, mask);
4204
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4205

4206
	i915_gem_object_init(obj, &i915_gem_object_ops);
4207

4208 4209
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4210

4211
	if (HAS_LLC(dev_priv))
4212
		/* On some devices, we can have the GPU use the LLC (the CPU
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4224 4225 4226
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4227

4228
	i915_gem_object_set_cache_coherency(obj, cache_level);
4229

4230 4231
	trace_i915_gem_object_create(obj);

4232
	return obj;
4233 4234 4235 4236

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4237 4238
}

4239 4240 4241 4242 4243 4244 4245 4246
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4247
	if (obj->mm.madv != I915_MADV_WILLNEED)
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4263 4264
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4265
{
4266
	struct drm_i915_gem_object *obj, *on;
4267
	intel_wakeref_t wakeref;
4268

4269
	wakeref = intel_runtime_pm_get(i915);
4270
	llist_for_each_entry_safe(obj, on, freed, freed) {
4271 4272 4273 4274
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4275 4276
		mutex_lock(&i915->drm.struct_mutex);

4277
		GEM_BUG_ON(i915_gem_object_is_active(obj));
4278
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4279 4280
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4281
			i915_vma_destroy(vma);
4282
		}
4283 4284
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4285

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4298
		mutex_unlock(&i915->drm.struct_mutex);
4299 4300

		GEM_BUG_ON(obj->bind_count);
4301
		GEM_BUG_ON(obj->userfault_count);
4302
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4303
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4304 4305 4306

		if (obj->ops->release)
			obj->ops->release(obj);
4307

4308 4309
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4310
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4311
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4312 4313 4314 4315

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4316
		reservation_object_fini(&obj->__builtin_resv);
4317 4318 4319 4320 4321
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4322

4323 4324 4325
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4326 4327
		if (on)
			cond_resched();
4328
	}
4329
	intel_runtime_pm_put(i915, wakeref);
4330 4331 4332 4333 4334 4335
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4346
		__i915_gem_free_objects(i915, freed);
4347
	}
4348 4349 4350 4351 4352 4353 4354
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4355

4356 4357
	/*
	 * All file-owned VMA should have been released by this point through
4358 4359 4360 4361 4362 4363
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4364

4365
	spin_lock(&i915->mm.free_lock);
4366
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4367 4368
		spin_unlock(&i915->mm.free_lock);

4369
		__i915_gem_free_objects(i915, freed);
4370
		if (need_resched())
4371 4372 4373
			return;

		spin_lock(&i915->mm.free_lock);
4374
	}
4375
	spin_unlock(&i915->mm.free_lock);
4376
}
4377

4378 4379 4380 4381 4382
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4383 4384 4385 4386 4387 4388 4389

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4390

4391 4392 4393 4394 4395 4396 4397 4398 4399
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4400 4401
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4402
		queue_work(i915->wq, &i915->mm.free_work);
4403
}
4404

4405 4406 4407
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4408

4409 4410 4411
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4412
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4413
		obj->mm.madv = I915_MADV_DONTNEED;
4414

4415 4416
	/*
	 * Before we free the object, make sure any pure RCU-only
4417 4418 4419 4420
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4421
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4422
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4423 4424
}

4425 4426 4427 4428
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4429 4430
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4431 4432 4433 4434 4435
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4436 4437
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4438 4439
	intel_wakeref_t wakeref;

4440 4441
	GEM_TRACE("\n");

4442
	wakeref = intel_runtime_pm_get(i915);
4443 4444 4445 4446 4447 4448 4449 4450
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4451
	if (i915_terminally_wedged(i915))
4452 4453
		i915_gem_unset_wedged(i915);

4454 4455 4456 4457 4458 4459
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4460
	 * of the reset, so this could be applied to even earlier gen.
4461
	 */
4462
	intel_engines_sanitize(i915, false);
4463 4464

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4465
	intel_runtime_pm_put(i915, wakeref);
4466

4467
	mutex_lock(&i915->drm.struct_mutex);
4468 4469
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4470 4471
}

C
Chris Wilson 已提交
4472
int i915_gem_suspend(struct drm_i915_private *i915)
4473
{
4474
	intel_wakeref_t wakeref;
4475
	int ret;
4476

4477 4478
	GEM_TRACE("\n");

4479
	wakeref = intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
4480
	intel_suspend_gt_powersave(i915);
4481

4482 4483
	flush_workqueue(i915->wq);

C
Chris Wilson 已提交
4484
	mutex_lock(&i915->drm.struct_mutex);
4485

C
Chris Wilson 已提交
4486 4487
	/*
	 * We have to flush all the executing contexts to main memory so
4488 4489
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4490
	 * leaves the i915->kernel_context still active when
4491 4492 4493 4494
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4495
	if (!i915_reset_failed(i915)) {
C
Chris Wilson 已提交
4496
		ret = i915_gem_switch_to_kernel_context(i915);
4497 4498
		if (ret)
			goto err_unlock;
4499

C
Chris Wilson 已提交
4500
		ret = i915_gem_wait_for_idle(i915,
4501
					     I915_WAIT_INTERRUPTIBLE |
4502
					     I915_WAIT_LOCKED |
4503 4504
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
4505 4506
		if (ret && ret != -EIO)
			goto err_unlock;
4507

C
Chris Wilson 已提交
4508
		assert_kernel_context_is_current(i915);
4509
	}
4510 4511
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
4512
	mutex_unlock(&i915->drm.struct_mutex);
4513
	i915_reset_flush(i915);
4514

4515
	drain_delayed_work(&i915->gt.retire_work);
4516

C
Chris Wilson 已提交
4517 4518
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4519 4520
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4521
	drain_delayed_work(&i915->gt.idle_work);
4522

4523 4524
	intel_uc_suspend(i915);

C
Chris Wilson 已提交
4525 4526
	/*
	 * Assert that we successfully flushed all the work and
4527 4528
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
4529 4530 4531
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
4532

4533
	intel_runtime_pm_put(i915, wakeref);
4534 4535 4536
	return 0;

err_unlock:
C
Chris Wilson 已提交
4537
	mutex_unlock(&i915->drm.struct_mutex);
4538
	intel_runtime_pm_put(i915, wakeref);
4539 4540 4541 4542 4543
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4544 4545 4546 4547 4548 4549 4550
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4571 4572 4573 4574 4575 4576 4577
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4578 4579
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4580 4581
}

4582
void i915_gem_resume(struct drm_i915_private *i915)
4583
{
4584 4585
	GEM_TRACE("\n");

4586
	WARN_ON(i915->gt.awake);
4587

4588 4589
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4590

4591 4592
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4593

4594 4595
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4596 4597 4598
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4599
	i915->gt.resume(i915);
4600

4601 4602 4603
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4604
	intel_uc_resume(i915);
4605

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4616 4617 4618
	if (!i915_reset_failed(i915)) {
		dev_err(i915->drm.dev,
			"Failed to re-initialize GPU, declaring it wedged!\n");
4619 4620
		i915_gem_set_wedged(i915);
	}
4621
	goto out_unlock;
4622 4623
}

4624
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4625
{
4626
	if (INTEL_GEN(dev_priv) < 5 ||
4627 4628 4629 4630 4631 4632
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4633
	if (IS_GEN(dev_priv, 5))
4634 4635
		return;

4636
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4637
	if (IS_GEN(dev_priv, 6))
4638
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4639
	else if (IS_GEN(dev_priv, 7))
4640
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4641
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4642
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4643 4644
	else
		BUG();
4645
}
D
Daniel Vetter 已提交
4646

4647
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4648 4649 4650 4651 4652 4653 4654
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4655
static void init_unused_rings(struct drm_i915_private *dev_priv)
4656
{
4657 4658 4659 4660 4661 4662
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4663
	} else if (IS_GEN(dev_priv, 2)) {
4664 4665
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4666
	} else if (IS_GEN(dev_priv, 3)) {
4667 4668
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4669 4670 4671
	}
}

4672
static int __i915_gem_restart_engines(void *data)
4673
{
4674
	struct drm_i915_private *i915 = data;
4675
	struct intel_engine_cs *engine;
4676
	enum intel_engine_id id;
4677 4678 4679 4680
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4681 4682 4683
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4684
			return err;
4685
		}
4686 4687
	}

4688 4689
	intel_engines_set_scheduler_caps(i915);

4690 4691 4692 4693 4694
	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4695
	int ret;
4696

4697 4698
	dev_priv->gt.last_init_time = ktime_get();

4699 4700 4701
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4702
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4703
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4704

4705
	if (IS_HASWELL(dev_priv))
4706
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4707
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4708

4709
	/* Apply the GT workarounds... */
4710
	intel_gt_apply_workarounds(dev_priv);
4711 4712
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4713

4714
	i915_gem_init_swizzling(dev_priv);
4715

4716 4717 4718 4719 4720 4721
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4722
	init_unused_rings(dev_priv);
4723

4724
	BUG_ON(!dev_priv->kernel_context);
4725 4726
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
4727
		goto out;
4728

4729
	ret = i915_ppgtt_init_hw(dev_priv);
4730
	if (ret) {
4731
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4732 4733 4734
		goto out;
	}

4735 4736 4737 4738 4739 4740
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4741 4742
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4743 4744
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4745
		goto out;
4746
	}
4747

4748
	intel_mocs_init_l3cc_table(dev_priv);
4749

4750 4751
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4752 4753
	if (ret)
		goto cleanup_uc;
4754

4755
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4756 4757

	return 0;
4758 4759 4760

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4761 4762 4763 4764
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
4765 4766
}

4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4788
		struct i915_request *rq;
4789

4790
		rq = i915_request_alloc(engine, ctx);
4791 4792 4793 4794 4795
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4796
		err = 0;
4797 4798 4799
		if (engine->init_context)
			err = engine->init_context(rq);

4800
		i915_request_add(rq);
4801 4802 4803 4804 4805 4806 4807 4808
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

4809 4810 4811
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
4812
		goto err_active;
4813
	}
4814 4815 4816

	assert_kernel_context_is_current(i915);

4817 4818 4819 4820 4821 4822 4823 4824
	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

4825 4826
	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
4827
		void *vaddr;
4828

4829 4830
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

4831
		state = to_intel_context(ctx, engine)->state;
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4852 4853 4854

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4855
						I915_MAP_FORCE_WB);
4856 4857 4858 4859 4860 4861
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

4897 4898 4899
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
4900 4901 4902 4903 4904 4905
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4944
int i915_gem_init(struct drm_i915_private *dev_priv)
4945 4946 4947
{
	int ret;

4948 4949
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4950 4951 4952
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4953
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4954

4955
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
4956
		dev_priv->gt.resume = intel_lr_context_resume;
4957
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4958 4959 4960
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4961 4962
	}

4963 4964
	i915_timelines_init(dev_priv);

4965 4966 4967 4968
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

4969
	ret = intel_uc_init_misc(dev_priv);
4970 4971 4972
	if (ret)
		return ret;

4973
	ret = intel_wopcm_init(&dev_priv->wopcm);
4974
	if (ret)
4975
		goto err_uc_misc;
4976

4977 4978 4979 4980 4981 4982
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
4983
	mutex_lock(&dev_priv->drm.struct_mutex);
4984 4985
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4986
	ret = i915_gem_init_ggtt(dev_priv);
4987 4988 4989 4990
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
4991

4992
	ret = i915_gem_init_scratch(dev_priv,
4993
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
4994 4995 4996 4997
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
4998

4999 5000 5001 5002 5003 5004
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

5005
	ret = intel_engines_init(dev_priv);
5006 5007 5008 5009
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5010

5011 5012
	intel_init_gt_powersave(dev_priv);

5013
	ret = intel_uc_init(dev_priv);
5014
	if (ret)
5015
		goto err_pm;
5016

5017 5018 5019 5020
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5032
	ret = __intel_engines_record_defaults(dev_priv);
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5058 5059 5060 5061 5062
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5063 5064
	i915_gem_drain_workqueue(dev_priv);

5065
	mutex_lock(&dev_priv->drm.struct_mutex);
5066
	intel_uc_fini_hw(dev_priv);
5067 5068
err_uc_init:
	intel_uc_fini(dev_priv);
5069 5070 5071 5072 5073 5074 5075 5076
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
5077 5078
err_scratch:
	i915_gem_fini_scratch(dev_priv);
5079 5080 5081 5082 5083
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5084
err_uc_misc:
5085
	intel_uc_fini_misc(dev_priv);
5086

5087
	if (ret != -EIO) {
5088
		i915_gem_cleanup_userptr(dev_priv);
5089 5090
		i915_timelines_fini(dev_priv);
	}
5091

5092
	if (ret == -EIO) {
5093 5094
		mutex_lock(&dev_priv->drm.struct_mutex);

5095 5096
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5097 5098 5099
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5100
		if (!i915_reset_failed(dev_priv)) {
5101 5102
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5103 5104
			i915_gem_set_wedged(dev_priv);
		}
5105 5106 5107 5108 5109 5110 5111 5112

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5113 5114
	}

5115
	i915_gem_drain_freed_objects(dev_priv);
5116
	return ret;
5117 5118
}

5119 5120 5121
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5122
	intel_disable_gt_powersave(dev_priv);
5123 5124 5125 5126 5127 5128 5129 5130 5131

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5132
	i915_gem_fini_scratch(dev_priv);
5133 5134
	mutex_unlock(&dev_priv->drm.struct_mutex);

5135 5136
	intel_wa_list_free(&dev_priv->gt_wa_list);

5137 5138
	intel_cleanup_gt_powersave(dev_priv);

5139 5140
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
5141
	i915_timelines_fini(dev_priv);
5142 5143 5144 5145 5146 5147

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5148 5149 5150 5151 5152
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5153
void
5154
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5155
{
5156
	struct intel_engine_cs *engine;
5157
	enum intel_engine_id id;
5158

5159
	for_each_engine(engine, dev_priv, id)
5160
		dev_priv->gt.cleanup_engine(engine);
5161 5162
}

5163 5164 5165
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5166
	int i;
5167

5168
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5169 5170
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5171
	else if (INTEL_GEN(dev_priv) >= 4 ||
5172 5173
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5174 5175 5176 5177
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5178
	if (intel_vgpu_active(dev_priv))
5179 5180 5181 5182
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5183 5184 5185 5186 5187 5188 5189
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5190
	i915_gem_restore_fences(dev_priv);
5191

5192
	i915_gem_detect_bit_6_swizzle(dev_priv);
5193 5194
}

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5211
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5212
{
5213
	int err;
5214

5215
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5216
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5217

5218
	i915_gem_init__mm(dev_priv);
5219

5220
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5221
			  i915_gem_retire_work_handler);
5222
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5223
			  i915_gem_idle_work_handler);
5224
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5225
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5226
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5227
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
5228

5229 5230
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5231
	spin_lock_init(&dev_priv->fb_tracking.lock);
5232

M
Matthew Auld 已提交
5233 5234 5235 5236
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5237
	return 0;
5238
}
5239

5240
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5241
{
5242
	i915_gem_drain_freed_objects(dev_priv);
5243 5244
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5245
	WARN_ON(dev_priv->mm.object_count);
5246

5247 5248
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
5249
	i915_gemfs_fini(dev_priv);
5250 5251
}

5252 5253
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5254 5255 5256
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5257 5258 5259 5260 5261
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5262
int i915_gem_freeze_late(struct drm_i915_private *i915)
5263 5264
{
	struct drm_i915_gem_object *obj;
5265
	struct list_head *phases[] = {
5266 5267
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5268
		NULL
5269
	}, **phase;
5270

5271 5272
	/*
	 * Called just before we write the hibernation image.
5273 5274 5275 5276 5277 5278 5279 5280
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5281 5282
	 *
	 * To try and reduce the hibernation image, we manually shrink
5283
	 * the objects as well, see i915_gem_freeze()
5284 5285
	 */

5286 5287
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5288

5289 5290 5291 5292
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5293
	}
5294
	mutex_unlock(&i915->drm.struct_mutex);
5295 5296 5297 5298

	return 0;
}

5299
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5300
{
5301
	struct drm_i915_file_private *file_priv = file->driver_priv;
5302
	struct i915_request *request;
5303 5304 5305 5306 5307

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5308
	spin_lock(&file_priv->mm.lock);
5309
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5310
		request->file_priv = NULL;
5311
	spin_unlock(&file_priv->mm.lock);
5312 5313
}

5314
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5315 5316
{
	struct drm_i915_file_private *file_priv;
5317
	int ret;
5318

5319
	DRM_DEBUG("\n");
5320 5321 5322 5323 5324 5325

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5326
	file_priv->dev_priv = i915;
5327
	file_priv->file = file;
5328 5329 5330 5331

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5332
	file_priv->bsd_engine = -1;
5333
	file_priv->hang_timestamp = jiffies;
5334

5335
	ret = i915_gem_context_open(i915, file);
5336 5337
	if (ret)
		kfree(file_priv);
5338

5339
	return ret;
5340 5341
}

5342 5343
/**
 * i915_gem_track_fb - update frontbuffer tracking
5344 5345 5346
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5347 5348 5349 5350
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5351 5352 5353 5354
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5355 5356 5357 5358 5359 5360 5361
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5362
		     BITS_PER_TYPE(atomic_t));
5363

5364
	if (old) {
5365 5366
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5367 5368 5369
	}

	if (new) {
5370 5371
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5372 5373 5374
	}
}

5375 5376
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5377
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5378 5379 5380
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5381 5382 5383
	struct file *file;
	size_t offset;
	int err;
5384

5385
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5386
	if (IS_ERR(obj))
5387 5388
		return obj;

5389
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5390

5391 5392 5393 5394 5395 5396
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5397

5398 5399 5400 5401 5402
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5403

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5418 5419 5420 5421

	return obj;

fail:
5422
	i915_gem_object_put(obj);
5423
	return ERR_PTR(err);
5424
}
5425 5426 5427 5428 5429 5430

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5431
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5432 5433 5434 5435 5436
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5437
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5463 5464
		void *entry;
		unsigned long i;
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5479
		entry = xa_mk_value(idx);
5480
		for (i = 1; i < count; i++) {
5481
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5519
	 * the radix tree will contain a value entry that points
5520 5521 5522 5523 5524
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5525 5526
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5559
	if (!obj->mm.dirty)
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5575

5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5611
	pages = __i915_gem_object_unset_pages(obj);
5612

5613 5614
	obj->ops = &i915_gem_phys_ops;

5615
	err = ____i915_gem_object_get_pages(obj);
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5629 5630 5631 5632 5633
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5634 5635 5636 5637 5638
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5639 5640
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5641
#include "selftests/mock_gem_device.c"
5642
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5643
#include "selftests/huge_pages.c"
5644
#include "selftests/i915_gem_object.c"
5645
#include "selftests/i915_gem_coherency.c"
5646
#include "selftests/i915_gem.c"
5647
#endif