i915_gem.c 163.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

242 243
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244
			    struct drm_file *file)
245
{
246
	struct drm_i915_private *dev_priv = to_i915(dev);
247
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248
	struct drm_i915_gem_get_aperture *args = data;
249
	struct i915_vma *vma;
250
	u64 pinned;
251

252
	pinned = ggtt->vm.reserved;
253
	mutex_lock(&dev->struct_mutex);
254
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255
		if (i915_vma_is_pinned(vma))
256
			pinned += vma->node.size;
257
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258
		if (i915_vma_is_pinned(vma))
259
			pinned += vma->node.size;
260
	mutex_unlock(&dev->struct_mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443 444 445 446 447 448 449 450 451 452
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

453 454 455 456
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
457
			   struct intel_rps_client *rps_client)
458
{
459
	struct i915_request *rq;
460

461
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462

463 464 465 466 467 468 469 470 471
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
472
	if (i915_request_completed(rq))
473 474
		goto out;

475 476
	/*
	 * This client is about to stall waiting for the GPU. In many cases
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
491
	if (rps_client && !i915_request_started(rq)) {
492
		if (INTEL_GEN(rq->i915) >= 6)
493
			gen6_rps_boost(rq, rps_client);
494 495
	}

496
	timeout = i915_request_wait(rq, flags, timeout);
497 498

out:
499 500
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
501 502 503 504 505 506 507 508

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
509
				 struct intel_rps_client *rps_client)
510
{
511
	unsigned int seq = __read_seqcount_begin(&resv->seq);
512
	struct dma_fence *excl;
513
	bool prune_fences = false;
514 515 516 517

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
518 519
		int ret;

520 521
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
522 523 524
		if (ret)
			return ret;

525 526 527
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
528
							     rps_client);
529
			if (timeout < 0)
530
				break;
531

532 533 534 535 536 537
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
538

539 540 541 542 543 544 545 546 547
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
548
		prune_fences = count && timeout >= 0;
549 550
	} else {
		excl = reservation_object_get_excl_rcu(resv);
551 552
	}

553
	if (excl && timeout >= 0)
554 555
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
556 557 558

	dma_fence_put(excl);

559 560
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
561 562 563
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
564
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 566 567 568 569
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
570 571
	}

572
	return timeout;
573 574
}

575 576
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
577
{
578
	struct i915_request *rq;
579 580
	struct intel_engine_cs *engine;

581
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 583 584 585 586
		return;

	rq = to_request(fence);
	engine = rq->engine;

587 588
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589
	if (engine->schedule)
590
		engine->schedule(rq, attr);
591
	rcu_read_unlock();
592
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 594
}

595 596
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
597 598 599 600 601 602 603
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
604
			__fence_set_priority(array->fences[i], attr);
605
	} else {
606
		__fence_set_priority(fence, attr);
607 608 609 610 611 612
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
613
			      const struct i915_sched_attr *attr)
614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
628
			fence_set_priority(shared[i], attr);
629 630 631 632 633 634 635 636 637
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
638
		fence_set_priority(excl, attr);
639 640 641 642 643
		dma_fence_put(excl);
	}
	return 0;
}

644 645 646 647 648
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
649
 * @rps_client: client (user process) to charge for any waitboosting
650
 */
651 652 653 654
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
655
		     struct intel_rps_client *rps_client)
656
{
657 658 659 660 661 662 663
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
664

665 666
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
667
						   rps_client);
668
	return timeout < 0 ? timeout : 0;
669 670 671 672 673 674
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

675
	return &fpriv->rps_client;
676 677
}

678 679 680
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
681
		     struct drm_file *file)
682 683
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
684
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 686 687 688

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
689
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 691
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
692

693
	drm_clflush_virt_range(vaddr, args->size);
694
	i915_gem_chipset_flush(to_i915(obj->base.dev));
695

696
	intel_fb_obj_flush(obj, ORIGIN_CPU);
697
	return 0;
698 699
}

700
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701
{
702
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 704 705 706
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
707
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708
	kmem_cache_free(dev_priv->objects, obj);
709 710
}

711 712
static int
i915_gem_create(struct drm_file *file,
713
		struct drm_i915_private *dev_priv,
714 715
		uint64_t size,
		uint32_t *handle_p)
716
{
717
	struct drm_i915_gem_object *obj;
718 719
	int ret;
	u32 handle;
720

721
	size = roundup(size, PAGE_SIZE);
722 723
	if (size == 0)
		return -EINVAL;
724 725

	/* Allocate the new object */
726
	obj = i915_gem_object_create(dev_priv, size);
727 728
	if (IS_ERR(obj))
		return PTR_ERR(obj);
729

730
	ret = drm_gem_handle_create(file, &obj->base, &handle);
731
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
732
	i915_gem_object_put(obj);
733 734
	if (ret)
		return ret;
735

736
	*handle_p = handle;
737 738 739
	return 0;
}

740 741 742 743 744 745
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
746
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747
	args->size = args->pitch * args->height;
748
	return i915_gem_create(file, to_i915(dev),
749
			       args->size, &args->handle);
750 751
}

752 753 754 755 756 757
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

758 759
/**
 * Creates a new mm object and returns a handle to it.
760 761 762
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
763 764 765 766 767
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
768
	struct drm_i915_private *dev_priv = to_i915(dev);
769
	struct drm_i915_gem_create *args = data;
770

771
	i915_gem_flush_free_objects(dev_priv);
772

773
	return i915_gem_create(file, dev_priv,
774
			       args->size, &args->handle);
775 776
}

777 778 779 780 781 782 783
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

784
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785
{
786 787 788 789 790
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
791 792 793 794 795 796 797 798 799 800
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 802
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
803
	 */
804

805
	i915_gem_chipset_flush(dev_priv);
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

822
	if (!(obj->write_domain & flush_domains))
823 824
		return;

825
	switch (obj->write_domain) {
826
	case I915_GEM_DOMAIN_GTT:
827
		i915_gem_flush_ggtt_writes(dev_priv);
828 829 830

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
831

832
		for_each_ggtt_vma(vma, obj) {
833 834 835 836 837
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
838 839
		break;

840 841 842 843
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

844 845 846
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
847 848 849 850 851

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
852 853
	}

854
	obj->write_domain = 0;
855 856
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

883
static inline int
884 885
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

909 910 911 912 913 914
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
915
				    unsigned int *needs_clflush)
916 917 918
{
	int ret;

919
	lockdep_assert_held(&obj->base.dev->struct_mutex);
920

921
	*needs_clflush = 0;
922 923
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
924

925 926 927 928 929
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
930 931 932
	if (ret)
		return ret;

C
Chris Wilson 已提交
933
	ret = i915_gem_object_pin_pages(obj);
934 935 936
	if (ret)
		return ret;

937 938
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
939 940 941 942 943 944 945
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

946
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
947

948 949 950 951 952
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
953
	if (!obj->cache_dirty &&
954
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
955
		*needs_clflush = CLFLUSH_BEFORE;
956

957
out:
958
	/* return with the pages pinned */
959
	return 0;
960 961 962 963

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
964 965 966 967 968 969 970
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

971 972
	lockdep_assert_held(&obj->base.dev->struct_mutex);

973 974 975 976
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

977 978 979 980 981 982
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
983 984 985
	if (ret)
		return ret;

C
Chris Wilson 已提交
986
	ret = i915_gem_object_pin_pages(obj);
987 988 989
	if (ret)
		return ret;

990 991
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
992 993 994 995 996 997 998
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

999
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1000

1001 1002 1003 1004 1005
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1006
	if (!obj->cache_dirty) {
1007
		*needs_clflush |= CLFLUSH_AFTER;
1008

1009 1010 1011 1012
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1013
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1014 1015
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1016

1017
out:
1018
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1019
	obj->mm.dirty = true;
1020
	/* return with the pages pinned */
1021
	return 0;
1022 1023 1024 1025

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1026 1027
}

1028 1029 1030 1031
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1032
	if (unlikely(swizzled)) {
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1050 1051 1052
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1053
shmem_pread_slow(struct page *page, int offset, int length,
1054 1055 1056 1057 1058 1059 1060 1061
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1062
		shmem_clflush_swizzled_range(vaddr + offset, length,
1063
					     page_do_bit17_swizzling);
1064 1065

	if (page_do_bit17_swizzling)
1066
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1067
	else
1068
		ret = __copy_to_user(user_data, vaddr + offset, length);
1069 1070
	kunmap(page);

1071
	return ret ? - EFAULT : 0;
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1150
{
1151
	void __iomem *vaddr;
1152
	unsigned long unwritten;
1153 1154

	/* We can use the cpu mem copy function because this is X86. */
1155 1156 1157 1158
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1159 1160
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1161 1162 1163 1164
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1165 1166
		io_mapping_unmap(vaddr);
	}
1167 1168 1169 1170
	return unwritten;
}

static int
1171 1172
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1173
{
1174 1175
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1176
	struct drm_mm_node node;
1177 1178 1179
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1180 1181
	int ret;

1182 1183 1184 1185 1186 1187
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1188 1189 1190
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1191 1192 1193
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1194
		ret = i915_vma_put_fence(vma);
1195 1196 1197 1198 1199
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1200
	if (IS_ERR(vma)) {
1201
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1202
		if (ret)
1203 1204
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1205 1206 1207 1208 1209 1210
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1211
	mutex_unlock(&i915->drm.struct_mutex);
1212

1213 1214 1215
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1230 1231 1232
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1233 1234 1235 1236
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1237

1238
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1239
				  user_data, page_length)) {
1240 1241 1242 1243 1244 1245 1246 1247 1248
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1249
	mutex_lock(&i915->drm.struct_mutex);
1250 1251 1252
out_unpin:
	if (node.allocated) {
		wmb();
1253
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1254 1255
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1256
		i915_vma_unpin(vma);
1257
	}
1258 1259 1260
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1261

1262 1263 1264
	return ret;
}

1265 1266
/**
 * Reads data from the object referenced by handle.
1267 1268 1269
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1270 1271 1272 1273 1274
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1275
		     struct drm_file *file)
1276 1277
{
	struct drm_i915_gem_pread *args = data;
1278
	struct drm_i915_gem_object *obj;
1279
	int ret;
1280

1281 1282 1283 1284
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1285
		       u64_to_user_ptr(args->data_ptr),
1286 1287 1288
		       args->size))
		return -EFAULT;

1289
	obj = i915_gem_object_lookup(file, args->handle);
1290 1291
	if (!obj)
		return -ENOENT;
1292

1293
	/* Bounds check source.  */
1294
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1295
		ret = -EINVAL;
1296
		goto out;
C
Chris Wilson 已提交
1297 1298
	}

C
Chris Wilson 已提交
1299 1300
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1301 1302 1303 1304
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1305
	if (ret)
1306
		goto out;
1307

1308
	ret = i915_gem_object_pin_pages(obj);
1309
	if (ret)
1310
		goto out;
1311

1312
	ret = i915_gem_shmem_pread(obj, args);
1313
	if (ret == -EFAULT || ret == -ENODEV)
1314
		ret = i915_gem_gtt_pread(obj, args);
1315

1316 1317
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1318
	i915_gem_object_put(obj);
1319
	return ret;
1320 1321
}

1322 1323
/* This is the fast write path which cannot handle
 * page faults in the source data
1324
 */
1325

1326 1327 1328 1329
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1330
{
1331
	void __iomem *vaddr;
1332
	unsigned long unwritten;
1333

1334
	/* We can use the cpu mem copy function because this is X86. */
1335 1336
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1337
						      user_data, length);
1338 1339
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1340 1341 1342
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1343 1344
		io_mapping_unmap(vaddr);
	}
1345 1346 1347 1348

	return unwritten;
}

1349 1350 1351
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1352
 * @obj: i915 GEM object
1353
 * @args: pwrite arguments structure
1354
 */
1355
static int
1356 1357
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1358
{
1359
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1360 1361
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1362 1363 1364
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1365
	int ret;
1366

1367 1368 1369
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1388
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1389 1390 1391
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1392 1393 1394
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1395
		ret = i915_vma_put_fence(vma);
1396 1397 1398 1399 1400
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1401
	if (IS_ERR(vma)) {
1402
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1403
		if (ret)
1404
			goto out_rpm;
1405
		GEM_BUG_ON(!node.allocated);
1406
	}
D
Daniel Vetter 已提交
1407 1408 1409 1410 1411

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1412 1413
	mutex_unlock(&i915->drm.struct_mutex);

1414
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1415

1416 1417 1418 1419
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1420 1421
		/* Operation in this page
		 *
1422 1423 1424
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1425
		 */
1426
		u32 page_base = node.start;
1427 1428
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1429 1430 1431
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1432 1433 1434
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1435 1436 1437 1438
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1439
		/* If we get a fault while copying data, then (presumably) our
1440 1441
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1442 1443
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1444
		 */
1445
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1446 1447 1448
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1449
		}
1450

1451 1452 1453
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1454
	}
1455
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1456 1457

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1458
out_unpin:
1459 1460
	if (node.allocated) {
		wmb();
1461
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1462 1463
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1464
		i915_vma_unpin(vma);
1465
	}
1466
out_rpm:
1467
	intel_runtime_pm_put(i915);
1468
out_unlock:
1469
	mutex_unlock(&i915->drm.struct_mutex);
1470
	return ret;
1471 1472
}

1473
static int
1474
shmem_pwrite_slow(struct page *page, int offset, int length,
1475 1476 1477 1478
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1479
{
1480 1481
	char *vaddr;
	int ret;
1482

1483
	vaddr = kmap(page);
1484
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1485
		shmem_clflush_swizzled_range(vaddr + offset, length,
1486
					     page_do_bit17_swizzling);
1487
	if (page_do_bit17_swizzling)
1488 1489
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1490
	else
1491
		ret = __copy_from_user(vaddr + offset, user_data, length);
1492
	if (needs_clflush_after)
1493
		shmem_clflush_swizzled_range(vaddr + offset, length,
1494
					     page_do_bit17_swizzling);
1495
	kunmap(page);
1496

1497
	return ret ? -EFAULT : 0;
1498 1499
}

1500 1501 1502 1503 1504
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1505
static int
1506 1507 1508 1509
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1510
{
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1543
	unsigned int needs_clflush;
1544 1545
	unsigned int offset, idx;
	int ret;
1546

1547
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1548 1549 1550
	if (ret)
		return ret;

1551 1552 1553 1554
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1555

1556 1557 1558
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1559

1560 1561 1562 1563 1564 1565 1566
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1567

1568 1569 1570 1571 1572 1573
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1574

1575 1576 1577
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1578

1579 1580 1581 1582
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1583
		if (ret)
1584
			break;
1585

1586 1587 1588
		remain -= length;
		user_data += length;
		offset = 0;
1589
	}
1590

1591
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1592
	i915_gem_obj_finish_shmem_access(obj);
1593
	return ret;
1594 1595 1596 1597
}

/**
 * Writes data to the object referenced by handle.
1598 1599 1600
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1601 1602 1603 1604 1605
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1606
		      struct drm_file *file)
1607 1608
{
	struct drm_i915_gem_pwrite *args = data;
1609
	struct drm_i915_gem_object *obj;
1610 1611 1612 1613 1614 1615
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1616
		       u64_to_user_ptr(args->data_ptr),
1617 1618 1619
		       args->size))
		return -EFAULT;

1620
	obj = i915_gem_object_lookup(file, args->handle);
1621 1622
	if (!obj)
		return -ENOENT;
1623

1624
	/* Bounds check destination. */
1625
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1626
		ret = -EINVAL;
1627
		goto err;
C
Chris Wilson 已提交
1628 1629
	}

1630 1631 1632 1633 1634 1635
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1636 1637
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1638 1639 1640 1641 1642 1643
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1644 1645 1646 1647 1648
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1649 1650 1651
	if (ret)
		goto err;

1652
	ret = i915_gem_object_pin_pages(obj);
1653
	if (ret)
1654
		goto err;
1655

D
Daniel Vetter 已提交
1656
	ret = -EFAULT;
1657 1658 1659 1660 1661 1662
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1663
	if (!i915_gem_object_has_struct_page(obj) ||
1664
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1665 1666
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1667 1668
		 * textures). Fallback to the shmem path in that case.
		 */
1669
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1670

1671
	if (ret == -EFAULT || ret == -ENOSPC) {
1672 1673
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1674
		else
1675
			ret = i915_gem_shmem_pwrite(obj, args);
1676
	}
1677

1678
	i915_gem_object_unpin_pages(obj);
1679
err:
C
Chris Wilson 已提交
1680
	i915_gem_object_put(obj);
1681
	return ret;
1682 1683
}

1684 1685 1686 1687 1688 1689
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1690 1691
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1692
	for_each_ggtt_vma(vma, obj) {
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1703
	spin_lock(&i915->mm.obj_lock);
1704
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1705 1706
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1707 1708
}

1709
/**
1710 1711
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1712 1713 1714
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1715 1716 1717
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1718
			  struct drm_file *file)
1719 1720
{
	struct drm_i915_gem_set_domain *args = data;
1721
	struct drm_i915_gem_object *obj;
1722 1723
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1724
	int err;
1725

1726
	/* Only handle setting domains to types used by the CPU. */
1727
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1728 1729 1730 1731 1732 1733 1734 1735
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1736
	obj = i915_gem_object_lookup(file, args->handle);
1737 1738
	if (!obj)
		return -ENOENT;
1739

1740 1741 1742 1743
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1744
	err = i915_gem_object_wait(obj,
1745 1746 1747 1748
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1749
	if (err)
C
Chris Wilson 已提交
1750
		goto out;
1751

T
Tina Zhang 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1765 1766 1767 1768 1769 1770 1771 1772 1773
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1774
		goto out;
1775 1776 1777

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1778
		goto out_unpin;
1779

1780 1781 1782 1783
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1784
	else
1785
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1786

1787 1788
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1789

1790
	mutex_unlock(&dev->struct_mutex);
1791

1792
	if (write_domain != 0)
1793 1794
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1795

C
Chris Wilson 已提交
1796
out_unpin:
1797
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1798 1799
out:
	i915_gem_object_put(obj);
1800
	return err;
1801 1802 1803 1804
}

/**
 * Called when user space has done writes to this buffer
1805 1806 1807
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1808 1809 1810
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1811
			 struct drm_file *file)
1812 1813
{
	struct drm_i915_gem_sw_finish *args = data;
1814
	struct drm_i915_gem_object *obj;
1815

1816
	obj = i915_gem_object_lookup(file, args->handle);
1817 1818
	if (!obj)
		return -ENOENT;
1819

T
Tina Zhang 已提交
1820 1821 1822 1823 1824
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1825
	/* Pinned buffers may be scanout, so flush the cache */
1826
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1827
	i915_gem_object_put(obj);
1828 1829

	return 0;
1830 1831 1832
}

/**
1833 1834 1835 1836 1837
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1838 1839 1840
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1851 1852 1853
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1854
		    struct drm_file *file)
1855 1856
{
	struct drm_i915_gem_mmap *args = data;
1857
	struct drm_i915_gem_object *obj;
1858 1859
	unsigned long addr;

1860 1861 1862
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1863
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1864 1865
		return -ENODEV;

1866 1867
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1868
		return -ENOENT;
1869

1870 1871 1872
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1873
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1874
		i915_gem_object_put(obj);
1875
		return -ENXIO;
1876 1877
	}

1878
	addr = vm_mmap(obj->base.filp, 0, args->size,
1879 1880
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1881 1882 1883 1884
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1885
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1886
			i915_gem_object_put(obj);
1887 1888
			return -EINTR;
		}
1889 1890 1891 1892 1893 1894 1895
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1896 1897

		/* This may race, but that's ok, it only gets set */
1898
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1899
	}
C
Chris Wilson 已提交
1900
	i915_gem_object_put(obj);
1901 1902 1903 1904 1905 1906 1907 1908
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1909 1910
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1911
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1912 1913
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1934 1935 1936
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1964
	return 2;
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1978 1979
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1980
		min_t(unsigned int, chunk,
1981
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1982 1983 1984 1985 1986 1987 1988 1989

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1990 1991
/**
 * i915_gem_fault - fault a page into the GTT
1992
 * @vmf: fault info
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
2004 2005 2006
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2007
 */
2008
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2009
{
2010
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2011
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2012
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2013
	struct drm_device *dev = obj->base.dev;
2014 2015
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2016
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2017
	struct i915_vma *vma;
2018
	pgoff_t page_offset;
2019
	int ret;
2020

2021 2022 2023 2024
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

2025
	/* We don't use vmf->pgoff since that has the fake offset */
2026
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2027

C
Chris Wilson 已提交
2028 2029
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2030
	/* Try to flush the object off the GPU first without holding the lock.
2031
	 * Upon acquiring the lock, we will perform our sanity checks and then
2032 2033 2034
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2035 2036 2037 2038
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2039
	if (ret)
2040 2041
		goto err;

2042 2043 2044 2045
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2046 2047 2048 2049 2050
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2051

2052
	/* Access to snoopable pages through the GTT is incoherent. */
2053
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2054
		ret = -EFAULT;
2055
		goto err_unlock;
2056 2057
	}

2058

2059
	/* Now pin it into the GTT as needed */
2060 2061 2062 2063
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
2064 2065
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2066
		struct i915_ggtt_view view =
2067
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2068
		unsigned int flags;
2069

2070 2071 2072 2073 2074 2075
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
2076 2077 2078 2079
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2080 2081 2082 2083 2084 2085
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
2086
	}
C
Chris Wilson 已提交
2087 2088
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2089
		goto err_unlock;
C
Chris Wilson 已提交
2090
	}
2091

2092 2093
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2094
		goto err_unpin;
2095

2096
	ret = i915_vma_pin_fence(vma);
2097
	if (ret)
2098
		goto err_unpin;
2099

2100
	/* Finally, remap it using the new GTT offset */
2101
	ret = remap_io_mapping(area,
2102
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2103
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2104
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2105
			       &ggtt->iomap);
2106 2107
	if (ret)
		goto err_fence;
2108

2109 2110 2111 2112 2113 2114
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2115 2116
	i915_vma_set_ggtt_write(vma);

2117
err_fence:
2118
	i915_vma_unpin_fence(vma);
2119
err_unpin:
C
Chris Wilson 已提交
2120
	__i915_vma_unpin(vma);
2121
err_unlock:
2122
	mutex_unlock(&dev->struct_mutex);
2123 2124
err_rpm:
	intel_runtime_pm_put(dev_priv);
2125
	i915_gem_object_unpin_pages(obj);
2126
err:
2127
	switch (ret) {
2128
	case -EIO:
2129 2130 2131 2132 2133 2134
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2135 2136
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2137
		/* else: fall through */
2138
	case -EAGAIN:
D
Daniel Vetter 已提交
2139 2140 2141 2142
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2143
		 */
2144 2145
	case 0:
	case -ERESTARTSYS:
2146
	case -EINTR:
2147 2148 2149 2150 2151
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2152
		return VM_FAULT_NOPAGE;
2153
	case -ENOMEM:
2154
		return VM_FAULT_OOM;
2155
	case -ENOSPC:
2156
	case -EFAULT:
2157
		return VM_FAULT_SIGBUS;
2158
	default:
2159
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2160
		return VM_FAULT_SIGBUS;
2161 2162 2163
	}
}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2175
	for_each_ggtt_vma(vma, obj)
2176 2177 2178
		i915_vma_unset_userfault(vma);
}

2179 2180 2181 2182
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2183
 * Preserve the reservation of the mmapping with the DRM core code, but
2184 2185 2186 2187 2188 2189 2190 2191 2192
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2193
void
2194
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2195
{
2196 2197
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2198 2199 2200
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2201 2202 2203 2204
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2205
	 */
2206
	lockdep_assert_held(&i915->drm.struct_mutex);
2207
	intel_runtime_pm_get(i915);
2208

2209
	if (!obj->userfault_count)
2210
		goto out;
2211

2212
	__i915_gem_object_release_mmap(obj);
2213 2214 2215 2216 2217 2218 2219 2220 2221

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2222 2223 2224

out:
	intel_runtime_pm_put(i915);
2225 2226
}

2227
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2228
{
2229
	struct drm_i915_gem_object *obj, *on;
2230
	int i;
2231

2232 2233 2234 2235 2236 2237
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2238

2239
	list_for_each_entry_safe(obj, on,
2240 2241
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2242 2243 2244 2245 2246 2247 2248 2249

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2260 2261 2262 2263

		if (!reg->vma)
			continue;

2264
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2265 2266
		reg->dirty = true;
	}
2267 2268
}

2269 2270
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2271
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2272
	int err;
2273

2274
	err = drm_gem_create_mmap_offset(&obj->base);
2275
	if (likely(!err))
2276
		return 0;
2277

2278 2279
	/* Attempt to reap some mmap space from dead objects */
	do {
2280 2281 2282
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2283 2284
		if (err)
			break;
2285

2286
		i915_gem_drain_freed_objects(dev_priv);
2287
		err = drm_gem_create_mmap_offset(&obj->base);
2288 2289 2290 2291
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2292

2293
	return err;
2294 2295 2296 2297 2298 2299 2300
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2301
int
2302 2303
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2304
		  uint32_t handle,
2305
		  uint64_t *offset)
2306
{
2307
	struct drm_i915_gem_object *obj;
2308 2309
	int ret;

2310
	obj = i915_gem_object_lookup(file, handle);
2311 2312
	if (!obj)
		return -ENOENT;
2313

2314
	ret = i915_gem_object_create_mmap_offset(obj);
2315 2316
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2317

C
Chris Wilson 已提交
2318
	i915_gem_object_put(obj);
2319
	return ret;
2320 2321
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2343
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2344 2345
}

D
Daniel Vetter 已提交
2346 2347 2348
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2349
{
2350
	i915_gem_object_free_mmap_offset(obj);
2351

2352 2353
	if (obj->base.filp == NULL)
		return;
2354

D
Daniel Vetter 已提交
2355 2356 2357 2358 2359
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2360
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2361
	obj->mm.madv = __I915_MADV_PURGED;
2362
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2363
}
2364

2365
/* Try to discard unwanted pages */
2366
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2367
{
2368 2369
	struct address_space *mapping;

2370
	lockdep_assert_held(&obj->mm.lock);
2371
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2372

C
Chris Wilson 已提交
2373
	switch (obj->mm.madv) {
2374 2375 2376 2377 2378 2379 2380 2381 2382
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2383
	mapping = obj->base.filp->f_mapping,
2384
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2385 2386
}

2387
static void
2388 2389
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2390
{
2391 2392
	struct sgt_iter sgt_iter;
	struct page *page;
2393

2394
	__i915_gem_object_release_shmem(obj, pages, true);
2395

2396
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2397

2398
	if (i915_gem_object_needs_bit17_swizzle(obj))
2399
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2400

2401
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2402
		if (obj->mm.dirty)
2403
			set_page_dirty(page);
2404

C
Chris Wilson 已提交
2405
		if (obj->mm.madv == I915_MADV_WILLNEED)
2406
			mark_page_accessed(page);
2407

2408
		put_page(page);
2409
	}
C
Chris Wilson 已提交
2410
	obj->mm.dirty = false;
2411

2412 2413
	sg_free_table(pages);
	kfree(pages);
2414
}
C
Chris Wilson 已提交
2415

2416 2417 2418
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2419
	void __rcu **slot;
2420

2421
	rcu_read_lock();
C
Chris Wilson 已提交
2422 2423
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2424
	rcu_read_unlock();
2425 2426
}

2427 2428
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2429
{
2430
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2431
	struct sg_table *pages;
2432

2433
	pages = fetch_and_zero(&obj->mm.pages);
2434 2435
	if (!pages)
		return NULL;
2436

2437 2438 2439 2440
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2441
	if (obj->mm.mapping) {
2442 2443
		void *ptr;

2444
		ptr = page_mask_bits(obj->mm.mapping);
2445 2446
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2447
		else
2448 2449
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2450
		obj->mm.mapping = NULL;
2451 2452
	}

2453
	__i915_gem_object_reset_page_iter(obj);
2454 2455 2456 2457
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2458

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2482 2483 2484
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2485 2486
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2487 2488
}

2489
static bool i915_sg_trim(struct sg_table *orig_st)
2490 2491 2492 2493 2494 2495
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2496
		return false;
2497

2498
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2499
		return false;
2500 2501 2502 2503 2504 2505 2506

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2507
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2508 2509 2510 2511

	sg_free_table(orig_st);

	*orig_st = new_st;
2512
	return true;
2513 2514
}

2515
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2516
{
2517
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2518 2519
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2520
	struct address_space *mapping;
2521 2522
	struct sg_table *st;
	struct scatterlist *sg;
2523
	struct sgt_iter sgt_iter;
2524
	struct page *page;
2525
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2526
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2527
	unsigned int sg_page_sizes;
2528
	gfp_t noreclaim;
I
Imre Deak 已提交
2529
	int ret;
2530

C
Chris Wilson 已提交
2531 2532 2533 2534
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2535 2536
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2537

2538 2539
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2540
		return -ENOMEM;
2541

2542
rebuild_st:
2543 2544
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2545
		return -ENOMEM;
2546
	}
2547

2548 2549 2550 2551 2552
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2553
	mapping = obj->base.filp->f_mapping;
2554
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2555 2556
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2557 2558
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2559
	sg_page_sizes = 0;
2560
	for (i = 0; i < page_count; i++) {
2561 2562 2563 2564 2565 2566 2567
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2568
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2569 2570 2571 2572 2573 2574 2575 2576
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2577
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2578
			cond_resched();
2579

C
Chris Wilson 已提交
2580 2581 2582
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2583 2584 2585 2586
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2587
			 */
2588 2589 2590
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2603
				 * this we want __GFP_RETRY_MAYFAIL.
2604
				 */
M
Michal Hocko 已提交
2605
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2606
			}
2607 2608
		} while (1);

2609 2610 2611
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2612
			if (i) {
M
Matthew Auld 已提交
2613
				sg_page_sizes |= sg->length;
2614
				sg = sg_next(sg);
2615
			}
2616 2617 2618 2619 2620 2621
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2622 2623 2624

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2625
	}
2626
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2627
		sg_page_sizes |= sg->length;
2628
		sg_mark_end(sg);
2629
	}
2630

2631 2632 2633
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2634
	ret = i915_gem_gtt_prepare_pages(obj, st);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2654

2655
	if (i915_gem_object_needs_bit17_swizzle(obj))
2656
		i915_gem_object_do_bit_17_swizzle(obj, st);
2657

M
Matthew Auld 已提交
2658
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2659 2660

	return 0;
2661

2662
err_sg:
2663
	sg_mark_end(sg);
2664
err_pages:
2665 2666
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2667 2668
	sg_free_table(st);
	kfree(st);
2669 2670 2671 2672 2673 2674 2675 2676 2677

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2678 2679 2680
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2681
	return ret;
2682 2683 2684
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2685
				 struct sg_table *pages,
M
Matthew Auld 已提交
2686
				 unsigned int sg_page_sizes)
2687
{
2688 2689 2690 2691
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2692
	lockdep_assert_held(&obj->mm.lock);
2693 2694 2695 2696 2697

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2698 2699

	if (i915_gem_object_is_tiled(obj) &&
2700
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2701 2702 2703 2704
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2705

M
Matthew Auld 已提交
2706 2707
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2708 2709

	/*
M
Matthew Auld 已提交
2710 2711 2712 2713 2714 2715
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2716 2717 2718 2719 2720 2721 2722
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2723 2724 2725 2726

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2727 2728 2729 2730
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2731
	int err;
2732 2733 2734 2735 2736 2737

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2738
	err = obj->ops->get_pages(obj);
2739
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2740

2741
	return err;
2742 2743
}

2744
/* Ensure that the associated pages are gathered from the backing storage
2745
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2746
 * multiple times before they are released by a single call to
2747
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2748 2749 2750
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2751
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2752
{
2753
	int err;
2754

2755 2756 2757
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2758

2759
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2760 2761
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2762 2763 2764
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2765

2766 2767 2768
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2769

2770 2771
unlock:
	mutex_unlock(&obj->mm.lock);
2772
	return err;
2773 2774
}

2775
/* The 'mapping' part of i915_gem_object_pin_map() below */
2776 2777
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2778 2779
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2780
	struct sg_table *sgt = obj->mm.pages;
2781 2782
	struct sgt_iter sgt_iter;
	struct page *page;
2783 2784
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2785
	unsigned long i = 0;
2786
	pgprot_t pgprot;
2787 2788 2789
	void *addr;

	/* A single page can always be kmapped */
2790
	if (n_pages == 1 && type == I915_MAP_WB)
2791 2792
		return kmap(sg_page(sgt->sgl));

2793 2794
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2795
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2796 2797 2798
		if (!pages)
			return NULL;
	}
2799

2800 2801
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2802 2803 2804 2805

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2806
	switch (type) {
2807 2808 2809
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2810 2811 2812 2813 2814 2815 2816 2817
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2818

2819
	if (pages != stack_pages)
M
Michal Hocko 已提交
2820
		kvfree(pages);
2821 2822 2823 2824 2825

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2826 2827
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2828
{
2829 2830 2831
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2832 2833
	int ret;

T
Tina Zhang 已提交
2834 2835
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2836

2837
	ret = mutex_lock_interruptible(&obj->mm.lock);
2838 2839 2840
	if (ret)
		return ERR_PTR(ret);

2841 2842 2843
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2844
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2845
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2846 2847
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2848 2849 2850
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2851

2852 2853 2854
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2855 2856
		pinned = false;
	}
2857
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2858

2859
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2860 2861 2862
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2863
			goto err_unpin;
2864
		}
2865 2866 2867 2868 2869 2870

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2871
		ptr = obj->mm.mapping = NULL;
2872 2873
	}

2874 2875 2876 2877
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2878
			goto err_unpin;
2879 2880
		}

2881
		obj->mm.mapping = page_pack_bits(ptr, type);
2882 2883
	}

2884 2885
out_unlock:
	mutex_unlock(&obj->mm.lock);
2886 2887
	return ptr;

2888 2889 2890 2891 2892
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2893 2894
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2912
	if (i915_gem_object_has_pages(obj))
2913 2914
		return -ENODEV;

2915 2916 2917
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

2991
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2992
{
2993 2994
	unsigned int score;
	bool banned, bannable;
2995

2996
	atomic_inc(&ctx->guilty_count);
2997

2998 2999 3000
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3001

3002 3003
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
3004 3005
		return;

3006 3007 3008 3009
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
3010
		i915_gem_context_set_banned(ctx);
3011
	}
3012 3013 3014

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3015 3016 3017 3018
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
3019
	atomic_inc(&ctx->active_count);
3020 3021
}

3022
struct i915_request *
3023
i915_gem_find_active_request(struct intel_engine_cs *engine)
3024
{
3025
	struct i915_request *request, *active = NULL;
3026
	unsigned long flags;
3027

3028 3029 3030 3031 3032 3033
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
3034 3035
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3036 3037
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
3038
	 */
3039 3040
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
3041
		if (__i915_request_completed(request, request->global_seqno))
3042
			continue;
3043

3044 3045
		active = request;
		break;
3046
	}
3047
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3048

3049
	return active;
3050 3051
}

3052 3053 3054 3055
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3056
struct i915_request *
3057 3058
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3059
	struct i915_request *request;
3060

3061 3062 3063 3064 3065 3066 3067 3068 3069
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3070
	request = engine->reset.prepare(engine);
3071 3072
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3073 3074 3075 3076

	return request;
}

3077
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3078 3079
{
	struct intel_engine_cs *engine;
3080
	struct i915_request *request;
3081
	enum intel_engine_id id;
3082
	int err = 0;
3083

3084
	for_each_engine(engine, dev_priv, id) {
3085 3086 3087 3088
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3089
		}
3090 3091

		engine->hangcheck.active_request = request;
3092 3093
	}

3094
	i915_gem_revoke_fences(dev_priv);
3095
	intel_uc_sanitize(dev_priv);
3096 3097

	return err;
3098 3099
}

3100
static void engine_skip_context(struct i915_request *request)
3101 3102
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3103
	struct i915_gem_context *hung_ctx = request->gem_context;
3104
	struct i915_timeline *timeline = request->timeline;
3105 3106
	unsigned long flags;

3107
	GEM_BUG_ON(timeline == &engine->timeline);
3108

3109
	spin_lock_irqsave(&engine->timeline.lock, flags);
3110
	spin_lock(&timeline->lock);
3111

3112
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3113
		if (request->gem_context == hung_ctx)
3114
			i915_request_skip(request, -EIO);
3115 3116

	list_for_each_entry(request, &timeline->requests, link)
3117
		i915_request_skip(request, -EIO);
3118 3119

	spin_unlock(&timeline->lock);
3120
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3121 3122
}

3123
/* Returns the request if it was guilty of the hang */
3124
static struct i915_request *
3125
i915_gem_reset_request(struct intel_engine_cs *engine,
3126 3127
		       struct i915_request *request,
		       bool stalled)
3128
{
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3150 3151 3152 3153 3154 3155 3156 3157 3158
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3159
		i915_gem_context_mark_guilty(request->gem_context);
3160
		i915_request_skip(request, -EIO);
3161 3162

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3163
		if (i915_gem_context_is_banned(request->gem_context))
3164
			engine_skip_context(request);
3165
	} else {
3166 3167 3168 3169 3170 3171 3172
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3173 3174
			unsigned long flags;

C
Chris Wilson 已提交
3175
			i915_gem_context_mark_innocent(request->gem_context);
3176 3177 3178
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3179
			spin_lock_irqsave(&engine->timeline.lock, flags);
3180
			request = list_prev_entry(request, link);
3181
			if (&request->link == &engine->timeline.requests)
3182
				request = NULL;
C
Chris Wilson 已提交
3183
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3184
		}
3185 3186
	}

3187
	return request;
3188 3189
}

3190
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3191 3192
			   struct i915_request *request,
			   bool stalled)
3193
{
3194 3195 3196 3197 3198 3199
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3200

3201
	if (request)
3202
		request = i915_gem_reset_request(engine, request, stalled);
3203

3204
	/* Setup the CS to resume from the breadcrumb of the hung request */
3205
	engine->reset.reset(engine, request);
3206
}
3207

3208 3209
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3210
{
3211
	struct intel_engine_cs *engine;
3212
	enum intel_engine_id id;
3213

3214 3215
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3216
	i915_retire_requests(dev_priv);
3217

3218
	for_each_engine(engine, dev_priv, id) {
3219
		struct intel_context *ce;
3220

3221 3222
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3223
				      stalled_mask & ENGINE_MASK(id));
3224 3225 3226
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3238
		if (intel_engine_is_idle(engine)) {
3239
			struct i915_request *rq;
3240

3241 3242
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3243
			if (!IS_ERR(rq))
3244
				i915_request_add(rq);
3245
		}
3246
	}
3247

3248
	i915_gem_restore_fences(dev_priv);
3249 3250
}

3251 3252
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3253 3254
	engine->reset.finish(engine);

3255
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3256 3257
}

3258 3259
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3260 3261 3262
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3263
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3264

3265
	for_each_engine(engine, dev_priv, id) {
3266
		engine->hangcheck.active_request = NULL;
3267
		i915_gem_reset_finish_engine(engine);
3268
	}
3269 3270
}

3271
static void nop_submit_request(struct i915_request *request)
3272
{
3273 3274 3275
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3276 3277
	dma_fence_set_error(&request->fence, -EIO);

3278
	i915_request_submit(request);
3279 3280
}

3281
static void nop_complete_submit_request(struct i915_request *request)
3282
{
3283 3284
	unsigned long flags;

3285 3286 3287
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3288
	dma_fence_set_error(&request->fence, -EIO);
3289

3290
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3291
	__i915_request_submit(request);
3292
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3293
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3294 3295
}

3296
void i915_gem_set_wedged(struct drm_i915_private *i915)
3297
{
3298 3299 3300
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3301 3302
	GEM_TRACE("start\n");

3303
	if (GEM_SHOW_DEBUG()) {
3304 3305 3306 3307 3308 3309
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3310 3311 3312
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3313 3314 3315 3316 3317
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3318 3319
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3320

3321
		engine->submit_request = nop_submit_request;
3322
		engine->schedule = NULL;
3323
	}
3324
	i915->caps.scheduler = 0;
3325

3326 3327 3328
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3329 3330 3331 3332
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3333
	 */
3334
	synchronize_rcu();
3335

3336 3337 3338
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3339

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3351
	 */
3352
	synchronize_rcu();
3353

3354 3355
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3356

3357 3358
		/*
		 * Mark all pending requests as complete so that any concurrent
3359 3360 3361
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3362
		spin_lock_irqsave(&engine->timeline.lock, flags);
3363 3364
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3365
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3366 3367

		i915_gem_reset_finish_engine(engine);
3368
	}
3369

3370 3371
	GEM_TRACE("end\n");

3372
	wake_up_all(&i915->gpu_error.reset_queue);
3373 3374
}

3375 3376
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3377
	struct i915_timeline *tl;
3378 3379 3380 3381 3382

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3383 3384
	GEM_TRACE("start\n");

3385 3386
	/*
	 * Before unwedging, make sure that all pending operations
3387 3388 3389 3390 3391 3392 3393 3394 3395
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3396
		struct i915_request *rq;
3397

3398 3399 3400 3401
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3417
	}
3418 3419
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3420

3421 3422
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3423 3424 3425 3426 3427 3428 3429 3430
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3431
	i915_gem_contexts_lost(i915);
3432

3433 3434
	GEM_TRACE("end\n");

3435 3436 3437 3438 3439 3440
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3441
static void
3442 3443
i915_gem_retire_work_handler(struct work_struct *work)
{
3444
	struct drm_i915_private *dev_priv =
3445
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3446
	struct drm_device *dev = &dev_priv->drm;
3447

3448
	/* Come back later if the device is busy... */
3449
	if (mutex_trylock(&dev->struct_mutex)) {
3450
		i915_retire_requests(dev_priv);
3451
		mutex_unlock(&dev->struct_mutex);
3452
	}
3453

3454 3455
	/*
	 * Keep the retire handler running until we are finally idle.
3456 3457 3458
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3459
	if (READ_ONCE(dev_priv->gt.awake))
3460 3461
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3462
				   round_jiffies_up_relative(HZ));
3463
}
3464

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3524 3525 3526 3527 3528 3529 3530
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3547 3548 3549 3550
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3551
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3552
	unsigned int epoch = I915_EPOCH_INVALID;
3553 3554 3555 3556 3557
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3576 3577
	/*
	 * Wait for last execlists context complete, but bail out in case a
3578 3579 3580 3581 3582
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3583
	 */
3584 3585 3586 3587
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3588 3589 3590 3591

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3592
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3593 3594 3595 3596 3597 3598 3599
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3600 3601 3602 3603
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3604
	if (new_requests_since_last_retire(dev_priv))
3605
		goto out_unlock;
3606

3607
	epoch = __i915_gem_park(dev_priv);
3608

3609 3610
	assert_kernel_context_is_current(dev_priv);

3611 3612
	rearm_hangcheck = false;
out_unlock:
3613
	mutex_unlock(&dev_priv->drm.struct_mutex);
3614

3615 3616 3617 3618
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3619
	}
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3637 3638
}

3639 3640
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3641
	struct drm_i915_private *i915 = to_i915(gem->dev);
3642 3643
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3644
	struct i915_lut_handle *lut, *ln;
3645

3646 3647 3648 3649 3650 3651
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3652
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3653 3654 3655 3656
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3657 3658 3659 3660 3661 3662 3663
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3664
			i915_vma_close(vma);
3665

3666 3667
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3668

3669 3670
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3671
	}
3672 3673

	mutex_unlock(&i915->drm.struct_mutex);
3674 3675
}

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3687 3688
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3689 3690 3691
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3692 3693 3694 3695 3696 3697 3698
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3699
 *  -EAGAIN: incomplete, restart syscall
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3716 3717
	ktime_t start;
	long ret;
3718

3719 3720 3721
	if (args->flags != 0)
		return -EINVAL;

3722
	obj = i915_gem_object_lookup(file, args->bo_handle);
3723
	if (!obj)
3724 3725
		return -ENOENT;

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3747 3748 3749 3750

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3751 3752
	}

C
Chris Wilson 已提交
3753
	i915_gem_object_put(obj);
3754
	return ret;
3755 3756
}

3757 3758
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3759
{
3760 3761 3762 3763
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3764
		return timeout;
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3778
	timeout = i915_request_wait(rq, flags, timeout);
3779 3780
	i915_request_put(rq);

3781
	return timeout;
3782 3783
}

3784 3785
static int wait_for_engines(struct drm_i915_private *i915)
{
3786
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3787 3788
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3789
		GEM_TRACE_DUMP();
3790 3791
		i915_gem_set_wedged(i915);
		return -EIO;
3792 3793 3794 3795 3796
	}

	return 0;
}

3797 3798
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3799
{
3800 3801 3802
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3803

3804 3805 3806 3807
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3808
	if (flags & I915_WAIT_LOCKED) {
3809 3810
		struct i915_timeline *tl;
		int err;
3811 3812 3813 3814

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3815 3816 3817
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3818
		}
3819 3820 3821 3822 3823

		err = wait_for_engines(i915);
		if (err)
			return err;

3824
		i915_retire_requests(i915);
3825
		GEM_BUG_ON(i915->gt.active_requests);
3826
	} else {
3827 3828
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3829

3830
		for_each_engine(engine, i915, id) {
3831 3832 3833 3834 3835
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3836 3837
		}
	}
3838 3839

	return 0;
3840 3841
}

3842 3843
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3844 3845 3846 3847 3848 3849 3850
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3851
	obj->write_domain = 0;
3852 3853 3854 3855
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3856
	if (!READ_ONCE(obj->pin_global))
3857 3858 3859 3860 3861 3862 3863
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3888
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3909
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3910 3911 3912 3913 3914
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3915 3916
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3917
	if (write) {
3918 3919
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3920 3921 3922 3923 3924 3925 3926
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3927 3928
/**
 * Moves a single object to the GTT read, and possibly write domain.
3929 3930
 * @obj: object to act on
 * @write: ask for write access or read only
3931 3932 3933 3934
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3935
int
3936
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3937
{
3938
	int ret;
3939

3940
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3941

3942 3943 3944 3945 3946 3947
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3948 3949 3950
	if (ret)
		return ret;

3951
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3952 3953
		return 0;

3954 3955 3956 3957 3958 3959 3960 3961
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3962
	ret = i915_gem_object_pin_pages(obj);
3963 3964 3965
	if (ret)
		return ret;

3966
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3967

3968 3969 3970 3971
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3972
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3973 3974
		mb();

3975 3976 3977
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3978 3979
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3980
	if (write) {
3981 3982
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3983
		obj->mm.dirty = true;
3984 3985
	}

C
Chris Wilson 已提交
3986
	i915_gem_object_unpin_pages(obj);
3987 3988 3989
	return 0;
}

3990 3991
/**
 * Changes the cache-level of an object across all VMA.
3992 3993
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4005 4006 4007
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4008
	struct i915_vma *vma;
4009
	int ret;
4010

4011 4012
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4013
	if (obj->cache_level == cache_level)
4014
		return 0;
4015

4016 4017 4018 4019 4020
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4021 4022
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4023 4024 4025
		if (!drm_mm_node_allocated(&vma->node))
			continue;

4026
		if (i915_vma_is_pinned(vma)) {
4027 4028 4029 4030
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4031 4032
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
4044 4045
	}

4046 4047 4048 4049 4050 4051 4052
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4053
	if (obj->bind_count) {
4054 4055 4056 4057
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4058 4059 4060 4061 4062 4063
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4064 4065 4066
		if (ret)
			return ret;

4067 4068
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4085
			for_each_ggtt_vma(vma, obj) {
4086 4087 4088 4089
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4090 4091 4092 4093 4094 4095 4096 4097
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4098 4099
		}

4100
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4101 4102 4103 4104 4105 4106 4107
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4108 4109
	}

4110
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4111
		vma->node.color = cache_level;
4112
	i915_gem_object_set_cache_coherency(obj, cache_level);
4113
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4114

4115 4116 4117
	return 0;
}

B
Ben Widawsky 已提交
4118 4119
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4120
{
B
Ben Widawsky 已提交
4121
	struct drm_i915_gem_caching *args = data;
4122
	struct drm_i915_gem_object *obj;
4123
	int err = 0;
4124

4125 4126 4127 4128 4129 4130
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4131

4132 4133 4134 4135 4136 4137
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4138 4139 4140 4141
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4142 4143 4144 4145
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4146 4147 4148
out:
	rcu_read_unlock();
	return err;
4149 4150
}

B
Ben Widawsky 已提交
4151 4152
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4153
{
4154
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4155
	struct drm_i915_gem_caching *args = data;
4156 4157
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4158
	int ret = 0;
4159

B
Ben Widawsky 已提交
4160 4161
	switch (args->caching) {
	case I915_CACHING_NONE:
4162 4163
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4164
	case I915_CACHING_CACHED:
4165 4166 4167 4168 4169 4170
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4171
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4172 4173
			return -ENODEV;

4174 4175
		level = I915_CACHE_LLC;
		break;
4176
	case I915_CACHING_DISPLAY:
4177
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4178
		break;
4179 4180 4181 4182
	default:
		return -EINVAL;
	}

4183 4184 4185 4186
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4196 4197 4198 4199 4200 4201 4202
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4203
	if (ret)
4204
		goto out;
B
Ben Widawsky 已提交
4205

4206 4207 4208
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4209 4210 4211

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4212 4213 4214

out:
	i915_gem_object_put(obj);
4215 4216 4217
	return ret;
}

4218
/*
4219 4220 4221 4222
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4223
 */
C
Chris Wilson 已提交
4224
struct i915_vma *
4225 4226
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4227 4228
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4229
{
C
Chris Wilson 已提交
4230
	struct i915_vma *vma;
4231 4232
	int ret;

4233 4234
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4235
	/* Mark the global pin early so that we account for the
4236 4237
	 * display coherency whilst setting up the cache domains.
	 */
4238
	obj->pin_global++;
4239

4240 4241 4242 4243 4244 4245 4246 4247 4248
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4249
	ret = i915_gem_object_set_cache_level(obj,
4250 4251
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4252 4253
	if (ret) {
		vma = ERR_PTR(ret);
4254
		goto err_unpin_global;
C
Chris Wilson 已提交
4255
	}
4256

4257 4258
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4259 4260 4261 4262
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4263
	 */
4264
	vma = ERR_PTR(-ENOSPC);
4265 4266
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4267
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4268 4269 4270 4271
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4272
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4273
	if (IS_ERR(vma))
4274
		goto err_unpin_global;
4275

4276 4277
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4278
	__i915_gem_object_flush_for_display(obj);
4279

4280 4281 4282
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4283
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4284

C
Chris Wilson 已提交
4285
	return vma;
4286

4287 4288
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4289
	return vma;
4290 4291 4292
}

void
C
Chris Wilson 已提交
4293
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4294
{
4295
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4296

4297
	if (WARN_ON(vma->obj->pin_global == 0))
4298 4299
		return;

4300
	if (--vma->obj->pin_global == 0)
4301
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4302

4303
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4304
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4305

C
Chris Wilson 已提交
4306
	i915_vma_unpin(vma);
4307 4308
}

4309 4310
/**
 * Moves a single object to the CPU read, and possibly write domain.
4311 4312
 * @obj: object to act on
 * @write: requesting write or read-only access
4313 4314 4315 4316
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4317
int
4318
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4319 4320 4321
{
	int ret;

4322
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4323

4324 4325 4326 4327 4328 4329
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4330 4331 4332
	if (ret)
		return ret;

4333
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4334

4335
	/* Flush the CPU cache if it's still invalid. */
4336
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4337
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4338
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4339 4340 4341 4342 4343
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4344
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4345 4346 4347 4348

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4349 4350
	if (write)
		__start_cpu_write(obj);
4351 4352 4353 4354

	return 0;
}

4355 4356 4357
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4358 4359 4360 4361
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4362 4363 4364
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4365
static int
4366
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4367
{
4368
	struct drm_i915_private *dev_priv = to_i915(dev);
4369
	struct drm_i915_file_private *file_priv = file->driver_priv;
4370
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4371
	struct i915_request *request, *target = NULL;
4372
	long ret;
4373

4374 4375 4376
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4377

4378
	spin_lock(&file_priv->mm.lock);
4379
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4380 4381
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4382

4383 4384 4385 4386
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4387

4388
		target = request;
4389
	}
4390
	if (target)
4391
		i915_request_get(target);
4392
	spin_unlock(&file_priv->mm.lock);
4393

4394
	if (target == NULL)
4395
		return 0;
4396

4397
	ret = i915_request_wait(target,
4398 4399
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4400
	i915_request_put(target);
4401

4402
	return ret < 0 ? ret : 0;
4403 4404
}

C
Chris Wilson 已提交
4405
struct i915_vma *
4406 4407
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4408
			 u64 size,
4409 4410
			 u64 alignment,
			 u64 flags)
4411
{
4412
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4413
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4414 4415
	struct i915_vma *vma;
	int ret;
4416

4417 4418
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4419 4420
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4451
	vma = i915_vma_instance(obj, vm, view);
4452
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4453
		return vma;
4454 4455

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4456 4457 4458
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4459

4460
			if (flags & PIN_MAPPABLE &&
4461
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4462 4463 4464
				return ERR_PTR(-ENOSPC);
		}

4465 4466
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4467 4468 4469
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4470
		     !!(flags & PIN_MAPPABLE),
4471
		     i915_vma_is_map_and_fenceable(vma));
4472 4473
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4474
			return ERR_PTR(ret);
4475 4476
	}

C
Chris Wilson 已提交
4477 4478 4479
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4480

C
Chris Wilson 已提交
4481
	return vma;
4482 4483
}

4484
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4499 4500 4501 4502 4503 4504 4505 4506 4507
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4508 4509
}

4510
static __always_inline unsigned int
4511
__busy_set_if_active(const struct dma_fence *fence,
4512 4513
		     unsigned int (*flag)(unsigned int id))
{
4514
	struct i915_request *rq;
4515

4516 4517 4518 4519
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4520
	 *
4521
	 * Note we only report on the status of native fences.
4522
	 */
4523 4524 4525 4526
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4527 4528
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4529 4530
		return 0;

4531
	return flag(rq->engine->uabi_id);
4532 4533
}

4534
static __always_inline unsigned int
4535
busy_check_reader(const struct dma_fence *fence)
4536
{
4537
	return __busy_set_if_active(fence, __busy_read_flag);
4538 4539
}

4540
static __always_inline unsigned int
4541
busy_check_writer(const struct dma_fence *fence)
4542
{
4543 4544 4545 4546
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4547 4548
}

4549 4550
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4551
		    struct drm_file *file)
4552 4553
{
	struct drm_i915_gem_busy *args = data;
4554
	struct drm_i915_gem_object *obj;
4555 4556
	struct reservation_object_list *list;
	unsigned int seq;
4557
	int err;
4558

4559
	err = -ENOENT;
4560 4561
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4562
	if (!obj)
4563
		goto out;
4564

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4583

4584 4585
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4586

4587 4588 4589 4590
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4591

4592 4593 4594 4595 4596 4597
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4598
	}
4599

4600 4601 4602 4603
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4604 4605 4606
out:
	rcu_read_unlock();
	return err;
4607 4608 4609 4610 4611 4612
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4613
	return i915_gem_ring_throttle(dev, file_priv);
4614 4615
}

4616 4617 4618 4619
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4620
	struct drm_i915_private *dev_priv = to_i915(dev);
4621
	struct drm_i915_gem_madvise *args = data;
4622
	struct drm_i915_gem_object *obj;
4623
	int err;
4624 4625 4626 4627 4628 4629 4630 4631 4632

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4633
	obj = i915_gem_object_lookup(file_priv, args->handle);
4634 4635 4636 4637 4638 4639
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4640

4641
	if (i915_gem_object_has_pages(obj) &&
4642
	    i915_gem_object_is_tiled(obj) &&
4643
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4644 4645
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4646
			__i915_gem_object_unpin_pages(obj);
4647 4648 4649
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4650
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4651
			__i915_gem_object_pin_pages(obj);
4652 4653
			obj->mm.quirked = true;
		}
4654 4655
	}

C
Chris Wilson 已提交
4656 4657
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4658

C
Chris Wilson 已提交
4659
	/* if the object is no longer attached, discard its backing storage */
4660 4661
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4662 4663
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4664
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4665
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4666

4667
out:
4668
	i915_gem_object_put(obj);
4669
	return err;
4670 4671
}

4672
static void
4673
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4674 4675 4676 4677
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4678
	intel_fb_obj_flush(obj, ORIGIN_CS);
4679 4680
}

4681 4682
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4683
{
4684 4685
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4686
	INIT_LIST_HEAD(&obj->vma_list);
4687
	INIT_LIST_HEAD(&obj->lut_list);
4688
	INIT_LIST_HEAD(&obj->batch_pool_link);
4689

4690 4691
	obj->ops = ops;

4692 4693 4694
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4695
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4696
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4697 4698 4699 4700

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4701

4702
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4703 4704
}

4705
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4706 4707
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4708

4709 4710
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4711 4712

	.pwrite = i915_gem_object_pwrite_gtt,
4713 4714
};

M
Matthew Auld 已提交
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4739
struct drm_i915_gem_object *
4740
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4741
{
4742
	struct drm_i915_gem_object *obj;
4743
	struct address_space *mapping;
4744
	unsigned int cache_level;
D
Daniel Vetter 已提交
4745
	gfp_t mask;
4746
	int ret;
4747

4748 4749 4750 4751 4752
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4753
	if (size >> PAGE_SHIFT > INT_MAX)
4754 4755 4756 4757 4758
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4759
	obj = i915_gem_object_alloc(dev_priv);
4760
	if (obj == NULL)
4761
		return ERR_PTR(-ENOMEM);
4762

M
Matthew Auld 已提交
4763
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4764 4765
	if (ret)
		goto fail;
4766

4767
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4768
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4769 4770 4771 4772 4773
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4774
	mapping = obj->base.filp->f_mapping;
4775
	mapping_set_gfp_mask(mapping, mask);
4776
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4777

4778
	i915_gem_object_init(obj, &i915_gem_object_ops);
4779

4780 4781
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4782

4783
	if (HAS_LLC(dev_priv))
4784
		/* On some devices, we can have the GPU use the LLC (the CPU
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4796 4797 4798
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4799

4800
	i915_gem_object_set_cache_coherency(obj, cache_level);
4801

4802 4803
	trace_i915_gem_object_create(obj);

4804
	return obj;
4805 4806 4807 4808

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4809 4810
}

4811 4812 4813 4814 4815 4816 4817 4818
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4819
	if (obj->mm.madv != I915_MADV_WILLNEED)
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4835 4836
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4837
{
4838
	struct drm_i915_gem_object *obj, *on;
4839

4840
	intel_runtime_pm_get(i915);
4841
	llist_for_each_entry_safe(obj, on, freed, freed) {
4842 4843 4844 4845
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4846 4847
		mutex_lock(&i915->drm.struct_mutex);

4848 4849 4850 4851 4852
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4853
			i915_vma_destroy(vma);
4854
		}
4855 4856
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4870
		mutex_unlock(&i915->drm.struct_mutex);
4871 4872

		GEM_BUG_ON(obj->bind_count);
4873
		GEM_BUG_ON(obj->userfault_count);
4874
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4875
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4876 4877 4878

		if (obj->ops->release)
			obj->ops->release(obj);
4879

4880 4881
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4882
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4883
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4884 4885 4886 4887

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4888
		reservation_object_fini(&obj->__builtin_resv);
4889 4890 4891 4892 4893
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4894

4895 4896 4897
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4898 4899
		if (on)
			cond_resched();
4900
	}
4901
	intel_runtime_pm_put(i915);
4902 4903 4904 4905 4906 4907
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4918
		__i915_gem_free_objects(i915, freed);
4919
	}
4920 4921 4922 4923 4924 4925 4926
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4927

4928 4929
	/*
	 * All file-owned VMA should have been released by this point through
4930 4931 4932 4933 4934 4935
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4936

4937
	spin_lock(&i915->mm.free_lock);
4938
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4939 4940
		spin_unlock(&i915->mm.free_lock);

4941
		__i915_gem_free_objects(i915, freed);
4942
		if (need_resched())
4943 4944 4945
			return;

		spin_lock(&i915->mm.free_lock);
4946
	}
4947
	spin_unlock(&i915->mm.free_lock);
4948
}
4949

4950 4951 4952 4953 4954 4955
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4956 4957 4958 4959 4960 4961 4962 4963 4964
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4965 4966
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4967
		queue_work(i915->wq, &i915->mm.free_work);
4968
}
4969

4970 4971 4972
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4973

4974 4975 4976
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4977
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4978
		obj->mm.madv = I915_MADV_DONTNEED;
4979

4980 4981
	/*
	 * Before we free the object, make sure any pure RCU-only
4982 4983 4984 4985
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4986
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4987
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4988 4989
}

4990 4991 4992 4993
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4994 4995
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4996 4997 4998 4999 5000
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

5001 5002
void i915_gem_sanitize(struct drm_i915_private *i915)
{
5003
	int err;
5004 5005 5006

	GEM_TRACE("\n");

5007
	mutex_lock(&i915->drm.struct_mutex);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
5018
	if (i915_terminally_wedged(&i915->gpu_error))
5019 5020
		i915_gem_unset_wedged(i915);

5021 5022 5023 5024 5025 5026
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
5027
	 * of the reset, so this could be applied to even earlier gen.
5028
	 */
5029
	err = -ENODEV;
5030
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5031 5032 5033
		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
	if (!err)
		intel_engines_sanitize(i915);
5034 5035 5036 5037

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

5038 5039
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
5040 5041
}

C
Chris Wilson 已提交
5042
int i915_gem_suspend(struct drm_i915_private *i915)
5043
{
5044
	int ret;
5045

5046 5047
	GEM_TRACE("\n");

C
Chris Wilson 已提交
5048 5049
	intel_runtime_pm_get(i915);
	intel_suspend_gt_powersave(i915);
5050

C
Chris Wilson 已提交
5051
	mutex_lock(&i915->drm.struct_mutex);
5052

C
Chris Wilson 已提交
5053 5054
	/*
	 * We have to flush all the executing contexts to main memory so
5055 5056
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
5057
	 * leaves the i915->kernel_context still active when
5058 5059 5060 5061
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
5062 5063
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
5064 5065
		if (ret)
			goto err_unlock;
5066

C
Chris Wilson 已提交
5067
		ret = i915_gem_wait_for_idle(i915,
5068
					     I915_WAIT_INTERRUPTIBLE |
5069
					     I915_WAIT_LOCKED |
5070 5071
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
5072 5073
		if (ret && ret != -EIO)
			goto err_unlock;
5074

C
Chris Wilson 已提交
5075
		assert_kernel_context_is_current(i915);
5076
	}
5077 5078
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
5079
	mutex_unlock(&i915->drm.struct_mutex);
5080

C
Chris Wilson 已提交
5081
	intel_uc_suspend(i915);
5082

C
Chris Wilson 已提交
5083 5084
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
5085

C
Chris Wilson 已提交
5086 5087
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
5088 5089
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
5090
	drain_delayed_work(&i915->gt.idle_work);
5091

C
Chris Wilson 已提交
5092 5093
	/*
	 * Assert that we successfully flushed all the work and
5094 5095
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
5096 5097 5098
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
5099

C
Chris Wilson 已提交
5100
	intel_runtime_pm_put(i915);
5101 5102 5103
	return 0;

err_unlock:
C
Chris Wilson 已提交
5104 5105
	mutex_unlock(&i915->drm.struct_mutex);
	intel_runtime_pm_put(i915);
5106 5107 5108 5109 5110
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5111 5112 5113 5114 5115 5116 5117
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5138 5139 5140 5141 5142 5143 5144
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5145 5146
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5147 5148
}

5149
void i915_gem_resume(struct drm_i915_private *i915)
5150
{
5151 5152
	GEM_TRACE("\n");

5153
	WARN_ON(i915->gt.awake);
5154

5155 5156
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5157

5158 5159
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5160

5161 5162
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5163 5164 5165
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5166
	i915->gt.resume(i915);
5167

5168 5169 5170
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5171
	intel_uc_resume(i915);
5172

5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5183 5184 5185 5186
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5187
	goto out_unlock;
5188 5189
}

5190
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5191
{
5192
	if (INTEL_GEN(dev_priv) < 5 ||
5193 5194 5195 5196 5197 5198
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5199
	if (IS_GEN5(dev_priv))
5200 5201
		return;

5202
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5203
	if (IS_GEN6(dev_priv))
5204
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5205
	else if (IS_GEN7(dev_priv))
5206
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5207
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5208
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5209 5210
	else
		BUG();
5211
}
D
Daniel Vetter 已提交
5212

5213
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5214 5215 5216 5217 5218 5219 5220
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5221
static void init_unused_rings(struct drm_i915_private *dev_priv)
5222
{
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5235 5236 5237
	}
}

5238
static int __i915_gem_restart_engines(void *data)
5239
{
5240
	struct drm_i915_private *i915 = data;
5241
	struct intel_engine_cs *engine;
5242
	enum intel_engine_id id;
5243 5244 5245 5246
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5247 5248 5249
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5250
			return err;
5251
		}
5252 5253 5254 5255 5256 5257 5258
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5259
	int ret;
5260

5261 5262
	dev_priv->gt.last_init_time = ktime_get();

5263 5264 5265
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5266
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5267
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5268

5269
	if (IS_HASWELL(dev_priv))
5270
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5271
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5272

5273
	if (HAS_PCH_NOP(dev_priv)) {
5274
		if (IS_IVYBRIDGE(dev_priv)) {
5275 5276 5277
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5278
		} else if (INTEL_GEN(dev_priv) >= 7) {
5279 5280 5281 5282
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5283 5284
	}

5285 5286
	intel_gt_workarounds_apply(dev_priv);

5287
	i915_gem_init_swizzling(dev_priv);
5288

5289 5290 5291 5292 5293 5294
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5295
	init_unused_rings(dev_priv);
5296

5297
	BUG_ON(!dev_priv->kernel_context);
5298 5299 5300 5301
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5302

5303
	ret = i915_ppgtt_init_hw(dev_priv);
5304
	if (ret) {
5305
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5306 5307 5308
		goto out;
	}

5309 5310 5311 5312 5313 5314
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5315 5316
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5317 5318
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5319
		goto out;
5320
	}
5321

5322
	intel_mocs_init_l3cc_table(dev_priv);
5323

5324 5325
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5326 5327
	if (ret)
		goto cleanup_uc;
5328

5329
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5330 5331

	return 0;
5332 5333 5334

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
5335 5336 5337 5338
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
5339 5340
}

5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5362
		struct i915_request *rq;
5363

5364
		rq = i915_request_alloc(engine, ctx);
5365 5366 5367 5368 5369
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5370
		err = 0;
5371 5372 5373
		if (engine->init_context)
			err = engine->init_context(rq);

5374
		i915_request_add(rq);
5375 5376 5377 5378 5379 5380 5381 5382
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5383 5384 5385
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5386
		goto err_active;
5387
	}
5388 5389 5390 5391 5392 5393

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5394
		state = to_intel_context(ctx, engine)->state;
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5450 5451 5452
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5453 5454 5455 5456 5457 5458
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5459
int i915_gem_init(struct drm_i915_private *dev_priv)
5460 5461 5462
{
	int ret;

5463 5464
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5465 5466 5467
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5468
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5469

5470
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5471
		dev_priv->gt.resume = intel_lr_context_resume;
5472
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5473 5474 5475
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5476 5477
	}

5478 5479 5480 5481
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5482
	ret = intel_uc_init_misc(dev_priv);
5483 5484 5485
	if (ret)
		return ret;

5486
	ret = intel_wopcm_init(&dev_priv->wopcm);
5487
	if (ret)
5488
		goto err_uc_misc;
5489

5490 5491 5492 5493 5494 5495
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5496
	mutex_lock(&dev_priv->drm.struct_mutex);
5497 5498
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5499
	ret = i915_gem_init_ggtt(dev_priv);
5500 5501 5502 5503
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5504

5505
	ret = i915_gem_contexts_init(dev_priv);
5506 5507 5508 5509
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5510

5511
	ret = intel_engines_init(dev_priv);
5512 5513 5514 5515
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5516

5517 5518
	intel_init_gt_powersave(dev_priv);

5519
	ret = intel_uc_init(dev_priv);
5520
	if (ret)
5521
		goto err_pm;
5522

5523 5524 5525 5526
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5538
	ret = __intel_engines_record_defaults(dev_priv);
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5564 5565 5566 5567 5568
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5569 5570
	i915_gem_drain_workqueue(dev_priv);

5571
	mutex_lock(&dev_priv->drm.struct_mutex);
5572
	intel_uc_fini_hw(dev_priv);
5573 5574
err_uc_init:
	intel_uc_fini(dev_priv);
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5588
err_uc_misc:
5589
	intel_uc_fini_misc(dev_priv);
5590

5591 5592 5593
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5594
	if (ret == -EIO) {
5595 5596
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5597 5598 5599
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5600
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5601 5602
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5603 5604
			i915_gem_set_wedged(dev_priv);
		}
5605
		ret = 0;
5606 5607
	}

5608
	i915_gem_drain_freed_objects(dev_priv);
5609
	return ret;
5610 5611
}

5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5634 5635 5636 5637 5638
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5639
void
5640
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5641
{
5642
	struct intel_engine_cs *engine;
5643
	enum intel_engine_id id;
5644

5645
	for_each_engine(engine, dev_priv, id)
5646
		dev_priv->gt.cleanup_engine(engine);
5647 5648
}

5649 5650 5651
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5652
	int i;
5653

5654
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5655 5656
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5657
	else if (INTEL_GEN(dev_priv) >= 4 ||
5658 5659
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5660 5661 5662 5663
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5664
	if (intel_vgpu_active(dev_priv))
5665 5666 5667 5668
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5669 5670 5671 5672 5673 5674 5675
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5676
	i915_gem_restore_fences(dev_priv);
5677

5678
	i915_gem_detect_bit_6_swizzle(dev_priv);
5679 5680
}

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5697
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5698
{
5699
	int err = -ENOMEM;
5700

5701 5702
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5703 5704
		goto err_out;

5705 5706
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5707 5708
		goto err_objects;

5709 5710 5711 5712
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5713
	dev_priv->requests = KMEM_CACHE(i915_request,
5714 5715
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5716
					SLAB_TYPESAFE_BY_RCU);
5717
	if (!dev_priv->requests)
5718
		goto err_luts;
5719

5720 5721 5722 5723 5724 5725
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5726 5727 5728 5729
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5730
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5731
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5732
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5733

5734
	i915_gem_init__mm(dev_priv);
5735

5736
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5737
			  i915_gem_retire_work_handler);
5738
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5739
			  i915_gem_idle_work_handler);
5740
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5741
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5742

5743 5744
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5745
	spin_lock_init(&dev_priv->fb_tracking.lock);
5746

M
Matthew Auld 已提交
5747 5748 5749 5750
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5751 5752
	return 0;

5753 5754
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5755 5756
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5757 5758
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5759 5760 5761 5762 5763 5764
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5765
}
5766

5767
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5768
{
5769
	i915_gem_drain_freed_objects(dev_priv);
5770 5771
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5772
	WARN_ON(dev_priv->mm.object_count);
5773 5774
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5775
	kmem_cache_destroy(dev_priv->priorities);
5776
	kmem_cache_destroy(dev_priv->dependencies);
5777
	kmem_cache_destroy(dev_priv->requests);
5778
	kmem_cache_destroy(dev_priv->luts);
5779 5780
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5781 5782 5783

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5784 5785

	i915_gemfs_fini(dev_priv);
5786 5787
}

5788 5789
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5790 5791 5792
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5793 5794 5795 5796 5797
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5798
int i915_gem_freeze_late(struct drm_i915_private *i915)
5799 5800
{
	struct drm_i915_gem_object *obj;
5801
	struct list_head *phases[] = {
5802 5803
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5804
		NULL
5805
	}, **phase;
5806

5807 5808
	/*
	 * Called just before we write the hibernation image.
5809 5810 5811 5812 5813 5814 5815 5816
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5817 5818
	 *
	 * To try and reduce the hibernation image, we manually shrink
5819
	 * the objects as well, see i915_gem_freeze()
5820 5821
	 */

5822 5823
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5824

5825 5826 5827 5828
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5829
	}
5830
	mutex_unlock(&i915->drm.struct_mutex);
5831 5832 5833 5834

	return 0;
}

5835
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5836
{
5837
	struct drm_i915_file_private *file_priv = file->driver_priv;
5838
	struct i915_request *request;
5839 5840 5841 5842 5843

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5844
	spin_lock(&file_priv->mm.lock);
5845
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5846
		request->file_priv = NULL;
5847
	spin_unlock(&file_priv->mm.lock);
5848 5849
}

5850
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5851 5852
{
	struct drm_i915_file_private *file_priv;
5853
	int ret;
5854

5855
	DRM_DEBUG("\n");
5856 5857 5858 5859 5860 5861

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5862
	file_priv->dev_priv = i915;
5863
	file_priv->file = file;
5864 5865 5866 5867

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5868
	file_priv->bsd_engine = -1;
5869
	file_priv->hang_timestamp = jiffies;
5870

5871
	ret = i915_gem_context_open(i915, file);
5872 5873
	if (ret)
		kfree(file_priv);
5874

5875
	return ret;
5876 5877
}

5878 5879
/**
 * i915_gem_track_fb - update frontbuffer tracking
5880 5881 5882
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5883 5884 5885 5886
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5887 5888 5889 5890
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5891 5892 5893 5894 5895 5896 5897 5898 5899
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5900
	if (old) {
5901 5902
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5903 5904 5905
	}

	if (new) {
5906 5907
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5908 5909 5910
	}
}

5911 5912
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5913
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5914 5915 5916
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5917 5918 5919
	struct file *file;
	size_t offset;
	int err;
5920

5921
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5922
	if (IS_ERR(obj))
5923 5924
		return obj;

5925
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5926

5927 5928 5929 5930 5931 5932
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5933

5934 5935 5936 5937 5938
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5939

5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5954 5955 5956 5957

	return obj;

fail:
5958
	i915_gem_object_put(obj);
5959
	return ERR_PTR(err);
5960
}
5961 5962 5963 5964 5965 5966

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5967
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5968 5969 5970 5971 5972
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5973
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6098
	if (!obj->mm.dirty)
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6114

6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6150
	pages = __i915_gem_object_unset_pages(obj);
6151

6152 6153
	obj->ops = &i915_gem_phys_ops;

6154
	err = ____i915_gem_object_get_pages(obj);
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6168 6169 6170 6171 6172
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6173 6174 6175 6176 6177
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6178 6179
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6180
#include "selftests/mock_gem_device.c"
6181
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6182
#include "selftests/huge_pages.c"
6183
#include "selftests/i915_gem_object.c"
6184
#include "selftests/i915_gem_coherency.c"
6185
#endif