i915_gem.c 150.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40 41 42 43 44 45 46 47 48 49 50 51
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"

52
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
53

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56
	if (obj->cache_dirty)
57 58
		return false;

59
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
60 61
		return true;

62
	return obj->pin_global; /* currently in use by HW, keep flushed */
63 64
}

65
static int
66
insert_mappable_node(struct i915_ggtt *ggtt,
67 68 69
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
70
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
71 72 73
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
74 75 76 77 78 79 80 81
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

82 83
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
84
				  u64 size)
85
{
86
	spin_lock(&dev_priv->mm.object_stat_lock);
87 88
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
89
	spin_unlock(&dev_priv->mm.object_stat_lock);
90 91 92
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
93
				     u64 size)
94
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100
}

101
static int
102
i915_gem_wait_for_error(struct i915_gpu_error *error)
103 104 105
{
	int ret;

106 107
	might_sleep();

108 109 110 111 112
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
113
	ret = wait_event_interruptible_timeout(error->reset_queue,
114
					       !i915_reset_backoff(error),
115
					       I915_RESET_TIMEOUT);
116 117 118 119
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
120
		return ret;
121 122
	} else {
		return 0;
123
	}
124 125
}

126
int i915_mutex_lock_interruptible(struct drm_device *dev)
127
{
128
	struct drm_i915_private *dev_priv = to_i915(dev);
129 130
	int ret;

131
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
132 133 134 135 136 137 138 139 140
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
141

142 143
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
C
Chris Wilson 已提交
144 145
	intel_wakeref_t wakeref;

146 147
	GEM_TRACE("\n");

148 149
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
150
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
171
	i915_timelines_park(i915);
172 173

	i915_pmu_gt_parked(i915);
174
	i915_vma_parked(i915);
175

C
Chris Wilson 已提交
176 177
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
178 179 180 181

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

182
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
183 184 185 186 187 188

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
189 190
	GEM_TRACE("\n");

191 192 193 194 195 196 197 198 199 200 201 202
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
203 204
	GEM_TRACE("\n");

205 206
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
207
	assert_rpm_wakelock_held(i915);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
223 224
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

244 245
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
246
			    struct drm_file *file)
247
{
248
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
249
	struct drm_i915_gem_get_aperture *args = data;
250
	struct i915_vma *vma;
251
	u64 pinned;
252

253 254
	mutex_lock(&ggtt->vm.mutex);

255
	pinned = ggtt->vm.reserved;
256
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
257
		if (i915_vma_is_pinned(vma))
258
			pinned += vma->node.size;
259 260

	mutex_unlock(&ggtt->vm.mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
444
		list_move_tail(&vma->obj_link, &still_in_list);
445 446
		spin_unlock(&obj->vma.lock);

447
		ret = i915_vma_unbind(vma);
448 449

		spin_lock(&obj->vma.lock);
450
	}
451 452
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
453 454 455 456

	return ret;
}

457 458 459 460
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
461
			   struct intel_rps_client *rps_client)
462
{
463
	struct i915_request *rq;
464

465
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
466

467 468 469 470 471 472 473 474 475
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
476
	if (i915_request_completed(rq))
477 478
		goto out;

479 480
	/*
	 * This client is about to stall waiting for the GPU. In many cases
481 482 483 484 485 486 487 488 489 490 491 492 493 494
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
495
	if (rps_client && !i915_request_started(rq)) {
496
		if (INTEL_GEN(rq->i915) >= 6)
497
			gen6_rps_boost(rq, rps_client);
498 499
	}

500
	timeout = i915_request_wait(rq, flags, timeout);
501 502

out:
503 504
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
505 506 507 508 509 510 511 512

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
513
				 struct intel_rps_client *rps_client)
514
{
515
	unsigned int seq = __read_seqcount_begin(&resv->seq);
516
	struct dma_fence *excl;
517
	bool prune_fences = false;
518 519 520 521

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
522 523
		int ret;

524 525
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
526 527 528
		if (ret)
			return ret;

529 530 531
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
532
							     rps_client);
533
			if (timeout < 0)
534
				break;
535

536 537 538 539 540 541
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
542

543 544 545 546 547 548 549 550 551
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
552
		prune_fences = count && timeout >= 0;
553 554
	} else {
		excl = reservation_object_get_excl_rcu(resv);
555 556
	}

557
	if (excl && timeout >= 0)
558 559
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
560 561 562

	dma_fence_put(excl);

563 564
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
565 566 567
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
568
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
569 570 571 572 573
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
574 575
	}

576
	return timeout;
577 578
}

579 580
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
581
{
582
	struct i915_request *rq;
583 584
	struct intel_engine_cs *engine;

585
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
586 587 588 589 590
		return;

	rq = to_request(fence);
	engine = rq->engine;

591 592
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
593
	if (engine->schedule)
594
		engine->schedule(rq, attr);
595
	rcu_read_unlock();
596
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
597 598
}

599 600
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
601 602 603 604 605 606 607
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
608
			__fence_set_priority(array->fences[i], attr);
609
	} else {
610
		__fence_set_priority(fence, attr);
611 612 613 614 615 616
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
617
			      const struct i915_sched_attr *attr)
618 619 620 621 622 623 624 625 626 627 628 629 630 631
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
632
			fence_set_priority(shared[i], attr);
633 634 635 636 637 638 639 640 641
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
642
		fence_set_priority(excl, attr);
643 644 645 646 647
		dma_fence_put(excl);
	}
	return 0;
}

648 649 650 651 652
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
653
 * @rps_client: client (user process) to charge for any waitboosting
654
 */
655 656 657 658
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
659
		     struct intel_rps_client *rps_client)
660
{
661 662
	might_sleep();
	GEM_BUG_ON(timeout < 0);
663

664 665
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
666
						   rps_client);
667
	return timeout < 0 ? timeout : 0;
668 669 670 671 672 673
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

674
	return &fpriv->rps_client;
675 676
}

677 678 679
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
680
		     struct drm_file *file)
681 682
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
683
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
684 685 686 687

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
688
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
689 690
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
691

692
	drm_clflush_virt_range(vaddr, args->size);
693
	i915_gem_chipset_flush(to_i915(obj->base.dev));
694

695
	intel_fb_obj_flush(obj, ORIGIN_CPU);
696
	return 0;
697 698
}

699
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
700
{
701
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
702 703 704 705
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
706
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
707
	kmem_cache_free(dev_priv->objects, obj);
708 709
}

710 711
static int
i915_gem_create(struct drm_file *file,
712
		struct drm_i915_private *dev_priv,
713 714
		u64 size,
		u32 *handle_p)
715
{
716
	struct drm_i915_gem_object *obj;
717 718
	int ret;
	u32 handle;
719

720
	size = roundup(size, PAGE_SIZE);
721 722
	if (size == 0)
		return -EINVAL;
723 724

	/* Allocate the new object */
725
	obj = i915_gem_object_create(dev_priv, size);
726 727
	if (IS_ERR(obj))
		return PTR_ERR(obj);
728

729
	ret = drm_gem_handle_create(file, &obj->base, &handle);
730
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
731
	i915_gem_object_put(obj);
732 733
	if (ret)
		return ret;
734

735
	*handle_p = handle;
736 737 738
	return 0;
}

739 740 741 742 743 744
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
745
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
746
	args->size = args->pitch * args->height;
747
	return i915_gem_create(file, to_i915(dev),
748
			       args->size, &args->handle);
749 750
}

751 752 753 754 755 756
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

757 758
/**
 * Creates a new mm object and returns a handle to it.
759 760 761
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
762 763 764 765 766
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
767
	struct drm_i915_private *dev_priv = to_i915(dev);
768
	struct drm_i915_gem_create *args = data;
769

770
	i915_gem_flush_free_objects(dev_priv);
771

772
	return i915_gem_create(file, dev_priv,
773
			       args->size, &args->handle);
774 775
}

776 777 778 779 780 781 782
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

783
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
784
{
785 786
	intel_wakeref_t wakeref;

787 788 789 790 791
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
792 793 794 795 796 797 798 799 800 801
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
802 803
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
804
	 */
805

806 807 808 809 810
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

811
	i915_gem_chipset_flush(dev_priv);
812

813 814
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
815

816
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
817

818 819
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
820 821 822 823 824 825 826 827
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

828
	if (!(obj->write_domain & flush_domains))
829 830
		return;

831
	switch (obj->write_domain) {
832
	case I915_GEM_DOMAIN_GTT:
833
		i915_gem_flush_ggtt_writes(dev_priv);
834 835 836

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
837

838
		for_each_ggtt_vma(vma, obj) {
839 840 841 842 843
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
844 845
		break;

846 847 848 849
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

850 851 852
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
853 854 855 856 857

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
858 859
	}

860
	obj->write_domain = 0;
861 862
}

863 864 865 866 867 868
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
869
				    unsigned int *needs_clflush)
870 871 872
{
	int ret;

873
	lockdep_assert_held(&obj->base.dev->struct_mutex);
874

875
	*needs_clflush = 0;
876 877
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
878

879 880 881 882 883
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
884 885 886
	if (ret)
		return ret;

C
Chris Wilson 已提交
887
	ret = i915_gem_object_pin_pages(obj);
888 889 890
	if (ret)
		return ret;

891 892
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
893 894 895 896 897 898 899
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

900
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
901

902 903 904 905 906
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
907
	if (!obj->cache_dirty &&
908
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
909
		*needs_clflush = CLFLUSH_BEFORE;
910

911
out:
912
	/* return with the pages pinned */
913
	return 0;
914 915 916 917

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
918 919 920 921 922 923 924
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

925 926
	lockdep_assert_held(&obj->base.dev->struct_mutex);

927 928 929 930
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

931 932 933 934 935 936
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
937 938 939
	if (ret)
		return ret;

C
Chris Wilson 已提交
940
	ret = i915_gem_object_pin_pages(obj);
941 942 943
	if (ret)
		return ret;

944 945
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
946 947 948 949 950 951 952
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

953
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
954

955 956 957 958 959
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
960
	if (!obj->cache_dirty) {
961
		*needs_clflush |= CLFLUSH_AFTER;
962

963 964 965 966
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
967
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
968 969
			*needs_clflush |= CLFLUSH_BEFORE;
	}
970

971
out:
972
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
973
	obj->mm.dirty = true;
974
	/* return with the pages pinned */
975
	return 0;
976 977 978 979

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
980 981
}

982
static int
983 984
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
985 986 987 988 989 990
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

991 992
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
993

994
	ret = __copy_to_user(user_data, vaddr + offset, len);
995

996
	kunmap(page);
997

998
	return ret ? -EFAULT : 0;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1025
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1045
{
1046
	void __iomem *vaddr;
1047
	unsigned long unwritten;
1048 1049

	/* We can use the cpu mem copy function because this is X86. */
1050 1051 1052 1053
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1054 1055
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1056 1057 1058 1059
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1060 1061
		io_mapping_unmap(vaddr);
	}
1062 1063 1064 1065
	return unwritten;
}

static int
1066 1067
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1068
{
1069 1070
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1071
	intel_wakeref_t wakeref;
1072
	struct drm_mm_node node;
1073 1074 1075
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1076 1077
	int ret;

1078 1079 1080 1081
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

1082
	wakeref = intel_runtime_pm_get(i915);
1083
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1084 1085 1086
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1087 1088 1089
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1090
		ret = i915_vma_put_fence(vma);
1091 1092 1093 1094 1095
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1096
	if (IS_ERR(vma)) {
1097
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1098
		if (ret)
1099 1100
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1101 1102 1103 1104 1105 1106
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1107
	mutex_unlock(&i915->drm.struct_mutex);
1108

1109 1110 1111
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1126 1127 1128
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1129 1130 1131 1132
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1133

1134
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1135
				  user_data, page_length)) {
1136 1137 1138 1139 1140 1141 1142 1143 1144
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1145
	mutex_lock(&i915->drm.struct_mutex);
1146 1147 1148
out_unpin:
	if (node.allocated) {
		wmb();
1149
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1150 1151
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1152
		i915_vma_unpin(vma);
1153
	}
1154
out_unlock:
1155
	intel_runtime_pm_put(i915, wakeref);
1156
	mutex_unlock(&i915->drm.struct_mutex);
1157

1158 1159 1160
	return ret;
}

1161 1162
/**
 * Reads data from the object referenced by handle.
1163 1164 1165
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1166 1167 1168 1169 1170
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1171
		     struct drm_file *file)
1172 1173
{
	struct drm_i915_gem_pread *args = data;
1174
	struct drm_i915_gem_object *obj;
1175
	int ret;
1176

1177 1178 1179
	if (args->size == 0)
		return 0;

1180
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1181 1182 1183
		       args->size))
		return -EFAULT;

1184
	obj = i915_gem_object_lookup(file, args->handle);
1185 1186
	if (!obj)
		return -ENOENT;
1187

1188
	/* Bounds check source.  */
1189
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1190
		ret = -EINVAL;
1191
		goto out;
C
Chris Wilson 已提交
1192 1193
	}

C
Chris Wilson 已提交
1194 1195
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1196 1197 1198 1199
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1200
	if (ret)
1201
		goto out;
1202

1203
	ret = i915_gem_object_pin_pages(obj);
1204
	if (ret)
1205
		goto out;
1206

1207
	ret = i915_gem_shmem_pread(obj, args);
1208
	if (ret == -EFAULT || ret == -ENODEV)
1209
		ret = i915_gem_gtt_pread(obj, args);
1210

1211 1212
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1213
	i915_gem_object_put(obj);
1214
	return ret;
1215 1216
}

1217 1218
/* This is the fast write path which cannot handle
 * page faults in the source data
1219
 */
1220

1221 1222 1223 1224
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1225
{
1226
	void __iomem *vaddr;
1227
	unsigned long unwritten;
1228

1229
	/* We can use the cpu mem copy function because this is X86. */
1230 1231
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1232
						      user_data, length);
1233 1234
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1235 1236 1237
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1238 1239
		io_mapping_unmap(vaddr);
	}
1240 1241 1242 1243

	return unwritten;
}

1244 1245 1246
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1247
 * @obj: i915 GEM object
1248
 * @args: pwrite arguments structure
1249
 */
1250
static int
1251 1252
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1253
{
1254
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1255
	struct i915_ggtt *ggtt = &i915->ggtt;
1256
	intel_wakeref_t wakeref;
1257
	struct drm_mm_node node;
1258 1259 1260
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1261
	int ret;
1262

1263 1264 1265
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1266

1267 1268 1269 1270 1271 1272 1273 1274
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1275 1276
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1277 1278 1279 1280 1281
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1282
		wakeref = intel_runtime_pm_get(i915);
1283 1284
	}

C
Chris Wilson 已提交
1285
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1286 1287 1288
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1289 1290 1291
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1292
		ret = i915_vma_put_fence(vma);
1293 1294 1295 1296 1297
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1298
	if (IS_ERR(vma)) {
1299
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1300
		if (ret)
1301
			goto out_rpm;
1302
		GEM_BUG_ON(!node.allocated);
1303
	}
D
Daniel Vetter 已提交
1304 1305 1306 1307 1308

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1309 1310
	mutex_unlock(&i915->drm.struct_mutex);

1311
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1312

1313 1314 1315 1316
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1317 1318
		/* Operation in this page
		 *
1319 1320 1321
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1322
		 */
1323
		u32 page_base = node.start;
1324 1325
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1326 1327 1328
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1329 1330 1331
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1332 1333 1334 1335
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1336
		/* If we get a fault while copying data, then (presumably) our
1337 1338
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1339 1340
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1341
		 */
1342
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1343 1344 1345
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1346
		}
1347

1348 1349 1350
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1351
	}
1352
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1353 1354

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1355
out_unpin:
1356 1357
	if (node.allocated) {
		wmb();
1358
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1359 1360
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1361
		i915_vma_unpin(vma);
1362
	}
1363
out_rpm:
1364
	intel_runtime_pm_put(i915, wakeref);
1365
out_unlock:
1366
	mutex_unlock(&i915->drm.struct_mutex);
1367
	return ret;
1368 1369
}

1370 1371 1372 1373 1374
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1375
static int
1376 1377 1378
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1379
{
1380
	char *vaddr;
1381 1382
	int ret;

1383
	vaddr = kmap(page);
1384

1385 1386
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1387

1388 1389 1390
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1391

1392 1393 1394
	kunmap(page);

	return ret ? -EFAULT : 0;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1405
	unsigned int needs_clflush;
1406 1407
	unsigned int offset, idx;
	int ret;
1408

1409
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1410 1411 1412
	if (ret)
		return ret;

1413 1414 1415 1416
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1417

1418 1419 1420 1421 1422 1423 1424
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1425

1426 1427 1428 1429 1430
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1431
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1432

1433 1434 1435
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1436
		if (ret)
1437
			break;
1438

1439 1440 1441
		remain -= length;
		user_data += length;
		offset = 0;
1442
	}
1443

1444
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1445
	i915_gem_obj_finish_shmem_access(obj);
1446
	return ret;
1447 1448 1449 1450
}

/**
 * Writes data to the object referenced by handle.
1451 1452 1453
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1454 1455 1456 1457 1458
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1459
		      struct drm_file *file)
1460 1461
{
	struct drm_i915_gem_pwrite *args = data;
1462
	struct drm_i915_gem_object *obj;
1463 1464 1465 1466 1467
	int ret;

	if (args->size == 0)
		return 0;

1468
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1469 1470
		return -EFAULT;

1471
	obj = i915_gem_object_lookup(file, args->handle);
1472 1473
	if (!obj)
		return -ENOENT;
1474

1475
	/* Bounds check destination. */
1476
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1477
		ret = -EINVAL;
1478
		goto err;
C
Chris Wilson 已提交
1479 1480
	}

1481 1482 1483 1484 1485 1486
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1487 1488
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1489 1490 1491 1492 1493 1494
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1495 1496 1497 1498 1499
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1500 1501 1502
	if (ret)
		goto err;

1503
	ret = i915_gem_object_pin_pages(obj);
1504
	if (ret)
1505
		goto err;
1506

D
Daniel Vetter 已提交
1507
	ret = -EFAULT;
1508 1509 1510 1511 1512 1513
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1514
	if (!i915_gem_object_has_struct_page(obj) ||
1515
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1516 1517
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1518 1519
		 * textures). Fallback to the shmem path in that case.
		 */
1520
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1521

1522
	if (ret == -EFAULT || ret == -ENOSPC) {
1523 1524
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1525
		else
1526
			ret = i915_gem_shmem_pwrite(obj, args);
1527
	}
1528

1529
	i915_gem_object_unpin_pages(obj);
1530
err:
C
Chris Wilson 已提交
1531
	i915_gem_object_put(obj);
1532
	return ret;
1533 1534
}

1535 1536
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1537
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1538 1539 1540
	struct list_head *list;
	struct i915_vma *vma;

1541 1542
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1543
	mutex_lock(&i915->ggtt.vm.mutex);
1544
	for_each_ggtt_vma(vma, obj) {
1545 1546 1547
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1548
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1549
	}
1550
	mutex_unlock(&i915->ggtt.vm.mutex);
1551

1552
	spin_lock(&i915->mm.obj_lock);
1553
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1554 1555
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1556 1557
}

1558
/**
1559 1560
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1561 1562 1563
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1564 1565 1566
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1567
			  struct drm_file *file)
1568 1569
{
	struct drm_i915_gem_set_domain *args = data;
1570
	struct drm_i915_gem_object *obj;
1571 1572
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1573
	int err;
1574

1575
	/* Only handle setting domains to types used by the CPU. */
1576
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1577 1578 1579 1580 1581 1582 1583 1584
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1585
	obj = i915_gem_object_lookup(file, args->handle);
1586 1587
	if (!obj)
		return -ENOENT;
1588

1589 1590 1591 1592
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1593
	err = i915_gem_object_wait(obj,
1594
				   I915_WAIT_INTERRUPTIBLE |
1595
				   I915_WAIT_PRIORITY |
1596 1597 1598
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1599
	if (err)
C
Chris Wilson 已提交
1600
		goto out;
1601

T
Tina Zhang 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1615 1616 1617 1618 1619 1620 1621 1622 1623
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1624
		goto out;
1625 1626 1627

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1628
		goto out_unpin;
1629

1630 1631 1632 1633
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1634
	else
1635
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1636

1637 1638
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1639

1640
	mutex_unlock(&dev->struct_mutex);
1641

1642
	if (write_domain != 0)
1643 1644
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1645

C
Chris Wilson 已提交
1646
out_unpin:
1647
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1648 1649
out:
	i915_gem_object_put(obj);
1650
	return err;
1651 1652 1653 1654
}

/**
 * Called when user space has done writes to this buffer
1655 1656 1657
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1658 1659 1660
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1661
			 struct drm_file *file)
1662 1663
{
	struct drm_i915_gem_sw_finish *args = data;
1664
	struct drm_i915_gem_object *obj;
1665

1666
	obj = i915_gem_object_lookup(file, args->handle);
1667 1668
	if (!obj)
		return -ENOENT;
1669

T
Tina Zhang 已提交
1670 1671 1672 1673 1674
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1675
	/* Pinned buffers may be scanout, so flush the cache */
1676
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1677
	i915_gem_object_put(obj);
1678 1679

	return 0;
1680 1681 1682
}

/**
1683 1684 1685 1686 1687
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1688 1689 1690
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1701 1702 1703
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1704
		    struct drm_file *file)
1705 1706
{
	struct drm_i915_gem_mmap *args = data;
1707
	struct drm_i915_gem_object *obj;
1708 1709
	unsigned long addr;

1710 1711 1712
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1713
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1714 1715
		return -ENODEV;

1716 1717
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1718
		return -ENOENT;
1719

1720 1721 1722
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1723
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1724
		i915_gem_object_put(obj);
1725
		return -ENXIO;
1726 1727
	}

1728
	addr = vm_mmap(obj->base.filp, 0, args->size,
1729 1730
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1731 1732 1733 1734
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1735
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1736
			i915_gem_object_put(obj);
1737 1738
			return -EINTR;
		}
1739 1740 1741 1742 1743 1744 1745
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1746 1747

		/* This may race, but that's ok, it only gets set */
1748
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1749
	}
C
Chris Wilson 已提交
1750
	i915_gem_object_put(obj);
1751 1752 1753
	if (IS_ERR((void *)addr))
		return addr;

1754
	args->addr_ptr = (u64)addr;
1755 1756 1757 1758

	return 0;
}

1759
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1760
{
1761
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1762 1763
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1784 1785 1786
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1814
	return 2;
1815 1816
}

1817
static inline struct i915_ggtt_view
1818
compute_partial_view(const struct drm_i915_gem_object *obj,
1819 1820 1821 1822 1823 1824 1825 1826 1827
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1828 1829
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1830
		min_t(unsigned int, chunk,
1831
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1832 1833 1834 1835 1836 1837 1838 1839

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1840 1841
/**
 * i915_gem_fault - fault a page into the GTT
1842
 * @vmf: fault info
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1854 1855 1856
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1857
 */
1858
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1859
{
1860
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1861
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1862
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1863
	struct drm_device *dev = obj->base.dev;
1864 1865
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1866
	bool write = area->vm_flags & VM_WRITE;
1867
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1868
	struct i915_vma *vma;
1869
	pgoff_t page_offset;
1870
	int ret;
1871

1872 1873 1874 1875
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1876
	/* We don't use vmf->pgoff since that has the fake offset */
1877
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1878

C
Chris Wilson 已提交
1879 1880
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1881
	/* Try to flush the object off the GPU first without holding the lock.
1882
	 * Upon acquiring the lock, we will perform our sanity checks and then
1883 1884 1885
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1886 1887 1888 1889
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1890
	if (ret)
1891 1892
		goto err;

1893 1894 1895 1896
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1897
	wakeref = intel_runtime_pm_get(dev_priv);
1898 1899 1900 1901

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1902

1903
	/* Access to snoopable pages through the GTT is incoherent. */
1904
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1905
		ret = -EFAULT;
1906
		goto err_unlock;
1907 1908
	}

1909

1910
	/* Now pin it into the GTT as needed */
1911 1912 1913 1914
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1915 1916
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1917
		struct i915_ggtt_view view =
1918
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1919
		unsigned int flags;
1920

1921 1922 1923 1924 1925 1926
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1927 1928 1929 1930
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1931 1932 1933 1934 1935 1936
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1937
	}
C
Chris Wilson 已提交
1938 1939
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1940
		goto err_unlock;
C
Chris Wilson 已提交
1941
	}
1942

1943 1944
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1945
		goto err_unpin;
1946

1947
	ret = i915_vma_pin_fence(vma);
1948
	if (ret)
1949
		goto err_unpin;
1950

1951
	/* Finally, remap it using the new GTT offset */
1952
	ret = remap_io_mapping(area,
1953
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1954
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1955
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1956
			       &ggtt->iomap);
1957 1958
	if (ret)
		goto err_fence;
1959

1960 1961 1962 1963 1964 1965
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1966 1967
	i915_vma_set_ggtt_write(vma);

1968
err_fence:
1969
	i915_vma_unpin_fence(vma);
1970
err_unpin:
C
Chris Wilson 已提交
1971
	__i915_vma_unpin(vma);
1972
err_unlock:
1973
	mutex_unlock(&dev->struct_mutex);
1974
err_rpm:
1975
	intel_runtime_pm_put(dev_priv, wakeref);
1976
	i915_gem_object_unpin_pages(obj);
1977
err:
1978
	switch (ret) {
1979
	case -EIO:
1980 1981 1982 1983 1984 1985
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1986 1987
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
1988
		/* else: fall through */
1989
	case -EAGAIN:
D
Daniel Vetter 已提交
1990 1991 1992 1993
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1994
		 */
1995 1996
	case 0:
	case -ERESTARTSYS:
1997
	case -EINTR:
1998 1999 2000 2001 2002
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2003
		return VM_FAULT_NOPAGE;
2004
	case -ENOMEM:
2005
		return VM_FAULT_OOM;
2006
	case -ENOSPC:
2007
	case -EFAULT:
2008
		return VM_FAULT_SIGBUS;
2009
	default:
2010
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2011
		return VM_FAULT_SIGBUS;
2012 2013 2014
	}
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2026
	for_each_ggtt_vma(vma, obj)
2027 2028 2029
		i915_vma_unset_userfault(vma);
}

2030 2031 2032 2033
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2034
 * Preserve the reservation of the mmapping with the DRM core code, but
2035 2036 2037 2038 2039 2040 2041 2042 2043
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2044
void
2045
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2046
{
2047
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2048
	intel_wakeref_t wakeref;
2049

2050 2051 2052
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2053 2054 2055 2056
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2057
	 */
2058
	lockdep_assert_held(&i915->drm.struct_mutex);
2059
	wakeref = intel_runtime_pm_get(i915);
2060

2061
	if (!obj->userfault_count)
2062
		goto out;
2063

2064
	__i915_gem_object_release_mmap(obj);
2065 2066 2067 2068 2069 2070 2071 2072 2073

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2074 2075

out:
2076
	intel_runtime_pm_put(i915, wakeref);
2077 2078
}

2079
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2080
{
2081
	struct drm_i915_gem_object *obj, *on;
2082
	int i;
2083

2084 2085 2086 2087 2088 2089
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2090

2091
	list_for_each_entry_safe(obj, on,
2092 2093
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2094 2095 2096 2097 2098 2099 2100 2101

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2112 2113 2114 2115

		if (!reg->vma)
			continue;

2116
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2117 2118
		reg->dirty = true;
	}
2119 2120
}

2121 2122
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2123
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2124
	int err;
2125

2126
	err = drm_gem_create_mmap_offset(&obj->base);
2127
	if (likely(!err))
2128
		return 0;
2129

2130 2131
	/* Attempt to reap some mmap space from dead objects */
	do {
2132 2133 2134
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2135 2136
		if (err)
			break;
2137

2138
		i915_gem_drain_freed_objects(dev_priv);
2139
		err = drm_gem_create_mmap_offset(&obj->base);
2140 2141 2142 2143
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2144

2145
	return err;
2146 2147 2148 2149 2150 2151 2152
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2153
int
2154 2155
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2156 2157
		  u32 handle,
		  u64 *offset)
2158
{
2159
	struct drm_i915_gem_object *obj;
2160 2161
	int ret;

2162
	obj = i915_gem_object_lookup(file, handle);
2163 2164
	if (!obj)
		return -ENOENT;
2165

2166
	ret = i915_gem_object_create_mmap_offset(obj);
2167 2168
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2169

C
Chris Wilson 已提交
2170
	i915_gem_object_put(obj);
2171
	return ret;
2172 2173
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2195
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2196 2197
}

D
Daniel Vetter 已提交
2198 2199 2200
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2201
{
2202
	i915_gem_object_free_mmap_offset(obj);
2203

2204 2205
	if (obj->base.filp == NULL)
		return;
2206

D
Daniel Vetter 已提交
2207 2208 2209 2210 2211
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2212
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2213
	obj->mm.madv = __I915_MADV_PURGED;
2214
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2215
}
2216

2217
/* Try to discard unwanted pages */
2218
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2219
{
2220 2221
	struct address_space *mapping;

2222
	lockdep_assert_held(&obj->mm.lock);
2223
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2224

C
Chris Wilson 已提交
2225
	switch (obj->mm.madv) {
2226 2227 2228 2229 2230 2231 2232 2233 2234
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2235
	mapping = obj->base.filp->f_mapping,
2236
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2250
static void
2251 2252
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2253
{
2254
	struct sgt_iter sgt_iter;
2255
	struct pagevec pvec;
2256
	struct page *page;
2257

2258
	__i915_gem_object_release_shmem(obj, pages, true);
2259

2260
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2261

2262
	if (i915_gem_object_needs_bit17_swizzle(obj))
2263
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2264

2265 2266 2267
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2268
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2269
		if (obj->mm.dirty)
2270
			set_page_dirty(page);
2271

C
Chris Wilson 已提交
2272
		if (obj->mm.madv == I915_MADV_WILLNEED)
2273
			mark_page_accessed(page);
2274

2275 2276
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2277
	}
2278 2279
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2280
	obj->mm.dirty = false;
2281

2282 2283
	sg_free_table(pages);
	kfree(pages);
2284
}
C
Chris Wilson 已提交
2285

2286 2287 2288
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2289
	void __rcu **slot;
2290

2291
	rcu_read_lock();
C
Chris Wilson 已提交
2292 2293
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2294
	rcu_read_unlock();
2295 2296
}

2297 2298
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2299
{
2300
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2301
	struct sg_table *pages;
2302

2303
	pages = fetch_and_zero(&obj->mm.pages);
2304 2305
	if (IS_ERR_OR_NULL(pages))
		return pages;
2306

2307 2308 2309 2310
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2311
	if (obj->mm.mapping) {
2312 2313
		void *ptr;

2314
		ptr = page_mask_bits(obj->mm.mapping);
2315 2316
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2317
		else
2318 2319
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2320
		obj->mm.mapping = NULL;
2321 2322
	}

2323
	__i915_gem_object_reset_page_iter(obj);
2324 2325 2326 2327
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2328

2329 2330
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2331 2332
{
	struct sg_table *pages;
2333
	int ret;
2334 2335

	if (i915_gem_object_has_pinned_pages(obj))
2336
		return -EBUSY;
2337 2338 2339 2340 2341

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2342 2343
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2344
		goto unlock;
2345
	}
2346 2347 2348 2349 2350 2351 2352

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2363 2364 2365
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2366
	ret = 0;
2367 2368
unlock:
	mutex_unlock(&obj->mm.lock);
2369 2370

	return ret;
C
Chris Wilson 已提交
2371 2372
}

2373
bool i915_sg_trim(struct sg_table *orig_st)
2374 2375 2376 2377 2378 2379
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2380
		return false;
2381

2382
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2383
		return false;
2384 2385 2386 2387

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2388 2389 2390
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2391 2392
		new_sg = sg_next(new_sg);
	}
2393
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2394 2395 2396 2397

	sg_free_table(orig_st);

	*orig_st = new_st;
2398
	return true;
2399 2400
}

2401
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2402
{
2403
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2404 2405
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2406
	struct address_space *mapping;
2407 2408
	struct sg_table *st;
	struct scatterlist *sg;
2409
	struct sgt_iter sgt_iter;
2410
	struct page *page;
2411
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2412
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2413
	unsigned int sg_page_sizes;
2414
	struct pagevec pvec;
2415
	gfp_t noreclaim;
I
Imre Deak 已提交
2416
	int ret;
2417

2418 2419
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2420 2421 2422
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2423 2424
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2425

2426 2427 2428 2429
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2430
	if (page_count > totalram_pages())
2431 2432
		return -ENOMEM;

2433 2434
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2435
		return -ENOMEM;
2436

2437
rebuild_st:
2438 2439
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2440
		return -ENOMEM;
2441
	}
2442

2443 2444
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2445 2446 2447 2448
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2449
	mapping = obj->base.filp->f_mapping;
2450
	mapping_set_unevictable(mapping);
2451
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2452 2453
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2454 2455
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2456
	sg_page_sizes = 0;
2457
	for (i = 0; i < page_count; i++) {
2458 2459 2460 2461 2462 2463 2464
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2465
			cond_resched();
C
Chris Wilson 已提交
2466
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2467 2468 2469 2470 2471 2472 2473 2474
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2475
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2476

2477 2478
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2479 2480
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2481 2482 2483 2484
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2485
			 */
2486 2487 2488
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2489

2490 2491
				/*
				 * Our bo are always dirty and so we require
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2502
				 * this we want __GFP_RETRY_MAYFAIL.
2503
				 */
M
Michal Hocko 已提交
2504
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2505
			}
2506 2507
		} while (1);

2508 2509 2510
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2511
			if (i) {
M
Matthew Auld 已提交
2512
				sg_page_sizes |= sg->length;
2513
				sg = sg_next(sg);
2514
			}
2515 2516 2517 2518 2519 2520
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2521 2522 2523

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2524
	}
2525
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2526
		sg_page_sizes |= sg->length;
2527
		sg_mark_end(sg);
2528
	}
2529

2530 2531 2532
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2533
	ret = i915_gem_gtt_prepare_pages(obj, st);
2534
	if (ret) {
2535 2536
		/*
		 * DMA remapping failed? One possible cause is that
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2554

2555
	if (i915_gem_object_needs_bit17_swizzle(obj))
2556
		i915_gem_object_do_bit_17_swizzle(obj, st);
2557

M
Matthew Auld 已提交
2558
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2559 2560

	return 0;
2561

2562
err_sg:
2563
	sg_mark_end(sg);
2564
err_pages:
2565 2566 2567 2568 2569 2570 2571 2572
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2573 2574
	sg_free_table(st);
	kfree(st);
2575

2576 2577
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2578 2579 2580 2581 2582 2583 2584
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2585 2586 2587
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2588
	return ret;
2589 2590 2591
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2592
				 struct sg_table *pages,
M
Matthew Auld 已提交
2593
				 unsigned int sg_page_sizes)
2594
{
2595 2596 2597 2598
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2599
	lockdep_assert_held(&obj->mm.lock);
2600 2601 2602 2603 2604

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2605 2606

	if (i915_gem_object_is_tiled(obj) &&
2607
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2608 2609 2610 2611
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2612

M
Matthew Auld 已提交
2613 2614
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2615 2616

	/*
M
Matthew Auld 已提交
2617 2618 2619 2620 2621 2622
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2623 2624 2625 2626 2627 2628 2629
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2630 2631 2632 2633

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2634 2635 2636 2637
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2638
	int err;
2639 2640 2641 2642 2643 2644

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2645
	err = obj->ops->get_pages(obj);
2646
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2647

2648
	return err;
2649 2650
}

2651
/* Ensure that the associated pages are gathered from the backing storage
2652
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2653
 * multiple times before they are released by a single call to
2654
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2655 2656 2657
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2658
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2659
{
2660
	int err;
2661

2662 2663 2664
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2665

2666
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2667 2668
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2669 2670 2671
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2672

2673 2674 2675
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2676

2677 2678
unlock:
	mutex_unlock(&obj->mm.lock);
2679
	return err;
2680 2681
}

2682
/* The 'mapping' part of i915_gem_object_pin_map() below */
2683 2684
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2685 2686
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2687
	struct sg_table *sgt = obj->mm.pages;
2688 2689
	struct sgt_iter sgt_iter;
	struct page *page;
2690 2691
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2692
	unsigned long i = 0;
2693
	pgprot_t pgprot;
2694 2695 2696
	void *addr;

	/* A single page can always be kmapped */
2697
	if (n_pages == 1 && type == I915_MAP_WB)
2698 2699
		return kmap(sg_page(sgt->sgl));

2700 2701
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2702
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2703 2704 2705
		if (!pages)
			return NULL;
	}
2706

2707 2708
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2709 2710 2711 2712

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2713
	switch (type) {
2714 2715 2716
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2717 2718 2719 2720 2721 2722 2723 2724
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2725

2726
	if (pages != stack_pages)
M
Michal Hocko 已提交
2727
		kvfree(pages);
2728 2729 2730 2731 2732

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2733 2734
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2735
{
2736 2737 2738
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2739 2740
	int ret;

T
Tina Zhang 已提交
2741 2742
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2743

2744
	ret = mutex_lock_interruptible(&obj->mm.lock);
2745 2746 2747
	if (ret)
		return ERR_PTR(ret);

2748 2749 2750
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2751
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2752
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2753 2754
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2755 2756 2757
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2758

2759 2760 2761
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2762 2763
		pinned = false;
	}
2764
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2765

2766
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2767 2768 2769
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2770
			goto err_unpin;
2771
		}
2772 2773 2774 2775 2776 2777

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2778
		ptr = obj->mm.mapping = NULL;
2779 2780
	}

2781 2782 2783 2784
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2785
			goto err_unpin;
2786 2787
		}

2788
		obj->mm.mapping = page_pack_bits(ptr, type);
2789 2790
	}

2791 2792
out_unlock:
	mutex_unlock(&obj->mm.lock);
2793 2794
	return ptr;

2795 2796 2797 2798 2799
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2800 2801
}

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2819
	if (i915_gem_object_has_pages(obj))
2820 2821
		return -ENODEV;

2822 2823 2824
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2874
struct i915_request *
2875
i915_gem_find_active_request(struct intel_engine_cs *engine)
2876
{
2877
	struct i915_request *request, *active = NULL;
2878
	unsigned long flags;
2879

2880 2881 2882 2883 2884 2885
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
2886 2887
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2888 2889
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
2890
	 */
2891 2892
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2893
		if (__i915_request_completed(request, request->global_seqno))
2894
			continue;
2895

2896 2897
		active = request;
		break;
2898
	}
2899
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2900

2901
	return active;
2902 2903
}

2904
static void
2905 2906
i915_gem_retire_work_handler(struct work_struct *work)
{
2907
	struct drm_i915_private *dev_priv =
2908
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2909
	struct drm_device *dev = &dev_priv->drm;
2910

2911
	/* Come back later if the device is busy... */
2912
	if (mutex_trylock(&dev->struct_mutex)) {
2913
		i915_retire_requests(dev_priv);
2914
		mutex_unlock(&dev->struct_mutex);
2915
	}
2916

2917 2918
	/*
	 * Keep the retire handler running until we are finally idle.
2919 2920 2921
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2922
	if (READ_ONCE(dev_priv->gt.awake))
2923 2924
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2925
				   round_jiffies_up_relative(HZ));
2926
}
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

2979 2980
	destroy_rcu_head(&s->rcu);

2981 2982 2983 2984 2985 2986 2987 2988
	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

2989 2990 2991 2992 2993 2994 2995
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3012 3013 3014 3015
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3016
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3017
	unsigned int epoch = I915_EPOCH_INVALID;
3018 3019 3020 3021 3022
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3041 3042
	/*
	 * Wait for last execlists context complete, but bail out in case a
3043 3044 3045 3046 3047
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3048
	 */
3049 3050 3051 3052
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3053 3054 3055 3056

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3057
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3058 3059 3060 3061 3062 3063 3064
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3065 3066 3067 3068
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3069
	if (new_requests_since_last_retire(dev_priv))
3070
		goto out_unlock;
3071

3072
	epoch = __i915_gem_park(dev_priv);
3073

3074 3075
	assert_kernel_context_is_current(dev_priv);

3076 3077
	rearm_hangcheck = false;
out_unlock:
3078
	mutex_unlock(&dev_priv->drm.struct_mutex);
3079

3080 3081 3082 3083
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3084
	}
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
3097
			init_rcu_head(&s->rcu);
3098 3099 3100 3101 3102
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3103 3104
}

3105 3106
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3107
	struct drm_i915_private *i915 = to_i915(gem->dev);
3108 3109
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3110
	struct i915_lut_handle *lut, *ln;
3111

3112 3113 3114 3115 3116 3117
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3118
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3119 3120 3121 3122
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3123 3124 3125 3126 3127 3128 3129
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3130
			i915_vma_close(vma);
3131

3132 3133
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3134

3135 3136
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3137
	}
3138 3139

	mutex_unlock(&i915->drm.struct_mutex);
3140 3141
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3153 3154
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3155 3156 3157
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3158 3159 3160 3161 3162 3163 3164
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3165
 *  -EAGAIN: incomplete, restart syscall
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3182 3183
	ktime_t start;
	long ret;
3184

3185 3186 3187
	if (args->flags != 0)
		return -EINVAL;

3188
	obj = i915_gem_object_lookup(file, args->bo_handle);
3189
	if (!obj)
3190 3191
		return -ENOENT;

3192 3193 3194
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3195 3196 3197
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3198 3199 3200 3201 3202 3203 3204
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3215 3216 3217 3218

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3219 3220
	}

C
Chris Wilson 已提交
3221
	i915_gem_object_put(obj);
3222
	return ret;
3223 3224
}

3225 3226
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3227
{
3228 3229 3230 3231
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3232
		return timeout;
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3246
	timeout = i915_request_wait(rq, flags, timeout);
3247 3248
	i915_request_put(rq);

3249
	return timeout;
3250 3251
}

3252 3253
static int wait_for_engines(struct drm_i915_private *i915)
{
3254
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3255 3256
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3257
		GEM_TRACE_DUMP();
3258 3259
		i915_gem_set_wedged(i915);
		return -EIO;
3260 3261 3262 3263 3264
	}

	return 0;
}

3265 3266
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3267
{
3268 3269 3270
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3271

3272 3273 3274 3275
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3276
	if (flags & I915_WAIT_LOCKED) {
3277 3278
		struct i915_timeline *tl;
		int err;
3279 3280 3281 3282

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3283 3284 3285
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3286
		}
3287 3288 3289 3290 3291 3292
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3293 3294 3295 3296 3297

		err = wait_for_engines(i915);
		if (err)
			return err;

3298
		i915_retire_requests(i915);
3299
		GEM_BUG_ON(i915->gt.active_requests);
3300
	} else {
3301 3302
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3303

3304
		for_each_engine(engine, i915, id) {
3305 3306 3307 3308 3309
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3310 3311
		}
	}
3312 3313

	return 0;
3314 3315
}

3316 3317
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3318 3319 3320 3321 3322 3323 3324
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3325
	obj->write_domain = 0;
3326 3327 3328 3329
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3330
	if (!READ_ONCE(obj->pin_global))
3331 3332 3333 3334 3335 3336 3337
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3362
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3383
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3384 3385 3386 3387 3388
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3389 3390
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3391
	if (write) {
3392 3393
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3394 3395 3396 3397 3398 3399 3400
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3401 3402
/**
 * Moves a single object to the GTT read, and possibly write domain.
3403 3404
 * @obj: object to act on
 * @write: ask for write access or read only
3405 3406 3407 3408
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3409
int
3410
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3411
{
3412
	int ret;
3413

3414
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3415

3416 3417 3418 3419 3420 3421
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3422 3423 3424
	if (ret)
		return ret;

3425
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3426 3427
		return 0;

3428 3429 3430 3431 3432 3433 3434 3435
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3436
	ret = i915_gem_object_pin_pages(obj);
3437 3438 3439
	if (ret)
		return ret;

3440
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3441

3442 3443 3444 3445
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3446
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3447 3448
		mb();

3449 3450 3451
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3452 3453
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3454
	if (write) {
3455 3456
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3457
		obj->mm.dirty = true;
3458 3459
	}

C
Chris Wilson 已提交
3460
	i915_gem_object_unpin_pages(obj);
3461 3462 3463
	return 0;
}

3464 3465
/**
 * Changes the cache-level of an object across all VMA.
3466 3467
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3479 3480 3481
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3482
	struct i915_vma *vma;
3483
	int ret;
3484

3485 3486
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3487
	if (obj->cache_level == cache_level)
3488
		return 0;
3489

3490 3491 3492 3493 3494
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3495
restart:
3496
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3497 3498 3499
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3500
		if (i915_vma_is_pinned(vma)) {
3501 3502 3503 3504
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3505 3506
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3518 3519
	}

3520 3521 3522 3523 3524 3525 3526
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3527
	if (obj->bind_count) {
3528 3529 3530 3531
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3532 3533 3534 3535 3536 3537
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3538 3539 3540
		if (ret)
			return ret;

3541 3542
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3559
			for_each_ggtt_vma(vma, obj) {
3560 3561 3562 3563
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3564 3565 3566 3567 3568 3569 3570 3571
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3572 3573
		}

3574
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3575 3576 3577 3578 3579 3580 3581
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3582 3583
	}

3584
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3585
		vma->node.color = cache_level;
3586
	i915_gem_object_set_cache_coherency(obj, cache_level);
3587
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3588

3589 3590 3591
	return 0;
}

B
Ben Widawsky 已提交
3592 3593
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3594
{
B
Ben Widawsky 已提交
3595
	struct drm_i915_gem_caching *args = data;
3596
	struct drm_i915_gem_object *obj;
3597
	int err = 0;
3598

3599 3600 3601 3602 3603 3604
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3605

3606 3607 3608 3609 3610 3611
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3612 3613 3614 3615
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3616 3617 3618 3619
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3620 3621 3622
out:
	rcu_read_unlock();
	return err;
3623 3624
}

B
Ben Widawsky 已提交
3625 3626
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3627
{
3628
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3629
	struct drm_i915_gem_caching *args = data;
3630 3631
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3632
	int ret = 0;
3633

B
Ben Widawsky 已提交
3634 3635
	switch (args->caching) {
	case I915_CACHING_NONE:
3636 3637
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3638
	case I915_CACHING_CACHED:
3639 3640 3641 3642 3643 3644
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3645
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3646 3647
			return -ENODEV;

3648 3649
		level = I915_CACHE_LLC;
		break;
3650
	case I915_CACHING_DISPLAY:
3651
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3652
		break;
3653 3654 3655 3656
	default:
		return -EINVAL;
	}

3657 3658 3659 3660
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3670 3671 3672 3673 3674 3675 3676
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3677
	if (ret)
3678
		goto out;
B
Ben Widawsky 已提交
3679

3680 3681 3682
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3683 3684 3685

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3686 3687 3688

out:
	i915_gem_object_put(obj);
3689 3690 3691
	return ret;
}

3692
/*
3693 3694 3695 3696
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3697
 */
C
Chris Wilson 已提交
3698
struct i915_vma *
3699 3700
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3701 3702
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3703
{
C
Chris Wilson 已提交
3704
	struct i915_vma *vma;
3705 3706
	int ret;

3707 3708
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3709
	/* Mark the global pin early so that we account for the
3710 3711
	 * display coherency whilst setting up the cache domains.
	 */
3712
	obj->pin_global++;
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3723
	ret = i915_gem_object_set_cache_level(obj,
3724 3725
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3726 3727
	if (ret) {
		vma = ERR_PTR(ret);
3728
		goto err_unpin_global;
C
Chris Wilson 已提交
3729
	}
3730

3731 3732
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3733 3734 3735 3736
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3737
	 */
3738
	vma = ERR_PTR(-ENOSPC);
3739 3740
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3741
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3742 3743 3744 3745
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3746
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3747
	if (IS_ERR(vma))
3748
		goto err_unpin_global;
3749

3750 3751
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3752
	__i915_gem_object_flush_for_display(obj);
3753

3754 3755 3756
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3757
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3758

C
Chris Wilson 已提交
3759
	return vma;
3760

3761 3762
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3763
	return vma;
3764 3765 3766
}

void
C
Chris Wilson 已提交
3767
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3768
{
3769
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3770

3771
	if (WARN_ON(vma->obj->pin_global == 0))
3772 3773
		return;

3774
	if (--vma->obj->pin_global == 0)
3775
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3776

3777
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3778
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3779

C
Chris Wilson 已提交
3780
	i915_vma_unpin(vma);
3781 3782
}

3783 3784
/**
 * Moves a single object to the CPU read, and possibly write domain.
3785 3786
 * @obj: object to act on
 * @write: requesting write or read-only access
3787 3788 3789 3790
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3791
int
3792
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3793 3794 3795
{
	int ret;

3796
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3797

3798 3799 3800 3801 3802 3803
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3804 3805 3806
	if (ret)
		return ret;

3807
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3808

3809
	/* Flush the CPU cache if it's still invalid. */
3810
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3811
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3812
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3813 3814 3815 3816 3817
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3818
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3819 3820 3821 3822

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3823 3824
	if (write)
		__start_cpu_write(obj);
3825 3826 3827 3828

	return 0;
}

3829 3830 3831
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3832 3833 3834 3835
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3836 3837 3838
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3839
static int
3840
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3841
{
3842
	struct drm_i915_private *dev_priv = to_i915(dev);
3843
	struct drm_i915_file_private *file_priv = file->driver_priv;
3844
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3845
	struct i915_request *request, *target = NULL;
3846
	long ret;
3847

3848 3849 3850
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3851

3852
	spin_lock(&file_priv->mm.lock);
3853
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3854 3855
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3856

3857 3858 3859 3860
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3861

3862
		target = request;
3863
	}
3864
	if (target)
3865
		i915_request_get(target);
3866
	spin_unlock(&file_priv->mm.lock);
3867

3868
	if (target == NULL)
3869
		return 0;
3870

3871
	ret = i915_request_wait(target,
3872 3873
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3874
	i915_request_put(target);
3875

3876
	return ret < 0 ? ret : 0;
3877 3878
}

C
Chris Wilson 已提交
3879
struct i915_vma *
3880 3881
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3882
			 u64 size,
3883 3884
			 u64 alignment,
			 u64 flags)
3885
{
3886
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3887
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3888 3889
	struct i915_vma *vma;
	int ret;
3890

3891 3892
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3893 3894
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3925
	vma = i915_vma_instance(obj, vm, view);
3926
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3927
		return vma;
3928 3929

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3930 3931 3932
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3933

3934
			if (flags & PIN_MAPPABLE &&
3935
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3936 3937 3938
				return ERR_PTR(-ENOSPC);
		}

3939 3940
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3941 3942 3943
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3944
		     !!(flags & PIN_MAPPABLE),
3945
		     i915_vma_is_map_and_fenceable(vma));
3946 3947
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3948
			return ERR_PTR(ret);
3949 3950
	}

C
Chris Wilson 已提交
3951 3952 3953
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3954

C
Chris Wilson 已提交
3955
	return vma;
3956 3957
}

3958
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3973 3974 3975 3976 3977 3978 3979 3980 3981
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3982 3983
}

3984
static __always_inline unsigned int
3985
__busy_set_if_active(const struct dma_fence *fence,
3986 3987
		     unsigned int (*flag)(unsigned int id))
{
3988
	struct i915_request *rq;
3989

3990 3991 3992 3993
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3994
	 *
3995
	 * Note we only report on the status of native fences.
3996
	 */
3997 3998 3999 4000
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4001 4002
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4003 4004
		return 0;

4005
	return flag(rq->engine->uabi_id);
4006 4007
}

4008
static __always_inline unsigned int
4009
busy_check_reader(const struct dma_fence *fence)
4010
{
4011
	return __busy_set_if_active(fence, __busy_read_flag);
4012 4013
}

4014
static __always_inline unsigned int
4015
busy_check_writer(const struct dma_fence *fence)
4016
{
4017 4018 4019 4020
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4021 4022
}

4023 4024
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4025
		    struct drm_file *file)
4026 4027
{
	struct drm_i915_gem_busy *args = data;
4028
	struct drm_i915_gem_object *obj;
4029 4030
	struct reservation_object_list *list;
	unsigned int seq;
4031
	int err;
4032

4033
	err = -ENOENT;
4034 4035
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4036
	if (!obj)
4037
		goto out;
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4057

4058 4059
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4060

4061 4062 4063 4064
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4065

4066 4067 4068 4069 4070 4071
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4072
	}
4073

4074 4075 4076 4077
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4078 4079 4080
out:
	rcu_read_unlock();
	return err;
4081 4082 4083 4084 4085 4086
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4087
	return i915_gem_ring_throttle(dev, file_priv);
4088 4089
}

4090 4091 4092 4093
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4094
	struct drm_i915_private *dev_priv = to_i915(dev);
4095
	struct drm_i915_gem_madvise *args = data;
4096
	struct drm_i915_gem_object *obj;
4097
	int err;
4098 4099 4100 4101 4102 4103 4104 4105 4106

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4107
	obj = i915_gem_object_lookup(file_priv, args->handle);
4108 4109 4110 4111 4112 4113
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4114

4115
	if (i915_gem_object_has_pages(obj) &&
4116
	    i915_gem_object_is_tiled(obj) &&
4117
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4118 4119
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4120
			__i915_gem_object_unpin_pages(obj);
4121 4122 4123
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4124
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4125
			__i915_gem_object_pin_pages(obj);
4126 4127
			obj->mm.quirked = true;
		}
4128 4129
	}

C
Chris Wilson 已提交
4130 4131
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4132

C
Chris Wilson 已提交
4133
	/* if the object is no longer attached, discard its backing storage */
4134 4135
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4136 4137
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4138
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4139
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4140

4141
out:
4142
	i915_gem_object_put(obj);
4143
	return err;
4144 4145
}

4146
static void
4147
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4148 4149 4150 4151
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4152
	intel_fb_obj_flush(obj, ORIGIN_CS);
4153 4154
}

4155 4156
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4157
{
4158 4159
	mutex_init(&obj->mm.lock);

4160 4161 4162
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

4163
	INIT_LIST_HEAD(&obj->lut_list);
4164
	INIT_LIST_HEAD(&obj->batch_pool_link);
4165

4166 4167
	init_rcu_head(&obj->rcu);

4168 4169
	obj->ops = ops;

4170 4171 4172
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4173
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4174
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4175 4176 4177 4178

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4179

4180
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4181 4182
}

4183
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4184 4185
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4186

4187 4188
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4189 4190

	.pwrite = i915_gem_object_pwrite_gtt,
4191 4192
};

M
Matthew Auld 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4217
struct drm_i915_gem_object *
4218
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4219
{
4220
	struct drm_i915_gem_object *obj;
4221
	struct address_space *mapping;
4222
	unsigned int cache_level;
D
Daniel Vetter 已提交
4223
	gfp_t mask;
4224
	int ret;
4225

4226 4227 4228 4229 4230
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4231
	if (size >> PAGE_SHIFT > INT_MAX)
4232 4233 4234 4235 4236
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4237
	obj = i915_gem_object_alloc(dev_priv);
4238
	if (obj == NULL)
4239
		return ERR_PTR(-ENOMEM);
4240

M
Matthew Auld 已提交
4241
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4242 4243
	if (ret)
		goto fail;
4244

4245
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4246
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4247 4248 4249 4250 4251
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4252
	mapping = obj->base.filp->f_mapping;
4253
	mapping_set_gfp_mask(mapping, mask);
4254
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4255

4256
	i915_gem_object_init(obj, &i915_gem_object_ops);
4257

4258 4259
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4260

4261
	if (HAS_LLC(dev_priv))
4262
		/* On some devices, we can have the GPU use the LLC (the CPU
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4274 4275 4276
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4277

4278
	i915_gem_object_set_cache_coherency(obj, cache_level);
4279

4280 4281
	trace_i915_gem_object_create(obj);

4282
	return obj;
4283 4284 4285 4286

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4287 4288
}

4289 4290 4291 4292 4293 4294 4295 4296
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4297
	if (obj->mm.madv != I915_MADV_WILLNEED)
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4313 4314
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4315
{
4316
	struct drm_i915_gem_object *obj, *on;
4317
	intel_wakeref_t wakeref;
4318

4319
	wakeref = intel_runtime_pm_get(i915);
4320
	llist_for_each_entry_safe(obj, on, freed, freed) {
4321 4322 4323 4324
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4325 4326
		mutex_lock(&i915->drm.struct_mutex);

4327
		GEM_BUG_ON(i915_gem_object_is_active(obj));
4328
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4329 4330
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4331
			i915_vma_destroy(vma);
4332
		}
4333 4334
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4335

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4348
		mutex_unlock(&i915->drm.struct_mutex);
4349 4350

		GEM_BUG_ON(obj->bind_count);
4351
		GEM_BUG_ON(obj->userfault_count);
4352
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4353
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4354 4355 4356

		if (obj->ops->release)
			obj->ops->release(obj);
4357

4358 4359
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4360
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4361
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4362 4363 4364 4365

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4366
		reservation_object_fini(&obj->__builtin_resv);
4367 4368 4369 4370 4371
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4372

4373 4374 4375
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4376 4377
		if (on)
			cond_resched();
4378
	}
4379
	intel_runtime_pm_put(i915, wakeref);
4380 4381 4382 4383 4384 4385
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4396
		__i915_gem_free_objects(i915, freed);
4397
	}
4398 4399 4400 4401 4402 4403 4404
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4405

4406 4407
	/*
	 * All file-owned VMA should have been released by this point through
4408 4409 4410 4411 4412 4413
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4414

4415
	spin_lock(&i915->mm.free_lock);
4416
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4417 4418
		spin_unlock(&i915->mm.free_lock);

4419
		__i915_gem_free_objects(i915, freed);
4420
		if (need_resched())
4421 4422 4423
			return;

		spin_lock(&i915->mm.free_lock);
4424
	}
4425
	spin_unlock(&i915->mm.free_lock);
4426
}
4427

4428 4429 4430 4431 4432
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4433 4434 4435 4436 4437 4438 4439

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4440

4441 4442 4443 4444 4445 4446 4447 4448 4449
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4450 4451
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4452
		queue_work(i915->wq, &i915->mm.free_work);
4453
}
4454

4455 4456 4457
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4458

4459 4460 4461
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4462
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4463
		obj->mm.madv = I915_MADV_DONTNEED;
4464

4465 4466
	/*
	 * Before we free the object, make sure any pure RCU-only
4467 4468 4469 4470
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4471
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4472
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4473 4474
}

4475 4476 4477 4478
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4479 4480
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4481 4482 4483 4484 4485
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4486 4487
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4488 4489
	intel_wakeref_t wakeref;

4490 4491
	GEM_TRACE("\n");

4492
	wakeref = intel_runtime_pm_get(i915);
4493 4494 4495 4496 4497 4498 4499 4500
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4501
	if (i915_terminally_wedged(&i915->gpu_error))
4502 4503
		i915_gem_unset_wedged(i915);

4504 4505 4506 4507 4508 4509
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4510
	 * of the reset, so this could be applied to even earlier gen.
4511
	 */
4512
	intel_engines_sanitize(i915, false);
4513 4514

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4515
	intel_runtime_pm_put(i915, wakeref);
4516

4517
	mutex_lock(&i915->drm.struct_mutex);
4518 4519
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4520 4521
}

C
Chris Wilson 已提交
4522
int i915_gem_suspend(struct drm_i915_private *i915)
4523
{
4524
	intel_wakeref_t wakeref;
4525
	int ret;
4526

4527 4528
	GEM_TRACE("\n");

4529
	wakeref = intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
4530
	intel_suspend_gt_powersave(i915);
4531

4532 4533
	flush_workqueue(i915->wq);

C
Chris Wilson 已提交
4534
	mutex_lock(&i915->drm.struct_mutex);
4535

C
Chris Wilson 已提交
4536 4537
	/*
	 * We have to flush all the executing contexts to main memory so
4538 4539
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4540
	 * leaves the i915->kernel_context still active when
4541 4542 4543 4544
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
4545 4546
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
4547 4548
		if (ret)
			goto err_unlock;
4549

C
Chris Wilson 已提交
4550
		ret = i915_gem_wait_for_idle(i915,
4551
					     I915_WAIT_INTERRUPTIBLE |
4552
					     I915_WAIT_LOCKED |
4553 4554
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
4555 4556
		if (ret && ret != -EIO)
			goto err_unlock;
4557

C
Chris Wilson 已提交
4558
		assert_kernel_context_is_current(i915);
4559
	}
4560 4561
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
4562
	mutex_unlock(&i915->drm.struct_mutex);
4563
	i915_reset_flush(i915);
4564

4565
	drain_delayed_work(&i915->gt.retire_work);
4566

C
Chris Wilson 已提交
4567 4568
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4569 4570
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4571
	drain_delayed_work(&i915->gt.idle_work);
4572

4573 4574
	intel_uc_suspend(i915);

C
Chris Wilson 已提交
4575 4576
	/*
	 * Assert that we successfully flushed all the work and
4577 4578
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
4579 4580 4581
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
4582

4583
	intel_runtime_pm_put(i915, wakeref);
4584 4585 4586
	return 0;

err_unlock:
C
Chris Wilson 已提交
4587
	mutex_unlock(&i915->drm.struct_mutex);
4588
	intel_runtime_pm_put(i915, wakeref);
4589 4590 4591 4592 4593
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4594 4595 4596 4597 4598 4599 4600
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4621 4622 4623 4624 4625 4626 4627
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4628 4629
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4630 4631
}

4632
void i915_gem_resume(struct drm_i915_private *i915)
4633
{
4634 4635
	GEM_TRACE("\n");

4636
	WARN_ON(i915->gt.awake);
4637

4638 4639
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4640

4641 4642
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4643

4644 4645
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4646 4647 4648
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4649
	i915->gt.resume(i915);
4650

4651 4652 4653
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4654
	intel_uc_resume(i915);
4655

4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4666 4667 4668 4669
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
4670
	goto out_unlock;
4671 4672
}

4673
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4674
{
4675
	if (INTEL_GEN(dev_priv) < 5 ||
4676 4677 4678 4679 4680 4681
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4682
	if (IS_GEN(dev_priv, 5))
4683 4684
		return;

4685
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4686
	if (IS_GEN(dev_priv, 6))
4687
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4688
	else if (IS_GEN(dev_priv, 7))
4689
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4690
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4691
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4692 4693
	else
		BUG();
4694
}
D
Daniel Vetter 已提交
4695

4696
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4697 4698 4699 4700 4701 4702 4703
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4704
static void init_unused_rings(struct drm_i915_private *dev_priv)
4705
{
4706 4707 4708 4709 4710 4711
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4712
	} else if (IS_GEN(dev_priv, 2)) {
4713 4714
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4715
	} else if (IS_GEN(dev_priv, 3)) {
4716 4717
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4718 4719 4720
	}
}

4721
static int __i915_gem_restart_engines(void *data)
4722
{
4723
	struct drm_i915_private *i915 = data;
4724
	struct intel_engine_cs *engine;
4725
	enum intel_engine_id id;
4726 4727 4728 4729
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4730 4731 4732
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4733
			return err;
4734
		}
4735 4736 4737 4738 4739 4740 4741
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4742
	int ret;
4743

4744 4745
	dev_priv->gt.last_init_time = ktime_get();

4746 4747 4748
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4749
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4750
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4751

4752
	if (IS_HASWELL(dev_priv))
4753
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4754
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4755

4756
	/* Apply the GT workarounds... */
4757
	intel_gt_apply_workarounds(dev_priv);
4758 4759
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4760

4761
	i915_gem_init_swizzling(dev_priv);
4762

4763 4764 4765 4766 4767 4768
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4769
	init_unused_rings(dev_priv);
4770

4771
	BUG_ON(!dev_priv->kernel_context);
4772 4773 4774 4775
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
4776

4777
	ret = i915_ppgtt_init_hw(dev_priv);
4778
	if (ret) {
4779
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4780 4781 4782
		goto out;
	}

4783 4784 4785 4786 4787 4788
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4789 4790
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4791 4792
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4793
		goto out;
4794
	}
4795

4796
	intel_mocs_init_l3cc_table(dev_priv);
4797

4798 4799
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4800 4801
	if (ret)
		goto cleanup_uc;
4802

4803
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4804 4805

	return 0;
4806 4807 4808

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4809 4810 4811 4812
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
4813 4814
}

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4836
		struct i915_request *rq;
4837

4838
		rq = i915_request_alloc(engine, ctx);
4839 4840 4841 4842 4843
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4844
		err = 0;
4845 4846 4847
		if (engine->init_context)
			err = engine->init_context(rq);

4848
		i915_request_add(rq);
4849 4850 4851 4852 4853 4854 4855 4856
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

4857 4858 4859
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
4860
		goto err_active;
4861
	}
4862 4863 4864

	assert_kernel_context_is_current(i915);

4865 4866 4867 4868 4869 4870 4871 4872
	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

4873 4874
	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
4875
		void *vaddr;
4876

4877 4878
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

4879
		state = to_intel_context(ctx, engine)->state;
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4900 4901 4902

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4903
						I915_MAP_FORCE_WB);
4904 4905 4906 4907 4908 4909
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

4945 4946 4947
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
4948 4949 4950 4951 4952 4953
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4992
int i915_gem_init(struct drm_i915_private *dev_priv)
4993 4994 4995
{
	int ret;

4996 4997
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4998 4999 5000
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5001
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5002

5003
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5004
		dev_priv->gt.resume = intel_lr_context_resume;
5005
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5006 5007 5008
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5009 5010
	}

5011 5012 5013 5014
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5015
	ret = intel_uc_init_misc(dev_priv);
5016 5017 5018
	if (ret)
		return ret;

5019
	ret = intel_wopcm_init(&dev_priv->wopcm);
5020
	if (ret)
5021
		goto err_uc_misc;
5022

5023 5024 5025 5026 5027 5028
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5029
	mutex_lock(&dev_priv->drm.struct_mutex);
5030 5031
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5032
	ret = i915_gem_init_ggtt(dev_priv);
5033 5034 5035 5036
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5037

5038
	ret = i915_gem_init_scratch(dev_priv,
5039
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
5040 5041 5042 5043
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5044

5045 5046 5047 5048 5049 5050
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

5051
	ret = intel_engines_init(dev_priv);
5052 5053 5054 5055
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5056

5057 5058
	intel_init_gt_powersave(dev_priv);

5059
	ret = intel_uc_init(dev_priv);
5060
	if (ret)
5061
		goto err_pm;
5062

5063 5064 5065 5066
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5078
	ret = __intel_engines_record_defaults(dev_priv);
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5104 5105 5106 5107 5108
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5109 5110
	i915_gem_drain_workqueue(dev_priv);

5111
	mutex_lock(&dev_priv->drm.struct_mutex);
5112
	intel_uc_fini_hw(dev_priv);
5113 5114
err_uc_init:
	intel_uc_fini(dev_priv);
5115 5116 5117 5118 5119 5120 5121 5122
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
5123 5124
err_scratch:
	i915_gem_fini_scratch(dev_priv);
5125 5126 5127 5128 5129
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5130
err_uc_misc:
5131
	intel_uc_fini_misc(dev_priv);
5132

5133 5134 5135
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5136
	if (ret == -EIO) {
5137 5138
		mutex_lock(&dev_priv->drm.struct_mutex);

5139 5140
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5141 5142 5143
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5144
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5145 5146
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5147 5148
			i915_gem_set_wedged(dev_priv);
		}
5149 5150 5151 5152 5153 5154 5155 5156

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5157 5158
	}

5159
	i915_gem_drain_freed_objects(dev_priv);
5160
	return ret;
5161 5162
}

5163 5164 5165
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5166
	intel_disable_gt_powersave(dev_priv);
5167 5168 5169 5170 5171 5172 5173 5174 5175

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5176
	i915_gem_fini_scratch(dev_priv);
5177 5178
	mutex_unlock(&dev_priv->drm.struct_mutex);

5179 5180
	intel_wa_list_free(&dev_priv->gt_wa_list);

5181 5182
	intel_cleanup_gt_powersave(dev_priv);

5183 5184 5185 5186 5187 5188 5189 5190
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5191 5192 5193 5194 5195
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5196
void
5197
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5198
{
5199
	struct intel_engine_cs *engine;
5200
	enum intel_engine_id id;
5201

5202
	for_each_engine(engine, dev_priv, id)
5203
		dev_priv->gt.cleanup_engine(engine);
5204 5205
}

5206 5207 5208
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5209
	int i;
5210

5211
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5212 5213
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5214
	else if (INTEL_GEN(dev_priv) >= 4 ||
5215 5216
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5217 5218 5219 5220
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5221
	if (intel_vgpu_active(dev_priv))
5222 5223 5224 5225
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5226 5227 5228 5229 5230 5231 5232
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5233
	i915_gem_restore_fences(dev_priv);
5234

5235
	i915_gem_detect_bit_6_swizzle(dev_priv);
5236 5237
}

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5254
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5255
{
5256
	int err = -ENOMEM;
5257

5258 5259
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5260 5261
		goto err_out;

5262 5263
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5264 5265
		goto err_objects;

5266 5267 5268 5269
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5270
	dev_priv->requests = KMEM_CACHE(i915_request,
5271 5272
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5273
					SLAB_TYPESAFE_BY_RCU);
5274
	if (!dev_priv->requests)
5275
		goto err_luts;
5276

5277 5278 5279 5280 5281 5282
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5283 5284 5285 5286
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5287
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5288
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5289
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5290

5291
	i915_gem_init__mm(dev_priv);
5292

5293
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5294
			  i915_gem_retire_work_handler);
5295
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5296
			  i915_gem_idle_work_handler);
5297
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5298
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5299
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5300

5301 5302
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5303
	spin_lock_init(&dev_priv->fb_tracking.lock);
5304

M
Matthew Auld 已提交
5305 5306 5307 5308
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5309 5310
	return 0;

5311 5312
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5313 5314
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5315 5316
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5317 5318 5319 5320 5321 5322
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5323
}
5324

5325
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5326
{
5327
	i915_gem_drain_freed_objects(dev_priv);
5328 5329
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5330
	WARN_ON(dev_priv->mm.object_count);
5331 5332
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5333
	kmem_cache_destroy(dev_priv->priorities);
5334
	kmem_cache_destroy(dev_priv->dependencies);
5335
	kmem_cache_destroy(dev_priv->requests);
5336
	kmem_cache_destroy(dev_priv->luts);
5337 5338
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5339 5340 5341

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5342 5343

	i915_gemfs_fini(dev_priv);
5344 5345
}

5346 5347
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5348 5349 5350
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5351 5352 5353 5354 5355
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5356
int i915_gem_freeze_late(struct drm_i915_private *i915)
5357 5358
{
	struct drm_i915_gem_object *obj;
5359
	struct list_head *phases[] = {
5360 5361
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5362
		NULL
5363
	}, **phase;
5364

5365 5366
	/*
	 * Called just before we write the hibernation image.
5367 5368 5369 5370 5371 5372 5373 5374
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5375 5376
	 *
	 * To try and reduce the hibernation image, we manually shrink
5377
	 * the objects as well, see i915_gem_freeze()
5378 5379
	 */

5380 5381
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5382

5383 5384 5385 5386
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5387
	}
5388
	mutex_unlock(&i915->drm.struct_mutex);
5389 5390 5391 5392

	return 0;
}

5393
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5394
{
5395
	struct drm_i915_file_private *file_priv = file->driver_priv;
5396
	struct i915_request *request;
5397 5398 5399 5400 5401

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5402
	spin_lock(&file_priv->mm.lock);
5403
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5404
		request->file_priv = NULL;
5405
	spin_unlock(&file_priv->mm.lock);
5406 5407
}

5408
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5409 5410
{
	struct drm_i915_file_private *file_priv;
5411
	int ret;
5412

5413
	DRM_DEBUG("\n");
5414 5415 5416 5417 5418 5419

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5420
	file_priv->dev_priv = i915;
5421
	file_priv->file = file;
5422 5423 5424 5425

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5426
	file_priv->bsd_engine = -1;
5427
	file_priv->hang_timestamp = jiffies;
5428

5429
	ret = i915_gem_context_open(i915, file);
5430 5431
	if (ret)
		kfree(file_priv);
5432

5433
	return ret;
5434 5435
}

5436 5437
/**
 * i915_gem_track_fb - update frontbuffer tracking
5438 5439 5440
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5441 5442 5443 5444
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5445 5446 5447 5448
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5449 5450 5451 5452 5453 5454 5455
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5456
		     BITS_PER_TYPE(atomic_t));
5457

5458
	if (old) {
5459 5460
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5461 5462 5463
	}

	if (new) {
5464 5465
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5466 5467 5468
	}
}

5469 5470
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5471
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5472 5473 5474
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5475 5476 5477
	struct file *file;
	size_t offset;
	int err;
5478

5479
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5480
	if (IS_ERR(obj))
5481 5482
		return obj;

5483
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5484

5485 5486 5487 5488 5489 5490
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5491

5492 5493 5494 5495 5496
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5497

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5512 5513 5514 5515

	return obj;

fail:
5516
	i915_gem_object_put(obj);
5517
	return ERR_PTR(err);
5518
}
5519 5520 5521 5522 5523 5524

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5525
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5526 5527 5528 5529 5530
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5531
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5557 5558
		void *entry;
		unsigned long i;
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5573
		entry = xa_mk_value(idx);
5574
		for (i = 1; i < count; i++) {
5575
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5613
	 * the radix tree will contain a value entry that points
5614 5615 5616 5617 5618
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5619 5620
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5653
	if (!obj->mm.dirty)
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5669

5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5705
	pages = __i915_gem_object_unset_pages(obj);
5706

5707 5708
	obj->ops = &i915_gem_phys_ops;

5709
	err = ____i915_gem_object_get_pages(obj);
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5723 5724 5725 5726 5727
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5728 5729 5730 5731 5732
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5733 5734
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5735
#include "selftests/mock_gem_device.c"
5736
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5737
#include "selftests/huge_pages.c"
5738
#include "selftests/i915_gem_object.c"
5739
#include "selftests/i915_gem_coherency.c"
5740
#include "selftests/i915_gem.c"
5741
#endif