i915_gem.c 161.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141 142 143
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
144
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
165
	i915_timelines_park(i915);
166 167

	i915_pmu_gt_parked(i915);
168
	i915_vma_parked(i915);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

236 237
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
238
			    struct drm_file *file)
239
{
240
	struct drm_i915_private *dev_priv = to_i915(dev);
241
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
242
	struct drm_i915_gem_get_aperture *args = data;
243
	struct i915_vma *vma;
244
	u64 pinned;
245

246
	pinned = ggtt->base.reserved;
247
	mutex_lock(&dev->struct_mutex);
248
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
249
		if (i915_vma_is_pinned(vma))
250
			pinned += vma->node.size;
251
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
252
		if (i915_vma_is_pinned(vma))
253
			pinned += vma->node.size;
254
	mutex_unlock(&dev->struct_mutex);
255

256
	args->aper_size = ggtt->base.total;
257
	args->aper_available_size = args->aper_size - pinned;
258

259 260 261
	return 0;
}

262
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
263
{
264
	struct address_space *mapping = obj->base.filp->f_mapping;
265
	drm_dma_handle_t *phys;
266 267
	struct sg_table *st;
	struct scatterlist *sg;
268
	char *vaddr;
269
	int i;
270
	int err;
271

272
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
273
		return -EINVAL;
274

275 276 277 278 279
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
280
			     roundup_pow_of_two(obj->base.size),
281 282
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
283
		return -ENOMEM;
284 285

	vaddr = phys->vaddr;
286 287 288 289 290
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
291
		if (IS_ERR(page)) {
292
			err = PTR_ERR(page);
293 294
			goto err_phys;
		}
295 296 297 298 299 300

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

301
		put_page(page);
302 303 304
		vaddr += PAGE_SIZE;
	}

305
	i915_gem_chipset_flush(to_i915(obj->base.dev));
306 307

	st = kmalloc(sizeof(*st), GFP_KERNEL);
308
	if (!st) {
309
		err = -ENOMEM;
310 311
		goto err_phys;
	}
312 313 314

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
315
		err = -ENOMEM;
316
		goto err_phys;
317 318 319 320 321
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
322

323
	sg_dma_address(sg) = phys->busaddr;
324 325
	sg_dma_len(sg) = obj->base.size;

326
	obj->phys_handle = phys;
327

328
	__i915_gem_object_set_pages(obj, st, sg->length);
329 330

	return 0;
331 332 333

err_phys:
	drm_pci_free(obj->base.dev, phys);
334 335

	return err;
336 337
}

338 339
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
340 341
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
342 343 344 345
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

346
static void
347
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
348 349
				struct sg_table *pages,
				bool needs_clflush)
350
{
C
Chris Wilson 已提交
351
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
352

C
Chris Wilson 已提交
353 354
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
355

356
	if (needs_clflush &&
357
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
358
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
359
		drm_clflush_sg(pages);
360

361
	__start_cpu_write(obj);
362 363 364 365 366 367
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
368
	__i915_gem_object_release_shmem(obj, pages, false);
369

C
Chris Wilson 已提交
370
	if (obj->mm.dirty) {
371
		struct address_space *mapping = obj->base.filp->f_mapping;
372
		char *vaddr = obj->phys_handle->vaddr;
373 374 375
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
376 377 378 379 380 381 382 383 384 385 386 387 388
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
389
			if (obj->mm.madv == I915_MADV_WILLNEED)
390
				mark_page_accessed(page);
391
			put_page(page);
392 393
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
394
		obj->mm.dirty = false;
395 396
	}

397 398
	sg_free_table(pages);
	kfree(pages);
399 400

	drm_pci_free(obj->base.dev, obj->phys_handle);
401 402 403 404 405
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
406
	i915_gem_object_unpin_pages(obj);
407 408 409 410 411 412 413 414
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

415 416
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

417
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
418 419 420
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
421 422 423
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
424

425 426 427 428
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
429
	 */
430
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
431 432 433
	if (ret)
		return ret;

434 435 436 437 438 439 440 441 442 443 444 445 446
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

447 448 449 450
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
451
			   struct intel_rps_client *rps_client)
452
{
453
	struct i915_request *rq;
454

455
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
456

457 458 459 460 461 462 463 464 465
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
466
	if (i915_request_completed(rq))
467 468
		goto out;

469 470
	/*
	 * This client is about to stall waiting for the GPU. In many cases
471 472 473 474 475 476 477 478 479 480 481 482 483 484
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
485
	if (rps_client && !i915_request_started(rq)) {
486
		if (INTEL_GEN(rq->i915) >= 6)
487
			gen6_rps_boost(rq, rps_client);
488 489
	}

490
	timeout = i915_request_wait(rq, flags, timeout);
491 492

out:
493 494
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
495 496 497 498 499 500 501 502

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
503
				 struct intel_rps_client *rps_client)
504
{
505
	unsigned int seq = __read_seqcount_begin(&resv->seq);
506
	struct dma_fence *excl;
507
	bool prune_fences = false;
508 509 510 511

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
512 513
		int ret;

514 515
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
516 517 518
		if (ret)
			return ret;

519 520 521
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
522
							     rps_client);
523
			if (timeout < 0)
524
				break;
525

526 527 528 529 530 531
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
532

533 534 535 536 537 538 539 540 541
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
542
		prune_fences = count && timeout >= 0;
543 544
	} else {
		excl = reservation_object_get_excl_rcu(resv);
545 546
	}

547
	if (excl && timeout >= 0)
548 549
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
550 551 552

	dma_fence_put(excl);

553 554
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
555 556 557
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
558
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
559 560 561 562 563
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
564 565
	}

566
	return timeout;
567 568
}

569 570
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
571
{
572
	struct i915_request *rq;
573 574
	struct intel_engine_cs *engine;

575
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
576 577 578 579 580
		return;

	rq = to_request(fence);
	engine = rq->engine;

581 582
	rcu_read_lock();
	if (engine->schedule)
583
		engine->schedule(rq, attr);
584
	rcu_read_unlock();
585 586
}

587 588
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
589 590 591 592 593 594 595
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
596
			__fence_set_priority(array->fences[i], attr);
597
	} else {
598
		__fence_set_priority(fence, attr);
599 600 601 602 603 604
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
605
			      const struct i915_sched_attr *attr)
606 607 608 609 610 611 612 613 614 615 616 617 618 619
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
620
			fence_set_priority(shared[i], attr);
621 622 623 624 625 626 627 628 629
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
630
		fence_set_priority(excl, attr);
631 632 633 634 635
		dma_fence_put(excl);
	}
	return 0;
}

636 637 638 639 640
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
641
 * @rps_client: client (user process) to charge for any waitboosting
642
 */
643 644 645 646
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
647
		     struct intel_rps_client *rps_client)
648
{
649 650 651 652 653 654 655
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
656

657 658
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
659
						   rps_client);
660
	return timeout < 0 ? timeout : 0;
661 662 663 664 665 666
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

667
	return &fpriv->rps_client;
668 669
}

670 671 672
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
673
		     struct drm_file *file)
674 675
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
676
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
677 678 679 680

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
681
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
682 683
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
684

685
	drm_clflush_virt_range(vaddr, args->size);
686
	i915_gem_chipset_flush(to_i915(obj->base.dev));
687

688
	intel_fb_obj_flush(obj, ORIGIN_CPU);
689
	return 0;
690 691
}

692
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
693
{
694
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
695 696 697 698
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
699
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
700
	kmem_cache_free(dev_priv->objects, obj);
701 702
}

703 704
static int
i915_gem_create(struct drm_file *file,
705
		struct drm_i915_private *dev_priv,
706 707
		uint64_t size,
		uint32_t *handle_p)
708
{
709
	struct drm_i915_gem_object *obj;
710 711
	int ret;
	u32 handle;
712

713
	size = roundup(size, PAGE_SIZE);
714 715
	if (size == 0)
		return -EINVAL;
716 717

	/* Allocate the new object */
718
	obj = i915_gem_object_create(dev_priv, size);
719 720
	if (IS_ERR(obj))
		return PTR_ERR(obj);
721

722
	ret = drm_gem_handle_create(file, &obj->base, &handle);
723
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
724
	i915_gem_object_put(obj);
725 726
	if (ret)
		return ret;
727

728
	*handle_p = handle;
729 730 731
	return 0;
}

732 733 734 735 736 737
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
738
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
739
	args->size = args->pitch * args->height;
740
	return i915_gem_create(file, to_i915(dev),
741
			       args->size, &args->handle);
742 743
}

744 745 746 747 748 749
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

750 751
/**
 * Creates a new mm object and returns a handle to it.
752 753 754
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
755 756 757 758 759
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
760
	struct drm_i915_private *dev_priv = to_i915(dev);
761
	struct drm_i915_gem_create *args = data;
762

763
	i915_gem_flush_free_objects(dev_priv);
764

765
	return i915_gem_create(file, dev_priv,
766
			       args->size, &args->handle);
767 768
}

769 770 771 772 773 774 775
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

776
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
777
{
778 779 780 781 782
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
783 784 785 786 787 788 789 790 791 792
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
793 794
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
795
	 */
796

797 798
	wmb();

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

814
	if (!(obj->write_domain & flush_domains))
815 816
		return;

817
	switch (obj->write_domain) {
818
	case I915_GEM_DOMAIN_GTT:
819
		i915_gem_flush_ggtt_writes(dev_priv);
820 821 822

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
823

824
		for_each_ggtt_vma(vma, obj) {
825 826 827 828 829
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
830 831 832 833 834
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
835 836 837 838 839

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
840 841
	}

842
	obj->write_domain = 0;
843 844
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

871
static inline int
872 873
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

897 898 899 900 901 902
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
903
				    unsigned int *needs_clflush)
904 905 906
{
	int ret;

907
	lockdep_assert_held(&obj->base.dev->struct_mutex);
908

909
	*needs_clflush = 0;
910 911
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
912

913 914 915 916 917
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
918 919 920
	if (ret)
		return ret;

C
Chris Wilson 已提交
921
	ret = i915_gem_object_pin_pages(obj);
922 923 924
	if (ret)
		return ret;

925 926
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
927 928 929 930 931 932 933
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

934
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
935

936 937 938 939 940
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
941
	if (!obj->cache_dirty &&
942
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
943
		*needs_clflush = CLFLUSH_BEFORE;
944

945
out:
946
	/* return with the pages pinned */
947
	return 0;
948 949 950 951

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
952 953 954 955 956 957 958
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

959 960
	lockdep_assert_held(&obj->base.dev->struct_mutex);

961 962 963 964
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

965 966 967 968 969 970
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
971 972 973
	if (ret)
		return ret;

C
Chris Wilson 已提交
974
	ret = i915_gem_object_pin_pages(obj);
975 976 977
	if (ret)
		return ret;

978 979
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
980 981 982 983 984 985 986
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

987
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
988

989 990 991 992 993
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
994
	if (!obj->cache_dirty) {
995
		*needs_clflush |= CLFLUSH_AFTER;
996

997 998 999 1000
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1001
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1002 1003
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1004

1005
out:
1006
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1007
	obj->mm.dirty = true;
1008
	/* return with the pages pinned */
1009
	return 0;
1010 1011 1012 1013

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1014 1015
}

1016 1017 1018 1019
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1020
	if (unlikely(swizzled)) {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1038 1039 1040
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1041
shmem_pread_slow(struct page *page, int offset, int length,
1042 1043 1044 1045 1046 1047 1048 1049
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1050
		shmem_clflush_swizzled_range(vaddr + offset, length,
1051
					     page_do_bit17_swizzling);
1052 1053

	if (page_do_bit17_swizzling)
1054
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1055
	else
1056
		ret = __copy_to_user(user_data, vaddr + offset, length);
1057 1058
	kunmap(page);

1059
	return ret ? - EFAULT : 0;
1060 1061
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1138
{
1139
	void __iomem *vaddr;
1140
	unsigned long unwritten;
1141 1142

	/* We can use the cpu mem copy function because this is X86. */
1143 1144 1145 1146
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1147 1148
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1149 1150 1151 1152
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1153 1154
		io_mapping_unmap(vaddr);
	}
1155 1156 1157 1158
	return unwritten;
}

static int
1159 1160
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1161
{
1162 1163
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1164
	struct drm_mm_node node;
1165 1166 1167
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1168 1169
	int ret;

1170 1171 1172 1173 1174 1175
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1176 1177 1178
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1179 1180 1181
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1182
		ret = i915_vma_put_fence(vma);
1183 1184 1185 1186 1187
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1188
	if (IS_ERR(vma)) {
1189
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1190
		if (ret)
1191 1192
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1193 1194 1195 1196 1197 1198
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1199
	mutex_unlock(&i915->drm.struct_mutex);
1200

1201 1202 1203
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1220
					       node.start, I915_CACHE_NONE, 0);
1221 1222 1223 1224
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1225

1226
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1227
				  user_data, page_length)) {
1228 1229 1230 1231 1232 1233 1234 1235 1236
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1237
	mutex_lock(&i915->drm.struct_mutex);
1238 1239 1240 1241
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1242
				       node.start, node.size);
1243 1244
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1245
		i915_vma_unpin(vma);
1246
	}
1247 1248 1249
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1250

1251 1252 1253
	return ret;
}

1254 1255
/**
 * Reads data from the object referenced by handle.
1256 1257 1258
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1259 1260 1261 1262 1263
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1264
		     struct drm_file *file)
1265 1266
{
	struct drm_i915_gem_pread *args = data;
1267
	struct drm_i915_gem_object *obj;
1268
	int ret;
1269

1270 1271 1272 1273
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1274
		       u64_to_user_ptr(args->data_ptr),
1275 1276 1277
		       args->size))
		return -EFAULT;

1278
	obj = i915_gem_object_lookup(file, args->handle);
1279 1280
	if (!obj)
		return -ENOENT;
1281

1282
	/* Bounds check source.  */
1283
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1284
		ret = -EINVAL;
1285
		goto out;
C
Chris Wilson 已提交
1286 1287
	}

C
Chris Wilson 已提交
1288 1289
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1290 1291 1292 1293
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1294
	if (ret)
1295
		goto out;
1296

1297
	ret = i915_gem_object_pin_pages(obj);
1298
	if (ret)
1299
		goto out;
1300

1301
	ret = i915_gem_shmem_pread(obj, args);
1302
	if (ret == -EFAULT || ret == -ENODEV)
1303
		ret = i915_gem_gtt_pread(obj, args);
1304

1305 1306
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1307
	i915_gem_object_put(obj);
1308
	return ret;
1309 1310
}

1311 1312
/* This is the fast write path which cannot handle
 * page faults in the source data
1313
 */
1314

1315 1316 1317 1318
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1319
{
1320
	void __iomem *vaddr;
1321
	unsigned long unwritten;
1322

1323
	/* We can use the cpu mem copy function because this is X86. */
1324 1325
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1326
						      user_data, length);
1327 1328
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1329 1330 1331
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1332 1333
		io_mapping_unmap(vaddr);
	}
1334 1335 1336 1337

	return unwritten;
}

1338 1339 1340
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1341
 * @obj: i915 GEM object
1342
 * @args: pwrite arguments structure
1343
 */
1344
static int
1345 1346
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1347
{
1348
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1349 1350
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1351 1352 1353
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1354
	int ret;
1355

1356 1357 1358
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1377
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1378 1379 1380
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1381 1382 1383
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1384
		ret = i915_vma_put_fence(vma);
1385 1386 1387 1388 1389
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1390
	if (IS_ERR(vma)) {
1391
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1392
		if (ret)
1393
			goto out_rpm;
1394
		GEM_BUG_ON(!node.allocated);
1395
	}
D
Daniel Vetter 已提交
1396 1397 1398 1399 1400

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1401 1402
	mutex_unlock(&i915->drm.struct_mutex);

1403
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1404

1405 1406 1407 1408
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1409 1410
		/* Operation in this page
		 *
1411 1412 1413
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1414
		 */
1415
		u32 page_base = node.start;
1416 1417
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1428
		/* If we get a fault while copying data, then (presumably) our
1429 1430
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1431 1432
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1433
		 */
1434
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1435 1436 1437
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1438
		}
1439

1440 1441 1442
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1443
	}
1444
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1445 1446

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1447
out_unpin:
1448 1449 1450
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1451
				       node.start, node.size);
1452 1453
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1454
		i915_vma_unpin(vma);
1455
	}
1456
out_rpm:
1457
	intel_runtime_pm_put(i915);
1458
out_unlock:
1459
	mutex_unlock(&i915->drm.struct_mutex);
1460
	return ret;
1461 1462
}

1463
static int
1464
shmem_pwrite_slow(struct page *page, int offset, int length,
1465 1466 1467 1468
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1469
{
1470 1471
	char *vaddr;
	int ret;
1472

1473
	vaddr = kmap(page);
1474
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1475
		shmem_clflush_swizzled_range(vaddr + offset, length,
1476
					     page_do_bit17_swizzling);
1477
	if (page_do_bit17_swizzling)
1478 1479
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1480
	else
1481
		ret = __copy_from_user(vaddr + offset, user_data, length);
1482
	if (needs_clflush_after)
1483
		shmem_clflush_swizzled_range(vaddr + offset, length,
1484
					     page_do_bit17_swizzling);
1485
	kunmap(page);
1486

1487
	return ret ? -EFAULT : 0;
1488 1489
}

1490 1491 1492 1493 1494
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1495
static int
1496 1497 1498 1499
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1500
{
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1533
	unsigned int needs_clflush;
1534 1535
	unsigned int offset, idx;
	int ret;
1536

1537
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1538 1539 1540
	if (ret)
		return ret;

1541 1542 1543 1544
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1545

1546 1547 1548
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1549

1550 1551 1552 1553 1554 1555 1556
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1557

1558 1559 1560 1561 1562 1563
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1564

1565 1566 1567
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1568

1569 1570 1571 1572
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1573
		if (ret)
1574
			break;
1575

1576 1577 1578
		remain -= length;
		user_data += length;
		offset = 0;
1579
	}
1580

1581
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1582
	i915_gem_obj_finish_shmem_access(obj);
1583
	return ret;
1584 1585 1586 1587
}

/**
 * Writes data to the object referenced by handle.
1588 1589 1590
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1591 1592 1593 1594 1595
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1596
		      struct drm_file *file)
1597 1598
{
	struct drm_i915_gem_pwrite *args = data;
1599
	struct drm_i915_gem_object *obj;
1600 1601 1602 1603 1604 1605
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1606
		       u64_to_user_ptr(args->data_ptr),
1607 1608 1609
		       args->size))
		return -EFAULT;

1610
	obj = i915_gem_object_lookup(file, args->handle);
1611 1612
	if (!obj)
		return -ENOENT;
1613

1614
	/* Bounds check destination. */
1615
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1616
		ret = -EINVAL;
1617
		goto err;
C
Chris Wilson 已提交
1618 1619
	}

C
Chris Wilson 已提交
1620 1621
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1622 1623 1624 1625 1626 1627
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1628 1629 1630 1631 1632
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1633 1634 1635
	if (ret)
		goto err;

1636
	ret = i915_gem_object_pin_pages(obj);
1637
	if (ret)
1638
		goto err;
1639

D
Daniel Vetter 已提交
1640
	ret = -EFAULT;
1641 1642 1643 1644 1645 1646
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1647
	if (!i915_gem_object_has_struct_page(obj) ||
1648
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1649 1650
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1651 1652
		 * textures). Fallback to the shmem path in that case.
		 */
1653
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1654

1655
	if (ret == -EFAULT || ret == -ENOSPC) {
1656 1657
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1658
		else
1659
			ret = i915_gem_shmem_pwrite(obj, args);
1660
	}
1661

1662
	i915_gem_object_unpin_pages(obj);
1663
err:
C
Chris Wilson 已提交
1664
	i915_gem_object_put(obj);
1665
	return ret;
1666 1667
}

1668 1669 1670 1671 1672 1673
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1674 1675
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1676
	for_each_ggtt_vma(vma, obj) {
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1687
	spin_lock(&i915->mm.obj_lock);
1688
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1689 1690
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1691 1692
}

1693
/**
1694 1695
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1696 1697 1698
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1699 1700 1701
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1702
			  struct drm_file *file)
1703 1704
{
	struct drm_i915_gem_set_domain *args = data;
1705
	struct drm_i915_gem_object *obj;
1706 1707
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1708
	int err;
1709

1710
	/* Only handle setting domains to types used by the CPU. */
1711
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1712 1713 1714 1715 1716 1717 1718 1719
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1720
	obj = i915_gem_object_lookup(file, args->handle);
1721 1722
	if (!obj)
		return -ENOENT;
1723

1724 1725 1726 1727
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1728
	err = i915_gem_object_wait(obj,
1729 1730 1731 1732
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1733
	if (err)
C
Chris Wilson 已提交
1734
		goto out;
1735

T
Tina Zhang 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1749 1750 1751 1752 1753 1754 1755 1756 1757
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1758
		goto out;
1759 1760 1761

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1762
		goto out_unpin;
1763

1764 1765 1766 1767
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1768
	else
1769
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1770

1771 1772
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1773

1774
	mutex_unlock(&dev->struct_mutex);
1775

1776
	if (write_domain != 0)
1777 1778
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1779

C
Chris Wilson 已提交
1780
out_unpin:
1781
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1782 1783
out:
	i915_gem_object_put(obj);
1784
	return err;
1785 1786 1787 1788
}

/**
 * Called when user space has done writes to this buffer
1789 1790 1791
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1792 1793 1794
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1795
			 struct drm_file *file)
1796 1797
{
	struct drm_i915_gem_sw_finish *args = data;
1798
	struct drm_i915_gem_object *obj;
1799

1800
	obj = i915_gem_object_lookup(file, args->handle);
1801 1802
	if (!obj)
		return -ENOENT;
1803

T
Tina Zhang 已提交
1804 1805 1806 1807 1808
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1809
	/* Pinned buffers may be scanout, so flush the cache */
1810
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1811
	i915_gem_object_put(obj);
1812 1813

	return 0;
1814 1815 1816
}

/**
1817 1818 1819 1820 1821
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1822 1823 1824
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1835 1836 1837
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1838
		    struct drm_file *file)
1839 1840
{
	struct drm_i915_gem_mmap *args = data;
1841
	struct drm_i915_gem_object *obj;
1842 1843
	unsigned long addr;

1844 1845 1846
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1847
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1848 1849
		return -ENODEV;

1850 1851
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1852
		return -ENOENT;
1853

1854 1855 1856
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1857
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1858
		i915_gem_object_put(obj);
1859
		return -ENXIO;
1860 1861
	}

1862
	addr = vm_mmap(obj->base.filp, 0, args->size,
1863 1864
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1865 1866 1867 1868
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1869
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1870
			i915_gem_object_put(obj);
1871 1872
			return -EINTR;
		}
1873 1874 1875 1876 1877 1878 1879
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1880 1881

		/* This may race, but that's ok, it only gets set */
1882
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1883
	}
C
Chris Wilson 已提交
1884
	i915_gem_object_put(obj);
1885 1886 1887 1888 1889 1890 1891 1892
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1893 1894
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1895
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1896 1897
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1918 1919 1920
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1948
	return 2;
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1962 1963
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1964
		min_t(unsigned int, chunk,
1965
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1966 1967 1968 1969 1970 1971 1972 1973

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1974 1975
/**
 * i915_gem_fault - fault a page into the GTT
1976
 * @vmf: fault info
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1988 1989 1990
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1991
 */
1992
int i915_gem_fault(struct vm_fault *vmf)
1993
{
1994
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1995
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1996
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1997
	struct drm_device *dev = obj->base.dev;
1998 1999
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2000
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2001
	struct i915_vma *vma;
2002
	pgoff_t page_offset;
2003
	unsigned int flags;
2004
	int ret;
2005

2006
	/* We don't use vmf->pgoff since that has the fake offset */
2007
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2008

C
Chris Wilson 已提交
2009 2010
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2011
	/* Try to flush the object off the GPU first without holding the lock.
2012
	 * Upon acquiring the lock, we will perform our sanity checks and then
2013 2014 2015
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2016 2017 2018 2019
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2020
	if (ret)
2021 2022
		goto err;

2023 2024 2025 2026
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2027 2028 2029 2030 2031
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2032

2033
	/* Access to snoopable pages through the GTT is incoherent. */
2034
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2035
		ret = -EFAULT;
2036
		goto err_unlock;
2037 2038
	}

2039 2040 2041 2042 2043 2044 2045 2046
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

2047
	/* Now pin it into the GTT as needed */
2048
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2049 2050
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2051
		struct i915_ggtt_view view =
2052
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2053

2054 2055 2056 2057 2058
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2059 2060
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
2061 2062
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2063
		goto err_unlock;
C
Chris Wilson 已提交
2064
	}
2065

2066 2067
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2068
		goto err_unpin;
2069

2070
	ret = i915_vma_pin_fence(vma);
2071
	if (ret)
2072
		goto err_unpin;
2073

2074
	/* Finally, remap it using the new GTT offset */
2075
	ret = remap_io_mapping(area,
2076
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2077
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2078
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2079
			       &ggtt->iomap);
2080 2081
	if (ret)
		goto err_fence;
2082

2083 2084 2085 2086 2087 2088
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2089 2090
	i915_vma_set_ggtt_write(vma);

2091
err_fence:
2092
	i915_vma_unpin_fence(vma);
2093
err_unpin:
C
Chris Wilson 已提交
2094
	__i915_vma_unpin(vma);
2095
err_unlock:
2096
	mutex_unlock(&dev->struct_mutex);
2097 2098
err_rpm:
	intel_runtime_pm_put(dev_priv);
2099
	i915_gem_object_unpin_pages(obj);
2100
err:
2101
	switch (ret) {
2102
	case -EIO:
2103 2104 2105 2106 2107 2108 2109
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2110 2111 2112
			ret = VM_FAULT_SIGBUS;
			break;
		}
2113
	case -EAGAIN:
D
Daniel Vetter 已提交
2114 2115 2116 2117
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2118
		 */
2119 2120
	case 0:
	case -ERESTARTSYS:
2121
	case -EINTR:
2122 2123 2124 2125 2126
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2127 2128
		ret = VM_FAULT_NOPAGE;
		break;
2129
	case -ENOMEM:
2130 2131
		ret = VM_FAULT_OOM;
		break;
2132
	case -ENOSPC:
2133
	case -EFAULT:
2134 2135
		ret = VM_FAULT_SIGBUS;
		break;
2136
	default:
2137
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2138 2139
		ret = VM_FAULT_SIGBUS;
		break;
2140
	}
2141
	return ret;
2142 2143
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2155
	for_each_ggtt_vma(vma, obj)
2156 2157 2158
		i915_vma_unset_userfault(vma);
}

2159 2160 2161 2162
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2163
 * Preserve the reservation of the mmapping with the DRM core code, but
2164 2165 2166 2167 2168 2169 2170 2171 2172
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2173
void
2174
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2175
{
2176 2177
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2178 2179 2180
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2181 2182 2183 2184
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2185
	 */
2186
	lockdep_assert_held(&i915->drm.struct_mutex);
2187
	intel_runtime_pm_get(i915);
2188

2189
	if (!obj->userfault_count)
2190
		goto out;
2191

2192
	__i915_gem_object_release_mmap(obj);
2193 2194 2195 2196 2197 2198 2199 2200 2201

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2202 2203 2204

out:
	intel_runtime_pm_put(i915);
2205 2206
}

2207
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2208
{
2209
	struct drm_i915_gem_object *obj, *on;
2210
	int i;
2211

2212 2213 2214 2215 2216 2217
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2218

2219
	list_for_each_entry_safe(obj, on,
2220 2221
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2222 2223 2224 2225 2226 2227 2228 2229

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2240 2241 2242 2243

		if (!reg->vma)
			continue;

2244
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2245 2246
		reg->dirty = true;
	}
2247 2248
}

2249 2250
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2251
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2252
	int err;
2253

2254
	err = drm_gem_create_mmap_offset(&obj->base);
2255
	if (likely(!err))
2256
		return 0;
2257

2258 2259 2260 2261 2262
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2263

2264
		i915_gem_drain_freed_objects(dev_priv);
2265
		err = drm_gem_create_mmap_offset(&obj->base);
2266 2267 2268 2269
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2270

2271
	return err;
2272 2273 2274 2275 2276 2277 2278
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2279
int
2280 2281
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2282
		  uint32_t handle,
2283
		  uint64_t *offset)
2284
{
2285
	struct drm_i915_gem_object *obj;
2286 2287
	int ret;

2288
	obj = i915_gem_object_lookup(file, handle);
2289 2290
	if (!obj)
		return -ENOENT;
2291

2292
	ret = i915_gem_object_create_mmap_offset(obj);
2293 2294
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2295

C
Chris Wilson 已提交
2296
	i915_gem_object_put(obj);
2297
	return ret;
2298 2299
}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2321
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2322 2323
}

D
Daniel Vetter 已提交
2324 2325 2326
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2327
{
2328
	i915_gem_object_free_mmap_offset(obj);
2329

2330 2331
	if (obj->base.filp == NULL)
		return;
2332

D
Daniel Vetter 已提交
2333 2334 2335 2336 2337
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2338
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2339
	obj->mm.madv = __I915_MADV_PURGED;
2340
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2341
}
2342

2343
/* Try to discard unwanted pages */
2344
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2345
{
2346 2347
	struct address_space *mapping;

2348
	lockdep_assert_held(&obj->mm.lock);
2349
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2350

C
Chris Wilson 已提交
2351
	switch (obj->mm.madv) {
2352 2353 2354 2355 2356 2357 2358 2359 2360
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2361
	mapping = obj->base.filp->f_mapping,
2362
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2363 2364
}

2365
static void
2366 2367
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2368
{
2369 2370
	struct sgt_iter sgt_iter;
	struct page *page;
2371

2372
	__i915_gem_object_release_shmem(obj, pages, true);
2373

2374
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2375

2376
	if (i915_gem_object_needs_bit17_swizzle(obj))
2377
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2378

2379
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2380
		if (obj->mm.dirty)
2381
			set_page_dirty(page);
2382

C
Chris Wilson 已提交
2383
		if (obj->mm.madv == I915_MADV_WILLNEED)
2384
			mark_page_accessed(page);
2385

2386
		put_page(page);
2387
	}
C
Chris Wilson 已提交
2388
	obj->mm.dirty = false;
2389

2390 2391
	sg_free_table(pages);
	kfree(pages);
2392
}
C
Chris Wilson 已提交
2393

2394 2395 2396
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2397
	void __rcu **slot;
2398

2399
	rcu_read_lock();
C
Chris Wilson 已提交
2400 2401
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2402
	rcu_read_unlock();
2403 2404
}

2405 2406
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2407
{
2408
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2409
	struct sg_table *pages;
2410

C
Chris Wilson 已提交
2411
	if (i915_gem_object_has_pinned_pages(obj))
2412
		return;
2413

2414
	GEM_BUG_ON(obj->bind_count);
2415
	if (!i915_gem_object_has_pages(obj))
2416 2417 2418
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2419
	mutex_lock_nested(&obj->mm.lock, subclass);
2420 2421
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2422

2423 2424 2425
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2426 2427
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2428

2429 2430 2431 2432
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2433
	if (obj->mm.mapping) {
2434 2435
		void *ptr;

2436
		ptr = page_mask_bits(obj->mm.mapping);
2437 2438
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2439
		else
2440 2441
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2442
		obj->mm.mapping = NULL;
2443 2444
	}

2445 2446
	__i915_gem_object_reset_page_iter(obj);

2447 2448 2449
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2450 2451
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2452 2453
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2454 2455
}

2456
static bool i915_sg_trim(struct sg_table *orig_st)
2457 2458 2459 2460 2461 2462
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2463
		return false;
2464

2465
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2466
		return false;
2467 2468 2469 2470 2471 2472 2473

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2474
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2475 2476 2477 2478

	sg_free_table(orig_st);

	*orig_st = new_st;
2479
	return true;
2480 2481
}

2482
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2483
{
2484
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2485 2486
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2487
	struct address_space *mapping;
2488 2489
	struct sg_table *st;
	struct scatterlist *sg;
2490
	struct sgt_iter sgt_iter;
2491
	struct page *page;
2492
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2493
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2494
	unsigned int sg_page_sizes;
2495
	gfp_t noreclaim;
I
Imre Deak 已提交
2496
	int ret;
2497

C
Chris Wilson 已提交
2498 2499 2500 2501
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2502 2503
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2504

2505 2506
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2507
		return -ENOMEM;
2508

2509
rebuild_st:
2510 2511
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2512
		return -ENOMEM;
2513
	}
2514

2515 2516 2517 2518 2519
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2520
	mapping = obj->base.filp->f_mapping;
2521
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2522 2523
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2524 2525
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2526
	sg_page_sizes = 0;
2527
	for (i = 0; i < page_count; i++) {
2528 2529 2530 2531 2532 2533 2534
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2535
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2536 2537 2538 2539 2540 2541 2542 2543
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2544
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2545
			cond_resched();
2546

C
Chris Wilson 已提交
2547 2548 2549
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2550 2551 2552 2553
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2554
			 */
2555 2556 2557
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2570
				 * this we want __GFP_RETRY_MAYFAIL.
2571
				 */
M
Michal Hocko 已提交
2572
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2573
			}
2574 2575
		} while (1);

2576 2577 2578
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2579
			if (i) {
M
Matthew Auld 已提交
2580
				sg_page_sizes |= sg->length;
2581
				sg = sg_next(sg);
2582
			}
2583 2584 2585 2586 2587 2588
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2589 2590 2591

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2592
	}
2593
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2594
		sg_page_sizes |= sg->length;
2595
		sg_mark_end(sg);
2596
	}
2597

2598 2599 2600
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2601
	ret = i915_gem_gtt_prepare_pages(obj, st);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2621

2622
	if (i915_gem_object_needs_bit17_swizzle(obj))
2623
		i915_gem_object_do_bit_17_swizzle(obj, st);
2624

M
Matthew Auld 已提交
2625
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2626 2627

	return 0;
2628

2629
err_sg:
2630
	sg_mark_end(sg);
2631
err_pages:
2632 2633
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2634 2635
	sg_free_table(st);
	kfree(st);
2636 2637 2638 2639 2640 2641 2642 2643 2644

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2645 2646 2647
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2648
	return ret;
2649 2650 2651
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2652
				 struct sg_table *pages,
M
Matthew Auld 已提交
2653
				 unsigned int sg_page_sizes)
2654
{
2655 2656 2657 2658
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2659
	lockdep_assert_held(&obj->mm.lock);
2660 2661 2662 2663 2664

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2665 2666

	if (i915_gem_object_is_tiled(obj) &&
2667
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2668 2669 2670 2671
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2672

M
Matthew Auld 已提交
2673 2674
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2675 2676

	/*
M
Matthew Auld 已提交
2677 2678 2679 2680 2681 2682
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2683 2684 2685 2686 2687 2688 2689
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2690 2691 2692 2693

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2694 2695 2696 2697
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2698
	int err;
2699 2700 2701 2702 2703 2704

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2705
	err = obj->ops->get_pages(obj);
2706
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2707

2708
	return err;
2709 2710
}

2711
/* Ensure that the associated pages are gathered from the backing storage
2712
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2713
 * multiple times before they are released by a single call to
2714
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2715 2716 2717
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2718
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2719
{
2720
	int err;
2721

2722 2723 2724
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2725

2726
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2727 2728
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2729 2730 2731
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2732

2733 2734 2735
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2736

2737 2738
unlock:
	mutex_unlock(&obj->mm.lock);
2739
	return err;
2740 2741
}

2742
/* The 'mapping' part of i915_gem_object_pin_map() below */
2743 2744
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2745 2746
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2747
	struct sg_table *sgt = obj->mm.pages;
2748 2749
	struct sgt_iter sgt_iter;
	struct page *page;
2750 2751
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2752
	unsigned long i = 0;
2753
	pgprot_t pgprot;
2754 2755 2756
	void *addr;

	/* A single page can always be kmapped */
2757
	if (n_pages == 1 && type == I915_MAP_WB)
2758 2759
		return kmap(sg_page(sgt->sgl));

2760 2761
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2762
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2763 2764 2765
		if (!pages)
			return NULL;
	}
2766

2767 2768
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2769 2770 2771 2772

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2773
	switch (type) {
2774 2775 2776
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2777 2778 2779 2780 2781 2782 2783 2784
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2785

2786
	if (pages != stack_pages)
M
Michal Hocko 已提交
2787
		kvfree(pages);
2788 2789 2790 2791 2792

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2793 2794
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2795
{
2796 2797 2798
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2799 2800
	int ret;

T
Tina Zhang 已提交
2801 2802
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2803

2804
	ret = mutex_lock_interruptible(&obj->mm.lock);
2805 2806 2807
	if (ret)
		return ERR_PTR(ret);

2808 2809 2810
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2811
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2812
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2813 2814
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2815 2816 2817
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2818

2819 2820 2821
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2822 2823
		pinned = false;
	}
2824
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2825

2826
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2827 2828 2829
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2830
			goto err_unpin;
2831
		}
2832 2833 2834 2835 2836 2837

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2838
		ptr = obj->mm.mapping = NULL;
2839 2840
	}

2841 2842 2843 2844
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2845
			goto err_unpin;
2846 2847
		}

2848
		obj->mm.mapping = page_pack_bits(ptr, type);
2849 2850
	}

2851 2852
out_unlock:
	mutex_unlock(&obj->mm.lock);
2853 2854
	return ptr;

2855 2856 2857 2858 2859
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2860 2861
}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2879
	if (i915_gem_object_has_pages(obj))
2880 2881
		return -ENODEV;

2882 2883 2884
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2934
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2935
{
2936
	bool banned;
2937

2938
	atomic_inc(&ctx->guilty_count);
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2951
	if (!banned)
2952 2953
		return;

2954 2955 2956 2957 2958 2959
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2960 2961 2962 2963
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2964
	atomic_inc(&ctx->active_count);
2965 2966
}

2967
struct i915_request *
2968
i915_gem_find_active_request(struct intel_engine_cs *engine)
2969
{
2970
	struct i915_request *request, *active = NULL;
2971
	unsigned long flags;
2972

2973 2974 2975 2976 2977 2978 2979 2980
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2981 2982
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2983
		if (__i915_request_completed(request, request->global_seqno))
2984
			continue;
2985

2986
		GEM_BUG_ON(request->engine != engine);
2987 2988
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2989 2990 2991

		active = request;
		break;
2992
	}
2993
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2994

2995
	return active;
2996 2997
}

2998 2999 3000 3001
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3002
struct i915_request *
3003 3004
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3005
	struct i915_request *request = NULL;
3006

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

3028 3029
	/*
	 * Prevent request submission to the hardware until we have
3030 3031
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
3032
	 * to a second via its execlists->tasklet *just* as we are
3033
	 * calling engine->init_hw() and also writing the ELSP.
3034
	 * Turning off the execlists->tasklet until the reset is over
3035
	 * prevents the race.
3036 3037 3038 3039 3040 3041 3042
	 *
	 * Note that this needs to be a single atomic operation on the
	 * tasklet (flush existing tasks, prevent new tasks) to prevent
	 * a race between reset and set-wedged. It is not, so we do the best
	 * we can atm and make sure we don't lock the machine up in the more
	 * common case of recursively being called from set-wedged from inside
	 * i915_reset.
3043
	 */
3044 3045
	if (!atomic_read(&engine->execlists.tasklet.count))
		tasklet_kill(&engine->execlists.tasklet);
3046
	tasklet_disable(&engine->execlists.tasklet);
3047

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
	/*
	 * We're using worker to queue preemption requests from the tasklet in
	 * GuC submission mode.
	 * Even though tasklet was disabled, we may still have a worker queued.
	 * Let's make sure that all workers scheduled before disabling the
	 * tasklet are completed before continuing with the reset.
	 */
	if (engine->i915->guc.preempt_wq)
		flush_workqueue(engine->i915->guc.preempt_wq);

3058 3059 3060
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

3061 3062 3063
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3064 3065 3066 3067

	return request;
}

3068
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3069 3070
{
	struct intel_engine_cs *engine;
3071
	struct i915_request *request;
3072
	enum intel_engine_id id;
3073
	int err = 0;
3074

3075
	for_each_engine(engine, dev_priv, id) {
3076 3077 3078 3079
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3080
		}
3081 3082

		engine->hangcheck.active_request = request;
3083 3084
	}

3085
	i915_gem_revoke_fences(dev_priv);
3086
	intel_uc_sanitize(dev_priv);
3087 3088

	return err;
3089 3090
}

3091
static void skip_request(struct i915_request *request)
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3106 3107

	dma_fence_set_error(&request->fence, -EIO);
3108 3109
}

3110
static void engine_skip_context(struct i915_request *request)
3111 3112 3113
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
3114
	struct i915_timeline *timeline = request->timeline;
3115 3116
	unsigned long flags;

3117
	GEM_BUG_ON(timeline == &engine->timeline);
3118

3119
	spin_lock_irqsave(&engine->timeline.lock, flags);
3120 3121
	spin_lock(&timeline->lock);

3122
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
3123 3124 3125 3126 3127 3128 3129
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
3130
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3131 3132
}

3133
/* Returns the request if it was guilty of the hang */
3134
static struct i915_request *
3135
i915_gem_reset_request(struct intel_engine_cs *engine,
3136 3137
		       struct i915_request *request,
		       bool stalled)
3138
{
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3160 3161 3162 3163 3164 3165 3166 3167 3168
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
3169 3170
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
3171 3172 3173 3174

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
3175
	} else {
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
3187
			spin_lock_irq(&engine->timeline.lock);
3188
			request = list_prev_entry(request, link);
3189
			if (&request->link == &engine->timeline.requests)
3190
				request = NULL;
3191
			spin_unlock_irq(&engine->timeline.lock);
3192
		}
3193 3194
	}

3195
	return request;
3196 3197
}

3198
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3199 3200
			   struct i915_request *request,
			   bool stalled)
3201
{
3202 3203 3204 3205 3206 3207
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3208

3209
	if (request)
3210
		request = i915_gem_reset_request(engine, request, stalled);
3211 3212

	if (request) {
3213 3214 3215
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3216 3217 3218

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3219
}
3220

3221 3222
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3223
{
3224
	struct intel_engine_cs *engine;
3225
	enum intel_engine_id id;
3226

3227 3228
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3229
	i915_retire_requests(dev_priv);
3230

3231 3232 3233
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3234 3235
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3236
				      stalled_mask & ENGINE_MASK(id));
3237 3238
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
3239
			intel_context_unpin(ctx, engine);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3251
		if (intel_engine_is_idle(engine)) {
3252
			struct i915_request *rq;
3253

3254 3255
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3256
			if (!IS_ERR(rq))
3257
				__i915_request_add(rq, false);
3258
		}
3259
	}
3260

3261
	i915_gem_restore_fences(dev_priv);
3262 3263
}

3264 3265
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3266
	tasklet_enable(&engine->execlists.tasklet);
3267
	kthread_unpark(engine->breadcrumbs.signaler);
3268 3269

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3270 3271
}

3272 3273
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3274 3275 3276
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3277
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3278

3279
	for_each_engine(engine, dev_priv, id) {
3280
		engine->hangcheck.active_request = NULL;
3281
		i915_gem_reset_finish_engine(engine);
3282
	}
3283 3284
}

3285
static void nop_submit_request(struct i915_request *request)
3286
{
3287 3288 3289
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3290 3291
	dma_fence_set_error(&request->fence, -EIO);

3292
	i915_request_submit(request);
3293 3294
}

3295
static void nop_complete_submit_request(struct i915_request *request)
3296
{
3297 3298
	unsigned long flags;

3299 3300 3301
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3302
	dma_fence_set_error(&request->fence, -EIO);
3303

3304
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3305
	__i915_request_submit(request);
3306
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3307
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3308 3309
}

3310
void i915_gem_set_wedged(struct drm_i915_private *i915)
3311
{
3312 3313 3314
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3315 3316
	GEM_TRACE("start\n");

3317
	if (GEM_SHOW_DEBUG()) {
3318 3319 3320 3321 3322 3323
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3324 3325 3326
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3327 3328 3329 3330 3331
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3332 3333
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3334

3335
		engine->submit_request = nop_submit_request;
3336
		engine->schedule = NULL;
3337
	}
3338
	i915->caps.scheduler = 0;
3339

3340 3341 3342
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3343 3344 3345 3346
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3347
	 */
3348
	synchronize_rcu();
3349

3350 3351 3352
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3365
	 */
3366
	synchronize_rcu();
3367

3368 3369
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3370

3371 3372
		/*
		 * Mark all pending requests as complete so that any concurrent
3373 3374 3375
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3376
		spin_lock_irqsave(&engine->timeline.lock, flags);
3377 3378
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3379
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3380 3381

		i915_gem_reset_finish_engine(engine);
3382
	}
3383

3384 3385
	GEM_TRACE("end\n");

3386
	wake_up_all(&i915->gpu_error.reset_queue);
3387 3388
}

3389 3390
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3391
	struct i915_timeline *tl;
3392 3393 3394 3395 3396

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3397 3398
	GEM_TRACE("start\n");

3399 3400
	/*
	 * Before unwedging, make sure that all pending operations
3401 3402 3403 3404 3405 3406 3407 3408 3409
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3410
		struct i915_request *rq;
3411

3412 3413 3414 3415
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3416

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3431
	}
3432 3433
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3434

3435 3436
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3437 3438 3439 3440 3441 3442 3443 3444
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3445
	i915_gem_contexts_lost(i915);
3446

3447 3448
	GEM_TRACE("end\n");

3449 3450 3451 3452 3453 3454
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3455
static void
3456 3457
i915_gem_retire_work_handler(struct work_struct *work)
{
3458
	struct drm_i915_private *dev_priv =
3459
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3460
	struct drm_device *dev = &dev_priv->drm;
3461

3462
	/* Come back later if the device is busy... */
3463
	if (mutex_trylock(&dev->struct_mutex)) {
3464
		i915_retire_requests(dev_priv);
3465
		mutex_unlock(&dev->struct_mutex);
3466
	}
3467

3468 3469
	/*
	 * Keep the retire handler running until we are finally idle.
3470 3471 3472
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3473
	if (READ_ONCE(dev_priv->gt.awake))
3474 3475
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3476
				   round_jiffies_up_relative(HZ));
3477
}
3478

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3538 3539 3540 3541 3542 3543 3544
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3545 3546 3547 3548
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3549
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3550
	unsigned int epoch = I915_EPOCH_INVALID;
3551 3552 3553 3554 3555
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3556 3557
	/*
	 * Wait for last execlists context complete, but bail out in case a
3558 3559 3560 3561 3562
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3563
	 */
3564 3565 3566 3567
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3568 3569 3570 3571

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3572
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3573 3574 3575 3576 3577 3578 3579
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3580 3581 3582 3583
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3584
	if (new_requests_since_last_retire(dev_priv))
3585
		goto out_unlock;
3586

3587
	epoch = __i915_gem_park(dev_priv);
3588

3589 3590
	rearm_hangcheck = false;
out_unlock:
3591
	mutex_unlock(&dev_priv->drm.struct_mutex);
3592

3593 3594 3595 3596
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3597
	}
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3615 3616
}

3617 3618
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3619
	struct drm_i915_private *i915 = to_i915(gem->dev);
3620 3621
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3622
	struct i915_lut_handle *lut, *ln;
3623

3624 3625 3626 3627 3628 3629
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3630
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3631 3632 3633 3634
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3635 3636 3637 3638 3639 3640 3641
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3642
			i915_vma_close(vma);
3643

3644 3645
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3646

3647 3648
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3649
	}
3650 3651

	mutex_unlock(&i915->drm.struct_mutex);
3652 3653
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3665 3666
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3667 3668 3669
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3670 3671 3672 3673 3674 3675 3676
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3677
 *  -EAGAIN: incomplete, restart syscall
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3694 3695
	ktime_t start;
	long ret;
3696

3697 3698 3699
	if (args->flags != 0)
		return -EINVAL;

3700
	obj = i915_gem_object_lookup(file, args->bo_handle);
3701
	if (!obj)
3702 3703
		return -ENOENT;

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3725 3726 3727 3728

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3729 3730
	}

C
Chris Wilson 已提交
3731
	i915_gem_object_put(obj);
3732
	return ret;
3733 3734
}

3735
static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3736
{
3737
	return i915_gem_active_wait(&tl->last_request, flags);
3738 3739
}

3740 3741
static int wait_for_engines(struct drm_i915_private *i915)
{
3742
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3743 3744
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3745
		GEM_TRACE_DUMP();
3746 3747
		i915_gem_set_wedged(i915);
		return -EIO;
3748 3749 3750 3751 3752
	}

	return 0;
}

3753 3754
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
3755 3756 3757 3758
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3759
	if (flags & I915_WAIT_LOCKED) {
3760 3761
		struct i915_timeline *tl;
		int err;
3762 3763 3764 3765

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3766 3767 3768
			err = wait_for_timeline(tl, flags);
			if (err)
				return err;
3769
		}
3770
		i915_retire_requests(i915);
3771

3772
		return wait_for_engines(i915);
3773
	} else {
3774 3775 3776
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
		int err;
3777

3778 3779 3780 3781 3782 3783 3784 3785
		for_each_engine(engine, i915, id) {
			err = wait_for_timeline(&engine->timeline, flags);
			if (err)
				return err;
		}

		return 0;
	}
3786 3787
}

3788 3789
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3790 3791 3792 3793 3794 3795 3796
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3797
	obj->write_domain = 0;
3798 3799 3800 3801
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3802
	if (!READ_ONCE(obj->pin_global))
3803 3804 3805 3806 3807 3808 3809
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3834
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3855
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3856 3857 3858 3859 3860
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3861 3862
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3863
	if (write) {
3864 3865
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3866 3867 3868 3869 3870 3871 3872
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3873 3874
/**
 * Moves a single object to the GTT read, and possibly write domain.
3875 3876
 * @obj: object to act on
 * @write: ask for write access or read only
3877 3878 3879 3880
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3881
int
3882
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3883
{
3884
	int ret;
3885

3886
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3887

3888 3889 3890 3891 3892 3893
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3894 3895 3896
	if (ret)
		return ret;

3897
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3898 3899
		return 0;

3900 3901 3902 3903 3904 3905 3906 3907
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3908
	ret = i915_gem_object_pin_pages(obj);
3909 3910 3911
	if (ret)
		return ret;

3912
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3913

3914 3915 3916 3917
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3918
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3919 3920
		mb();

3921 3922 3923
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3924 3925
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3926
	if (write) {
3927 3928
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3929
		obj->mm.dirty = true;
3930 3931
	}

C
Chris Wilson 已提交
3932
	i915_gem_object_unpin_pages(obj);
3933 3934 3935
	return 0;
}

3936 3937
/**
 * Changes the cache-level of an object across all VMA.
3938 3939
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3951 3952 3953
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3954
	struct i915_vma *vma;
3955
	int ret;
3956

3957 3958
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3959
	if (obj->cache_level == cache_level)
3960
		return 0;
3961

3962 3963 3964 3965 3966
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3967 3968
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3969 3970 3971
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3972
		if (i915_vma_is_pinned(vma)) {
3973 3974 3975 3976
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3977 3978
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3990 3991
	}

3992 3993 3994 3995 3996 3997 3998
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3999
	if (obj->bind_count) {
4000 4001 4002 4003
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4004 4005 4006 4007 4008 4009
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4010 4011 4012
		if (ret)
			return ret;

4013 4014
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4031
			for_each_ggtt_vma(vma, obj) {
4032 4033 4034 4035
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4036 4037 4038 4039 4040 4041 4042 4043
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4044 4045
		}

4046
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4047 4048 4049 4050 4051 4052 4053
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4054 4055
	}

4056
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4057
		vma->node.color = cache_level;
4058
	i915_gem_object_set_cache_coherency(obj, cache_level);
4059
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4060

4061 4062 4063
	return 0;
}

B
Ben Widawsky 已提交
4064 4065
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4066
{
B
Ben Widawsky 已提交
4067
	struct drm_i915_gem_caching *args = data;
4068
	struct drm_i915_gem_object *obj;
4069
	int err = 0;
4070

4071 4072 4073 4074 4075 4076
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4077

4078 4079 4080 4081 4082 4083
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4084 4085 4086 4087
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4088 4089 4090 4091
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4092 4093 4094
out:
	rcu_read_unlock();
	return err;
4095 4096
}

B
Ben Widawsky 已提交
4097 4098
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4099
{
4100
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4101
	struct drm_i915_gem_caching *args = data;
4102 4103
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4104
	int ret = 0;
4105

B
Ben Widawsky 已提交
4106 4107
	switch (args->caching) {
	case I915_CACHING_NONE:
4108 4109
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4110
	case I915_CACHING_CACHED:
4111 4112 4113 4114 4115 4116
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4117
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4118 4119
			return -ENODEV;

4120 4121
		level = I915_CACHE_LLC;
		break;
4122
	case I915_CACHING_DISPLAY:
4123
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4124
		break;
4125 4126 4127 4128
	default:
		return -EINVAL;
	}

4129 4130 4131 4132
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4142 4143 4144 4145 4146 4147 4148
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4149
	if (ret)
4150
		goto out;
B
Ben Widawsky 已提交
4151

4152 4153 4154
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4155 4156 4157

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4158 4159 4160

out:
	i915_gem_object_put(obj);
4161 4162 4163
	return ret;
}

4164
/*
4165 4166 4167 4168
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4169
 */
C
Chris Wilson 已提交
4170
struct i915_vma *
4171 4172
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4173 4174
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4175
{
C
Chris Wilson 已提交
4176
	struct i915_vma *vma;
4177 4178
	int ret;

4179 4180
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4181
	/* Mark the global pin early so that we account for the
4182 4183
	 * display coherency whilst setting up the cache domains.
	 */
4184
	obj->pin_global++;
4185

4186 4187 4188 4189 4190 4191 4192 4193 4194
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4195
	ret = i915_gem_object_set_cache_level(obj,
4196 4197
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4198 4199
	if (ret) {
		vma = ERR_PTR(ret);
4200
		goto err_unpin_global;
C
Chris Wilson 已提交
4201
	}
4202

4203 4204
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4205 4206 4207 4208
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4209
	 */
4210
	vma = ERR_PTR(-ENOSPC);
4211 4212
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4213
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4214 4215 4216 4217
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4218
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4219
	if (IS_ERR(vma))
4220
		goto err_unpin_global;
4221

4222 4223
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4224
	__i915_gem_object_flush_for_display(obj);
4225

4226 4227 4228
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4229
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4230

C
Chris Wilson 已提交
4231
	return vma;
4232

4233 4234
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4235
	return vma;
4236 4237 4238
}

void
C
Chris Wilson 已提交
4239
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4240
{
4241
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4242

4243
	if (WARN_ON(vma->obj->pin_global == 0))
4244 4245
		return;

4246
	if (--vma->obj->pin_global == 0)
4247
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4248

4249
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4250
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4251

C
Chris Wilson 已提交
4252
	i915_vma_unpin(vma);
4253 4254
}

4255 4256
/**
 * Moves a single object to the CPU read, and possibly write domain.
4257 4258
 * @obj: object to act on
 * @write: requesting write or read-only access
4259 4260 4261 4262
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4263
int
4264
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4265 4266 4267
{
	int ret;

4268
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4269

4270 4271 4272 4273 4274 4275
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4276 4277 4278
	if (ret)
		return ret;

4279
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4280

4281
	/* Flush the CPU cache if it's still invalid. */
4282
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4283
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4284
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4285 4286 4287 4288 4289
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4290
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4291 4292 4293 4294

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4295 4296
	if (write)
		__start_cpu_write(obj);
4297 4298 4299 4300

	return 0;
}

4301 4302 4303
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4304 4305 4306 4307
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4308 4309 4310
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4311
static int
4312
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4313
{
4314
	struct drm_i915_private *dev_priv = to_i915(dev);
4315
	struct drm_i915_file_private *file_priv = file->driver_priv;
4316
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4317
	struct i915_request *request, *target = NULL;
4318
	long ret;
4319

4320 4321 4322
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4323

4324
	spin_lock(&file_priv->mm.lock);
4325
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4326 4327
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4328

4329 4330 4331 4332
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4333

4334
		target = request;
4335
	}
4336
	if (target)
4337
		i915_request_get(target);
4338
	spin_unlock(&file_priv->mm.lock);
4339

4340
	if (target == NULL)
4341
		return 0;
4342

4343
	ret = i915_request_wait(target,
4344 4345
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4346
	i915_request_put(target);
4347

4348
	return ret < 0 ? ret : 0;
4349 4350
}

C
Chris Wilson 已提交
4351
struct i915_vma *
4352 4353
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4354
			 u64 size,
4355 4356
			 u64 alignment,
			 u64 flags)
4357
{
4358 4359
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4360 4361
	struct i915_vma *vma;
	int ret;
4362

4363 4364
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4365 4366
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4397
	vma = i915_vma_instance(obj, vm, view);
4398
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4399
		return vma;
4400 4401

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4402 4403 4404
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4405

4406
			if (flags & PIN_MAPPABLE &&
4407
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4408 4409 4410
				return ERR_PTR(-ENOSPC);
		}

4411 4412
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4413 4414 4415
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4416
		     !!(flags & PIN_MAPPABLE),
4417
		     i915_vma_is_map_and_fenceable(vma));
4418 4419
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4420
			return ERR_PTR(ret);
4421 4422
	}

C
Chris Wilson 已提交
4423 4424 4425
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4426

C
Chris Wilson 已提交
4427
	return vma;
4428 4429
}

4430
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4445 4446 4447 4448 4449 4450 4451 4452 4453
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4454 4455
}

4456
static __always_inline unsigned int
4457
__busy_set_if_active(const struct dma_fence *fence,
4458 4459
		     unsigned int (*flag)(unsigned int id))
{
4460
	struct i915_request *rq;
4461

4462 4463 4464 4465
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4466
	 *
4467
	 * Note we only report on the status of native fences.
4468
	 */
4469 4470 4471 4472
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4473 4474
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4475 4476
		return 0;

4477
	return flag(rq->engine->uabi_id);
4478 4479
}

4480
static __always_inline unsigned int
4481
busy_check_reader(const struct dma_fence *fence)
4482
{
4483
	return __busy_set_if_active(fence, __busy_read_flag);
4484 4485
}

4486
static __always_inline unsigned int
4487
busy_check_writer(const struct dma_fence *fence)
4488
{
4489 4490 4491 4492
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4493 4494
}

4495 4496
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4497
		    struct drm_file *file)
4498 4499
{
	struct drm_i915_gem_busy *args = data;
4500
	struct drm_i915_gem_object *obj;
4501 4502
	struct reservation_object_list *list;
	unsigned int seq;
4503
	int err;
4504

4505
	err = -ENOENT;
4506 4507
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4508
	if (!obj)
4509
		goto out;
4510

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4529

4530 4531
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4532

4533 4534 4535 4536
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4537

4538 4539 4540 4541 4542 4543
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4544
	}
4545

4546 4547 4548 4549
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4550 4551 4552
out:
	rcu_read_unlock();
	return err;
4553 4554 4555 4556 4557 4558
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4559
	return i915_gem_ring_throttle(dev, file_priv);
4560 4561
}

4562 4563 4564 4565
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4566
	struct drm_i915_private *dev_priv = to_i915(dev);
4567
	struct drm_i915_gem_madvise *args = data;
4568
	struct drm_i915_gem_object *obj;
4569
	int err;
4570 4571 4572 4573 4574 4575 4576 4577 4578

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4579
	obj = i915_gem_object_lookup(file_priv, args->handle);
4580 4581 4582 4583 4584 4585
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4586

4587
	if (i915_gem_object_has_pages(obj) &&
4588
	    i915_gem_object_is_tiled(obj) &&
4589
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4590 4591
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4592
			__i915_gem_object_unpin_pages(obj);
4593 4594 4595
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4596
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4597
			__i915_gem_object_pin_pages(obj);
4598 4599
			obj->mm.quirked = true;
		}
4600 4601
	}

C
Chris Wilson 已提交
4602 4603
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4604

C
Chris Wilson 已提交
4605
	/* if the object is no longer attached, discard its backing storage */
4606 4607
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4608 4609
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4610
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4611
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4612

4613
out:
4614
	i915_gem_object_put(obj);
4615
	return err;
4616 4617
}

4618
static void
4619
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4620 4621 4622 4623
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4624
	intel_fb_obj_flush(obj, ORIGIN_CS);
4625 4626
}

4627 4628
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4629
{
4630 4631
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4632
	INIT_LIST_HEAD(&obj->vma_list);
4633
	INIT_LIST_HEAD(&obj->lut_list);
4634
	INIT_LIST_HEAD(&obj->batch_pool_link);
4635

4636 4637
	obj->ops = ops;

4638 4639 4640
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4641
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4642
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4643 4644 4645 4646

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4647

4648
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4649 4650
}

4651
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4652 4653
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4654

4655 4656
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4657 4658

	.pwrite = i915_gem_object_pwrite_gtt,
4659 4660
};

M
Matthew Auld 已提交
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4685
struct drm_i915_gem_object *
4686
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4687
{
4688
	struct drm_i915_gem_object *obj;
4689
	struct address_space *mapping;
4690
	unsigned int cache_level;
D
Daniel Vetter 已提交
4691
	gfp_t mask;
4692
	int ret;
4693

4694 4695 4696 4697 4698
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4699
	if (size >> PAGE_SHIFT > INT_MAX)
4700 4701 4702 4703 4704
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4705
	obj = i915_gem_object_alloc(dev_priv);
4706
	if (obj == NULL)
4707
		return ERR_PTR(-ENOMEM);
4708

M
Matthew Auld 已提交
4709
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4710 4711
	if (ret)
		goto fail;
4712

4713
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4714
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4715 4716 4717 4718 4719
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4720
	mapping = obj->base.filp->f_mapping;
4721
	mapping_set_gfp_mask(mapping, mask);
4722
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4723

4724
	i915_gem_object_init(obj, &i915_gem_object_ops);
4725

4726 4727
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4728

4729
	if (HAS_LLC(dev_priv))
4730
		/* On some devices, we can have the GPU use the LLC (the CPU
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4742 4743 4744
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4745

4746
	i915_gem_object_set_cache_coherency(obj, cache_level);
4747

4748 4749
	trace_i915_gem_object_create(obj);

4750
	return obj;
4751 4752 4753 4754

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4755 4756
}

4757 4758 4759 4760 4761 4762 4763 4764
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4765
	if (obj->mm.madv != I915_MADV_WILLNEED)
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4781 4782
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4783
{
4784
	struct drm_i915_gem_object *obj, *on;
4785

4786
	intel_runtime_pm_get(i915);
4787
	llist_for_each_entry_safe(obj, on, freed, freed) {
4788 4789 4790 4791
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4792 4793
		mutex_lock(&i915->drm.struct_mutex);

4794 4795 4796 4797 4798
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4799
			i915_vma_destroy(vma);
4800
		}
4801 4802
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4803

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4816
		mutex_unlock(&i915->drm.struct_mutex);
4817 4818

		GEM_BUG_ON(obj->bind_count);
4819
		GEM_BUG_ON(obj->userfault_count);
4820
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4821
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4822 4823 4824

		if (obj->ops->release)
			obj->ops->release(obj);
4825

4826 4827
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4828
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4829
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4830 4831 4832 4833

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4834
		reservation_object_fini(&obj->__builtin_resv);
4835 4836 4837 4838 4839
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4840

4841 4842 4843
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4844 4845
		if (on)
			cond_resched();
4846
	}
4847
	intel_runtime_pm_put(i915);
4848 4849 4850 4851 4852 4853
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4864
		__i915_gem_free_objects(i915, freed);
4865
	}
4866 4867 4868 4869 4870 4871 4872
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4873

4874 4875
	/*
	 * All file-owned VMA should have been released by this point through
4876 4877 4878 4879 4880 4881
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4882

4883
	spin_lock(&i915->mm.free_lock);
4884
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4885 4886
		spin_unlock(&i915->mm.free_lock);

4887
		__i915_gem_free_objects(i915, freed);
4888
		if (need_resched())
4889 4890 4891
			return;

		spin_lock(&i915->mm.free_lock);
4892
	}
4893
	spin_unlock(&i915->mm.free_lock);
4894
}
4895

4896 4897 4898 4899 4900 4901
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4902 4903 4904 4905 4906 4907 4908 4909 4910
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4911 4912
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4913
		queue_work(i915->wq, &i915->mm.free_work);
4914
}
4915

4916 4917 4918
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4919

4920 4921 4922
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4923
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4924
		obj->mm.madv = I915_MADV_DONTNEED;
4925

4926 4927
	/*
	 * Before we free the object, make sure any pure RCU-only
4928 4929 4930 4931
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4932
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4933
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4934 4935
}

4936 4937 4938 4939
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4940 4941
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4942 4943 4944 4945 4946
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4947
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4948
{
4949
	struct i915_gem_context *kernel_context = i915->kernel_context;
4950 4951 4952
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4953
	for_each_engine(engine, i915, id) {
4954
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
4955 4956
		GEM_BUG_ON(engine->last_retired_context != kernel_context);
	}
4957 4958
}

4959 4960
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4961 4962 4963 4964 4965 4966
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4967 4968 4969 4970 4971 4972
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4973
	 * of the reset, so this could be applied to even earlier gen.
4974
	 */
4975 4976
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4977 4978
}

4979
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4980
{
4981
	struct drm_device *dev = &dev_priv->drm;
4982
	int ret;
4983

4984
	intel_runtime_pm_get(dev_priv);
4985 4986
	intel_suspend_gt_powersave(dev_priv);

4987
	mutex_lock(&dev->struct_mutex);
4988 4989 4990 4991 4992 4993 4994 4995 4996

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4997 4998 4999 5000
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
5001

5002 5003 5004 5005 5006
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
5007

5008 5009
		assert_kernel_context_is_current(dev_priv);
	}
5010
	i915_gem_contexts_lost(dev_priv);
5011 5012
	mutex_unlock(&dev->struct_mutex);

5013
	intel_uc_suspend(dev_priv);
5014

5015
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5016
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5017 5018 5019 5020

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
5021
	drain_delayed_work(&dev_priv->gt.idle_work);
5022

5023 5024 5025
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5026
	WARN_ON(dev_priv->gt.awake);
5027 5028
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5029

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
5049
	intel_uc_sanitize(dev_priv);
5050
	i915_gem_sanitize(dev_priv);
5051 5052 5053

	intel_runtime_pm_put(dev_priv);
	return 0;
5054

5055
err_unlock:
5056
	mutex_unlock(&dev->struct_mutex);
5057
	intel_runtime_pm_put(dev_priv);
5058
	return ret;
5059 5060
}

5061
void i915_gem_resume(struct drm_i915_private *i915)
5062
{
5063
	WARN_ON(i915->gt.awake);
5064

5065 5066
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5067

5068 5069
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5070

5071 5072
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5073 5074 5075
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5076
	i915->gt.resume(i915);
5077

5078 5079 5080
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5081
	intel_uc_resume(i915);
5082

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5093 5094 5095 5096
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5097
	goto out_unlock;
5098 5099
}

5100
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5101
{
5102
	if (INTEL_GEN(dev_priv) < 5 ||
5103 5104 5105 5106 5107 5108
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5109
	if (IS_GEN5(dev_priv))
5110 5111
		return;

5112
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5113
	if (IS_GEN6(dev_priv))
5114
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5115
	else if (IS_GEN7(dev_priv))
5116
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5117
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5118
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5119 5120
	else
		BUG();
5121
}
D
Daniel Vetter 已提交
5122

5123
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5124 5125 5126 5127 5128 5129 5130
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5131
static void init_unused_rings(struct drm_i915_private *dev_priv)
5132
{
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5145 5146 5147
	}
}

5148
static int __i915_gem_restart_engines(void *data)
5149
{
5150
	struct drm_i915_private *i915 = data;
5151
	struct intel_engine_cs *engine;
5152
	enum intel_engine_id id;
5153 5154 5155 5156
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5157 5158 5159
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5160
			return err;
5161
		}
5162 5163 5164 5165 5166 5167 5168
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5169
	int ret;
5170

5171 5172
	dev_priv->gt.last_init_time = ktime_get();

5173 5174 5175
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5176
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5177
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5178

5179
	if (IS_HASWELL(dev_priv))
5180
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5181
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5182

5183
	if (HAS_PCH_NOP(dev_priv)) {
5184
		if (IS_IVYBRIDGE(dev_priv)) {
5185 5186 5187
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5188
		} else if (INTEL_GEN(dev_priv) >= 7) {
5189 5190 5191 5192
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5193 5194
	}

5195 5196
	intel_gt_workarounds_apply(dev_priv);

5197
	i915_gem_init_swizzling(dev_priv);
5198

5199 5200 5201 5202 5203 5204
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5205
	init_unused_rings(dev_priv);
5206

5207
	BUG_ON(!dev_priv->kernel_context);
5208 5209 5210 5211
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5212

5213
	ret = i915_ppgtt_init_hw(dev_priv);
5214
	if (ret) {
5215
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5216 5217 5218
		goto out;
	}

5219 5220 5221 5222 5223 5224
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5225 5226
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5227 5228
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5229
		goto out;
5230
	}
5231

5232
	intel_mocs_init_l3cc_table(dev_priv);
5233

5234 5235
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5236 5237
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5238
	return ret;
5239 5240
}

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5262
		struct i915_request *rq;
5263

5264
		rq = i915_request_alloc(engine, ctx);
5265 5266 5267 5268 5269
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5270
		err = 0;
5271 5272 5273
		if (engine->init_context)
			err = engine->init_context(rq);

5274
		__i915_request_add(rq, true);
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5292
		state = to_intel_context(ctx, engine)->state;
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5355
int i915_gem_init(struct drm_i915_private *dev_priv)
5356 5357 5358
{
	int ret;

5359 5360 5361 5362 5363 5364 5365 5366 5367
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5368
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5369

5370
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5371
		dev_priv->gt.resume = intel_lr_context_resume;
5372
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5373 5374 5375
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5376 5377
	}

5378 5379 5380 5381
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5382 5383 5384 5385
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5386
	ret = intel_uc_init_misc(dev_priv);
5387 5388 5389
	if (ret)
		return ret;

5390 5391 5392 5393 5394 5395
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5396
	mutex_lock(&dev_priv->drm.struct_mutex);
5397 5398
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5399
	ret = i915_gem_init_ggtt(dev_priv);
5400 5401 5402 5403
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5404

5405
	ret = i915_gem_contexts_init(dev_priv);
5406 5407 5408 5409
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5410

5411
	ret = intel_engines_init(dev_priv);
5412 5413 5414 5415
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5416

5417 5418
	intel_init_gt_powersave(dev_priv);

5419
	ret = intel_uc_init(dev_priv);
5420
	if (ret)
5421
		goto err_pm;
5422

5423 5424 5425 5426
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5438
	ret = __intel_engines_record_defaults(dev_priv);
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5467 5468
err_uc_init:
	intel_uc_fini(dev_priv);
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5482
	intel_uc_fini_misc(dev_priv);
5483

5484 5485 5486
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5487
	if (ret == -EIO) {
5488 5489
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5490 5491 5492
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5493 5494 5495 5496
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5497
		ret = 0;
5498 5499
	}

5500
	i915_gem_drain_freed_objects(dev_priv);
5501
	return ret;
5502 5503
}

5504 5505 5506 5507 5508
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5509
void
5510
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5511
{
5512
	struct intel_engine_cs *engine;
5513
	enum intel_engine_id id;
5514

5515
	for_each_engine(engine, dev_priv, id)
5516
		dev_priv->gt.cleanup_engine(engine);
5517 5518
}

5519 5520 5521
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5522
	int i;
5523

5524
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5525 5526
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5527
	else if (INTEL_GEN(dev_priv) >= 4 ||
5528 5529
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5530 5531 5532 5533
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5534
	if (intel_vgpu_active(dev_priv))
5535 5536 5537 5538
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5539 5540 5541 5542 5543 5544 5545
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5546
	i915_gem_restore_fences(dev_priv);
5547

5548
	i915_gem_detect_bit_6_swizzle(dev_priv);
5549 5550
}

5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5567
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5568
{
5569
	int err = -ENOMEM;
5570

5571 5572
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5573 5574
		goto err_out;

5575 5576
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5577 5578
		goto err_objects;

5579 5580 5581 5582
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5583
	dev_priv->requests = KMEM_CACHE(i915_request,
5584 5585
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5586
					SLAB_TYPESAFE_BY_RCU);
5587
	if (!dev_priv->requests)
5588
		goto err_luts;
5589

5590 5591 5592 5593 5594 5595
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5596 5597 5598 5599
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5600
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5601
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5602
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5603

5604
	i915_gem_init__mm(dev_priv);
5605

5606
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5607
			  i915_gem_retire_work_handler);
5608
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5609
			  i915_gem_idle_work_handler);
5610
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5611
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5612

5613 5614
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5615
	spin_lock_init(&dev_priv->fb_tracking.lock);
5616

M
Matthew Auld 已提交
5617 5618 5619 5620
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5621 5622
	return 0;

5623 5624
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5625 5626
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5627 5628
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5629 5630 5631 5632 5633 5634
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5635
}
5636

5637
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5638
{
5639
	i915_gem_drain_freed_objects(dev_priv);
5640 5641
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5642
	WARN_ON(dev_priv->mm.object_count);
5643 5644
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5645
	kmem_cache_destroy(dev_priv->priorities);
5646
	kmem_cache_destroy(dev_priv->dependencies);
5647
	kmem_cache_destroy(dev_priv->requests);
5648
	kmem_cache_destroy(dev_priv->luts);
5649 5650
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5651 5652 5653

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5654 5655

	i915_gemfs_fini(dev_priv);
5656 5657
}

5658 5659
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5660 5661 5662
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5663 5664 5665 5666 5667
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5668 5669 5670
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5671 5672 5673 5674 5675
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5686 5687
	 *
	 * To try and reduce the hibernation image, we manually shrink
5688
	 * the objects as well, see i915_gem_freeze()
5689 5690
	 */

5691
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5692
	i915_gem_drain_freed_objects(dev_priv);
5693

5694
	spin_lock(&dev_priv->mm.obj_lock);
5695
	for (p = phases; *p; p++) {
5696
		list_for_each_entry(obj, *p, mm.link)
5697
			__start_cpu_write(obj);
5698
	}
5699
	spin_unlock(&dev_priv->mm.obj_lock);
5700 5701 5702 5703

	return 0;
}

5704
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5705
{
5706
	struct drm_i915_file_private *file_priv = file->driver_priv;
5707
	struct i915_request *request;
5708 5709 5710 5711 5712

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5713
	spin_lock(&file_priv->mm.lock);
5714
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5715
		request->file_priv = NULL;
5716
	spin_unlock(&file_priv->mm.lock);
5717 5718
}

5719
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5720 5721
{
	struct drm_i915_file_private *file_priv;
5722
	int ret;
5723

5724
	DRM_DEBUG("\n");
5725 5726 5727 5728 5729 5730

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5731
	file_priv->dev_priv = i915;
5732
	file_priv->file = file;
5733 5734 5735 5736

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5737
	file_priv->bsd_engine = -1;
5738

5739
	ret = i915_gem_context_open(i915, file);
5740 5741
	if (ret)
		kfree(file_priv);
5742

5743
	return ret;
5744 5745
}

5746 5747
/**
 * i915_gem_track_fb - update frontbuffer tracking
5748 5749 5750
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5751 5752 5753 5754
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5755 5756 5757 5758
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5759 5760 5761 5762 5763 5764 5765 5766 5767
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5768
	if (old) {
5769 5770
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5771 5772 5773
	}

	if (new) {
5774 5775
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5776 5777 5778
	}
}

5779 5780
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5781
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5782 5783 5784
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5785 5786 5787
	struct file *file;
	size_t offset;
	int err;
5788

5789
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5790
	if (IS_ERR(obj))
5791 5792
		return obj;

5793
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5794

5795 5796 5797 5798 5799 5800
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5801

5802 5803 5804 5805 5806
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5807

5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5822 5823 5824 5825

	return obj;

fail:
5826
	i915_gem_object_put(obj);
5827
	return ERR_PTR(err);
5828
}
5829 5830 5831 5832 5833 5834

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5835
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5836 5837 5838 5839 5840
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5841
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5966
	if (!obj->mm.dirty)
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5982

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

6029 6030
	obj->ops = &i915_gem_phys_ops;

6031
	err = ____i915_gem_object_get_pages(obj);
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6051 6052
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6053
#include "selftests/mock_gem_device.c"
6054
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6055
#include "selftests/huge_pages.c"
6056
#include "selftests/i915_gem_object.c"
6057
#include "selftests/i915_gem_coherency.c"
6058
#endif