i915_gem.c 143.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/drm_pci.h>
30
#include <drm/i915_drm.h>
31
#include <linux/dma-fence-array.h>
32
#include <linux/kthread.h>
33
#include <linux/reservation.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/stop_machine.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40
#include <linux/mman.h>
41

42 43 44
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
45
#include "i915_globals.h"
46 47 48 49 50 51 52 53 54
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"

55
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
56

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59
	if (obj->cache_dirty)
60 61
		return false;

62
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
63 64
		return true;

65
	return obj->pin_global; /* currently in use by HW, keep flushed */
66 67
}

68
static int
69
insert_mappable_node(struct i915_ggtt *ggtt,
70 71 72
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
73
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 75 76
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
77 78 79 80 81 82 83 84
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87
				  u64 size)
88
{
89
	spin_lock(&dev_priv->mm.object_stat_lock);
90 91
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
92
	spin_unlock(&dev_priv->mm.object_stat_lock);
93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96
				     u64 size)
97
{
98
	spin_lock(&dev_priv->mm.object_stat_lock);
99 100
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
101
	spin_unlock(&dev_priv->mm.object_stat_lock);
102 103
}

104
static void __i915_gem_park(struct drm_i915_private *i915)
105
{
C
Chris Wilson 已提交
106 107
	intel_wakeref_t wakeref;

108 109
	GEM_TRACE("\n");

110 111
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
112
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
113 114

	if (!i915->gt.awake)
115
		return;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
131
	i915_timelines_park(i915);
132 133

	i915_pmu_gt_parked(i915);
134
	i915_vma_parked(i915);
135

C
Chris Wilson 已提交
136 137
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
138 139 140 141

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

142
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
143

144
	i915_globals_park();
145 146 147 148
}

void i915_gem_park(struct drm_i915_private *i915)
{
149 150
	GEM_TRACE("\n");

151 152 153 154 155 156 157 158 159 160 161 162
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
163 164
	GEM_TRACE("\n");

165 166
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
167
	assert_rpm_wakelock_held(i915);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
183 184
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
185

186 187
	i915_globals_unpark();

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

203 204
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
205
			    struct drm_file *file)
206
{
207
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
208
	struct drm_i915_gem_get_aperture *args = data;
209
	struct i915_vma *vma;
210
	u64 pinned;
211

212 213
	mutex_lock(&ggtt->vm.mutex);

214
	pinned = ggtt->vm.reserved;
215
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
216
		if (i915_vma_is_pinned(vma))
217
			pinned += vma->node.size;
218 219

	mutex_unlock(&ggtt->vm.mutex);
220

221
	args->aper_size = ggtt->vm.total;
222
	args->aper_available_size = args->aper_size - pinned;
223

224 225 226
	return 0;
}

227
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
228
{
229
	struct address_space *mapping = obj->base.filp->f_mapping;
230
	drm_dma_handle_t *phys;
231 232
	struct sg_table *st;
	struct scatterlist *sg;
233
	char *vaddr;
234
	int i;
235
	int err;
236

237
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
238
		return -EINVAL;
239

240 241 242 243 244
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
245
			     roundup_pow_of_two(obj->base.size),
246 247
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
248
		return -ENOMEM;
249 250

	vaddr = phys->vaddr;
251 252 253 254 255
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
256
		if (IS_ERR(page)) {
257
			err = PTR_ERR(page);
258 259
			goto err_phys;
		}
260 261 262 263 264 265

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

266
		put_page(page);
267 268 269
		vaddr += PAGE_SIZE;
	}

270
	i915_gem_chipset_flush(to_i915(obj->base.dev));
271 272

	st = kmalloc(sizeof(*st), GFP_KERNEL);
273
	if (!st) {
274
		err = -ENOMEM;
275 276
		goto err_phys;
	}
277 278 279

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
280
		err = -ENOMEM;
281
		goto err_phys;
282 283 284 285 286
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
287

288
	sg_dma_address(sg) = phys->busaddr;
289 290
	sg_dma_len(sg) = obj->base.size;

291
	obj->phys_handle = phys;
292

293
	__i915_gem_object_set_pages(obj, st, sg->length);
294 295

	return 0;
296 297 298

err_phys:
	drm_pci_free(obj->base.dev, phys);
299 300

	return err;
301 302
}

303 304
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
305 306
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
307 308 309 310
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

311
void
312
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
313 314
				struct sg_table *pages,
				bool needs_clflush)
315
{
C
Chris Wilson 已提交
316
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
317

C
Chris Wilson 已提交
318 319
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
320

321
	if (needs_clflush &&
322
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
323
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
324
		drm_clflush_sg(pages);
325

326
	__start_cpu_write(obj);
327 328 329 330 331 332
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
333
	__i915_gem_object_release_shmem(obj, pages, false);
334

C
Chris Wilson 已提交
335
	if (obj->mm.dirty) {
336
		struct address_space *mapping = obj->base.filp->f_mapping;
337
		char *vaddr = obj->phys_handle->vaddr;
338 339 340
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
341 342 343 344 345 346 347 348 349 350 351 352 353
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
354
			if (obj->mm.madv == I915_MADV_WILLNEED)
355
				mark_page_accessed(page);
356
			put_page(page);
357 358
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
359
		obj->mm.dirty = false;
360 361
	}

362 363
	sg_free_table(pages);
	kfree(pages);
364 365

	drm_pci_free(obj->base.dev, obj->phys_handle);
366 367 368 369 370
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
371
	i915_gem_object_unpin_pages(obj);
372 373 374 375 376 377 378 379
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

380 381
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

382
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
383 384 385
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
386 387 388
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
389

390 391 392 393
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
394
	 */
395
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
396 397 398
	if (ret)
		return ret;

399 400 401 402
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
403
		list_move_tail(&vma->obj_link, &still_in_list);
404 405
		spin_unlock(&obj->vma.lock);

406
		ret = i915_vma_unbind(vma);
407 408

		spin_lock(&obj->vma.lock);
409
	}
410 411
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
412 413 414 415

	return ret;
}

416 417 418
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
419
			   long timeout)
420
{
421
	struct i915_request *rq;
422

423
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
424

425 426 427 428 429 430 431 432 433
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
434
	if (i915_request_completed(rq))
435 436
		goto out;

437
	timeout = i915_request_wait(rq, flags, timeout);
438 439

out:
440 441
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
442 443 444 445 446 447 448

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
449
				 long timeout)
450
{
451
	unsigned int seq = __read_seqcount_begin(&resv->seq);
452
	struct dma_fence *excl;
453
	bool prune_fences = false;
454 455 456 457

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
458 459
		int ret;

460 461
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
462 463 464
		if (ret)
			return ret;

465 466
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
467
							     flags, timeout);
468
			if (timeout < 0)
469
				break;
470

471 472 473 474 475 476
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
477

478 479 480 481 482 483 484 485 486
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
487
		prune_fences = count && timeout >= 0;
488 489
	} else {
		excl = reservation_object_get_excl_rcu(resv);
490 491
	}

492
	if (excl && timeout >= 0)
493
		timeout = i915_gem_object_wait_fence(excl, flags, timeout);
494 495 496

	dma_fence_put(excl);

497 498
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
499 500 501
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
502
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
503 504 505 506 507
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
508 509
	}

510
	return timeout;
511 512
}

513 514
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
515
{
516
	struct i915_request *rq;
517 518
	struct intel_engine_cs *engine;

519
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
520 521 522 523 524
		return;

	rq = to_request(fence);
	engine = rq->engine;

525 526
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
527
	if (engine->schedule)
528
		engine->schedule(rq, attr);
529
	rcu_read_unlock();
530
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
531 532
}

533 534
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
535 536 537 538 539 540 541
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
542
			__fence_set_priority(array->fences[i], attr);
543
	} else {
544
		__fence_set_priority(fence, attr);
545 546 547 548 549 550
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
551
			      const struct i915_sched_attr *attr)
552 553 554 555 556 557 558 559 560 561 562 563 564 565
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
566
			fence_set_priority(shared[i], attr);
567 568 569 570 571 572 573 574 575
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
576
		fence_set_priority(excl, attr);
577 578 579 580 581
		dma_fence_put(excl);
	}
	return 0;
}

582 583 584 585 586
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
587
 */
588 589 590
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
591
		     long timeout)
592
{
593 594
	might_sleep();
	GEM_BUG_ON(timeout < 0);
595

596
	timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
597
	return timeout < 0 ? timeout : 0;
598 599
}

600 601 602
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
603
		     struct drm_file *file)
604 605
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
606
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
607 608 609 610

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
611
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
612 613
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
614

615
	drm_clflush_virt_range(vaddr, args->size);
616
	i915_gem_chipset_flush(to_i915(obj->base.dev));
617

618
	intel_fb_obj_flush(obj, ORIGIN_CPU);
619
	return 0;
620 621
}

622 623
static int
i915_gem_create(struct drm_file *file,
624
		struct drm_i915_private *dev_priv,
625
		u64 *size_p,
626
		u32 *handle_p)
627
{
628
	struct drm_i915_gem_object *obj;
629
	u32 handle;
630 631
	u64 size;
	int ret;
632

633
	size = round_up(*size_p, PAGE_SIZE);
634 635
	if (size == 0)
		return -EINVAL;
636 637

	/* Allocate the new object */
638
	obj = i915_gem_object_create(dev_priv, size);
639 640
	if (IS_ERR(obj))
		return PTR_ERR(obj);
641

642
	ret = drm_gem_handle_create(file, &obj->base, &handle);
643
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
644
	i915_gem_object_put(obj);
645 646
	if (ret)
		return ret;
647

648
	*handle_p = handle;
649
	*size_p = obj->base.size;
650 651 652
	return 0;
}

653 654 655 656 657 658
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
659
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
660
	args->size = args->pitch * args->height;
661
	return i915_gem_create(file, to_i915(dev),
662
			       &args->size, &args->handle);
663 664
}

665 666 667 668 669 670
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

671 672
/**
 * Creates a new mm object and returns a handle to it.
673 674 675
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
676 677 678 679 680
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
681
	struct drm_i915_private *dev_priv = to_i915(dev);
682
	struct drm_i915_gem_create *args = data;
683

684
	i915_gem_flush_free_objects(dev_priv);
685

686
	return i915_gem_create(file, dev_priv,
687
			       &args->size, &args->handle);
688 689
}

690 691 692 693 694 695 696
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

697
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
698
{
699 700
	intel_wakeref_t wakeref;

701 702 703 704 705
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
706 707 708 709 710 711 712 713 714 715
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
716 717
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
718
	 */
719

720 721 722 723 724
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

725
	i915_gem_chipset_flush(dev_priv);
726

727 728
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
729

730
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
731

732 733
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
734 735 736 737 738 739 740 741
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

742
	if (!(obj->write_domain & flush_domains))
743 744
		return;

745
	switch (obj->write_domain) {
746
	case I915_GEM_DOMAIN_GTT:
747
		i915_gem_flush_ggtt_writes(dev_priv);
748 749 750

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
751

752
		for_each_ggtt_vma(vma, obj) {
753 754 755 756 757
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
758 759
		break;

760 761 762 763
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

764 765 766
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
767 768 769 770 771

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
772 773
	}

774
	obj->write_domain = 0;
775 776
}

777 778 779 780 781 782
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
783
				    unsigned int *needs_clflush)
784 785 786
{
	int ret;

787
	lockdep_assert_held(&obj->base.dev->struct_mutex);
788

789
	*needs_clflush = 0;
790 791
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
792

793 794 795
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
796
				   MAX_SCHEDULE_TIMEOUT);
797 798 799
	if (ret)
		return ret;

C
Chris Wilson 已提交
800
	ret = i915_gem_object_pin_pages(obj);
801 802 803
	if (ret)
		return ret;

804 805
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
806 807 808 809 810 811 812
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

813
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
814

815 816 817 818 819
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
820
	if (!obj->cache_dirty &&
821
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
822
		*needs_clflush = CLFLUSH_BEFORE;
823

824
out:
825
	/* return with the pages pinned */
826
	return 0;
827 828 829 830

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
831 832 833 834 835 836 837
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

838 839
	lockdep_assert_held(&obj->base.dev->struct_mutex);

840 841 842 843
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

844 845 846 847
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
848
				   MAX_SCHEDULE_TIMEOUT);
849 850 851
	if (ret)
		return ret;

C
Chris Wilson 已提交
852
	ret = i915_gem_object_pin_pages(obj);
853 854 855
	if (ret)
		return ret;

856 857
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
858 859 860 861 862 863 864
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

865
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866

867 868 869 870 871
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
872
	if (!obj->cache_dirty) {
873
		*needs_clflush |= CLFLUSH_AFTER;
874

875 876 877 878
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
879
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
880 881
			*needs_clflush |= CLFLUSH_BEFORE;
	}
882

883
out:
884
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
885
	obj->mm.dirty = true;
886
	/* return with the pages pinned */
887
	return 0;
888 889 890 891

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
892 893
}

894
static int
895 896
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
897 898 899 900 901 902
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

903 904
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
905

906
	ret = __copy_to_user(user_data, vaddr + offset, len);
907

908
	kunmap(page);
909

910
	return ret ? -EFAULT : 0;
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
937
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
957
{
958
	void __iomem *vaddr;
959
	unsigned long unwritten;
960 961

	/* We can use the cpu mem copy function because this is X86. */
962 963 964 965
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
966 967
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
968 969 970 971
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
972 973
		io_mapping_unmap(vaddr);
	}
974 975 976 977
	return unwritten;
}

static int
978 979
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
980
{
981 982
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
983
	intel_wakeref_t wakeref;
984
	struct drm_mm_node node;
985 986 987
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
988 989
	int ret;

990 991 992 993
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

994
	wakeref = intel_runtime_pm_get(i915);
995
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
996 997 998
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
999 1000 1001
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1002
		ret = i915_vma_put_fence(vma);
1003 1004 1005 1006 1007
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1008
	if (IS_ERR(vma)) {
1009
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1010
		if (ret)
1011 1012
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1013 1014 1015 1016 1017 1018
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1019
	mutex_unlock(&i915->drm.struct_mutex);
1020

1021 1022 1023
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1038 1039 1040
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1041 1042 1043 1044
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1045

1046
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1047
				  user_data, page_length)) {
1048 1049 1050 1051 1052 1053 1054 1055 1056
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1057
	mutex_lock(&i915->drm.struct_mutex);
1058 1059 1060
out_unpin:
	if (node.allocated) {
		wmb();
1061
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1062 1063
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1064
		i915_vma_unpin(vma);
1065
	}
1066
out_unlock:
1067
	intel_runtime_pm_put(i915, wakeref);
1068
	mutex_unlock(&i915->drm.struct_mutex);
1069

1070 1071 1072
	return ret;
}

1073 1074
/**
 * Reads data from the object referenced by handle.
1075 1076 1077
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1078 1079 1080 1081 1082
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1083
		     struct drm_file *file)
1084 1085
{
	struct drm_i915_gem_pread *args = data;
1086
	struct drm_i915_gem_object *obj;
1087
	int ret;
1088

1089 1090 1091
	if (args->size == 0)
		return 0;

1092
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1093 1094 1095
		       args->size))
		return -EFAULT;

1096
	obj = i915_gem_object_lookup(file, args->handle);
1097 1098
	if (!obj)
		return -ENOENT;
1099

1100
	/* Bounds check source.  */
1101
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1102
		ret = -EINVAL;
1103
		goto out;
C
Chris Wilson 已提交
1104 1105
	}

C
Chris Wilson 已提交
1106 1107
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1108 1109
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1110
				   MAX_SCHEDULE_TIMEOUT);
1111
	if (ret)
1112
		goto out;
1113

1114
	ret = i915_gem_object_pin_pages(obj);
1115
	if (ret)
1116
		goto out;
1117

1118
	ret = i915_gem_shmem_pread(obj, args);
1119
	if (ret == -EFAULT || ret == -ENODEV)
1120
		ret = i915_gem_gtt_pread(obj, args);
1121

1122 1123
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1124
	i915_gem_object_put(obj);
1125
	return ret;
1126 1127
}

1128 1129
/* This is the fast write path which cannot handle
 * page faults in the source data
1130
 */
1131

1132 1133 1134 1135
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1136
{
1137
	void __iomem *vaddr;
1138
	unsigned long unwritten;
1139

1140
	/* We can use the cpu mem copy function because this is X86. */
1141 1142
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1143
						      user_data, length);
1144 1145
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1146 1147 1148
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1149 1150
		io_mapping_unmap(vaddr);
	}
1151 1152 1153 1154

	return unwritten;
}

1155 1156 1157
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1158
 * @obj: i915 GEM object
1159
 * @args: pwrite arguments structure
1160
 */
1161
static int
1162 1163
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1164
{
1165
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1166
	struct i915_ggtt *ggtt = &i915->ggtt;
1167
	intel_wakeref_t wakeref;
1168
	struct drm_mm_node node;
1169 1170 1171
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1172
	int ret;
1173

1174 1175 1176
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1177

1178 1179 1180 1181 1182 1183 1184 1185
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1186 1187
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1188 1189 1190 1191 1192
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1193
		wakeref = intel_runtime_pm_get(i915);
1194 1195
	}

C
Chris Wilson 已提交
1196
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1197 1198 1199
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1200 1201 1202
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1203
		ret = i915_vma_put_fence(vma);
1204 1205 1206 1207 1208
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1209
	if (IS_ERR(vma)) {
1210
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1211
		if (ret)
1212
			goto out_rpm;
1213
		GEM_BUG_ON(!node.allocated);
1214
	}
D
Daniel Vetter 已提交
1215 1216 1217 1218 1219

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1220 1221
	mutex_unlock(&i915->drm.struct_mutex);

1222
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1223

1224 1225 1226 1227
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1228 1229
		/* Operation in this page
		 *
1230 1231 1232
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1233
		 */
1234
		u32 page_base = node.start;
1235 1236
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1237 1238 1239
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1240 1241 1242
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1243 1244 1245 1246
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1247
		/* If we get a fault while copying data, then (presumably) our
1248 1249
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1250 1251
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1252
		 */
1253
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1254 1255 1256
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1257
		}
1258

1259 1260 1261
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1262
	}
1263
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1264 1265

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1266
out_unpin:
1267 1268
	if (node.allocated) {
		wmb();
1269
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1270 1271
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1272
		i915_vma_unpin(vma);
1273
	}
1274
out_rpm:
1275
	intel_runtime_pm_put(i915, wakeref);
1276
out_unlock:
1277
	mutex_unlock(&i915->drm.struct_mutex);
1278
	return ret;
1279 1280
}

1281 1282 1283 1284 1285
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1286
static int
1287 1288 1289
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1290
{
1291
	char *vaddr;
1292 1293
	int ret;

1294
	vaddr = kmap(page);
1295

1296 1297
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1298

1299 1300 1301
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1302

1303 1304 1305
	kunmap(page);

	return ret ? -EFAULT : 0;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1316
	unsigned int needs_clflush;
1317 1318
	unsigned int offset, idx;
	int ret;
1319

1320
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1321 1322 1323
	if (ret)
		return ret;

1324 1325 1326 1327
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1328

1329 1330 1331 1332 1333 1334 1335
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1336

1337 1338 1339 1340 1341
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1342
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1343

1344 1345 1346
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1347
		if (ret)
1348
			break;
1349

1350 1351 1352
		remain -= length;
		user_data += length;
		offset = 0;
1353
	}
1354

1355
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1356
	i915_gem_obj_finish_shmem_access(obj);
1357
	return ret;
1358 1359 1360 1361
}

/**
 * Writes data to the object referenced by handle.
1362 1363 1364
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1365 1366 1367 1368 1369
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1370
		      struct drm_file *file)
1371 1372
{
	struct drm_i915_gem_pwrite *args = data;
1373
	struct drm_i915_gem_object *obj;
1374 1375 1376 1377 1378
	int ret;

	if (args->size == 0)
		return 0;

1379
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1380 1381
		return -EFAULT;

1382
	obj = i915_gem_object_lookup(file, args->handle);
1383 1384
	if (!obj)
		return -ENOENT;
1385

1386
	/* Bounds check destination. */
1387
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1388
		ret = -EINVAL;
1389
		goto err;
C
Chris Wilson 已提交
1390 1391
	}

1392 1393 1394 1395 1396 1397
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1398 1399
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1400 1401 1402 1403 1404 1405
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1406 1407 1408
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
1409
				   MAX_SCHEDULE_TIMEOUT);
1410 1411 1412
	if (ret)
		goto err;

1413
	ret = i915_gem_object_pin_pages(obj);
1414
	if (ret)
1415
		goto err;
1416

D
Daniel Vetter 已提交
1417
	ret = -EFAULT;
1418 1419 1420 1421 1422 1423
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1424
	if (!i915_gem_object_has_struct_page(obj) ||
1425
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1426 1427
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1428 1429
		 * textures). Fallback to the shmem path in that case.
		 */
1430
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1431

1432
	if (ret == -EFAULT || ret == -ENOSPC) {
1433 1434
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1435
		else
1436
			ret = i915_gem_shmem_pwrite(obj, args);
1437
	}
1438

1439
	i915_gem_object_unpin_pages(obj);
1440
err:
C
Chris Wilson 已提交
1441
	i915_gem_object_put(obj);
1442
	return ret;
1443 1444
}

1445 1446
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1447
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1448 1449 1450
	struct list_head *list;
	struct i915_vma *vma;

1451 1452
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1453
	mutex_lock(&i915->ggtt.vm.mutex);
1454
	for_each_ggtt_vma(vma, obj) {
1455 1456 1457
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1458
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1459
	}
1460
	mutex_unlock(&i915->ggtt.vm.mutex);
1461

1462
	spin_lock(&i915->mm.obj_lock);
1463
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1464 1465
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1466 1467
}

1468
/**
1469 1470
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1471 1472 1473
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1474 1475 1476
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1477
			  struct drm_file *file)
1478 1479
{
	struct drm_i915_gem_set_domain *args = data;
1480
	struct drm_i915_gem_object *obj;
1481 1482
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1483
	int err;
1484

1485
	/* Only handle setting domains to types used by the CPU. */
1486
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1487 1488
		return -EINVAL;

1489 1490
	/*
	 * Having something in the write domain implies it's in the read
1491 1492
	 * domain, and only that read domain.  Enforce that in the request.
	 */
1493
	if (write_domain && read_domains != write_domain)
1494 1495
		return -EINVAL;

1496 1497 1498
	if (!read_domains)
		return 0;

1499
	obj = i915_gem_object_lookup(file, args->handle);
1500 1501
	if (!obj)
		return -ENOENT;
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	/*
	 * Already in the desired write domain? Nothing for us to do!
	 *
	 * We apply a little bit of cunning here to catch a broader set of
	 * no-ops. If obj->write_domain is set, we must be in the same
	 * obj->read_domains, and only that domain. Therefore, if that
	 * obj->write_domain matches the request read_domains, we are
	 * already in the same read/write domain and can skip the operation,
	 * without having to further check the requested write_domain.
	 */
	if (READ_ONCE(obj->write_domain) == read_domains) {
		err = 0;
		goto out;
	}

	/*
	 * Try to flush the object off the GPU without holding the lock.
1520 1521 1522
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1523
	err = i915_gem_object_wait(obj,
1524
				   I915_WAIT_INTERRUPTIBLE |
1525
				   I915_WAIT_PRIORITY |
1526
				   (write_domain ? I915_WAIT_ALL : 0),
1527
				   MAX_SCHEDULE_TIMEOUT);
1528
	if (err)
C
Chris Wilson 已提交
1529
		goto out;
1530

T
Tina Zhang 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1544 1545 1546 1547 1548 1549 1550 1551 1552
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1553
		goto out;
1554 1555 1556

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1557
		goto out_unpin;
1558

1559 1560 1561 1562
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1563
	else
1564
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1565

1566 1567
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1568

1569
	mutex_unlock(&dev->struct_mutex);
1570

1571
	if (write_domain != 0)
1572 1573
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1574

C
Chris Wilson 已提交
1575
out_unpin:
1576
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1577 1578
out:
	i915_gem_object_put(obj);
1579
	return err;
1580 1581 1582 1583
}

/**
 * Called when user space has done writes to this buffer
1584 1585 1586
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1587 1588 1589
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1590
			 struct drm_file *file)
1591 1592
{
	struct drm_i915_gem_sw_finish *args = data;
1593
	struct drm_i915_gem_object *obj;
1594

1595
	obj = i915_gem_object_lookup(file, args->handle);
1596 1597
	if (!obj)
		return -ENOENT;
1598

T
Tina Zhang 已提交
1599 1600 1601 1602 1603
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1604
	/* Pinned buffers may be scanout, so flush the cache */
1605
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1606
	i915_gem_object_put(obj);
1607 1608

	return 0;
1609 1610
}

1611 1612 1613 1614 1615 1616 1617
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1618 1619
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1620 1621
}

1622
/**
1623 1624 1625 1626 1627
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1628 1629 1630
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1641 1642 1643
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1644
		    struct drm_file *file)
1645 1646
{
	struct drm_i915_gem_mmap *args = data;
1647
	struct drm_i915_gem_object *obj;
1648 1649
	unsigned long addr;

1650 1651 1652
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1653
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1654 1655
		return -ENODEV;

1656 1657
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1658
		return -ENOENT;
1659

1660 1661 1662
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1663
	if (!obj->base.filp) {
1664 1665 1666 1667 1668 1669 1670
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
1671 1672
	}

1673
	addr = vm_mmap(obj->base.filp, 0, args->size,
1674 1675
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1676 1677 1678
	if (IS_ERR_VALUE(addr))
		goto err;

1679 1680 1681 1682
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1683
		if (down_write_killable(&mm->mmap_sem)) {
1684 1685
			addr = -EINTR;
			goto err;
1686
		}
1687
		vma = find_vma(mm, addr);
1688
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1689 1690 1691 1692 1693
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1694 1695
		if (IS_ERR_VALUE(addr))
			goto err;
1696 1697

		/* This may race, but that's ok, it only gets set */
1698
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1699
	}
C
Chris Wilson 已提交
1700
	i915_gem_object_put(obj);
1701

1702
	args->addr_ptr = (u64)addr;
1703
	return 0;
1704 1705 1706 1707

err:
	i915_gem_object_put(obj);
	return addr;
1708 1709
}

1710
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1711
{
1712
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1713 1714
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1735 1736 1737
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1738 1739 1740
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1768
	return 3;
1769 1770
}

1771
static inline struct i915_ggtt_view
1772
compute_partial_view(const struct drm_i915_gem_object *obj,
1773 1774 1775 1776 1777 1778 1779 1780 1781
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1782 1783
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1784
		min_t(unsigned int, chunk,
1785
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1786 1787 1788 1789 1790 1791 1792 1793

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1794 1795
/**
 * i915_gem_fault - fault a page into the GTT
1796
 * @vmf: fault info
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1808 1809 1810
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1811
 */
1812
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1813
{
1814
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1815
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1816
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1817
	struct drm_device *dev = obj->base.dev;
1818 1819
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1820
	bool write = area->vm_flags & VM_WRITE;
1821
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1822
	struct i915_vma *vma;
1823
	pgoff_t page_offset;
1824
	int srcu;
1825
	int ret;
1826

1827 1828 1829 1830
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1831
	/* We don't use vmf->pgoff since that has the fake offset */
1832
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1833

C
Chris Wilson 已提交
1834 1835
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1836 1837 1838 1839
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1840
	wakeref = intel_runtime_pm_get(dev_priv);
1841

1842 1843 1844 1845 1846 1847
	srcu = i915_reset_trylock(dev_priv);
	if (srcu < 0) {
		ret = srcu;
		goto err_rpm;
	}

1848 1849
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
1850
		goto err_reset;
1851

1852
	/* Access to snoopable pages through the GTT is incoherent. */
1853
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854
		ret = -EFAULT;
1855
		goto err_unlock;
1856 1857
	}

1858
	/* Now pin it into the GTT as needed */
1859 1860 1861 1862
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1863 1864
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1865
		struct i915_ggtt_view view =
1866
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1867
		unsigned int flags;
1868

1869 1870 1871 1872 1873 1874
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1875 1876 1877 1878
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1879 1880 1881 1882 1883 1884
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1885
	}
C
Chris Wilson 已提交
1886 1887
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1888
		goto err_unlock;
C
Chris Wilson 已提交
1889
	}
1890

1891 1892 1893 1894
	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

1895
	/* Finally, remap it using the new GTT offset */
1896
	ret = remap_io_mapping(area,
1897
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1898
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1899
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1900
			       &ggtt->iomap);
1901
	if (ret)
1902
		goto err_fence;
1903

1904 1905 1906 1907 1908 1909
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1910 1911
	i915_vma_set_ggtt_write(vma);

1912 1913
err_fence:
	i915_vma_unpin_fence(vma);
1914
err_unpin:
C
Chris Wilson 已提交
1915
	__i915_vma_unpin(vma);
1916
err_unlock:
1917
	mutex_unlock(&dev->struct_mutex);
1918 1919
err_reset:
	i915_reset_unlock(dev_priv, srcu);
1920
err_rpm:
1921
	intel_runtime_pm_put(dev_priv, wakeref);
1922
	i915_gem_object_unpin_pages(obj);
1923
err:
1924
	switch (ret) {
1925
	case -EIO:
1926 1927 1928 1929 1930 1931
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1932
		if (!i915_terminally_wedged(dev_priv))
1933
			return VM_FAULT_SIGBUS;
1934
		/* else: fall through */
1935
	case -EAGAIN:
D
Daniel Vetter 已提交
1936 1937 1938 1939
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1940
		 */
1941 1942
	case 0:
	case -ERESTARTSYS:
1943
	case -EINTR:
1944 1945 1946 1947 1948
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1949
		return VM_FAULT_NOPAGE;
1950
	case -ENOMEM:
1951
		return VM_FAULT_OOM;
1952
	case -ENOSPC:
1953
	case -EFAULT:
1954
		return VM_FAULT_SIGBUS;
1955
	default:
1956
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1957
		return VM_FAULT_SIGBUS;
1958 1959 1960
	}
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

1972
	for_each_ggtt_vma(vma, obj)
1973 1974 1975
		i915_vma_unset_userfault(vma);
}

1976 1977 1978 1979
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1980
 * Preserve the reservation of the mmapping with the DRM core code, but
1981 1982 1983 1984 1985 1986 1987 1988 1989
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1990
void
1991
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1992
{
1993
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1994
	intel_wakeref_t wakeref;
1995

1996 1997 1998
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1999 2000 2001 2002
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2003
	 */
2004
	lockdep_assert_held(&i915->drm.struct_mutex);
2005
	wakeref = intel_runtime_pm_get(i915);
2006

2007
	if (!obj->userfault_count)
2008
		goto out;
2009

2010
	__i915_gem_object_release_mmap(obj);
2011 2012 2013 2014 2015 2016 2017 2018 2019

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2020 2021

out:
2022
	intel_runtime_pm_put(i915, wakeref);
2023 2024
}

2025
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2026
{
2027
	struct drm_i915_gem_object *obj, *on;
2028
	int i;
2029

2030 2031 2032 2033 2034 2035
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2036

2037
	list_for_each_entry_safe(obj, on,
2038 2039
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2040 2041 2042 2043 2044 2045 2046 2047

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2058 2059 2060 2061

		if (!reg->vma)
			continue;

2062
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2063 2064
		reg->dirty = true;
	}
2065 2066
}

2067 2068
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2069
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070
	int err;
2071

2072
	err = drm_gem_create_mmap_offset(&obj->base);
2073
	if (likely(!err))
2074
		return 0;
2075

2076 2077
	/* Attempt to reap some mmap space from dead objects */
	do {
2078 2079 2080
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2081 2082
		if (err)
			break;
2083

2084
		i915_gem_drain_freed_objects(dev_priv);
2085
		err = drm_gem_create_mmap_offset(&obj->base);
2086 2087 2088 2089
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2090

2091
	return err;
2092 2093 2094 2095 2096 2097 2098
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2099
int
2100 2101
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2102 2103
		  u32 handle,
		  u64 *offset)
2104
{
2105
	struct drm_i915_gem_object *obj;
2106 2107
	int ret;

2108
	obj = i915_gem_object_lookup(file, handle);
2109 2110
	if (!obj)
		return -ENOENT;
2111

2112
	ret = i915_gem_object_create_mmap_offset(obj);
2113 2114
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2115

C
Chris Wilson 已提交
2116
	i915_gem_object_put(obj);
2117
	return ret;
2118 2119
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2141
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2142 2143
}

D
Daniel Vetter 已提交
2144 2145 2146
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2147
{
2148
	i915_gem_object_free_mmap_offset(obj);
2149

2150 2151
	if (obj->base.filp == NULL)
		return;
2152

D
Daniel Vetter 已提交
2153 2154 2155 2156 2157
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2158
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2159
	obj->mm.madv = __I915_MADV_PURGED;
2160
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2161
}
2162

2163
/* Try to discard unwanted pages */
2164
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2165
{
2166 2167
	struct address_space *mapping;

2168
	lockdep_assert_held(&obj->mm.lock);
2169
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2170

C
Chris Wilson 已提交
2171
	switch (obj->mm.madv) {
2172 2173 2174 2175 2176 2177 2178 2179 2180
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2181
	mapping = obj->base.filp->f_mapping,
2182
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2183 2184
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2196
static void
2197 2198
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2199
{
2200
	struct sgt_iter sgt_iter;
2201
	struct pagevec pvec;
2202
	struct page *page;
2203

2204
	__i915_gem_object_release_shmem(obj, pages, true);
2205
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2206

2207
	if (i915_gem_object_needs_bit17_swizzle(obj))
2208
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2209

2210 2211 2212
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2213
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2214
		if (obj->mm.dirty)
2215
			set_page_dirty(page);
2216

C
Chris Wilson 已提交
2217
		if (obj->mm.madv == I915_MADV_WILLNEED)
2218
			mark_page_accessed(page);
2219

2220 2221
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2222
	}
2223 2224
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2225
	obj->mm.dirty = false;
2226

2227 2228
	sg_free_table(pages);
	kfree(pages);
2229
}
C
Chris Wilson 已提交
2230

2231 2232 2233
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2234
	void __rcu **slot;
2235

2236
	rcu_read_lock();
C
Chris Wilson 已提交
2237 2238
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2239
	rcu_read_unlock();
2240 2241
}

2242 2243
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2244
{
2245
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2246
	struct sg_table *pages;
2247

2248
	pages = fetch_and_zero(&obj->mm.pages);
2249 2250
	if (IS_ERR_OR_NULL(pages))
		return pages;
2251

2252 2253 2254 2255
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2256
	if (obj->mm.mapping) {
2257 2258
		void *ptr;

2259
		ptr = page_mask_bits(obj->mm.mapping);
2260 2261
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2262
		else
2263 2264
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2265
		obj->mm.mapping = NULL;
2266 2267
	}

2268
	__i915_gem_object_reset_page_iter(obj);
2269 2270 2271 2272
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2273

2274 2275
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2276 2277
{
	struct sg_table *pages;
2278
	int ret;
2279 2280

	if (i915_gem_object_has_pinned_pages(obj))
2281
		return -EBUSY;
2282 2283 2284 2285 2286

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2287 2288
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2289
		goto unlock;
2290
	}
2291 2292 2293 2294 2295 2296 2297

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2308 2309 2310
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2311
	ret = 0;
2312 2313
unlock:
	mutex_unlock(&obj->mm.lock);
2314 2315

	return ret;
C
Chris Wilson 已提交
2316 2317
}

2318
bool i915_sg_trim(struct sg_table *orig_st)
2319 2320 2321 2322 2323 2324
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2325
		return false;
2326

2327
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2328
		return false;
2329 2330 2331 2332

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2333 2334 2335
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2336 2337
		new_sg = sg_next(new_sg);
	}
2338
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339 2340 2341 2342

	sg_free_table(orig_st);

	*orig_st = new_st;
2343
	return true;
2344 2345
}

2346
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2347
{
2348
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2349 2350
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2351
	struct address_space *mapping;
2352 2353
	struct sg_table *st;
	struct scatterlist *sg;
2354
	struct sgt_iter sgt_iter;
2355
	struct page *page;
2356
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2357
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2358
	unsigned int sg_page_sizes;
2359
	struct pagevec pvec;
2360
	gfp_t noreclaim;
I
Imre Deak 已提交
2361
	int ret;
2362

2363 2364
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2365 2366 2367
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2368 2369
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2370

2371 2372 2373 2374
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2375
	if (page_count > totalram_pages())
2376 2377
		return -ENOMEM;

2378 2379
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2380
		return -ENOMEM;
2381

2382
rebuild_st:
2383 2384
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2385
		return -ENOMEM;
2386
	}
2387

2388 2389
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2390 2391 2392 2393
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2394
	mapping = obj->base.filp->f_mapping;
2395
	mapping_set_unevictable(mapping);
2396
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2397 2398
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2399 2400
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2401
	sg_page_sizes = 0;
2402
	for (i = 0; i < page_count; i++) {
2403 2404 2405 2406 2407 2408 2409
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2410
			cond_resched();
C
Chris Wilson 已提交
2411
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2412
			if (!IS_ERR(page))
2413 2414 2415 2416 2417 2418 2419
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2420
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2421

2422 2423
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2424 2425
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2426 2427 2428 2429
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2430
			 */
2431 2432 2433
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2434

2435 2436
				/*
				 * Our bo are always dirty and so we require
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2447
				 * this we want __GFP_RETRY_MAYFAIL.
2448
				 */
M
Michal Hocko 已提交
2449
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2450
			}
2451 2452
		} while (1);

2453 2454 2455
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2456
			if (i) {
M
Matthew Auld 已提交
2457
				sg_page_sizes |= sg->length;
2458
				sg = sg_next(sg);
2459
			}
2460 2461 2462 2463 2464 2465
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2466 2467 2468

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2469
	}
2470
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2471
		sg_page_sizes |= sg->length;
2472
		sg_mark_end(sg);
2473
	}
2474

2475 2476 2477
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2478
	ret = i915_gem_gtt_prepare_pages(obj, st);
2479
	if (ret) {
2480 2481
		/*
		 * DMA remapping failed? One possible cause is that
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2499

2500
	if (i915_gem_object_needs_bit17_swizzle(obj))
2501
		i915_gem_object_do_bit_17_swizzle(obj, st);
2502

M
Matthew Auld 已提交
2503
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2504 2505

	return 0;
2506

2507
err_sg:
2508
	sg_mark_end(sg);
2509
err_pages:
2510 2511 2512 2513 2514 2515 2516 2517
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2518 2519
	sg_free_table(st);
	kfree(st);
2520

2521 2522
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2523 2524 2525 2526 2527 2528 2529
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2530 2531 2532
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2533
	return ret;
2534 2535 2536
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2537
				 struct sg_table *pages,
M
Matthew Auld 已提交
2538
				 unsigned int sg_page_sizes)
2539
{
2540 2541 2542 2543
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2544
	lockdep_assert_held(&obj->mm.lock);
2545

2546 2547 2548 2549 2550 2551 2552 2553
	/* Make the pages coherent with the GPU (flushing any swapin). */
	if (obj->cache_dirty) {
		obj->write_domain = 0;
		if (i915_gem_object_has_struct_page(obj))
			drm_clflush_sg(pages);
		obj->cache_dirty = false;
	}

2554 2555 2556 2557
	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2558 2559

	if (i915_gem_object_is_tiled(obj) &&
2560
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2561 2562 2563 2564
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2565

M
Matthew Auld 已提交
2566 2567
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2568 2569

	/*
M
Matthew Auld 已提交
2570 2571 2572 2573 2574 2575
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2576 2577 2578 2579 2580 2581 2582
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2583 2584 2585 2586

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2587 2588 2589 2590
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2591
	int err;
2592 2593 2594 2595 2596 2597

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2598
	err = obj->ops->get_pages(obj);
2599
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2600

2601
	return err;
2602 2603
}

2604
/* Ensure that the associated pages are gathered from the backing storage
2605
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2606
 * multiple times before they are released by a single call to
2607
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2608 2609 2610
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2611
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2612
{
2613
	int err;
2614

2615 2616 2617
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2618

2619
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2620 2621
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2622 2623 2624
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2625

2626 2627 2628
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2629

2630 2631
unlock:
	mutex_unlock(&obj->mm.lock);
2632
	return err;
2633 2634
}

2635
/* The 'mapping' part of i915_gem_object_pin_map() below */
2636 2637
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2638 2639
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2640
	struct sg_table *sgt = obj->mm.pages;
2641 2642
	struct sgt_iter sgt_iter;
	struct page *page;
2643 2644
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2645
	unsigned long i = 0;
2646
	pgprot_t pgprot;
2647 2648 2649
	void *addr;

	/* A single page can always be kmapped */
2650
	if (n_pages == 1 && type == I915_MAP_WB)
2651 2652
		return kmap(sg_page(sgt->sgl));

2653 2654
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2655
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2656 2657 2658
		if (!pages)
			return NULL;
	}
2659

2660 2661
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2662 2663 2664 2665

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2666
	switch (type) {
2667 2668 2669
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2670 2671 2672 2673 2674 2675 2676 2677
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2678

2679
	if (pages != stack_pages)
M
Michal Hocko 已提交
2680
		kvfree(pages);
2681 2682 2683 2684 2685

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2686 2687
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2688
{
2689 2690 2691
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2692 2693
	int ret;

T
Tina Zhang 已提交
2694 2695
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2696

2697
	ret = mutex_lock_interruptible(&obj->mm.lock);
2698 2699 2700
	if (ret)
		return ERR_PTR(ret);

2701 2702 2703
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2704
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2705
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2706 2707
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2708 2709 2710
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2711

2712 2713 2714
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2715 2716
		pinned = false;
	}
2717
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2718

2719
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2720 2721 2722
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2723
			goto err_unpin;
2724
		}
2725 2726 2727 2728 2729 2730

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2731
		ptr = obj->mm.mapping = NULL;
2732 2733
	}

2734 2735 2736 2737
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2738
			goto err_unpin;
2739 2740
		}

2741
		obj->mm.mapping = page_pack_bits(ptr, type);
2742 2743
	}

2744 2745
out_unlock:
	mutex_unlock(&obj->mm.lock);
2746 2747
	return ptr;

2748 2749 2750 2751 2752
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2753 2754
}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
				 unsigned long offset,
				 unsigned long size)
{
	enum i915_map_type has_type;
	void *ptr;

	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
				     offset, size, obj->base.size));

	obj->mm.dirty = true;

	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
		return;

	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
	if (has_type == I915_MAP_WC)
		return;

	drm_clflush_virt_range(ptr + offset, size);
	if (size == obj->base.size) {
		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
		obj->cache_dirty = false;
	}
}

2782 2783 2784 2785 2786 2787 2788 2789 2790
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

2791 2792 2793 2794 2795
	/* Caller already validated user args */
	GEM_BUG_ON(!access_ok(user_data, arg->size));

	/*
	 * Before we instantiate/pin the backing store for our use, we
2796 2797 2798 2799 2800 2801 2802
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2803
	if (i915_gem_object_has_pages(obj))
2804 2805
		return -ENODEV;

2806 2807 2808
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2809 2810
	/*
	 * Before the pages are instantiated the object is treated as being
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;
2826
		char c;
2827 2828 2829 2830 2831

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

2832 2833 2834 2835 2836 2837 2838 2839 2840
		/* Prefault the user page to reduce potential recursion */
		err = __get_user(c, user_data);
		if (err)
			return err;

		err = __get_user(c, user_data + len - 1);
		if (err)
			return err;

2841 2842 2843 2844 2845 2846
		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

2847 2848 2849 2850 2851
		vaddr = kmap_atomic(page);
		unwritten = __copy_from_user_inatomic(vaddr + pg,
						      user_data,
						      len);
		kunmap_atomic(vaddr);
2852 2853 2854 2855 2856 2857 2858

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

2859
		/* We don't handle -EFAULT, leave it to the caller to check */
2860
		if (unwritten)
2861
			return -ENODEV;
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2872
static void
2873 2874
i915_gem_retire_work_handler(struct work_struct *work)
{
2875
	struct drm_i915_private *dev_priv =
2876
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2877
	struct drm_device *dev = &dev_priv->drm;
2878

2879
	/* Come back later if the device is busy... */
2880
	if (mutex_trylock(&dev->struct_mutex)) {
2881
		i915_retire_requests(dev_priv);
2882
		mutex_unlock(&dev->struct_mutex);
2883
	}
2884

2885 2886
	/*
	 * Keep the retire handler running until we are finally idle.
2887 2888 2889
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2890
	if (READ_ONCE(dev_priv->gt.awake))
2891 2892
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2893
				   round_jiffies_up_relative(HZ));
2894
}
2895

2896 2897
static bool switch_to_kernel_context_sync(struct drm_i915_private *i915,
					  unsigned long mask)
2898 2899 2900 2901 2902 2903 2904 2905
{
	bool result = true;

	/*
	 * Even if we fail to switch, give whatever is running a small chance
	 * to save itself before we report the failure. Yes, this may be a
	 * false positive due to e.g. ENOMEM, caveat emptor!
	 */
2906
	if (i915_gem_switch_to_kernel_context(i915, mask))
2907 2908 2909 2910 2911 2912 2913 2914
		result = false;

	if (i915_gem_wait_for_idle(i915,
				   I915_WAIT_LOCKED |
				   I915_WAIT_FOR_IDLE_BOOST,
				   I915_GEM_IDLE_TIMEOUT))
		result = false;

2915
	if (!result) {
2916 2917 2918 2919 2920 2921
		if (i915_modparams.reset) { /* XXX hide warning from gem_eio */
			dev_err(i915->drm.dev,
				"Failed to idle engines, declaring wedged!\n");
			GEM_TRACE_DUMP();
		}

2922 2923 2924 2925 2926 2927 2928 2929
		/* Forcibly cancel outstanding work and leave the gpu quiet. */
		i915_gem_set_wedged(i915);
	}

	i915_retire_requests(i915); /* ensure we flush after wedging */
	return result;
}

2930 2931
static bool load_power_context(struct drm_i915_private *i915)
{
2932 2933
	/* Force loading the kernel context on all engines */
	if (!switch_to_kernel_context_sync(i915, ALL_ENGINES))
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		return false;

	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

	return true;
}

2947 2948 2949
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
2950 2951
	struct drm_i915_private *i915 =
		container_of(work, typeof(*i915), gt.idle_work.work);
2952 2953
	bool rearm_hangcheck;

2954
	if (!READ_ONCE(i915->gt.awake))
2955 2956
		return;

2957
	if (READ_ONCE(i915->gt.active_requests))
2958 2959
		return;

2960
	rearm_hangcheck =
2961
		cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
2962

2963
	if (!mutex_trylock(&i915->drm.struct_mutex)) {
2964
		/* Currently busy, come back later */
2965 2966
		mod_delayed_work(i915->wq,
				 &i915->gt.idle_work,
2967 2968 2969 2970
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2971
	/*
2972 2973 2974 2975
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. Should anything unfortunate happen
	 * while we are idle (such as the GPU being power cycled), no users
	 * will be harmed.
2976
	 */
2977 2978 2979
	if (!work_pending(&i915->gt.idle_work.work) &&
	    !i915->gt.active_requests) {
		++i915->gt.active_requests; /* don't requeue idle */
2980

2981
		switch_to_kernel_context_sync(i915, i915->gt.active_engines);
2982

2983 2984 2985 2986 2987
		if (!--i915->gt.active_requests) {
			__i915_gem_park(i915);
			rearm_hangcheck = false;
		}
	}
2988

2989
	mutex_unlock(&i915->drm.struct_mutex);
2990

2991 2992
out_rearm:
	if (rearm_hangcheck) {
2993 2994
		GEM_BUG_ON(!i915->gt.awake);
		i915_queue_hangcheck(i915);
2995
	}
2996 2997
}

2998 2999
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3000
	struct drm_i915_private *i915 = to_i915(gem->dev);
3001 3002
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3003
	struct i915_lut_handle *lut, *ln;
3004

3005 3006 3007 3008 3009 3010
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3011
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3012 3013 3014 3015
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3016 3017 3018 3019 3020 3021 3022
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3023
			i915_vma_close(vma);
3024

3025 3026
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3027

3028
		i915_lut_handle_free(lut);
3029
		__i915_gem_object_release_unless_active(obj);
3030
	}
3031 3032

	mutex_unlock(&i915->drm.struct_mutex);
3033 3034
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3046 3047
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3048 3049 3050
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3051 3052 3053 3054 3055 3056 3057
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3058
 *  -EAGAIN: incomplete, restart syscall
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3075 3076
	ktime_t start;
	long ret;
3077

3078 3079 3080
	if (args->flags != 0)
		return -EINVAL;

3081
	obj = i915_gem_object_lookup(file, args->bo_handle);
3082
	if (!obj)
3083 3084
		return -ENOENT;

3085 3086 3087
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3088 3089 3090
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3091
				   to_wait_timeout(args->timeout_ns));
3092 3093 3094 3095 3096

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3107 3108 3109 3110

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3111 3112
	}

C
Chris Wilson 已提交
3113
	i915_gem_object_put(obj);
3114
	return ret;
3115 3116
}

3117 3118
static int wait_for_engines(struct drm_i915_private *i915)
{
3119
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3120 3121
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3122
		GEM_TRACE_DUMP();
3123 3124
		i915_gem_set_wedged(i915);
		return -EIO;
3125 3126 3127 3128 3129
	}

	return 0;
}

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	if (!READ_ONCE(i915->gt.active_requests))
		return timeout;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3141
	list_for_each_entry(tl, &gt->active_list, link) {
3142 3143
		struct i915_request *rq;

3144
		rq = i915_active_request_get_unlocked(&tl->last_request);
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
3160
			gen6_rps_boost(rq);
3161 3162 3163 3164 3165 3166 3167 3168

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3169
		tl = list_entry(&gt->active_list, typeof(*tl), link);
3170 3171 3172 3173 3174 3175
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

3176 3177
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3178
{
3179 3180 3181
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3182

3183 3184 3185 3186
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3187 3188 3189 3190
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

3191
	if (flags & I915_WAIT_LOCKED) {
3192
		int err;
3193 3194 3195

		lockdep_assert_held(&i915->drm.struct_mutex);

3196 3197 3198 3199
		err = wait_for_engines(i915);
		if (err)
			return err;

3200
		i915_retire_requests(i915);
3201
	}
3202 3203

	return 0;
3204 3205
}

3206 3207
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3208 3209 3210 3211 3212 3213 3214
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3215
	obj->write_domain = 0;
3216 3217 3218 3219
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3220
	if (!READ_ONCE(obj->pin_global))
3221 3222 3223 3224 3225 3226 3227
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3247
				   MAX_SCHEDULE_TIMEOUT);
3248 3249 3250
	if (ret)
		return ret;

3251
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3272
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3273 3274 3275 3276 3277
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3278 3279
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3280
	if (write) {
3281 3282
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3283 3284 3285 3286 3287 3288 3289
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3290 3291
/**
 * Moves a single object to the GTT read, and possibly write domain.
3292 3293
 * @obj: object to act on
 * @write: ask for write access or read only
3294 3295 3296 3297
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3298
int
3299
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3300
{
3301
	int ret;
3302

3303
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3304

3305 3306 3307 3308
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3309
				   MAX_SCHEDULE_TIMEOUT);
3310 3311 3312
	if (ret)
		return ret;

3313
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3314 3315
		return 0;

3316 3317 3318 3319 3320 3321 3322 3323
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3324
	ret = i915_gem_object_pin_pages(obj);
3325 3326 3327
	if (ret)
		return ret;

3328
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3329

3330 3331 3332 3333
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3334
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3335 3336
		mb();

3337 3338 3339
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3340 3341
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3342
	if (write) {
3343 3344
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3345
		obj->mm.dirty = true;
3346 3347
	}

C
Chris Wilson 已提交
3348
	i915_gem_object_unpin_pages(obj);
3349 3350 3351
	return 0;
}

3352 3353
/**
 * Changes the cache-level of an object across all VMA.
3354 3355
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3367 3368 3369
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3370
	struct i915_vma *vma;
3371
	int ret;
3372

3373 3374
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3375
	if (obj->cache_level == cache_level)
3376
		return 0;
3377

3378 3379 3380 3381 3382
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3383
restart:
3384
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3385 3386 3387
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3388
		if (i915_vma_is_pinned(vma)) {
3389 3390 3391 3392
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3393 3394
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3406 3407
	}

3408 3409 3410 3411 3412 3413 3414
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3415
	if (obj->bind_count) {
3416 3417 3418 3419
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3420 3421 3422 3423
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
3424
					   MAX_SCHEDULE_TIMEOUT);
3425 3426 3427
		if (ret)
			return ret;

3428 3429
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3446
			for_each_ggtt_vma(vma, obj) {
3447 3448 3449 3450
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3451 3452 3453 3454 3455 3456 3457 3458
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3459 3460
		}

3461
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3462 3463 3464 3465 3466 3467 3468
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3469 3470
	}

3471
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3472
		vma->node.color = cache_level;
3473
	i915_gem_object_set_cache_coherency(obj, cache_level);
3474
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3475

3476 3477 3478
	return 0;
}

B
Ben Widawsky 已提交
3479 3480
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3481
{
B
Ben Widawsky 已提交
3482
	struct drm_i915_gem_caching *args = data;
3483
	struct drm_i915_gem_object *obj;
3484
	int err = 0;
3485

3486 3487 3488 3489 3490 3491
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3492

3493 3494 3495 3496 3497 3498
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3499 3500 3501 3502
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3503 3504 3505 3506
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3507 3508 3509
out:
	rcu_read_unlock();
	return err;
3510 3511
}

B
Ben Widawsky 已提交
3512 3513
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3514
{
3515
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3516
	struct drm_i915_gem_caching *args = data;
3517 3518
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3519
	int ret = 0;
3520

B
Ben Widawsky 已提交
3521 3522
	switch (args->caching) {
	case I915_CACHING_NONE:
3523 3524
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3525
	case I915_CACHING_CACHED:
3526 3527 3528 3529 3530 3531
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3532
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3533 3534
			return -ENODEV;

3535 3536
		level = I915_CACHE_LLC;
		break;
3537
	case I915_CACHING_DISPLAY:
3538
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3539
		break;
3540 3541 3542 3543
	default:
		return -EINVAL;
	}

3544 3545 3546 3547
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3557 3558 3559 3560 3561
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
3562
				   MAX_SCHEDULE_TIMEOUT);
B
Ben Widawsky 已提交
3563
	if (ret)
3564
		goto out;
B
Ben Widawsky 已提交
3565

3566 3567 3568
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3569 3570 3571

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3572 3573 3574

out:
	i915_gem_object_put(obj);
3575 3576 3577
	return ret;
}

3578
/*
3579 3580 3581 3582
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3583
 */
C
Chris Wilson 已提交
3584
struct i915_vma *
3585 3586
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3587 3588
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3589
{
C
Chris Wilson 已提交
3590
	struct i915_vma *vma;
3591 3592
	int ret;

3593 3594
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3595
	/* Mark the global pin early so that we account for the
3596 3597
	 * display coherency whilst setting up the cache domains.
	 */
3598
	obj->pin_global++;
3599

3600 3601 3602 3603 3604 3605 3606 3607 3608
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3609
	ret = i915_gem_object_set_cache_level(obj,
3610 3611
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3612 3613
	if (ret) {
		vma = ERR_PTR(ret);
3614
		goto err_unpin_global;
C
Chris Wilson 已提交
3615
	}
3616

3617 3618
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3619 3620 3621 3622
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3623
	 */
3624
	vma = ERR_PTR(-ENOSPC);
3625 3626
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3627
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3628 3629 3630 3631
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3632
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3633
	if (IS_ERR(vma))
3634
		goto err_unpin_global;
3635

3636 3637
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3638
	__i915_gem_object_flush_for_display(obj);
3639

3640 3641 3642
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3643
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3644

C
Chris Wilson 已提交
3645
	return vma;
3646

3647 3648
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3649
	return vma;
3650 3651 3652
}

void
C
Chris Wilson 已提交
3653
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3654
{
3655
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3656

3657
	if (WARN_ON(vma->obj->pin_global == 0))
3658 3659
		return;

3660
	if (--vma->obj->pin_global == 0)
3661
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3662

3663
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3664
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3665

C
Chris Wilson 已提交
3666
	i915_vma_unpin(vma);
3667 3668
}

3669 3670
/**
 * Moves a single object to the CPU read, and possibly write domain.
3671 3672
 * @obj: object to act on
 * @write: requesting write or read-only access
3673 3674 3675 3676
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3677
int
3678
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3679 3680 3681
{
	int ret;

3682
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3683

3684 3685 3686 3687
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3688
				   MAX_SCHEDULE_TIMEOUT);
3689 3690 3691
	if (ret)
		return ret;

3692
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3693

3694
	/* Flush the CPU cache if it's still invalid. */
3695
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3696
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3697
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3698 3699 3700 3701 3702
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3703
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3704 3705 3706 3707

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3708 3709
	if (write)
		__start_cpu_write(obj);
3710 3711 3712 3713

	return 0;
}

3714 3715 3716
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3717 3718 3719 3720
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3721 3722 3723
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3724
static int
3725
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3726
{
3727
	struct drm_i915_private *dev_priv = to_i915(dev);
3728
	struct drm_i915_file_private *file_priv = file->driver_priv;
3729
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3730
	struct i915_request *request, *target = NULL;
3731
	long ret;
3732

3733
	/* ABI: return -EIO if already wedged */
3734 3735 3736
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
		return ret;
3737

3738
	spin_lock(&file_priv->mm.lock);
3739
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3740 3741
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3742

3743 3744 3745 3746
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3747

3748
		target = request;
3749
	}
3750
	if (target)
3751
		i915_request_get(target);
3752
	spin_unlock(&file_priv->mm.lock);
3753

3754
	if (target == NULL)
3755
		return 0;
3756

3757
	ret = i915_request_wait(target,
3758 3759
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3760
	i915_request_put(target);
3761

3762
	return ret < 0 ? ret : 0;
3763 3764
}

C
Chris Wilson 已提交
3765
struct i915_vma *
3766 3767
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3768
			 u64 size,
3769 3770
			 u64 alignment,
			 u64 flags)
3771
{
3772
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3773
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3774 3775
	struct i915_vma *vma;
	int ret;
3776

3777 3778
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3779 3780
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3811
	vma = i915_vma_instance(obj, vm, view);
3812
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3813
		return vma;
3814 3815

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3816 3817 3818
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3819

3820
			if (flags & PIN_MAPPABLE &&
3821
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3822 3823 3824
				return ERR_PTR(-ENOSPC);
		}

3825 3826
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3827 3828 3829
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3830
		     !!(flags & PIN_MAPPABLE),
3831
		     i915_vma_is_map_and_fenceable(vma));
3832 3833
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3834
			return ERR_PTR(ret);
3835 3836
	}

C
Chris Wilson 已提交
3837 3838 3839
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3840

C
Chris Wilson 已提交
3841
	return vma;
3842 3843
}

3844
static __always_inline u32 __busy_read_flag(u8 id)
3845
{
3846 3847
	if (id == (u8)I915_ENGINE_CLASS_INVALID)
		return 0xffff0000u;
3848 3849

	GEM_BUG_ON(id >= 16);
3850
	return 0x10000u << id;
3851 3852
}

3853
static __always_inline u32 __busy_write_id(u8 id)
3854
{
3855 3856
	/*
	 * The uABI guarantees an active writer is also amongst the read
3857 3858 3859 3860 3861 3862 3863
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
3864 3865
	if (id == (u8)I915_ENGINE_CLASS_INVALID)
		return 0xffffffffu;
3866 3867

	return (id + 1) | __busy_read_flag(id);
3868 3869
}

3870
static __always_inline unsigned int
3871
__busy_set_if_active(const struct dma_fence *fence, u32 (*flag)(u8 id))
3872
{
3873
	const struct i915_request *rq;
3874

3875 3876
	/*
	 * We have to check the current hw status of the fence as the uABI
3877 3878 3879
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3880
	 *
3881
	 * Note we only report on the status of native fences.
3882
	 */
3883 3884 3885 3886
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
3887
	rq = container_of(fence, const struct i915_request, fence);
3888
	if (i915_request_completed(rq))
3889 3890
		return 0;

3891 3892
	/* Beware type-expansion follies! */
	BUILD_BUG_ON(!typecheck(u8, rq->engine->uabi_class));
3893
	return flag(rq->engine->uabi_class);
3894 3895
}

3896
static __always_inline unsigned int
3897
busy_check_reader(const struct dma_fence *fence)
3898
{
3899
	return __busy_set_if_active(fence, __busy_read_flag);
3900 3901
}

3902
static __always_inline unsigned int
3903
busy_check_writer(const struct dma_fence *fence)
3904
{
3905 3906 3907 3908
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3909 3910
}

3911 3912
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3913
		    struct drm_file *file)
3914 3915
{
	struct drm_i915_gem_busy *args = data;
3916
	struct drm_i915_gem_object *obj;
3917 3918
	struct reservation_object_list *list;
	unsigned int seq;
3919
	int err;
3920

3921
	err = -ENOENT;
3922 3923
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3924
	if (!obj)
3925
		goto out;
3926

3927 3928
	/*
	 * A discrepancy here is that we do not report the status of
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3946

3947 3948
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3949

3950 3951 3952 3953
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3954

3955 3956 3957 3958 3959 3960
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3961
	}
3962

3963 3964 3965 3966
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3967 3968 3969
out:
	rcu_read_unlock();
	return err;
3970 3971 3972 3973 3974 3975
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3976
	return i915_gem_ring_throttle(dev, file_priv);
3977 3978
}

3979 3980 3981 3982
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3983
	struct drm_i915_private *dev_priv = to_i915(dev);
3984
	struct drm_i915_gem_madvise *args = data;
3985
	struct drm_i915_gem_object *obj;
3986
	int err;
3987 3988 3989 3990 3991 3992 3993 3994 3995

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3996
	obj = i915_gem_object_lookup(file_priv, args->handle);
3997 3998 3999 4000 4001 4002
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4003

4004
	if (i915_gem_object_has_pages(obj) &&
4005
	    i915_gem_object_is_tiled(obj) &&
4006
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4007 4008
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4009
			__i915_gem_object_unpin_pages(obj);
4010 4011 4012
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4013
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4014
			__i915_gem_object_pin_pages(obj);
4015 4016
			obj->mm.quirked = true;
		}
4017 4018
	}

C
Chris Wilson 已提交
4019 4020
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4021

C
Chris Wilson 已提交
4022
	/* if the object is no longer attached, discard its backing storage */
4023 4024
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4025 4026
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4027
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4028
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4029

4030
out:
4031
	i915_gem_object_put(obj);
4032
	return err;
4033 4034
}

4035
static void
4036 4037
frontbuffer_retire(struct i915_active_request *active,
		   struct i915_request *request)
4038 4039 4040 4041
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4042
	intel_fb_obj_flush(obj, ORIGIN_CS);
4043 4044
}

4045 4046
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4047
{
4048 4049
	mutex_init(&obj->mm.lock);

4050 4051 4052
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

4053
	INIT_LIST_HEAD(&obj->lut_list);
4054
	INIT_LIST_HEAD(&obj->batch_pool_link);
4055

4056 4057
	init_rcu_head(&obj->rcu);

4058 4059
	obj->ops = ops;

4060 4061 4062
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4063
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4064 4065
	i915_active_request_init(&obj->frontbuffer_write,
				 NULL, frontbuffer_retire);
C
Chris Wilson 已提交
4066 4067 4068 4069

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4070

4071
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4072 4073
}

4074
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4075 4076
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4077

4078 4079
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4080 4081

	.pwrite = i915_gem_object_pwrite_gtt,
4082 4083
};

M
Matthew Auld 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4108
struct drm_i915_gem_object *
4109
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4110
{
4111
	struct drm_i915_gem_object *obj;
4112
	struct address_space *mapping;
4113
	unsigned int cache_level;
D
Daniel Vetter 已提交
4114
	gfp_t mask;
4115
	int ret;
4116

4117 4118 4119 4120 4121
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4122
	if (size >> PAGE_SHIFT > INT_MAX)
4123 4124 4125 4126 4127
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4128
	obj = i915_gem_object_alloc();
4129
	if (obj == NULL)
4130
		return ERR_PTR(-ENOMEM);
4131

M
Matthew Auld 已提交
4132
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4133 4134
	if (ret)
		goto fail;
4135

4136
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4137
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4138 4139 4140 4141 4142
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4143
	mapping = obj->base.filp->f_mapping;
4144
	mapping_set_gfp_mask(mapping, mask);
4145
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4146

4147
	i915_gem_object_init(obj, &i915_gem_object_ops);
4148

4149 4150
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4151

4152
	if (HAS_LLC(dev_priv))
4153
		/* On some devices, we can have the GPU use the LLC (the CPU
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4165 4166 4167
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4168

4169
	i915_gem_object_set_cache_coherency(obj, cache_level);
4170

4171 4172
	trace_i915_gem_object_create(obj);

4173
	return obj;
4174 4175 4176 4177

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4178 4179
}

4180 4181 4182 4183 4184 4185 4186 4187
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4188
	if (obj->mm.madv != I915_MADV_WILLNEED)
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4204 4205
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4206
{
4207
	struct drm_i915_gem_object *obj, *on;
4208
	intel_wakeref_t wakeref;
4209

4210
	wakeref = intel_runtime_pm_get(i915);
4211
	llist_for_each_entry_safe(obj, on, freed, freed) {
4212 4213 4214 4215
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4216 4217
		mutex_lock(&i915->drm.struct_mutex);

4218
		GEM_BUG_ON(i915_gem_object_is_active(obj));
4219
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4220 4221
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4222
			i915_vma_destroy(vma);
4223
		}
4224 4225
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4226

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4239
		mutex_unlock(&i915->drm.struct_mutex);
4240 4241

		GEM_BUG_ON(obj->bind_count);
4242
		GEM_BUG_ON(obj->userfault_count);
4243
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4244
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4245 4246 4247

		if (obj->ops->release)
			obj->ops->release(obj);
4248

4249 4250
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4251
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4252
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4253 4254 4255 4256

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4257
		reservation_object_fini(&obj->__builtin_resv);
4258 4259 4260
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

4261
		bitmap_free(obj->bit_17);
4262
		i915_gem_object_free(obj);
4263

4264 4265 4266
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4267 4268
		if (on)
			cond_resched();
4269
	}
4270
	intel_runtime_pm_put(i915, wakeref);
4271 4272 4273 4274 4275 4276
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4287
		__i915_gem_free_objects(i915, freed);
4288
	}
4289 4290 4291 4292 4293 4294 4295
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4296

4297 4298
	/*
	 * All file-owned VMA should have been released by this point through
4299 4300 4301 4302 4303 4304
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4305

4306
	spin_lock(&i915->mm.free_lock);
4307
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4308 4309
		spin_unlock(&i915->mm.free_lock);

4310
		__i915_gem_free_objects(i915, freed);
4311
		if (need_resched())
4312 4313 4314
			return;

		spin_lock(&i915->mm.free_lock);
4315
	}
4316
	spin_unlock(&i915->mm.free_lock);
4317
}
4318

4319 4320 4321 4322 4323
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4324 4325 4326 4327 4328 4329 4330

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4331

4332 4333 4334 4335 4336 4337 4338 4339 4340
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4341 4342
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4343
		queue_work(i915->wq, &i915->mm.free_work);
4344
}
4345

4346 4347 4348
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4349

4350 4351 4352
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4353
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4354
		obj->mm.madv = I915_MADV_DONTNEED;
4355

4356 4357
	/*
	 * Before we free the object, make sure any pure RCU-only
4358 4359 4360 4361
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4362
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4363
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4364 4365
}

4366 4367 4368 4369
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4370 4371
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4372 4373 4374 4375 4376
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4377 4378
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4379 4380
	intel_wakeref_t wakeref;

4381 4382
	GEM_TRACE("\n");

4383
	wakeref = intel_runtime_pm_get(i915);
4384
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4385 4386 4387 4388 4389 4390 4391

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4392
	if (i915_terminally_wedged(i915))
4393 4394
		i915_gem_unset_wedged(i915);

4395 4396 4397 4398 4399 4400
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4401
	 * of the reset, so this could be applied to even earlier gen.
4402
	 */
4403
	intel_engines_sanitize(i915, false);
4404

4405
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4406
	intel_runtime_pm_put(i915, wakeref);
4407

4408
	mutex_lock(&i915->drm.struct_mutex);
4409 4410
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4411 4412
}

4413
void i915_gem_suspend(struct drm_i915_private *i915)
4414
{
4415
	intel_wakeref_t wakeref;
4416

4417 4418
	GEM_TRACE("\n");

4419
	wakeref = intel_runtime_pm_get(i915);
4420

4421 4422
	flush_workqueue(i915->wq);

C
Chris Wilson 已提交
4423
	mutex_lock(&i915->drm.struct_mutex);
4424

C
Chris Wilson 已提交
4425 4426
	/*
	 * We have to flush all the executing contexts to main memory so
4427 4428
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4429
	 * leaves the i915->kernel_context still active when
4430 4431 4432 4433
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4434
	switch_to_kernel_context_sync(i915, i915->gt.active_engines);
4435

C
Chris Wilson 已提交
4436
	mutex_unlock(&i915->drm.struct_mutex);
4437
	i915_reset_flush(i915);
4438

4439
	drain_delayed_work(&i915->gt.retire_work);
4440

C
Chris Wilson 已提交
4441 4442
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4443 4444
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4445
	drain_delayed_work(&i915->gt.idle_work);
4446

C
Chris Wilson 已提交
4447 4448
	/*
	 * Assert that we successfully flushed all the work and
4449 4450
	 * reset the GPU back to its idle, low power state.
	 */
4451
	GEM_BUG_ON(i915->gt.awake);
4452

4453 4454
	intel_uc_suspend(i915);

4455
	intel_runtime_pm_put(i915, wakeref);
4456 4457 4458 4459
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4460 4461 4462 4463 4464 4465 4466
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4487 4488 4489 4490 4491 4492 4493
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4494 4495
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4496 4497
}

4498
void i915_gem_resume(struct drm_i915_private *i915)
4499
{
4500 4501
	GEM_TRACE("\n");

4502
	WARN_ON(i915->gt.awake);
4503

4504
	mutex_lock(&i915->drm.struct_mutex);
4505
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4506

4507 4508
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4509

4510 4511
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4512 4513 4514
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4515
	i915->gt.resume(i915);
4516

4517 4518 4519
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4520
	intel_uc_resume(i915);
4521

4522
	/* Always reload a context for powersaving. */
4523
	if (!load_power_context(i915))
4524 4525 4526
		goto err_wedged;

out_unlock:
4527
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4528 4529 4530 4531
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4532 4533 4534
	if (!i915_reset_failed(i915)) {
		dev_err(i915->drm.dev,
			"Failed to re-initialize GPU, declaring it wedged!\n");
4535 4536
		i915_gem_set_wedged(i915);
	}
4537
	goto out_unlock;
4538 4539
}

4540
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4541
{
4542
	if (INTEL_GEN(dev_priv) < 5 ||
4543 4544 4545 4546 4547 4548
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4549
	if (IS_GEN(dev_priv, 5))
4550 4551
		return;

4552
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4553
	if (IS_GEN(dev_priv, 6))
4554
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4555
	else if (IS_GEN(dev_priv, 7))
4556
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4557
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4558
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4559 4560
	else
		BUG();
4561
}
D
Daniel Vetter 已提交
4562

4563
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4564 4565 4566 4567 4568 4569 4570
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4571
static void init_unused_rings(struct drm_i915_private *dev_priv)
4572
{
4573 4574 4575 4576 4577 4578
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4579
	} else if (IS_GEN(dev_priv, 2)) {
4580 4581
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4582
	} else if (IS_GEN(dev_priv, 3)) {
4583 4584
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4585 4586 4587
	}
}

4588
static int __i915_gem_restart_engines(void *data)
4589
{
4590
	struct drm_i915_private *i915 = data;
4591
	struct intel_engine_cs *engine;
4592
	enum intel_engine_id id;
4593 4594 4595 4596
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4597 4598 4599
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4600
			return err;
4601
		}
4602 4603
	}

4604 4605
	intel_engines_set_scheduler_caps(i915);

4606 4607 4608 4609 4610
	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4611
	int ret;
4612

4613 4614
	dev_priv->gt.last_init_time = ktime_get();

4615
	/* Double layer security blanket, see i915_gem_init() */
4616
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4617

4618
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4619
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4620

4621
	if (IS_HASWELL(dev_priv))
4622
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4623
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4624

4625
	/* Apply the GT workarounds... */
4626
	intel_gt_apply_workarounds(dev_priv);
4627 4628
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4629

4630
	i915_gem_init_swizzling(dev_priv);
4631

4632 4633 4634 4635 4636 4637
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4638
	init_unused_rings(dev_priv);
4639

4640
	BUG_ON(!dev_priv->kernel_context);
4641 4642
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
4643
		goto out;
4644

4645
	ret = i915_ppgtt_init_hw(dev_priv);
4646
	if (ret) {
4647
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4648 4649 4650
		goto out;
	}

4651 4652 4653 4654 4655 4656
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4657 4658
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4659 4660
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4661
		goto out;
4662
	}
4663

4664
	intel_mocs_init_l3cc_table(dev_priv);
4665

4666 4667
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4668 4669
	if (ret)
		goto cleanup_uc;
4670

4671
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4672 4673

	return 0;
4674 4675 4676

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4677
out:
4678
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4679 4680

	return ret;
4681 4682
}

4683 4684 4685 4686 4687
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
4688
	int err = 0;
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4704
		struct i915_request *rq;
4705

4706
		rq = i915_request_alloc(engine, ctx);
4707 4708 4709 4710 4711
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4712
		err = 0;
4713 4714 4715
		if (engine->init_context)
			err = engine->init_context(rq);

4716
		i915_request_add(rq);
4717 4718 4719 4720
		if (err)
			goto err_active;
	}

4721 4722 4723
	/* Flush the default context image to memory, and enable powersaving. */
	if (!load_power_context(i915)) {
		err = -EIO;
4724
		goto err_active;
4725
	}
4726 4727

	for_each_engine(engine, i915, id) {
4728
		struct intel_context *ce;
4729
		struct i915_vma *state;
4730
		void *vaddr;
4731

4732 4733 4734
		ce = intel_context_lookup(ctx, engine);
		if (!ce)
			continue;
4735

4736
		state = ce->state;
4737 4738 4739
		if (!state)
			continue;

4740
		GEM_BUG_ON(intel_context_is_pinned(ce));
4741

4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4759 4760
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
4761 4762 4763

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4764
						I915_MAP_FORCE_WB);
4765 4766 4767 4768 4769 4770
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
4799 4800
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
4801
	 */
4802
	i915_gem_set_wedged(i915);
4803 4804 4805
	goto out_ctx;
}

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4844
int i915_gem_init(struct drm_i915_private *dev_priv)
4845 4846 4847
{
	int ret;

4848 4849
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4850 4851 4852
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4853
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4854

4855
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
4856
		dev_priv->gt.resume = intel_lr_context_resume;
4857
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4858 4859 4860
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4861 4862
	}

4863 4864
	i915_timelines_init(dev_priv);

4865 4866 4867 4868
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

4869
	ret = intel_uc_init_misc(dev_priv);
4870 4871 4872
	if (ret)
		return ret;

4873
	ret = intel_wopcm_init(&dev_priv->wopcm);
4874
	if (ret)
4875
		goto err_uc_misc;
4876

4877 4878 4879 4880 4881 4882
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
4883
	mutex_lock(&dev_priv->drm.struct_mutex);
4884
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4885

4886
	ret = i915_gem_init_ggtt(dev_priv);
4887 4888 4889 4890
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
4891

4892
	ret = i915_gem_init_scratch(dev_priv,
4893
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
4894 4895 4896 4897
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
4898

4899 4900 4901 4902 4903 4904
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

4905
	ret = intel_engines_init(dev_priv);
4906 4907 4908 4909
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
4910

4911 4912
	intel_init_gt_powersave(dev_priv);

4913
	ret = intel_uc_init(dev_priv);
4914
	if (ret)
4915
		goto err_pm;
4916

4917 4918 4919 4920
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

4932
	ret = __intel_engines_record_defaults(dev_priv);
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

4946
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
4958 4959
	mutex_unlock(&dev_priv->drm.struct_mutex);

4960
	i915_gem_suspend(dev_priv);
4961 4962
	i915_gem_suspend_late(dev_priv);

4963 4964
	i915_gem_drain_workqueue(dev_priv);

4965
	mutex_lock(&dev_priv->drm.struct_mutex);
4966
	intel_uc_fini_hw(dev_priv);
4967 4968
err_uc_init:
	intel_uc_fini(dev_priv);
4969 4970 4971 4972 4973 4974 4975 4976
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
4977 4978
err_scratch:
	i915_gem_fini_scratch(dev_priv);
4979 4980
err_ggtt:
err_unlock:
4981
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4982 4983
	mutex_unlock(&dev_priv->drm.struct_mutex);

4984
err_uc_misc:
4985
	intel_uc_fini_misc(dev_priv);
4986

4987
	if (ret != -EIO) {
4988
		i915_gem_cleanup_userptr(dev_priv);
4989 4990
		i915_timelines_fini(dev_priv);
	}
4991

4992
	if (ret == -EIO) {
4993 4994
		mutex_lock(&dev_priv->drm.struct_mutex);

4995 4996
		/*
		 * Allow engine initialisation to fail by marking the GPU as
4997 4998 4999
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5000
		if (!i915_reset_failed(dev_priv)) {
5001 5002
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5003 5004
			i915_gem_set_wedged(dev_priv);
		}
5005 5006 5007 5008 5009 5010 5011 5012

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5013 5014
	}

5015
	i915_gem_drain_freed_objects(dev_priv);
5016
	return ret;
5017 5018
}

5019 5020 5021
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5022
	intel_disable_gt_powersave(dev_priv);
5023 5024 5025 5026 5027 5028 5029 5030 5031

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5032
	i915_gem_fini_scratch(dev_priv);
5033 5034
	mutex_unlock(&dev_priv->drm.struct_mutex);

5035 5036
	intel_wa_list_free(&dev_priv->gt_wa_list);

5037 5038
	intel_cleanup_gt_powersave(dev_priv);

5039 5040
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
5041
	i915_timelines_fini(dev_priv);
5042 5043 5044 5045 5046 5047

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5048 5049 5050 5051 5052
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5053
void
5054
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5055
{
5056
	struct intel_engine_cs *engine;
5057
	enum intel_engine_id id;
5058

5059
	for_each_engine(engine, dev_priv, id)
5060
		dev_priv->gt.cleanup_engine(engine);
5061 5062
}

5063 5064 5065
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5066
	int i;
5067

5068
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5069 5070
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5071
	else if (INTEL_GEN(dev_priv) >= 4 ||
5072 5073
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5074 5075 5076 5077
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5078
	if (intel_vgpu_active(dev_priv))
5079 5080 5081 5082
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5083 5084 5085 5086 5087 5088 5089
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5090
	i915_gem_restore_fences(dev_priv);
5091

5092
	i915_gem_detect_bit_6_swizzle(dev_priv);
5093 5094
}

5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5111
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5112
{
5113
	int err;
5114

5115
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5116
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5117

5118
	i915_gem_init__mm(dev_priv);
5119

5120
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5121
			  i915_gem_retire_work_handler);
5122
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5123
			  i915_gem_idle_work_handler);
5124
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5125
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5126
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5127
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
5128

5129 5130
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5131
	spin_lock_init(&dev_priv->fb_tracking.lock);
5132

M
Matthew Auld 已提交
5133 5134 5135 5136
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5137
	return 0;
5138
}
5139

5140
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5141
{
5142
	i915_gem_drain_freed_objects(dev_priv);
5143 5144
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5145
	WARN_ON(dev_priv->mm.object_count);
5146

5147 5148
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
5149
	i915_gemfs_fini(dev_priv);
5150 5151
}

5152 5153
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5154 5155 5156
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5157 5158 5159 5160 5161
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5162
int i915_gem_freeze_late(struct drm_i915_private *i915)
5163 5164
{
	struct drm_i915_gem_object *obj;
5165
	struct list_head *phases[] = {
5166 5167
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5168
		NULL
5169
	}, **phase;
5170

5171 5172
	/*
	 * Called just before we write the hibernation image.
5173 5174 5175 5176 5177 5178 5179 5180
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5181 5182
	 *
	 * To try and reduce the hibernation image, we manually shrink
5183
	 * the objects as well, see i915_gem_freeze()
5184 5185
	 */

5186 5187
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5188

5189 5190 5191 5192
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5193
	}
5194
	mutex_unlock(&i915->drm.struct_mutex);
5195 5196 5197 5198

	return 0;
}

5199
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5200
{
5201
	struct drm_i915_file_private *file_priv = file->driver_priv;
5202
	struct i915_request *request;
5203 5204 5205 5206 5207

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5208
	spin_lock(&file_priv->mm.lock);
5209
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5210
		request->file_priv = NULL;
5211
	spin_unlock(&file_priv->mm.lock);
5212 5213
}

5214
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5215 5216
{
	struct drm_i915_file_private *file_priv;
5217
	int ret;
5218

5219
	DRM_DEBUG("\n");
5220 5221 5222 5223 5224 5225

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5226
	file_priv->dev_priv = i915;
5227
	file_priv->file = file;
5228 5229 5230 5231

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5232
	file_priv->bsd_engine = -1;
5233
	file_priv->hang_timestamp = jiffies;
5234

5235
	ret = i915_gem_context_open(i915, file);
5236 5237
	if (ret)
		kfree(file_priv);
5238

5239
	return ret;
5240 5241
}

5242 5243
/**
 * i915_gem_track_fb - update frontbuffer tracking
5244 5245 5246
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5247 5248 5249 5250
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5251 5252 5253 5254
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5255 5256 5257 5258 5259 5260 5261
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5262
		     BITS_PER_TYPE(atomic_t));
5263

5264
	if (old) {
5265 5266
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5267 5268 5269
	}

	if (new) {
5270 5271
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5272 5273 5274
	}
}

5275 5276
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5277
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5278 5279 5280
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5281 5282 5283
	struct file *file;
	size_t offset;
	int err;
5284

5285
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5286
	if (IS_ERR(obj))
5287 5288
		return obj;

5289
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5290

5291 5292 5293 5294 5295 5296
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5297

5298 5299 5300 5301 5302
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5303

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5318 5319 5320 5321

	return obj;

fail:
5322
	i915_gem_object_put(obj);
5323
	return ERR_PTR(err);
5324
}
5325 5326 5327 5328 5329 5330

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5331
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5332 5333 5334 5335 5336
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5337
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5363 5364
		void *entry;
		unsigned long i;
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5379
		entry = xa_mk_value(idx);
5380
		for (i = 1; i < count; i++) {
5381
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5419
	 * the radix tree will contain a value entry that points
5420 5421 5422 5423 5424
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5425 5426
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5459
	if (!obj->mm.dirty)
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5475

5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5511
	pages = __i915_gem_object_unset_pages(obj);
5512

5513 5514
	obj->ops = &i915_gem_phys_ops;

5515
	err = ____i915_gem_object_get_pages(obj);
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5529 5530 5531 5532 5533
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5534 5535 5536 5537 5538
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5539 5540
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5541
#include "selftests/mock_gem_device.c"
5542
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5543
#include "selftests/huge_pages.c"
5544
#include "selftests/i915_gem_object.c"
5545
#include "selftests/i915_gem_coherency.c"
5546
#include "selftests/i915_gem.c"
5547
#endif