i915_gem.c 127.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_mocs.h"
36
#include <linux/shmem_fs.h>
37
#include <linux/slab.h>
38
#include <linux/swap.h>
J
Jesse Barnes 已提交
39
#include <linux/pci.h>
40
#include <linux/dma-buf.h>
41

42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44
static void
45 46 47
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48

49 50 51 52 53 54
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

55 56
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
57 58 59
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

60 61 62 63 64 65
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
88
	spin_lock(&dev_priv->mm.object_stat_lock);
89 90
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
91
	spin_unlock(&dev_priv->mm.object_stat_lock);
92 93 94 95 96
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
97
	spin_lock(&dev_priv->mm.object_stat_lock);
98 99
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
100
	spin_unlock(&dev_priv->mm.object_stat_lock);
101 102
}

103
static int
104
i915_gem_wait_for_error(struct i915_gpu_error *error)
105 106 107
{
	int ret;

108
	if (!i915_reset_in_progress(error))
109 110
		return 0;

111 112 113 114 115
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
116
	ret = wait_event_interruptible_timeout(error->reset_queue,
117
					       !i915_reset_in_progress(error),
118
					       10*HZ);
119 120 121 122
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
123
		return ret;
124 125
	} else {
		return 0;
126
	}
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = to_i915(dev);
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 160
		if (vma->pin_count)
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 163
		if (vma->pin_count)
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175 176 177 178 179
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218 219 220 221 222 223 224 225 226 227 228
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237 238 239 240 241
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
242
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
265
		obj->dirty = 0;
266 267
	}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
291
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 293 294 295 296 297 298
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
343
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(to_i915(dev));
372 373

out:
374
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375
	return ret;
376 377
}

378 379
void *i915_gem_object_alloc(struct drm_device *dev)
{
380
	struct drm_i915_private *dev_priv = to_i915(dev);
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
386
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_object_create(dev, size);
406 407
	if (IS_ERR(obj))
		return PTR_ERR(obj);
408

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432
}

/**
 * Creates a new mm object and returns a handle to it.
433 434 435
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
436 437 438 439 440 441
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
442

443
	return i915_gem_create(file, dev,
444
			       args->size, &args->handle);
445 446
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

473
static inline int
474 475
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

511
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

535 536 537
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
538
static int
539 540 541 542 543 544 545
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

546
	if (unlikely(page_do_bit17_swizzling))
547 548 549 550 551 552 553 554 555 556 557
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

558
	return ret ? -EFAULT : 0;
559 560
}

561 562 563 564
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
565
	if (unlikely(swizzled)) {
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

583 584 585 586 587 588 589 590 591 592 593 594
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
595 596 597
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
598 599 600 601 602 603 604 605 606 607 608

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

609
	return ret ? - EFAULT : 0;
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
639
	struct drm_i915_private *dev_priv = to_i915(dev);
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
	if (ret) {
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
out:
	return ret;
}

748
static int
749 750 751 752
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
753
{
754
	char __user *user_data;
755
	ssize_t remain;
756
	loff_t offset;
757
	int shmem_page_offset, page_length, ret = 0;
758
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759
	int prefaulted = 0;
760
	int needs_clflush = 0;
761
	struct sg_page_iter sg_iter;
762

763
	if (!i915_gem_object_has_struct_page(obj))
764 765
		return -ENODEV;

766
	user_data = u64_to_user_ptr(args->data_ptr);
767 768
	remain = args->size;

769
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770

771
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 773 774
	if (ret)
		return ret;

775
	offset = args->offset;
776

777 778
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
779
		struct page *page = sg_page_iter_page(&sg_iter);
780 781 782 783

		if (remain <= 0)
			break;

784 785 786 787 788
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
789
		shmem_page_offset = offset_in_page(offset);
790 791 792 793
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

794 795 796
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

797 798 799 800 801
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
802 803 804

		mutex_unlock(&dev->struct_mutex);

805
		if (likely(!i915.prefault_disable) && !prefaulted) {
806
			ret = fault_in_multipages_writeable(user_data, remain);
807 808 809 810 811 812 813
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
814

815 816 817
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
818

819
		mutex_lock(&dev->struct_mutex);
820 821

		if (ret)
822 823
			goto out;

824
next_page:
825
		remain -= page_length;
826
		user_data += page_length;
827 828 829
		offset += page_length;
	}

830
out:
831 832
	i915_gem_object_unpin_pages(obj);

833 834 835
	return ret;
}

836 837
/**
 * Reads data from the object referenced by handle.
838 839 840
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
841 842 843 844 845
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846
		     struct drm_file *file)
847 848
{
	struct drm_i915_gem_pread *args = data;
849
	struct drm_i915_gem_object *obj;
850
	int ret = 0;
851

852 853 854 855
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
856
		       u64_to_user_ptr(args->data_ptr),
857 858 859
		       args->size))
		return -EFAULT;

860
	ret = i915_mutex_lock_interruptible(dev);
861
	if (ret)
862
		return ret;
863

864
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865
	if (&obj->base == NULL) {
866 867
		ret = -ENOENT;
		goto unlock;
868
	}
869

870
	/* Bounds check source.  */
871 872
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
873
		ret = -EINVAL;
874
		goto out;
C
Chris Wilson 已提交
875 876
	}

C
Chris Wilson 已提交
877 878
	trace_i915_gem_object_pread(obj, args->offset, args->size);

879
	ret = i915_gem_shmem_pread(dev, obj, args, file);
880

881 882 883 884 885
	/* pread for non shmem backed objects */
	if (ret == -EFAULT || ret == -ENODEV)
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

886
out:
887
	drm_gem_object_unreference(&obj->base);
888
unlock:
889
	mutex_unlock(&dev->struct_mutex);
890
	return ret;
891 892
}

893 894
/* This is the fast write path which cannot handle
 * page faults in the source data
895
 */
896 897 898 899 900 901

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
902
{
903 904
	void __iomem *vaddr_atomic;
	void *vaddr;
905
	unsigned long unwritten;
906

P
Peter Zijlstra 已提交
907
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 909 910
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
911
						      user_data, length);
P
Peter Zijlstra 已提交
912
	io_mapping_unmap_atomic(vaddr_atomic);
913
	return unwritten;
914 915
}

916 917 918
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
919
 * @i915: i915 device private data
920 921 922
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
923
 */
924
static int
925
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926
			 struct drm_i915_gem_object *obj,
927
			 struct drm_i915_gem_pwrite *args,
928
			 struct drm_file *file)
929
{
930
	struct i915_ggtt *ggtt = &i915->ggtt;
931
	struct drm_device *dev = obj->base.dev;
932 933
	struct drm_mm_node node;
	uint64_t remain, offset;
934
	char __user *user_data;
935
	int ret;
936 937 938 939
	bool hit_slow_path = false;

	if (obj->tiling_mode != I915_TILING_NONE)
		return -EFAULT;
D
Daniel Vetter 已提交
940

941
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	if (ret) {
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	} else {
		node.start = i915_gem_obj_ggtt_offset(obj);
		node.allocated = false;
957 958 959
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			goto out_unpin;
960
	}
D
Daniel Vetter 已提交
961 962 963 964 965

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

966
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967
	obj->dirty = true;
968

969 970 971 972
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
973 974
		/* Operation in this page
		 *
975 976 977
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
978
		 */
979 980 981 982 983 984 985 986 987 988 989 990 991
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
992
		/* If we get a fault while copying data, then (presumably) our
993 994
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
995 996
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
997
		 */
998
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
999
				    page_offset, user_data, page_length)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1012
		}
1013

1014 1015 1016
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1017 1018
	}

1019
out_flush:
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1033
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
1034
out_unpin:
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
		i915_gem_object_ggtt_unpin(obj);
	}
D
Daniel Vetter 已提交
1045
out:
1046
	return ret;
1047 1048
}

1049 1050 1051 1052
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1053
static int
1054 1055 1056 1057 1058
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1059
{
1060
	char *vaddr;
1061
	int ret;
1062

1063
	if (unlikely(page_do_bit17_swizzling))
1064
		return -EINVAL;
1065

1066 1067 1068 1069
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1070 1071
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1072 1073 1074 1075
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1076

1077
	return ret ? -EFAULT : 0;
1078 1079
}

1080 1081
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1082
static int
1083 1084 1085 1086 1087
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1088
{
1089 1090
	char *vaddr;
	int ret;
1091

1092
	vaddr = kmap(page);
1093
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 1095 1096
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1097 1098
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 1100
						user_data,
						page_length);
1101 1102 1103 1104 1105
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1106 1107 1108
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1109
	kunmap(page);
1110

1111
	return ret ? -EFAULT : 0;
1112 1113 1114
}

static int
1115 1116 1117 1118
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1119 1120
{
	ssize_t remain;
1121 1122
	loff_t offset;
	char __user *user_data;
1123
	int shmem_page_offset, page_length, ret = 0;
1124
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125
	int hit_slowpath = 0;
1126 1127
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
1128
	struct sg_page_iter sg_iter;
1129

1130
	user_data = u64_to_user_ptr(args->data_ptr);
1131 1132
	remain = args->size;

1133
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134

1135 1136 1137 1138 1139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
1140
		needs_clflush_after = cpu_write_needs_clflush(obj);
1141 1142 1143
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
1144
	}
1145 1146 1147 1148 1149
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
1150

1151 1152 1153 1154
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

1155
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156

1157 1158
	i915_gem_object_pin_pages(obj);

1159
	offset = args->offset;
1160
	obj->dirty = 1;
1161

1162 1163
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1164
		struct page *page = sg_page_iter_page(&sg_iter);
1165
		int partial_cacheline_write;
1166

1167 1168 1169
		if (remain <= 0)
			break;

1170 1171 1172 1173 1174
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1175
		shmem_page_offset = offset_in_page(offset);
1176 1177 1178 1179 1180

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1181 1182 1183 1184 1185 1186 1187
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1188 1189 1190
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1191 1192 1193 1194 1195 1196
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
1197 1198 1199

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1200 1201 1202 1203
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1204

1205
		mutex_lock(&dev->struct_mutex);
1206 1207

		if (ret)
1208 1209
			goto out;

1210
next_page:
1211
		remain -= page_length;
1212
		user_data += page_length;
1213
		offset += page_length;
1214 1215
	}

1216
out:
1217 1218
	i915_gem_object_unpin_pages(obj);

1219
	if (hit_slowpath) {
1220 1221 1222 1223 1224 1225 1226
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227
			if (i915_gem_clflush_object(obj, obj->pin_display))
1228
				needs_clflush_after = true;
1229
		}
1230
	}
1231

1232
	if (needs_clflush_after)
1233
		i915_gem_chipset_flush(to_i915(dev));
1234 1235
	else
		obj->cache_dirty = true;
1236

1237
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238
	return ret;
1239 1240 1241 1242
}

/**
 * Writes data to the object referenced by handle.
1243 1244 1245
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1246 1247 1248 1249 1250
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251
		      struct drm_file *file)
1252
{
1253
	struct drm_i915_private *dev_priv = to_i915(dev);
1254
	struct drm_i915_gem_pwrite *args = data;
1255
	struct drm_i915_gem_object *obj;
1256 1257 1258 1259 1260 1261
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1262
		       u64_to_user_ptr(args->data_ptr),
1263 1264 1265
		       args->size))
		return -EFAULT;

1266
	if (likely(!i915.prefault_disable)) {
1267
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 1269 1270 1271
						   args->size);
		if (ret)
			return -EFAULT;
	}
1272

1273 1274
	intel_runtime_pm_get(dev_priv);

1275
	ret = i915_mutex_lock_interruptible(dev);
1276
	if (ret)
1277
		goto put_rpm;
1278

1279
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280
	if (&obj->base == NULL) {
1281 1282
		ret = -ENOENT;
		goto unlock;
1283
	}
1284

1285
	/* Bounds check destination. */
1286 1287
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1288
		ret = -EINVAL;
1289
		goto out;
C
Chris Wilson 已提交
1290 1291
	}

C
Chris Wilson 已提交
1292 1293
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1294
	ret = -EFAULT;
1295 1296 1297 1298 1299 1300
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1301 1302
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1303
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1304 1305 1306
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1307
	}
1308

1309
	if (ret == -EFAULT || ret == -ENOSPC) {
1310 1311
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1312
		else if (i915_gem_object_has_struct_page(obj))
1313
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 1315
		else
			ret = -ENODEV;
1316
	}
1317

1318
out:
1319
	drm_gem_object_unreference(&obj->base);
1320
unlock:
1321
	mutex_unlock(&dev->struct_mutex);
1322 1323 1324
put_rpm:
	intel_runtime_pm_put(dev_priv);

1325 1326 1327
	return ret;
}

1328 1329 1330
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
1331 1332
 * @obj: i915 gem object
 * @readonly: waiting for read access or write
1333
 */
1334
int
1335 1336 1337
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1338
	int ret, i;
1339

1340
	if (!obj->active)
1341 1342
		return 0;

1343 1344 1345 1346 1347
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1348

1349
			i = obj->last_write_req->engine->id;
1350 1351 1352 1353 1354 1355
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1356
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1357 1358 1359 1360 1361 1362 1363 1364 1365
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1366
		GEM_BUG_ON(obj->active);
1367 1368 1369 1370 1371 1372 1373 1374 1375
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1376
	int ring = req->engine->id;
1377 1378 1379 1380 1381 1382

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

1383
	if (!i915_reset_in_progress(&req->i915->gpu_error))
1384
		i915_gem_request_retire_upto(req);
1385 1386
}

1387 1388 1389 1390 1391
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1392
					    struct intel_rps_client *rps,
1393 1394 1395
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
1396
	struct drm_i915_private *dev_priv = to_i915(dev);
1397
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1398
	int ret, i, n = 0;
1399 1400 1401 1402

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1403
	if (!obj->active)
1404 1405
		return 0;

1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1415
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1426
	mutex_unlock(&dev->struct_mutex);
1427
	ret = 0;
1428
	for (i = 0; ret == 0 && i < n; i++)
1429
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1430 1431
	mutex_lock(&dev->struct_mutex);

1432 1433 1434 1435 1436 1437 1438
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1439 1440
}

1441 1442 1443 1444 1445 1446
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1447 1448 1449 1450 1451 1452 1453
static enum fb_op_origin
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1454
/**
1455 1456
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1457 1458 1459
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1460 1461 1462
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1463
			  struct drm_file *file)
1464 1465
{
	struct drm_i915_gem_set_domain *args = data;
1466
	struct drm_i915_gem_object *obj;
1467 1468
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1469 1470
	int ret;

1471
	/* Only handle setting domains to types used by the CPU. */
1472
	if (write_domain & I915_GEM_GPU_DOMAINS)
1473 1474
		return -EINVAL;

1475
	if (read_domains & I915_GEM_GPU_DOMAINS)
1476 1477 1478 1479 1480 1481 1482 1483
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1484
	ret = i915_mutex_lock_interruptible(dev);
1485
	if (ret)
1486
		return ret;
1487

1488
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1489
	if (&obj->base == NULL) {
1490 1491
		ret = -ENOENT;
		goto unlock;
1492
	}
1493

1494 1495 1496 1497
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1498
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1499
							  to_rps_client(file),
1500
							  !write_domain);
1501 1502 1503
	if (ret)
		goto unref;

1504
	if (read_domains & I915_GEM_DOMAIN_GTT)
1505
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1506
	else
1507
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1508

1509
	if (write_domain != 0)
1510
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1511

1512
unref:
1513
	drm_gem_object_unreference(&obj->base);
1514
unlock:
1515 1516 1517 1518 1519 1520
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
1521 1522 1523
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1524 1525 1526
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1527
			 struct drm_file *file)
1528 1529
{
	struct drm_i915_gem_sw_finish *args = data;
1530
	struct drm_i915_gem_object *obj;
1531 1532
	int ret = 0;

1533
	ret = i915_mutex_lock_interruptible(dev);
1534
	if (ret)
1535
		return ret;
1536

1537
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1538
	if (&obj->base == NULL) {
1539 1540
		ret = -ENOENT;
		goto unlock;
1541 1542 1543
	}

	/* Pinned buffers may be scanout, so flush the cache */
1544
	if (obj->pin_display)
1545
		i915_gem_object_flush_cpu_write_domain(obj);
1546

1547
	drm_gem_object_unreference(&obj->base);
1548
unlock:
1549 1550 1551 1552 1553
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
1554 1555 1556 1557 1558
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1559 1560 1561
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1572 1573 1574
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1575
		    struct drm_file *file)
1576 1577 1578 1579 1580
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1581 1582 1583
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1584
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1585 1586
		return -ENODEV;

1587
	obj = drm_gem_object_lookup(file, args->handle);
1588
	if (obj == NULL)
1589
		return -ENOENT;
1590

1591 1592 1593 1594 1595 1596 1597 1598
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1599
	addr = vm_mmap(obj->filp, 0, args->size,
1600 1601
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1602 1603 1604 1605
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1606 1607 1608 1609
		if (down_write_killable(&mm->mmap_sem)) {
			drm_gem_object_unreference_unlocked(obj);
			return -EINTR;
		}
1610 1611 1612 1613 1614 1615 1616
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1617 1618 1619

		/* This may race, but that's ok, it only gets set */
		WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1620
	}
1621
	drm_gem_object_unreference_unlocked(obj);
1622 1623 1624 1625 1626 1627 1628 1629
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1630 1631
/**
 * i915_gem_fault - fault a page into the GTT
1632 1633
 * @vma: VMA in question
 * @vmf: fault info
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1648 1649
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1650 1651
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1652
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1653 1654 1655
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1656
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1657

1658 1659
	intel_runtime_pm_get(dev_priv);

1660 1661 1662 1663
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1664 1665 1666
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1667

C
Chris Wilson 已提交
1668 1669
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1670 1671 1672 1673 1674 1675 1676 1677 1678
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1679 1680
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1681
		ret = -EFAULT;
1682 1683 1684
		goto unlock;
	}

1685
	/* Use a partial view if the object is bigger than the aperture. */
1686
	if (obj->base.size >= ggtt->mappable_end &&
1687
	    obj->tiling_mode == I915_TILING_NONE) {
1688
		static const unsigned int chunk_size = 256; // 1 MiB
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1702 1703
	if (ret)
		goto unlock;
1704

1705 1706 1707
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1708

1709
	ret = i915_gem_object_get_fence(obj);
1710
	if (ret)
1711
		goto unpin;
1712

1713
	/* Finally, remap it using the new GTT offset */
1714
	pfn = ggtt->mappable_base +
1715
		i915_gem_obj_ggtt_offset_view(obj, &view);
1716
	pfn >>= PAGE_SHIFT;
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1727

1728 1729
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1730 1731 1732 1733 1734
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1756
unpin:
1757
	i915_gem_object_ggtt_unpin_view(obj, &view);
1758
unlock:
1759
	mutex_unlock(&dev->struct_mutex);
1760
out:
1761
	switch (ret) {
1762
	case -EIO:
1763 1764 1765 1766 1767 1768 1769
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1770 1771 1772
			ret = VM_FAULT_SIGBUS;
			break;
		}
1773
	case -EAGAIN:
D
Daniel Vetter 已提交
1774 1775 1776 1777
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1778
		 */
1779 1780
	case 0:
	case -ERESTARTSYS:
1781
	case -EINTR:
1782 1783 1784 1785 1786
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1787 1788
		ret = VM_FAULT_NOPAGE;
		break;
1789
	case -ENOMEM:
1790 1791
		ret = VM_FAULT_OOM;
		break;
1792
	case -ENOSPC:
1793
	case -EFAULT:
1794 1795
		ret = VM_FAULT_SIGBUS;
		break;
1796
	default:
1797
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1798 1799
		ret = VM_FAULT_SIGBUS;
		break;
1800
	}
1801 1802 1803

	intel_runtime_pm_put(dev_priv);
	return ret;
1804 1805
}

1806 1807 1808 1809
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1810
 * Preserve the reservation of the mmapping with the DRM core code, but
1811 1812 1813 1814 1815 1816 1817 1818 1819
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1820
void
1821
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1822
{
1823 1824 1825 1826 1827 1828
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1829 1830
	if (!obj->fault_mappable)
		return;
1831

1832 1833
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1844
	obj->fault_mappable = false;
1845 1846
}

1847 1848 1849 1850 1851 1852 1853 1854 1855
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1856
uint32_t
1857
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1858
{
1859
	uint32_t gtt_size;
1860 1861

	if (INTEL_INFO(dev)->gen >= 4 ||
1862 1863
	    tiling_mode == I915_TILING_NONE)
		return size;
1864 1865

	/* Previous chips need a power-of-two fence region when tiling */
1866
	if (IS_GEN3(dev))
1867
		gtt_size = 1024*1024;
1868
	else
1869
		gtt_size = 512*1024;
1870

1871 1872
	while (gtt_size < size)
		gtt_size <<= 1;
1873

1874
	return gtt_size;
1875 1876
}

1877 1878
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1879 1880 1881 1882
 * @dev: drm device
 * @size: object size
 * @tiling_mode: tiling mode
 * @fenced: is fenced alignemned required or not
1883 1884
 *
 * Return the required GTT alignment for an object, taking into account
1885
 * potential fence register mapping.
1886
 */
1887 1888 1889
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1890 1891 1892 1893 1894
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1895
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1896
	    tiling_mode == I915_TILING_NONE)
1897 1898
		return 4096;

1899 1900 1901 1902
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1903
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1904 1905
}

1906 1907
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1908
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1909 1910
	int ret;

1911 1912
	dev_priv->mm.shrinker_no_lock_stealing = true;

1913 1914
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1915
		goto out;
1916 1917 1918 1919 1920 1921 1922 1923

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1924 1925 1926 1927 1928
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1929 1930
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1931
		goto out;
1932 1933

	i915_gem_shrink_all(dev_priv);
1934 1935 1936 1937 1938
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1939 1940 1941 1942 1943 1944 1945
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1946
int
1947 1948
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1949
		  uint32_t handle,
1950
		  uint64_t *offset)
1951
{
1952
	struct drm_i915_gem_object *obj;
1953 1954
	int ret;

1955
	ret = i915_mutex_lock_interruptible(dev);
1956
	if (ret)
1957
		return ret;
1958

1959
	obj = to_intel_bo(drm_gem_object_lookup(file, handle));
1960
	if (&obj->base == NULL) {
1961 1962 1963
		ret = -ENOENT;
		goto unlock;
	}
1964

1965
	if (obj->madv != I915_MADV_WILLNEED) {
1966
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1967
		ret = -EFAULT;
1968
		goto out;
1969 1970
	}

1971 1972 1973
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1974

1975
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1976

1977
out:
1978
	drm_gem_object_unreference(&obj->base);
1979
unlock:
1980
	mutex_unlock(&dev->struct_mutex);
1981
	return ret;
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2005
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2006 2007
}

D
Daniel Vetter 已提交
2008 2009 2010
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2011
{
2012
	i915_gem_object_free_mmap_offset(obj);
2013

2014 2015
	if (obj->base.filp == NULL)
		return;
2016

D
Daniel Vetter 已提交
2017 2018 2019 2020 2021
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2022
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2023 2024
	obj->madv = __I915_MADV_PURGED;
}
2025

2026 2027 2028
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2029
{
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2044 2045
}

2046
static void
2047
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2048
{
2049 2050
	struct sgt_iter sgt_iter;
	struct page *page;
2051
	int ret;
2052

2053
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2054

C
Chris Wilson 已提交
2055
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2056
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2057 2058 2059
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2060
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2061 2062 2063
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2064 2065
	i915_gem_gtt_finish_object(obj);

2066
	if (i915_gem_object_needs_bit17_swizzle(obj))
2067 2068
		i915_gem_object_save_bit_17_swizzle(obj);

2069 2070
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2071

2072
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2073
		if (obj->dirty)
2074
			set_page_dirty(page);
2075

2076
		if (obj->madv == I915_MADV_WILLNEED)
2077
			mark_page_accessed(page);
2078

2079
		put_page(page);
2080
	}
2081
	obj->dirty = 0;
2082

2083 2084
	sg_free_table(obj->pages);
	kfree(obj->pages);
2085
}
C
Chris Wilson 已提交
2086

2087
int
2088 2089 2090 2091
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2092
	if (obj->pages == NULL)
2093 2094
		return 0;

2095 2096 2097
	if (obj->pages_pin_count)
		return -EBUSY;

2098
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2099

2100 2101 2102
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2103
	list_del(&obj->global_list);
2104

2105
	if (obj->mapping) {
2106 2107 2108 2109
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2110 2111 2112
		obj->mapping = NULL;
	}

2113
	ops->put_pages(obj);
2114
	obj->pages = NULL;
2115

2116
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2117 2118 2119 2120

	return 0;
}

2121
static int
C
Chris Wilson 已提交
2122
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2123
{
2124
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2125 2126
	int page_count, i;
	struct address_space *mapping;
2127 2128
	struct sg_table *st;
	struct scatterlist *sg;
2129
	struct sgt_iter sgt_iter;
2130
	struct page *page;
2131
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2132
	int ret;
C
Chris Wilson 已提交
2133
	gfp_t gfp;
2134

C
Chris Wilson 已提交
2135 2136 2137 2138 2139 2140 2141
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2142 2143 2144 2145
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2146
	page_count = obj->base.size / PAGE_SIZE;
2147 2148
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2149
		return -ENOMEM;
2150
	}
2151

2152 2153 2154 2155 2156
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2157
	mapping = file_inode(obj->base.filp)->i_mapping;
2158
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2159
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2160 2161 2162
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2163 2164
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2165 2166 2167 2168 2169
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2170 2171 2172 2173 2174 2175 2176 2177
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2178
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2179 2180
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2181
				goto err_pages;
I
Imre Deak 已提交
2182
			}
C
Chris Wilson 已提交
2183
		}
2184 2185 2186 2187 2188 2189 2190 2191
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2192 2193 2194 2195 2196 2197 2198 2199 2200
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2201 2202 2203

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2204
	}
2205 2206 2207 2208
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2209 2210
	obj->pages = st;

I
Imre Deak 已提交
2211 2212 2213 2214
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2215
	if (i915_gem_object_needs_bit17_swizzle(obj))
2216 2217
		i915_gem_object_do_bit_17_swizzle(obj);

2218 2219 2220 2221
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2222 2223 2224
	return 0;

err_pages:
2225
	sg_mark_end(sg);
2226 2227
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2228 2229
	sg_free_table(st);
	kfree(st);
2230 2231 2232 2233 2234 2235 2236 2237 2238

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2239 2240 2241 2242
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2243 2244
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2255
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2256 2257 2258
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2259
	if (obj->pages)
2260 2261
		return 0;

2262
	if (obj->madv != I915_MADV_WILLNEED) {
2263
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2264
		return -EFAULT;
2265 2266
	}

2267 2268
	BUG_ON(obj->pages_pin_count);

2269 2270 2271 2272
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2273
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2274 2275 2276 2277

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2278
	return 0;
2279 2280
}

2281 2282 2283 2284 2285
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2286 2287
	struct sgt_iter sgt_iter;
	struct page *page;
2288 2289
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2290 2291 2292 2293 2294 2295 2296
	unsigned long i = 0;
	void *addr;

	/* A single page can always be kmapped */
	if (n_pages == 1)
		return kmap(sg_page(sgt->sgl));

2297 2298 2299 2300 2301 2302
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2303

2304 2305
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2306 2307 2308 2309 2310 2311

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

	addr = vmap(pages, n_pages, 0, PAGE_KERNEL);

2312 2313
	if (pages != stack_pages)
		drm_free_large(pages);
2314 2315 2316 2317 2318

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

2331 2332 2333
	if (!obj->mapping) {
		obj->mapping = i915_gem_object_map(obj);
		if (!obj->mapping) {
2334 2335 2336 2337 2338 2339 2340 2341
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2342
void i915_vma_move_to_active(struct i915_vma *vma,
2343
			     struct drm_i915_gem_request *req)
2344
{
2345
	struct drm_i915_gem_object *obj = vma->obj;
2346
	struct intel_engine_cs *engine;
2347

2348
	engine = i915_gem_request_get_engine(req);
2349 2350

	/* Add a reference if we're newly entering the active list. */
2351
	if (obj->active == 0)
2352
		drm_gem_object_reference(&obj->base);
2353
	obj->active |= intel_engine_flag(engine);
2354

2355
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2356
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2357

2358
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2359 2360
}

2361 2362
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2363
{
2364 2365
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2366 2367

	i915_gem_request_assign(&obj->last_write_req, NULL);
2368
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2369 2370
}

2371
static void
2372
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373
{
2374
	struct i915_vma *vma;
2375

2376 2377
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2378

2379
	list_del_init(&obj->engine_list[ring]);
2380 2381
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2382
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2383 2384 2385 2386 2387
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2388

2389 2390 2391 2392 2393 2394 2395
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2396 2397 2398
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2399
	}
2400

2401
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2402
	drm_gem_object_unreference(&obj->base);
2403 2404
}

2405
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2406
{
2407
	unsigned long elapsed;
2408

2409
	if (ctx->hang_stats.banned)
2410 2411
		return true;

2412
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2413 2414
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2415 2416
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2417 2418 2419 2420 2421
	}

	return false;
}

2422
static void i915_set_reset_status(struct i915_gem_context *ctx,
2423
				  const bool guilty)
2424
{
2425
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2426 2427

	if (guilty) {
2428
		hs->banned = i915_context_is_banned(ctx);
2429 2430 2431 2432
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2433 2434 2435
	}
}

2436
struct drm_i915_gem_request *
2437
i915_gem_find_active_request(struct intel_engine_cs *engine)
2438
{
2439 2440
	struct drm_i915_gem_request *request;

2441 2442 2443 2444 2445 2446 2447 2448
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2449
	list_for_each_entry(request, &engine->request_list, list) {
2450
		if (i915_gem_request_completed(request))
2451
			continue;
2452

2453
		return request;
2454
	}
2455 2456 2457 2458

	return NULL;
}

2459
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2460 2461 2462 2463
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2464
	request = i915_gem_find_active_request(engine);
2465 2466 2467
	if (request == NULL)
		return;

2468
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2469

2470
	i915_set_reset_status(request->ctx, ring_hung);
2471
	list_for_each_entry_continue(request, &engine->request_list, list)
2472
		i915_set_reset_status(request->ctx, false);
2473
}
2474

2475
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2476
{
2477 2478
	struct intel_ringbuffer *buffer;

2479
	while (!list_empty(&engine->active_list)) {
2480
		struct drm_i915_gem_object *obj;
2481

2482
		obj = list_first_entry(&engine->active_list,
2483
				       struct drm_i915_gem_object,
2484
				       engine_list[engine->id]);
2485

2486
		i915_gem_object_retire__read(obj, engine->id);
2487
	}
2488

2489 2490 2491 2492 2493 2494
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_ring_init_seqno(engine, engine->last_submitted_seqno);

2495 2496 2497 2498 2499 2500
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2501
	if (i915.enable_execlists) {
2502 2503
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2504

2505
		intel_execlists_cancel_requests(engine);
2506 2507
	}

2508 2509 2510 2511 2512 2513 2514
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2515
	if (!list_empty(&engine->request_list)) {
2516 2517
		struct drm_i915_gem_request *request;

2518 2519 2520
		request = list_last_entry(&engine->request_list,
					  struct drm_i915_gem_request,
					  list);
2521

2522
		i915_gem_request_retire_upto(request);
2523
	}
2524 2525 2526 2527 2528 2529 2530 2531

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2532
	list_for_each_entry(buffer, &engine->buffers, link) {
2533 2534 2535
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2536

2537
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2538 2539
}

2540
void i915_gem_reset(struct drm_device *dev)
2541
{
2542
	struct drm_i915_private *dev_priv = to_i915(dev);
2543
	struct intel_engine_cs *engine;
2544

2545 2546 2547 2548 2549
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2550
	for_each_engine(engine, dev_priv)
2551
		i915_gem_reset_engine_status(engine);
2552

2553
	for_each_engine(engine, dev_priv)
2554
		i915_gem_reset_engine_cleanup(engine);
2555
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2556

2557 2558
	i915_gem_context_reset(dev);

2559
	i915_gem_restore_fences(dev);
2560 2561

	WARN_ON(i915_verify_lists(dev));
2562 2563 2564 2565
}

/**
 * This function clears the request list as sequence numbers are passed.
2566
 * @engine: engine to retire requests on
2567
 */
2568
void
2569
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2570
{
2571
	WARN_ON(i915_verify_lists(engine->dev));
2572

2573 2574 2575 2576
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2577
	 */
2578
	while (!list_empty(&engine->request_list)) {
2579 2580
		struct drm_i915_gem_request *request;

2581
		request = list_first_entry(&engine->request_list,
2582 2583 2584
					   struct drm_i915_gem_request,
					   list);

2585
		if (!i915_gem_request_completed(request))
2586 2587
			break;

2588
		i915_gem_request_retire_upto(request);
2589
	}
2590

2591 2592 2593 2594
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2595
	while (!list_empty(&engine->active_list)) {
2596 2597
		struct drm_i915_gem_object *obj;

2598 2599
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2600
				       engine_list[engine->id]);
2601

2602
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2603 2604
			break;

2605
		i915_gem_object_retire__read(obj, engine->id);
2606 2607
	}

2608
	WARN_ON(i915_verify_lists(engine->dev));
2609 2610
}

2611
void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
2612
{
2613
	struct intel_engine_cs *engine;
2614

2615
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2616 2617 2618 2619 2620

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);
2621

2622
	for_each_engine(engine, dev_priv) {
2623
		i915_gem_retire_requests_ring(engine);
2624 2625
		if (list_empty(&engine->request_list))
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
2626 2627
	}

2628
	if (dev_priv->gt.active_engines == 0)
2629 2630 2631
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
2632 2633
}

2634
static void
2635 2636
i915_gem_retire_work_handler(struct work_struct *work)
{
2637
	struct drm_i915_private *dev_priv =
2638
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2639
	struct drm_device *dev = &dev_priv->drm;
2640

2641
	/* Come back later if the device is busy... */
2642
	if (mutex_trylock(&dev->struct_mutex)) {
2643
		i915_gem_retire_requests(dev_priv);
2644
		mutex_unlock(&dev->struct_mutex);
2645
	}
2646 2647 2648 2649 2650

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2651 2652
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2653 2654
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2655
				   round_jiffies_up_relative(HZ));
2656
	}
2657
}
2658

2659 2660 2661 2662
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2663
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2664
	struct drm_device *dev = &dev_priv->drm;
2665
	struct intel_engine_cs *engine;
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	unsigned int stuck_engines;
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2688

2689
	for_each_engine(engine, dev_priv)
2690
		i915_gem_batch_pool_fini(&engine->batch_pool);
2691

2692 2693 2694
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2695

2696 2697 2698 2699 2700
	stuck_engines = intel_kick_waiters(dev_priv);
	if (unlikely(stuck_engines)) {
		DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
		dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
	}
2701

2702 2703 2704 2705 2706
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2707

2708 2709 2710 2711
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2712
	}
2713 2714
}

2715 2716 2717 2718
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
2719
 * @obj: object to flush
2720 2721 2722 2723
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2724
	int i;
2725 2726 2727

	if (!obj->active)
		return 0;
2728

2729
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2730
		struct drm_i915_gem_request *req;
2731

2732 2733 2734 2735
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

2736
		if (i915_gem_request_completed(req))
2737
			i915_gem_object_retire__read(obj, i);
2738 2739 2740 2741 2742
	}

	return 0;
}

2743 2744
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2745 2746 2747
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2772
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2773 2774
	int i, n = 0;
	int ret;
2775

2776 2777 2778
	if (args->flags != 0)
		return -EINVAL;

2779 2780 2781 2782
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

2783
	obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
2784 2785 2786 2787 2788
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2789 2790
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2791 2792 2793
	if (ret)
		goto out;

2794
	if (!obj->active)
2795
		goto out;
2796 2797

	/* Do this after OLR check to make sure we make forward progress polling
2798
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2799
	 */
2800
	if (args->timeout_ns == 0) {
2801 2802 2803 2804 2805
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2806

2807
	for (i = 0; i < I915_NUM_ENGINES; i++) {
2808 2809 2810 2811 2812 2813
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

2814 2815
	mutex_unlock(&dev->struct_mutex);

2816 2817
	for (i = 0; i < n; i++) {
		if (ret == 0)
2818
			ret = __i915_wait_request(req[i], true,
2819
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2820
						  to_rps_client(file));
2821
		i915_gem_request_unreference(req[i]);
2822
	}
2823
	return ret;
2824 2825 2826 2827 2828 2829 2830

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2831 2832 2833
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
2834 2835
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
2836 2837 2838 2839
{
	struct intel_engine_cs *from;
	int ret;

2840
	from = i915_gem_request_get_engine(from_req);
2841 2842 2843
	if (to == from)
		return 0;

2844
	if (i915_gem_request_completed(from_req))
2845 2846
		return 0;

2847
	if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
2848
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
2849
		ret = __i915_wait_request(from_req,
2850 2851
					  i915->mm.interruptible,
					  NULL,
2852
					  NO_WAITBOOST);
2853 2854 2855
		if (ret)
			return ret;

2856
		i915_gem_object_retire_request(obj, from_req);
2857 2858
	} else {
		int idx = intel_ring_sync_index(from, to);
2859 2860 2861
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
2862 2863 2864 2865

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

2866
		if (*to_req == NULL) {
2867 2868 2869 2870 2871 2872 2873
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
2874 2875
		}

2876 2877
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

2892 2893 2894 2895 2896
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
2897 2898 2899
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
2900 2901 2902
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
2903
 * rather than a particular GPU ring. Conceptually we serialise writes
2904
 * between engines inside the GPU. We only allow one engine to write
2905 2906 2907 2908 2909 2910 2911 2912 2913
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2914
 *
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
2925 2926
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2927 2928
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2929 2930
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
2931
{
2932
	const bool readonly = obj->base.pending_write_domain == 0;
2933
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
2934
	int ret, i, n;
2935

2936
	if (!obj->active)
2937 2938
		return 0;

2939 2940
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
2941

2942 2943 2944 2945 2946
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
2947
		for (i = 0; i < I915_NUM_ENGINES; i++)
2948 2949 2950 2951
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
2952
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
2953 2954 2955
		if (ret)
			return ret;
	}
2956

2957
	return 0;
2958 2959
}

2960 2961 2962 2963 2964 2965 2966
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2967 2968 2969
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
static void __i915_vma_iounmap(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pin_count);

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2992
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
2993
{
2994
	struct drm_i915_gem_object *obj = vma->obj;
2995
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2996
	int ret;
2997

2998
	if (list_empty(&vma->obj_link))
2999 3000
		return 0;

3001 3002 3003 3004
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3005

B
Ben Widawsky 已提交
3006
	if (vma->pin_count)
3007
		return -EBUSY;
3008

3009 3010
	BUG_ON(obj->pages == NULL);

3011 3012 3013 3014 3015
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3016

3017
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3018
		i915_gem_object_finish_gtt(obj);
3019

3020 3021 3022 3023
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
3024 3025

		__i915_vma_iounmap(vma);
3026
	}
3027

3028
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3029

3030
	vma->vm->unbind_vma(vma);
3031
	vma->bound = 0;
3032

3033
	list_del_init(&vma->vm_link);
3034
	if (vma->is_ggtt) {
3035 3036 3037 3038 3039 3040
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3041
		vma->ggtt_view.pages = NULL;
3042
	}
3043

B
Ben Widawsky 已提交
3044 3045 3046 3047
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3048
	 * no more VMAs exist. */
I
Imre Deak 已提交
3049
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3050
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3051

3052 3053 3054 3055 3056 3057
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3058
	return 0;
3059 3060
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3071
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3072
{
3073
	struct intel_engine_cs *engine;
3074
	int ret;
3075

3076
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3077

3078
	for_each_engine(engine, dev_priv) {
3079 3080 3081
		if (engine->last_context == NULL)
			continue;

3082
		ret = intel_engine_idle(engine);
3083 3084 3085
		if (ret)
			return ret;
	}
3086

3087
	WARN_ON(i915_verify_lists(dev));
3088
	return 0;
3089 3090
}

3091
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3092 3093
				     unsigned long cache_level)
{
3094
	struct drm_mm_node *gtt_space = &vma->node;
3095 3096
	struct drm_mm_node *other;

3097 3098 3099 3100 3101 3102
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3103
	 */
3104
	if (vma->vm->mm.color_adjust == NULL)
3105 3106
		return true;

3107
	if (!drm_mm_node_allocated(gtt_space))
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3124
/**
3125 3126
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3127 3128 3129 3130 3131
 * @obj: object to bind
 * @vm: address space to bind into
 * @ggtt_view: global gtt view if applicable
 * @alignment: requested alignment
 * @flags: mask of PIN_* flags to use
3132
 */
3133
static struct i915_vma *
3134 3135
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3136
			   const struct i915_ggtt_view *ggtt_view,
3137
			   unsigned alignment,
3138
			   uint64_t flags)
3139
{
3140
	struct drm_device *dev = obj->base.dev;
3141 3142
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3143
	u32 fence_alignment, unfenced_alignment;
3144 3145
	u32 search_flag, alloc_flag;
	u64 start, end;
3146
	u64 size, fence_size;
B
Ben Widawsky 已提交
3147
	struct i915_vma *vma;
3148
	int ret;
3149

3150 3151 3152 3153 3154
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3185

3186 3187 3188
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3189
		end = min_t(u64, end, ggtt->mappable_end);
3190
	if (flags & PIN_ZONE_4G)
3191
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3192

3193
	if (alignment == 0)
3194
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3195
						unfenced_alignment;
3196
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3197 3198 3199
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3200
		return ERR_PTR(-EINVAL);
3201 3202
	}

3203 3204 3205
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3206
	 */
3207
	if (size > end) {
3208
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3209 3210
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3211
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3212
			  end);
3213
		return ERR_PTR(-E2BIG);
3214 3215
	}

3216
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3217
	if (ret)
3218
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3219

3220 3221
	i915_gem_object_pin_pages(obj);

3222 3223 3224
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3225
	if (IS_ERR(vma))
3226
		goto err_unpin;
B
Ben Widawsky 已提交
3227

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3246
	} else {
3247 3248 3249 3250 3251 3252 3253
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3254

3255
search_free:
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3269

3270 3271
			goto err_free_vma;
		}
3272
	}
3273
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3274
		ret = -EINVAL;
3275
		goto err_remove_node;
3276 3277
	}

3278
	trace_i915_vma_bind(vma, flags);
3279
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3280
	if (ret)
I
Imre Deak 已提交
3281
		goto err_remove_node;
3282

3283
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3284
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3285

3286
	return vma;
B
Ben Widawsky 已提交
3287

3288
err_remove_node:
3289
	drm_mm_remove_node(&vma->node);
3290
err_free_vma:
B
Ben Widawsky 已提交
3291
	i915_gem_vma_destroy(vma);
3292
	vma = ERR_PTR(ret);
3293
err_unpin:
B
Ben Widawsky 已提交
3294
	i915_gem_object_unpin_pages(obj);
3295
	return vma;
3296 3297
}

3298
bool
3299 3300
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3301 3302 3303 3304 3305
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3306
	if (obj->pages == NULL)
3307
		return false;
3308

3309 3310 3311 3312
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3313
	if (obj->stolen || obj->phys_handle)
3314
		return false;
3315

3316 3317 3318 3319 3320 3321 3322 3323
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3324 3325
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3326
		return false;
3327
	}
3328

C
Chris Wilson 已提交
3329
	trace_i915_gem_object_clflush(obj);
3330
	drm_clflush_sg(obj->pages);
3331
	obj->cache_dirty = false;
3332 3333

	return true;
3334 3335 3336 3337
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3338
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3339
{
C
Chris Wilson 已提交
3340 3341
	uint32_t old_write_domain;

3342
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3343 3344
		return;

3345
	/* No actual flushing is required for the GTT write domain.  Writes
3346 3347
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3348 3349 3350 3351
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3352
	 */
3353 3354
	wmb();

3355 3356
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3357

3358
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3359

C
Chris Wilson 已提交
3360
	trace_i915_gem_object_change_domain(obj,
3361
					    obj->base.read_domains,
C
Chris Wilson 已提交
3362
					    old_write_domain);
3363 3364 3365 3366
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3367
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3368
{
C
Chris Wilson 已提交
3369
	uint32_t old_write_domain;
3370

3371
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3372 3373
		return;

3374
	if (i915_gem_clflush_object(obj, obj->pin_display))
3375
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3376

3377 3378
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3379

3380
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3381

C
Chris Wilson 已提交
3382
	trace_i915_gem_object_change_domain(obj,
3383
					    obj->base.read_domains,
C
Chris Wilson 已提交
3384
					    old_write_domain);
3385 3386
}

3387 3388
/**
 * Moves a single object to the GTT read, and possibly write domain.
3389 3390
 * @obj: object to act on
 * @write: ask for write access or read only
3391 3392 3393 3394
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3395
int
3396
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3397
{
3398 3399 3400
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3401
	uint32_t old_write_domain, old_read_domains;
3402
	struct i915_vma *vma;
3403
	int ret;
3404

3405 3406 3407
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3408
	ret = i915_gem_object_wait_rendering(obj, !write);
3409 3410 3411
	if (ret)
		return ret;

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3424
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3425

3426 3427 3428 3429 3430 3431 3432
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3433 3434
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3435

3436 3437 3438
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3439 3440
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3441
	if (write) {
3442 3443 3444
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3445 3446
	}

C
Chris Wilson 已提交
3447 3448 3449 3450
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3451
	/* And bump the LRU for this access */
3452 3453
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3454
		list_move_tail(&vma->vm_link,
3455
			       &ggtt->base.inactive_list);
3456

3457 3458 3459
	return 0;
}

3460 3461
/**
 * Changes the cache-level of an object across all VMA.
3462 3463
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3475 3476 3477
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3478
	struct drm_device *dev = obj->base.dev;
3479
	struct i915_vma *vma, *next;
3480
	bool bound = false;
3481
	int ret = 0;
3482 3483

	if (obj->cache_level == cache_level)
3484
		goto out;
3485

3486 3487 3488 3489 3490
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3491
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3492 3493 3494 3495 3496 3497 3498 3499
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3500
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3501
			ret = i915_vma_unbind(vma);
3502 3503
			if (ret)
				return ret;
3504 3505
		} else
			bound = true;
3506 3507
	}

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3520
		ret = i915_gem_object_wait_rendering(obj, false);
3521 3522 3523
		if (ret)
			return ret;

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3541 3542 3543
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3544 3545 3546 3547 3548 3549 3550 3551
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3552 3553
		}

3554
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3555 3556 3557 3558 3559 3560 3561
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3562 3563
	}

3564
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3565 3566 3567
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3568
out:
3569 3570 3571 3572
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3573
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3574
		if (i915_gem_clflush_object(obj, true))
3575
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3576 3577 3578 3579 3580
	}

	return 0;
}

B
Ben Widawsky 已提交
3581 3582
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3583
{
B
Ben Widawsky 已提交
3584
	struct drm_i915_gem_caching *args = data;
3585 3586
	struct drm_i915_gem_object *obj;

3587
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3588 3589
	if (&obj->base == NULL)
		return -ENOENT;
3590

3591 3592 3593 3594 3595 3596
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3597 3598 3599 3600
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3601 3602 3603 3604
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3605

3606 3607
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3608 3609
}

B
Ben Widawsky 已提交
3610 3611
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3612
{
3613
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3614
	struct drm_i915_gem_caching *args = data;
3615 3616 3617 3618
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3619 3620
	switch (args->caching) {
	case I915_CACHING_NONE:
3621 3622
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3623
	case I915_CACHING_CACHED:
3624 3625 3626 3627 3628 3629
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3630
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3631 3632
			return -ENODEV;

3633 3634
		level = I915_CACHE_LLC;
		break;
3635 3636 3637
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3638 3639 3640 3641
	default:
		return -EINVAL;
	}

3642 3643
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3644 3645
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3646
		goto rpm_put;
B
Ben Widawsky 已提交
3647

3648
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3659 3660 3661
rpm_put:
	intel_runtime_pm_put(dev_priv);

3662 3663 3664
	return ret;
}

3665
/*
3666 3667 3668
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3669 3670
 */
int
3671 3672
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3673
				     const struct i915_ggtt_view *view)
3674
{
3675
	u32 old_read_domains, old_write_domain;
3676 3677
	int ret;

3678 3679 3680
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3681
	obj->pin_display++;
3682

3683 3684 3685 3686 3687 3688 3689 3690 3691
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3692 3693
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3694
	if (ret)
3695
		goto err_unpin_display;
3696

3697 3698 3699 3700
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3701 3702 3703
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
3704
	if (ret)
3705
		goto err_unpin_display;
3706

3707
	i915_gem_object_flush_cpu_write_domain(obj);
3708

3709
	old_write_domain = obj->base.write_domain;
3710
	old_read_domains = obj->base.read_domains;
3711 3712 3713 3714

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3715
	obj->base.write_domain = 0;
3716
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3717 3718 3719

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3720
					    old_write_domain);
3721 3722

	return 0;
3723 3724

err_unpin_display:
3725
	obj->pin_display--;
3726 3727 3728 3729
	return ret;
}

void
3730 3731
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
3732
{
3733 3734 3735
	if (WARN_ON(obj->pin_display == 0))
		return;

3736 3737
	i915_gem_object_ggtt_unpin_view(obj, view);

3738
	obj->pin_display--;
3739 3740
}

3741 3742
/**
 * Moves a single object to the CPU read, and possibly write domain.
3743 3744
 * @obj: object to act on
 * @write: requesting write or read-only access
3745 3746 3747 3748
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3749
int
3750
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3751
{
C
Chris Wilson 已提交
3752
	uint32_t old_write_domain, old_read_domains;
3753 3754
	int ret;

3755 3756 3757
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3758
	ret = i915_gem_object_wait_rendering(obj, !write);
3759 3760 3761
	if (ret)
		return ret;

3762
	i915_gem_object_flush_gtt_write_domain(obj);
3763

3764 3765
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3766

3767
	/* Flush the CPU cache if it's still invalid. */
3768
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3769
		i915_gem_clflush_object(obj, false);
3770

3771
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3772 3773 3774 3775 3776
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3777
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3778 3779 3780 3781 3782

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3783 3784
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3785
	}
3786

C
Chris Wilson 已提交
3787 3788 3789 3790
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3791 3792 3793
	return 0;
}

3794 3795 3796
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3797 3798 3799 3800
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3801 3802 3803
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3804
static int
3805
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3806
{
3807
	struct drm_i915_private *dev_priv = to_i915(dev);
3808
	struct drm_i915_file_private *file_priv = file->driver_priv;
3809
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3810
	struct drm_i915_gem_request *request, *target = NULL;
3811
	int ret;
3812

3813 3814 3815 3816
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3817 3818 3819
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3820

3821
	spin_lock(&file_priv->mm.lock);
3822
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3823 3824
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3825

3826 3827 3828 3829 3830 3831 3832
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3833
		target = request;
3834
	}
3835 3836
	if (target)
		i915_gem_request_reference(target);
3837
	spin_unlock(&file_priv->mm.lock);
3838

3839
	if (target == NULL)
3840
		return 0;
3841

3842
	ret = __i915_wait_request(target, true, NULL, NULL);
3843
	i915_gem_request_unreference(target);
3844

3845 3846 3847
	return ret;
}

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3864 3865 3866 3867
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3868 3869 3870
	return false;
}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3889
		    to_i915(obj->base.dev)->ggtt.mappable_end);
3890 3891 3892 3893

	obj->map_and_fenceable = mappable && fenceable;
}

3894 3895 3896 3897 3898 3899
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
3900
{
3901
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3902
	struct i915_vma *vma;
3903
	unsigned bound;
3904 3905
	int ret;

3906 3907 3908
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

3909
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3910
		return -EINVAL;
3911

3912 3913 3914
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

3915 3916 3917 3918 3919 3920
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

3921
	if (vma) {
B
Ben Widawsky 已提交
3922 3923 3924
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

3925
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
3926
			WARN(vma->pin_count,
3927
			     "bo is already pinned in %s with incorrect alignment:"
3928
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
3929
			     " obj->map_and_fenceable=%d\n",
3930
			     ggtt_view ? "ggtt" : "ppgtt",
3931 3932
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
3933
			     alignment,
3934
			     !!(flags & PIN_MAPPABLE),
3935
			     obj->map_and_fenceable);
3936
			ret = i915_vma_unbind(vma);
3937 3938
			if (ret)
				return ret;
3939 3940

			vma = NULL;
3941 3942 3943
		}
	}

3944
	bound = vma ? vma->bound : 0;
3945
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3946 3947
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
3948 3949
		if (IS_ERR(vma))
			return PTR_ERR(vma);
3950 3951
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
3952 3953 3954
		if (ret)
			return ret;
	}
3955

3956 3957
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
3958
		__i915_vma_set_map_and_fenceable(vma);
3959 3960
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
3961

3962
	vma->pin_count++;
3963 3964 3965
	return 0;
}

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
3983 3984 3985 3986
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

3987
	BUG_ON(!view);
3988

3989
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
3990
				      alignment, flags | PIN_GLOBAL);
3991 3992
}

3993
void
3994 3995
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
3996
{
3997
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3998

3999
	WARN_ON(vma->pin_count == 0);
4000
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4001

4002
	--vma->pin_count;
4003 4004 4005 4006
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4007
		    struct drm_file *file)
4008 4009
{
	struct drm_i915_gem_busy *args = data;
4010
	struct drm_i915_gem_object *obj;
4011 4012
	int ret;

4013
	ret = i915_mutex_lock_interruptible(dev);
4014
	if (ret)
4015
		return ret;
4016

4017
	obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4018
	if (&obj->base == NULL) {
4019 4020
		ret = -ENOENT;
		goto unlock;
4021
	}
4022

4023 4024 4025 4026
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4027
	 */
4028
	ret = i915_gem_object_flush_active(obj);
4029 4030
	if (ret)
		goto unref;
4031

4032 4033 4034 4035
	args->busy = 0;
	if (obj->active) {
		int i;

4036
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4037 4038 4039 4040
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4041
				args->busy |= 1 << (16 + req->engine->exec_id);
4042 4043
		}
		if (obj->last_write_req)
4044
			args->busy |= obj->last_write_req->engine->exec_id;
4045
	}
4046

4047
unref:
4048
	drm_gem_object_unreference(&obj->base);
4049
unlock:
4050
	mutex_unlock(&dev->struct_mutex);
4051
	return ret;
4052 4053 4054 4055 4056 4057
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4058
	return i915_gem_ring_throttle(dev, file_priv);
4059 4060
}

4061 4062 4063 4064
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4065
	struct drm_i915_private *dev_priv = to_i915(dev);
4066
	struct drm_i915_gem_madvise *args = data;
4067
	struct drm_i915_gem_object *obj;
4068
	int ret;
4069 4070 4071 4072 4073 4074 4075 4076 4077

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4078 4079 4080 4081
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4082
	obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4083
	if (&obj->base == NULL) {
4084 4085
		ret = -ENOENT;
		goto unlock;
4086 4087
	}

B
Ben Widawsky 已提交
4088
	if (i915_gem_obj_is_pinned(obj)) {
4089 4090
		ret = -EINVAL;
		goto out;
4091 4092
	}

4093 4094 4095 4096 4097 4098 4099 4100 4101
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4102 4103
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4104

C
Chris Wilson 已提交
4105
	/* if the object is no longer attached, discard its backing storage */
4106
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4107 4108
		i915_gem_object_truncate(obj);

4109
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4110

4111
out:
4112
	drm_gem_object_unreference(&obj->base);
4113
unlock:
4114
	mutex_unlock(&dev->struct_mutex);
4115
	return ret;
4116 4117
}

4118 4119
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4120
{
4121 4122
	int i;

4123
	INIT_LIST_HEAD(&obj->global_list);
4124
	for (i = 0; i < I915_NUM_ENGINES; i++)
4125
		INIT_LIST_HEAD(&obj->engine_list[i]);
4126
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4127
	INIT_LIST_HEAD(&obj->vma_list);
4128
	INIT_LIST_HEAD(&obj->batch_pool_link);
4129

4130 4131
	obj->ops = ops;

4132 4133 4134
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4135
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4136 4137
}

4138
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4139
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4140 4141 4142 4143
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4144
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4145
						  size_t size)
4146
{
4147
	struct drm_i915_gem_object *obj;
4148
	struct address_space *mapping;
D
Daniel Vetter 已提交
4149
	gfp_t mask;
4150
	int ret;
4151

4152
	obj = i915_gem_object_alloc(dev);
4153
	if (obj == NULL)
4154
		return ERR_PTR(-ENOMEM);
4155

4156 4157 4158
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4159

4160 4161 4162 4163 4164 4165 4166
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4167
	mapping = file_inode(obj->base.filp)->i_mapping;
4168
	mapping_set_gfp_mask(mapping, mask);
4169

4170
	i915_gem_object_init(obj, &i915_gem_object_ops);
4171

4172 4173
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4174

4175 4176
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4192 4193
	trace_i915_gem_object_create(obj);

4194
	return obj;
4195 4196 4197 4198 4199

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4200 4201
}

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4226
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4227
{
4228
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4229
	struct drm_device *dev = obj->base.dev;
4230
	struct drm_i915_private *dev_priv = to_i915(dev);
4231
	struct i915_vma *vma, *next;
4232

4233 4234
	intel_runtime_pm_get(dev_priv);

4235 4236
	trace_i915_gem_object_destroy(obj);

4237
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4238 4239 4240 4241
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4242 4243
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4244

4245 4246
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4247

4248
			WARN_ON(i915_vma_unbind(vma));
4249

4250 4251
			dev_priv->mm.interruptible = was_interruptible;
		}
4252 4253
	}

B
Ben Widawsky 已提交
4254 4255 4256 4257 4258
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4259 4260
	WARN_ON(obj->frontbuffer_bits);

4261 4262 4263 4264 4265
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4266 4267
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4268
	if (discard_backing_storage(obj))
4269
		obj->madv = I915_MADV_DONTNEED;
4270
	i915_gem_object_put_pages(obj);
4271

4272 4273
	BUG_ON(obj->pages);

4274 4275
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4276

4277 4278 4279
	if (obj->ops->release)
		obj->ops->release(obj);

4280 4281
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4282

4283
	kfree(obj->bit_17);
4284
	i915_gem_object_free(obj);
4285 4286

	intel_runtime_pm_put(dev_priv);
4287 4288
}

4289 4290
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4291 4292
{
	struct i915_vma *vma;
4293
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4294 4295
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4296
			return vma;
4297 4298 4299 4300 4301 4302 4303 4304
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_vma *vma;
4305

4306
	GEM_BUG_ON(!view);
4307

4308
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4309
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4310
			return vma;
4311 4312 4313
	return NULL;
}

B
Ben Widawsky 已提交
4314 4315 4316
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4317 4318 4319 4320 4321

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4322 4323
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4324

4325
	list_del(&vma->obj_link);
4326

4327
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4328 4329
}

4330
static void
4331
i915_gem_stop_engines(struct drm_device *dev)
4332
{
4333
	struct drm_i915_private *dev_priv = to_i915(dev);
4334
	struct intel_engine_cs *engine;
4335

4336
	for_each_engine(engine, dev_priv)
4337
		dev_priv->gt.stop_engine(engine);
4338 4339
}

4340
int
4341
i915_gem_suspend(struct drm_device *dev)
4342
{
4343
	struct drm_i915_private *dev_priv = to_i915(dev);
4344
	int ret = 0;
4345

4346 4347
	intel_suspend_gt_powersave(dev_priv);

4348
	mutex_lock(&dev->struct_mutex);
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4362
	ret = i915_gem_wait_for_idle(dev_priv);
4363
	if (ret)
4364
		goto err;
4365

4366
	i915_gem_retire_requests(dev_priv);
4367

4368 4369 4370 4371 4372
	/* Note that rather than stopping the engines, all we have to do
	 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
	 * and similar for all logical context images (to ensure they are
	 * all ready for hibernation).
	 */
4373
	i915_gem_stop_engines(dev);
4374
	i915_gem_context_lost(dev_priv);
4375 4376
	mutex_unlock(&dev->struct_mutex);

4377
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4378 4379
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4380

4381 4382 4383
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4384
	WARN_ON(dev_priv->gt.awake);
4385

4386
	return 0;
4387 4388 4389 4390

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4391 4392
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4410 4411
void i915_gem_init_swizzling(struct drm_device *dev)
{
4412
	struct drm_i915_private *dev_priv = to_i915(dev);
4413

4414
	if (INTEL_INFO(dev)->gen < 5 ||
4415 4416 4417 4418 4419 4420
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4421 4422 4423
	if (IS_GEN5(dev))
		return;

4424 4425
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4426
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4427
	else if (IS_GEN7(dev))
4428
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4429 4430
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4431 4432
	else
		BUG();
4433
}
D
Daniel Vetter 已提交
4434

4435 4436
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4437
	struct drm_i915_private *dev_priv = to_i915(dev);
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4462 4463 4464
int
i915_gem_init_hw(struct drm_device *dev)
{
4465
	struct drm_i915_private *dev_priv = to_i915(dev);
4466
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4467
	int ret;
4468

4469 4470 4471
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4472
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4473
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4474

4475 4476 4477
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4478

4479
	if (HAS_PCH_NOP(dev)) {
4480 4481 4482 4483 4484 4485 4486 4487 4488
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4489 4490
	}

4491 4492
	i915_gem_init_swizzling(dev);

4493 4494 4495 4496 4497 4498 4499 4500
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4501
	BUG_ON(!dev_priv->kernel_context);
4502

4503 4504 4505 4506 4507 4508 4509
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4510
	for_each_engine(engine, dev_priv) {
4511
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4512
		if (ret)
4513
			goto out;
D
Daniel Vetter 已提交
4514
	}
4515

4516 4517
	intel_mocs_init_l3cc_table(dev);

4518
	/* We can't enable contexts until all firmware is loaded */
4519 4520 4521
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4522

4523 4524
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4525
	return ret;
4526 4527
}

4528 4529
int i915_gem_init(struct drm_device *dev)
{
4530
	struct drm_i915_private *dev_priv = to_i915(dev);
4531 4532 4533
	int ret;

	mutex_lock(&dev->struct_mutex);
4534

4535
	if (!i915.enable_execlists) {
4536
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4537 4538
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4539
	} else {
4540
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4541 4542
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4543 4544
	}

4545 4546 4547 4548 4549 4550 4551 4552
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4553
	i915_gem_init_userptr(dev_priv);
4554
	i915_gem_init_ggtt(dev);
4555

4556
	ret = i915_gem_context_init(dev);
4557 4558
	if (ret)
		goto out_unlock;
4559

4560
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4561
	if (ret)
4562
		goto out_unlock;
4563

4564
	ret = i915_gem_init_hw(dev);
4565 4566 4567 4568 4569 4570
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4571
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4572
		ret = 0;
4573
	}
4574 4575

out_unlock:
4576
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4577
	mutex_unlock(&dev->struct_mutex);
4578

4579
	return ret;
4580 4581
}

4582
void
4583
i915_gem_cleanup_engines(struct drm_device *dev)
4584
{
4585
	struct drm_i915_private *dev_priv = to_i915(dev);
4586
	struct intel_engine_cs *engine;
4587

4588
	for_each_engine(engine, dev_priv)
4589
		dev_priv->gt.cleanup_engine(engine);
4590 4591
}

4592
static void
4593
init_engine_lists(struct intel_engine_cs *engine)
4594
{
4595 4596
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
4597 4598
}

4599 4600 4601
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4602
	struct drm_device *dev = &dev_priv->drm;
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4613
	if (intel_vgpu_active(dev_priv))
4614 4615 4616 4617 4618 4619 4620 4621 4622
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4623
void
4624
i915_gem_load_init(struct drm_device *dev)
4625
{
4626
	struct drm_i915_private *dev_priv = to_i915(dev);
4627 4628
	int i;

4629
	dev_priv->objects =
4630 4631 4632 4633
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4634 4635 4636 4637 4638
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4639 4640 4641 4642 4643
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4644

B
Ben Widawsky 已提交
4645
	INIT_LIST_HEAD(&dev_priv->vm_list);
4646
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4647 4648
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4649
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4650 4651
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4652
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4653
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4654
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4655
			  i915_gem_retire_work_handler);
4656
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4657
			  i915_gem_idle_work_handler);
4658
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4659
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4660

4661 4662
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4663
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4664

4665
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4666

4667 4668
	dev_priv->mm.interruptible = true;

4669
	mutex_init(&dev_priv->fb_tracking.lock);
4670
}
4671

4672 4673 4674 4675 4676 4677 4678 4679 4680
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4709
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4710
{
4711
	struct drm_i915_file_private *file_priv = file->driver_priv;
4712 4713 4714 4715 4716

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4717
	spin_lock(&file_priv->mm.lock);
4718 4719 4720 4721 4722 4723 4724 4725 4726
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4727
	spin_unlock(&file_priv->mm.lock);
4728

4729
	if (!list_empty(&file_priv->rps.link)) {
4730
		spin_lock(&to_i915(dev)->rps.client_lock);
4731
		list_del(&file_priv->rps.link);
4732
		spin_unlock(&to_i915(dev)->rps.client_lock);
4733
	}
4734 4735 4736 4737 4738
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4739
	int ret;
4740 4741 4742 4743 4744 4745 4746 4747

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4748
	file_priv->dev_priv = to_i915(dev);
4749
	file_priv->file = file;
4750
	INIT_LIST_HEAD(&file_priv->rps.link);
4751 4752 4753 4754

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4755 4756
	file_priv->bsd_ring = -1;

4757 4758 4759
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4760

4761
	return ret;
4762 4763
}

4764 4765
/**
 * i915_gem_track_fb - update frontbuffer tracking
4766 4767 4768
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4769 4770 4771 4772
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

4790
/* All the new VM stuff */
4791 4792
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
4793
{
4794
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
4795 4796
	struct i915_vma *vma;

4797
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4798

4799
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4800
		if (vma->is_ggtt &&
4801 4802 4803
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4804 4805
			return vma->node.start;
	}
4806

4807 4808
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4809 4810 4811
	return -1;
}

4812 4813
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
4814 4815 4816
{
	struct i915_vma *vma;

4817
	list_for_each_entry(vma, &o->vma_list, obj_link)
4818
		if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4819 4820
			return vma->node.start;

4821
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
4822 4823 4824 4825 4826 4827 4828 4829
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

4830
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4831
		if (vma->is_ggtt &&
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
4842
				  const struct i915_ggtt_view *view)
4843 4844 4845
{
	struct i915_vma *vma;

4846
	list_for_each_entry(vma, &o->vma_list, obj_link)
4847
		if (vma->is_ggtt &&
4848
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
4849
		    drm_mm_node_allocated(&vma->node))
4850 4851 4852 4853 4854 4855 4856
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
4857
	struct i915_vma *vma;
4858

4859
	list_for_each_entry(vma, &o->vma_list, obj_link)
4860
		if (drm_mm_node_allocated(&vma->node))
4861 4862 4863 4864 4865
			return true;

	return false;
}

4866
unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
4867 4868 4869
{
	struct i915_vma *vma;

4870
	GEM_BUG_ON(list_empty(&o->vma_list));
4871

4872
	list_for_each_entry(vma, &o->vma_list, obj_link) {
4873
		if (vma->is_ggtt &&
4874
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
4875
			return vma->node.size;
4876
	}
4877

4878 4879 4880
	return 0;
}

4881
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
4882 4883
{
	struct i915_vma *vma;
4884
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4885 4886
		if (vma->pin_count > 0)
			return true;
4887

4888
	return false;
4889
}
4890

4891 4892 4893 4894 4895 4896 4897
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4898
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4899 4900 4901 4902 4903 4904 4905
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4916
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4917
	if (IS_ERR(obj))
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4931
	obj->dirty = 1;		/* Backing store is now out of date */
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}