i915_gem.c 150.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include <linux/dma-fence-array.h>
31
#include <linux/kthread.h>
32
#include <linux/reservation.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/slab.h>
35
#include <linux/stop_machine.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40 41 42 43 44 45 46 47 48 49 50 51
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"

52
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
53

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56
	if (obj->cache_dirty)
57 58
		return false;

59
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
60 61
		return true;

62
	return obj->pin_global; /* currently in use by HW, keep flushed */
63 64
}

65
static int
66
insert_mappable_node(struct i915_ggtt *ggtt,
67 68 69
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
70
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
71 72 73
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
74 75 76 77 78 79 80 81
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

82 83
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
84
				  u64 size)
85
{
86
	spin_lock(&dev_priv->mm.object_stat_lock);
87 88
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
89
	spin_unlock(&dev_priv->mm.object_stat_lock);
90 91 92
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
93
				     u64 size)
94
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100
}

101
static int
102
i915_gem_wait_for_error(struct i915_gpu_error *error)
103 104 105
{
	int ret;

106 107
	might_sleep();

108 109 110 111 112
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
113
	ret = wait_event_interruptible_timeout(error->reset_queue,
114
					       !i915_reset_backoff(error),
115
					       I915_RESET_TIMEOUT);
116 117 118 119
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
120
		return ret;
121 122
	} else {
		return 0;
123
	}
124 125
}

126
int i915_mutex_lock_interruptible(struct drm_device *dev)
127
{
128
	struct drm_i915_private *dev_priv = to_i915(dev);
129 130
	int ret;

131
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
132 133 134 135 136 137 138 139 140
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
141

142 143
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
C
Chris Wilson 已提交
144 145
	intel_wakeref_t wakeref;

146 147
	GEM_TRACE("\n");

148 149
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
150
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
171
	i915_timelines_park(i915);
172 173

	i915_pmu_gt_parked(i915);
174
	i915_vma_parked(i915);
175

C
Chris Wilson 已提交
176 177
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
178 179 180 181

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

182
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
183 184 185 186 187 188

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
189 190
	GEM_TRACE("\n");

191 192 193 194 195 196 197 198 199 200 201 202
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
203 204
	GEM_TRACE("\n");

205 206
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
207
	assert_rpm_wakelock_held(i915);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
223 224
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

244 245
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
246
			    struct drm_file *file)
247
{
248
	struct drm_i915_private *dev_priv = to_i915(dev);
249
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
250
	struct drm_i915_gem_get_aperture *args = data;
251
	struct i915_vma *vma;
252
	u64 pinned;
253

254
	pinned = ggtt->vm.reserved;
255
	mutex_lock(&dev->struct_mutex);
256
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
257
		if (i915_vma_is_pinned(vma))
258
			pinned += vma->node.size;
259
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
260
		if (i915_vma_is_pinned(vma))
261
			pinned += vma->node.size;
262
	mutex_unlock(&dev->struct_mutex);
263

264
	args->aper_size = ggtt->vm.total;
265
	args->aper_available_size = args->aper_size - pinned;
266

267 268 269
	return 0;
}

270
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
271
{
272
	struct address_space *mapping = obj->base.filp->f_mapping;
273
	drm_dma_handle_t *phys;
274 275
	struct sg_table *st;
	struct scatterlist *sg;
276
	char *vaddr;
277
	int i;
278
	int err;
279

280
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
281
		return -EINVAL;
282

283 284 285 286 287
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
288
			     roundup_pow_of_two(obj->base.size),
289 290
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
291
		return -ENOMEM;
292 293

	vaddr = phys->vaddr;
294 295 296 297 298
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
299
		if (IS_ERR(page)) {
300
			err = PTR_ERR(page);
301 302
			goto err_phys;
		}
303 304 305 306 307 308

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

309
		put_page(page);
310 311 312
		vaddr += PAGE_SIZE;
	}

313
	i915_gem_chipset_flush(to_i915(obj->base.dev));
314 315

	st = kmalloc(sizeof(*st), GFP_KERNEL);
316
	if (!st) {
317
		err = -ENOMEM;
318 319
		goto err_phys;
	}
320 321 322

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
323
		err = -ENOMEM;
324
		goto err_phys;
325 326 327 328 329
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
330

331
	sg_dma_address(sg) = phys->busaddr;
332 333
	sg_dma_len(sg) = obj->base.size;

334
	obj->phys_handle = phys;
335

336
	__i915_gem_object_set_pages(obj, st, sg->length);
337 338

	return 0;
339 340 341

err_phys:
	drm_pci_free(obj->base.dev, phys);
342 343

	return err;
344 345
}

346 347
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
348 349
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
350 351 352 353
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

354
static void
355
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
356 357
				struct sg_table *pages,
				bool needs_clflush)
358
{
C
Chris Wilson 已提交
359
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
360

C
Chris Wilson 已提交
361 362
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
363

364
	if (needs_clflush &&
365
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
366
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
367
		drm_clflush_sg(pages);
368

369
	__start_cpu_write(obj);
370 371 372 373 374 375
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
376
	__i915_gem_object_release_shmem(obj, pages, false);
377

C
Chris Wilson 已提交
378
	if (obj->mm.dirty) {
379
		struct address_space *mapping = obj->base.filp->f_mapping;
380
		char *vaddr = obj->phys_handle->vaddr;
381 382 383
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
384 385 386 387 388 389 390 391 392 393 394 395 396
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
397
			if (obj->mm.madv == I915_MADV_WILLNEED)
398
				mark_page_accessed(page);
399
			put_page(page);
400 401
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
402
		obj->mm.dirty = false;
403 404
	}

405 406
	sg_free_table(pages);
	kfree(pages);
407 408

	drm_pci_free(obj->base.dev, obj->phys_handle);
409 410 411 412 413
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
414
	i915_gem_object_unpin_pages(obj);
415 416 417 418 419 420 421 422
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

423 424
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

425
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
426 427 428
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
429 430 431
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
432

433 434 435 436
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
437
	 */
438
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
439 440 441
	if (ret)
		return ret;

442 443 444 445 446 447 448 449 450 451 452 453 454
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

455 456 457 458
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
459
			   struct intel_rps_client *rps_client)
460
{
461
	struct i915_request *rq;
462

463
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
464

465 466 467 468 469 470 471 472 473
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
474
	if (i915_request_completed(rq))
475 476
		goto out;

477 478
	/*
	 * This client is about to stall waiting for the GPU. In many cases
479 480 481 482 483 484 485 486 487 488 489 490 491 492
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
493
	if (rps_client && !i915_request_started(rq)) {
494
		if (INTEL_GEN(rq->i915) >= 6)
495
			gen6_rps_boost(rq, rps_client);
496 497
	}

498
	timeout = i915_request_wait(rq, flags, timeout);
499 500

out:
501 502
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
503 504 505 506 507 508 509 510

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
511
				 struct intel_rps_client *rps_client)
512
{
513
	unsigned int seq = __read_seqcount_begin(&resv->seq);
514
	struct dma_fence *excl;
515
	bool prune_fences = false;
516 517 518 519

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
520 521
		int ret;

522 523
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
524 525 526
		if (ret)
			return ret;

527 528 529
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
530
							     rps_client);
531
			if (timeout < 0)
532
				break;
533

534 535 536 537 538 539
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
540

541 542 543 544 545 546 547 548 549
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
550
		prune_fences = count && timeout >= 0;
551 552
	} else {
		excl = reservation_object_get_excl_rcu(resv);
553 554
	}

555
	if (excl && timeout >= 0)
556 557
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
558 559 560

	dma_fence_put(excl);

561 562
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
563 564 565
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
566
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
567 568 569 570 571
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
572 573
	}

574
	return timeout;
575 576
}

577 578
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
579
{
580
	struct i915_request *rq;
581 582
	struct intel_engine_cs *engine;

583
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
584 585 586 587 588
		return;

	rq = to_request(fence);
	engine = rq->engine;

589 590
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
591
	if (engine->schedule)
592
		engine->schedule(rq, attr);
593
	rcu_read_unlock();
594
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
595 596
}

597 598
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
599 600 601 602 603 604 605
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
606
			__fence_set_priority(array->fences[i], attr);
607
	} else {
608
		__fence_set_priority(fence, attr);
609 610 611 612 613 614
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
615
			      const struct i915_sched_attr *attr)
616 617 618 619 620 621 622 623 624 625 626 627 628 629
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
630
			fence_set_priority(shared[i], attr);
631 632 633 634 635 636 637 638 639
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
640
		fence_set_priority(excl, attr);
641 642 643 644 645
		dma_fence_put(excl);
	}
	return 0;
}

646 647 648 649 650
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
651
 * @rps_client: client (user process) to charge for any waitboosting
652
 */
653 654 655 656
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
657
		     struct intel_rps_client *rps_client)
658
{
659 660 661 662 663 664 665
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
666

667 668
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
669
						   rps_client);
670
	return timeout < 0 ? timeout : 0;
671 672 673 674 675 676
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

677
	return &fpriv->rps_client;
678 679
}

680 681 682
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
683
		     struct drm_file *file)
684 685
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
686
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
687 688 689 690

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
691
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
692 693
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
694

695
	drm_clflush_virt_range(vaddr, args->size);
696
	i915_gem_chipset_flush(to_i915(obj->base.dev));
697

698
	intel_fb_obj_flush(obj, ORIGIN_CPU);
699
	return 0;
700 701
}

702
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
703
{
704
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
705 706 707 708
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
709
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
710
	kmem_cache_free(dev_priv->objects, obj);
711 712
}

713 714
static int
i915_gem_create(struct drm_file *file,
715
		struct drm_i915_private *dev_priv,
716 717
		u64 size,
		u32 *handle_p)
718
{
719
	struct drm_i915_gem_object *obj;
720 721
	int ret;
	u32 handle;
722

723
	size = roundup(size, PAGE_SIZE);
724 725
	if (size == 0)
		return -EINVAL;
726 727

	/* Allocate the new object */
728
	obj = i915_gem_object_create(dev_priv, size);
729 730
	if (IS_ERR(obj))
		return PTR_ERR(obj);
731

732
	ret = drm_gem_handle_create(file, &obj->base, &handle);
733
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
734
	i915_gem_object_put(obj);
735 736
	if (ret)
		return ret;
737

738
	*handle_p = handle;
739 740 741
	return 0;
}

742 743 744 745 746 747
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
748
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
749
	args->size = args->pitch * args->height;
750
	return i915_gem_create(file, to_i915(dev),
751
			       args->size, &args->handle);
752 753
}

754 755 756 757 758 759
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

760 761
/**
 * Creates a new mm object and returns a handle to it.
762 763 764
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
765 766 767 768 769
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
770
	struct drm_i915_private *dev_priv = to_i915(dev);
771
	struct drm_i915_gem_create *args = data;
772

773
	i915_gem_flush_free_objects(dev_priv);
774

775
	return i915_gem_create(file, dev_priv,
776
			       args->size, &args->handle);
777 778
}

779 780 781 782 783 784 785
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

786
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
787
{
788 789
	intel_wakeref_t wakeref;

790 791 792 793 794
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
795 796 797 798 799 800 801 802 803 804
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
805 806
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
807
	 */
808

809 810 811 812 813
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

814
	i915_gem_chipset_flush(dev_priv);
815

816 817
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
818

819
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
820

821 822
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
823 824 825 826 827 828 829 830
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

831
	if (!(obj->write_domain & flush_domains))
832 833
		return;

834
	switch (obj->write_domain) {
835
	case I915_GEM_DOMAIN_GTT:
836
		i915_gem_flush_ggtt_writes(dev_priv);
837 838 839

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
840

841
		for_each_ggtt_vma(vma, obj) {
842 843 844 845 846
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
847 848
		break;

849 850 851 852
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

853 854 855
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
856 857 858 859 860

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
861 862
	}

863
	obj->write_domain = 0;
864 865
}

866 867 868 869 870 871
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
872
				    unsigned int *needs_clflush)
873 874 875
{
	int ret;

876
	lockdep_assert_held(&obj->base.dev->struct_mutex);
877

878
	*needs_clflush = 0;
879 880
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
881

882 883 884 885 886
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
887 888 889
	if (ret)
		return ret;

C
Chris Wilson 已提交
890
	ret = i915_gem_object_pin_pages(obj);
891 892 893
	if (ret)
		return ret;

894 895
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
896 897 898 899 900 901 902
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

903
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
904

905 906 907 908 909
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
910
	if (!obj->cache_dirty &&
911
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
912
		*needs_clflush = CLFLUSH_BEFORE;
913

914
out:
915
	/* return with the pages pinned */
916
	return 0;
917 918 919 920

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
921 922 923 924 925 926 927
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

928 929
	lockdep_assert_held(&obj->base.dev->struct_mutex);

930 931 932 933
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

934 935 936 937 938 939
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
940 941 942
	if (ret)
		return ret;

C
Chris Wilson 已提交
943
	ret = i915_gem_object_pin_pages(obj);
944 945 946
	if (ret)
		return ret;

947 948
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
949 950 951 952 953 954 955
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

956
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
957

958 959 960 961 962
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
963
	if (!obj->cache_dirty) {
964
		*needs_clflush |= CLFLUSH_AFTER;
965

966 967 968 969
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
970
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
971 972
			*needs_clflush |= CLFLUSH_BEFORE;
	}
973

974
out:
975
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
976
	obj->mm.dirty = true;
977
	/* return with the pages pinned */
978
	return 0;
979 980 981 982

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
983 984
}

985
static int
986 987
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
988 989 990 991 992 993
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

994 995
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
996

997
	ret = __copy_to_user(user_data, vaddr + offset, len);
998

999
	kunmap(page);
1000

1001
	return ret ? -EFAULT : 0;
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1028
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1048
{
1049
	void __iomem *vaddr;
1050
	unsigned long unwritten;
1051 1052

	/* We can use the cpu mem copy function because this is X86. */
1053 1054 1055 1056
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1057 1058
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1059 1060 1061 1062
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1063 1064
		io_mapping_unmap(vaddr);
	}
1065 1066 1067 1068
	return unwritten;
}

static int
1069 1070
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1071
{
1072 1073
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1074
	intel_wakeref_t wakeref;
1075
	struct drm_mm_node node;
1076 1077 1078
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1079 1080
	int ret;

1081 1082 1083 1084
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

1085
	wakeref = intel_runtime_pm_get(i915);
1086
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1087 1088 1089
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1090 1091 1092
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1093
		ret = i915_vma_put_fence(vma);
1094 1095 1096 1097 1098
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1099
	if (IS_ERR(vma)) {
1100
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1101
		if (ret)
1102 1103
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1104 1105 1106 1107 1108 1109
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1110
	mutex_unlock(&i915->drm.struct_mutex);
1111

1112 1113 1114
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1129 1130 1131
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1132 1133 1134 1135
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1136

1137
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1138
				  user_data, page_length)) {
1139 1140 1141 1142 1143 1144 1145 1146 1147
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1148
	mutex_lock(&i915->drm.struct_mutex);
1149 1150 1151
out_unpin:
	if (node.allocated) {
		wmb();
1152
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1153 1154
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1155
		i915_vma_unpin(vma);
1156
	}
1157
out_unlock:
1158
	intel_runtime_pm_put(i915, wakeref);
1159
	mutex_unlock(&i915->drm.struct_mutex);
1160

1161 1162 1163
	return ret;
}

1164 1165
/**
 * Reads data from the object referenced by handle.
1166 1167 1168
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1169 1170 1171 1172 1173
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1174
		     struct drm_file *file)
1175 1176
{
	struct drm_i915_gem_pread *args = data;
1177
	struct drm_i915_gem_object *obj;
1178
	int ret;
1179

1180 1181 1182
	if (args->size == 0)
		return 0;

1183
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1184 1185 1186
		       args->size))
		return -EFAULT;

1187
	obj = i915_gem_object_lookup(file, args->handle);
1188 1189
	if (!obj)
		return -ENOENT;
1190

1191
	/* Bounds check source.  */
1192
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1193
		ret = -EINVAL;
1194
		goto out;
C
Chris Wilson 已提交
1195 1196
	}

C
Chris Wilson 已提交
1197 1198
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1199 1200 1201 1202
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1203
	if (ret)
1204
		goto out;
1205

1206
	ret = i915_gem_object_pin_pages(obj);
1207
	if (ret)
1208
		goto out;
1209

1210
	ret = i915_gem_shmem_pread(obj, args);
1211
	if (ret == -EFAULT || ret == -ENODEV)
1212
		ret = i915_gem_gtt_pread(obj, args);
1213

1214 1215
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1216
	i915_gem_object_put(obj);
1217
	return ret;
1218 1219
}

1220 1221
/* This is the fast write path which cannot handle
 * page faults in the source data
1222
 */
1223

1224 1225 1226 1227
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1228
{
1229
	void __iomem *vaddr;
1230
	unsigned long unwritten;
1231

1232
	/* We can use the cpu mem copy function because this is X86. */
1233 1234
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1235
						      user_data, length);
1236 1237
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1238 1239 1240
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1241 1242
		io_mapping_unmap(vaddr);
	}
1243 1244 1245 1246

	return unwritten;
}

1247 1248 1249
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1250
 * @obj: i915 GEM object
1251
 * @args: pwrite arguments structure
1252
 */
1253
static int
1254 1255
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1256
{
1257
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1258
	struct i915_ggtt *ggtt = &i915->ggtt;
1259
	intel_wakeref_t wakeref;
1260
	struct drm_mm_node node;
1261 1262 1263
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1264
	int ret;
1265

1266 1267 1268
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1269

1270 1271 1272 1273 1274 1275 1276 1277
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1278 1279
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1280 1281 1282 1283 1284
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1285
		wakeref = intel_runtime_pm_get(i915);
1286 1287
	}

C
Chris Wilson 已提交
1288
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1289 1290 1291
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1292 1293 1294
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1295
		ret = i915_vma_put_fence(vma);
1296 1297 1298 1299 1300
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1301
	if (IS_ERR(vma)) {
1302
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1303
		if (ret)
1304
			goto out_rpm;
1305
		GEM_BUG_ON(!node.allocated);
1306
	}
D
Daniel Vetter 已提交
1307 1308 1309 1310 1311

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1312 1313
	mutex_unlock(&i915->drm.struct_mutex);

1314
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1315

1316 1317 1318 1319
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1320 1321
		/* Operation in this page
		 *
1322 1323 1324
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1325
		 */
1326
		u32 page_base = node.start;
1327 1328
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1329 1330 1331
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1332 1333 1334
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1335 1336 1337 1338
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1339
		/* If we get a fault while copying data, then (presumably) our
1340 1341
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1342 1343
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1344
		 */
1345
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1346 1347 1348
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1349
		}
1350

1351 1352 1353
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1354
	}
1355
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1356 1357

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1358
out_unpin:
1359 1360
	if (node.allocated) {
		wmb();
1361
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1362 1363
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1364
		i915_vma_unpin(vma);
1365
	}
1366
out_rpm:
1367
	intel_runtime_pm_put(i915, wakeref);
1368
out_unlock:
1369
	mutex_unlock(&i915->drm.struct_mutex);
1370
	return ret;
1371 1372
}

1373 1374 1375 1376 1377
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1378
static int
1379 1380 1381
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1382
{
1383
	char *vaddr;
1384 1385
	int ret;

1386
	vaddr = kmap(page);
1387

1388 1389
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1390

1391 1392 1393
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1394

1395 1396 1397
	kunmap(page);

	return ret ? -EFAULT : 0;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1408
	unsigned int needs_clflush;
1409 1410
	unsigned int offset, idx;
	int ret;
1411

1412
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1413 1414 1415
	if (ret)
		return ret;

1416 1417 1418 1419
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1420

1421 1422 1423 1424 1425 1426 1427
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1428

1429 1430 1431 1432 1433
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1434
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1435

1436 1437 1438
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1439
		if (ret)
1440
			break;
1441

1442 1443 1444
		remain -= length;
		user_data += length;
		offset = 0;
1445
	}
1446

1447
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1448
	i915_gem_obj_finish_shmem_access(obj);
1449
	return ret;
1450 1451 1452 1453
}

/**
 * Writes data to the object referenced by handle.
1454 1455 1456
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1457 1458 1459 1460 1461
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1462
		      struct drm_file *file)
1463 1464
{
	struct drm_i915_gem_pwrite *args = data;
1465
	struct drm_i915_gem_object *obj;
1466 1467 1468 1469 1470
	int ret;

	if (args->size == 0)
		return 0;

1471
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1472 1473
		return -EFAULT;

1474
	obj = i915_gem_object_lookup(file, args->handle);
1475 1476
	if (!obj)
		return -ENOENT;
1477

1478
	/* Bounds check destination. */
1479
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1480
		ret = -EINVAL;
1481
		goto err;
C
Chris Wilson 已提交
1482 1483
	}

1484 1485 1486 1487 1488 1489
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1490 1491
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1492 1493 1494 1495 1496 1497
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1498 1499 1500 1501 1502
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1503 1504 1505
	if (ret)
		goto err;

1506
	ret = i915_gem_object_pin_pages(obj);
1507
	if (ret)
1508
		goto err;
1509

D
Daniel Vetter 已提交
1510
	ret = -EFAULT;
1511 1512 1513 1514 1515 1516
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1517
	if (!i915_gem_object_has_struct_page(obj) ||
1518
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1519 1520
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1521 1522
		 * textures). Fallback to the shmem path in that case.
		 */
1523
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1524

1525
	if (ret == -EFAULT || ret == -ENOSPC) {
1526 1527
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1528
		else
1529
			ret = i915_gem_shmem_pwrite(obj, args);
1530
	}
1531

1532
	i915_gem_object_unpin_pages(obj);
1533
err:
C
Chris Wilson 已提交
1534
	i915_gem_object_put(obj);
1535
	return ret;
1536 1537
}

1538 1539 1540 1541 1542 1543
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1544 1545
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1546
	for_each_ggtt_vma(vma, obj) {
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1557
	spin_lock(&i915->mm.obj_lock);
1558
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1559 1560
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1561 1562
}

1563
/**
1564 1565
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1566 1567 1568
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1569 1570 1571
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1572
			  struct drm_file *file)
1573 1574
{
	struct drm_i915_gem_set_domain *args = data;
1575
	struct drm_i915_gem_object *obj;
1576 1577
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1578
	int err;
1579

1580
	/* Only handle setting domains to types used by the CPU. */
1581
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1582 1583 1584 1585 1586 1587 1588 1589
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1590
	obj = i915_gem_object_lookup(file, args->handle);
1591 1592
	if (!obj)
		return -ENOENT;
1593

1594 1595 1596 1597
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1598
	err = i915_gem_object_wait(obj,
1599
				   I915_WAIT_INTERRUPTIBLE |
1600
				   I915_WAIT_PRIORITY |
1601 1602 1603
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1604
	if (err)
C
Chris Wilson 已提交
1605
		goto out;
1606

T
Tina Zhang 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1620 1621 1622 1623 1624 1625 1626 1627 1628
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1629
		goto out;
1630 1631 1632

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1633
		goto out_unpin;
1634

1635 1636 1637 1638
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1639
	else
1640
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1641

1642 1643
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1644

1645
	mutex_unlock(&dev->struct_mutex);
1646

1647
	if (write_domain != 0)
1648 1649
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1650

C
Chris Wilson 已提交
1651
out_unpin:
1652
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1653 1654
out:
	i915_gem_object_put(obj);
1655
	return err;
1656 1657 1658 1659
}

/**
 * Called when user space has done writes to this buffer
1660 1661 1662
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1663 1664 1665
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1666
			 struct drm_file *file)
1667 1668
{
	struct drm_i915_gem_sw_finish *args = data;
1669
	struct drm_i915_gem_object *obj;
1670

1671
	obj = i915_gem_object_lookup(file, args->handle);
1672 1673
	if (!obj)
		return -ENOENT;
1674

T
Tina Zhang 已提交
1675 1676 1677 1678 1679
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1680
	/* Pinned buffers may be scanout, so flush the cache */
1681
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1682
	i915_gem_object_put(obj);
1683 1684

	return 0;
1685 1686 1687
}

/**
1688 1689 1690 1691 1692
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1693 1694 1695
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1706 1707 1708
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1709
		    struct drm_file *file)
1710 1711
{
	struct drm_i915_gem_mmap *args = data;
1712
	struct drm_i915_gem_object *obj;
1713 1714
	unsigned long addr;

1715 1716 1717
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1718
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1719 1720
		return -ENODEV;

1721 1722
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1723
		return -ENOENT;
1724

1725 1726 1727
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1728
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1729
		i915_gem_object_put(obj);
1730
		return -ENXIO;
1731 1732
	}

1733
	addr = vm_mmap(obj->base.filp, 0, args->size,
1734 1735
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1736 1737 1738 1739
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1740
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1741
			i915_gem_object_put(obj);
1742 1743
			return -EINTR;
		}
1744 1745 1746 1747 1748 1749 1750
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1751 1752

		/* This may race, but that's ok, it only gets set */
1753
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1754
	}
C
Chris Wilson 已提交
1755
	i915_gem_object_put(obj);
1756 1757 1758
	if (IS_ERR((void *)addr))
		return addr;

1759
	args->addr_ptr = (u64)addr;
1760 1761 1762 1763

	return 0;
}

1764
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1765
{
1766
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1789 1790 1791
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1819
	return 2;
1820 1821
}

1822
static inline struct i915_ggtt_view
1823
compute_partial_view(const struct drm_i915_gem_object *obj,
1824 1825 1826 1827 1828 1829 1830 1831 1832
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1833 1834
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1835
		min_t(unsigned int, chunk,
1836
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1837 1838 1839 1840 1841 1842 1843 1844

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1845 1846
/**
 * i915_gem_fault - fault a page into the GTT
1847
 * @vmf: fault info
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1859 1860 1861
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1862
 */
1863
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1864
{
1865
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1866
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1867
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1868
	struct drm_device *dev = obj->base.dev;
1869 1870
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1871
	bool write = area->vm_flags & VM_WRITE;
1872
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1873
	struct i915_vma *vma;
1874
	pgoff_t page_offset;
1875
	int ret;
1876

1877 1878 1879 1880
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1881
	/* We don't use vmf->pgoff since that has the fake offset */
1882
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1883

C
Chris Wilson 已提交
1884 1885
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1886
	/* Try to flush the object off the GPU first without holding the lock.
1887
	 * Upon acquiring the lock, we will perform our sanity checks and then
1888 1889 1890
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1891 1892 1893 1894
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1895
	if (ret)
1896 1897
		goto err;

1898 1899 1900 1901
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1902
	wakeref = intel_runtime_pm_get(dev_priv);
1903 1904 1905 1906

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1907

1908
	/* Access to snoopable pages through the GTT is incoherent. */
1909
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1910
		ret = -EFAULT;
1911
		goto err_unlock;
1912 1913
	}

1914

1915
	/* Now pin it into the GTT as needed */
1916 1917 1918 1919
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1920 1921
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1922
		struct i915_ggtt_view view =
1923
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1924
		unsigned int flags;
1925

1926 1927 1928 1929 1930 1931
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1932 1933 1934 1935
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1936 1937 1938 1939 1940 1941
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1942
	}
C
Chris Wilson 已提交
1943 1944
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1945
		goto err_unlock;
C
Chris Wilson 已提交
1946
	}
1947

1948 1949
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1950
		goto err_unpin;
1951

1952
	ret = i915_vma_pin_fence(vma);
1953
	if (ret)
1954
		goto err_unpin;
1955

1956
	/* Finally, remap it using the new GTT offset */
1957
	ret = remap_io_mapping(area,
1958
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1959
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1960
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1961
			       &ggtt->iomap);
1962 1963
	if (ret)
		goto err_fence;
1964

1965 1966 1967 1968 1969 1970
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1971 1972
	i915_vma_set_ggtt_write(vma);

1973
err_fence:
1974
	i915_vma_unpin_fence(vma);
1975
err_unpin:
C
Chris Wilson 已提交
1976
	__i915_vma_unpin(vma);
1977
err_unlock:
1978
	mutex_unlock(&dev->struct_mutex);
1979
err_rpm:
1980
	intel_runtime_pm_put(dev_priv, wakeref);
1981
	i915_gem_object_unpin_pages(obj);
1982
err:
1983
	switch (ret) {
1984
	case -EIO:
1985 1986 1987 1988 1989 1990
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1991 1992
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
1993
		/* else: fall through */
1994
	case -EAGAIN:
D
Daniel Vetter 已提交
1995 1996 1997 1998
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1999
		 */
2000 2001
	case 0:
	case -ERESTARTSYS:
2002
	case -EINTR:
2003 2004 2005 2006 2007
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2008
		return VM_FAULT_NOPAGE;
2009
	case -ENOMEM:
2010
		return VM_FAULT_OOM;
2011
	case -ENOSPC:
2012
	case -EFAULT:
2013
		return VM_FAULT_SIGBUS;
2014
	default:
2015
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2016
		return VM_FAULT_SIGBUS;
2017 2018 2019
	}
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2031
	for_each_ggtt_vma(vma, obj)
2032 2033 2034
		i915_vma_unset_userfault(vma);
}

2035 2036 2037 2038
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2039
 * Preserve the reservation of the mmapping with the DRM core code, but
2040 2041 2042 2043 2044 2045 2046 2047 2048
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2049
void
2050
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2051
{
2052
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2053
	intel_wakeref_t wakeref;
2054

2055 2056 2057
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2058 2059 2060 2061
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2062
	 */
2063
	lockdep_assert_held(&i915->drm.struct_mutex);
2064
	wakeref = intel_runtime_pm_get(i915);
2065

2066
	if (!obj->userfault_count)
2067
		goto out;
2068

2069
	__i915_gem_object_release_mmap(obj);
2070 2071 2072 2073 2074 2075 2076 2077 2078

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2079 2080

out:
2081
	intel_runtime_pm_put(i915, wakeref);
2082 2083
}

2084
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2085
{
2086
	struct drm_i915_gem_object *obj, *on;
2087
	int i;
2088

2089 2090 2091 2092 2093 2094
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2095

2096
	list_for_each_entry_safe(obj, on,
2097 2098
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2099 2100 2101 2102 2103 2104 2105 2106

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2117 2118 2119 2120

		if (!reg->vma)
			continue;

2121
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2122 2123
		reg->dirty = true;
	}
2124 2125
}

2126 2127
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2128
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2129
	int err;
2130

2131
	err = drm_gem_create_mmap_offset(&obj->base);
2132
	if (likely(!err))
2133
		return 0;
2134

2135 2136
	/* Attempt to reap some mmap space from dead objects */
	do {
2137 2138 2139
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2140 2141
		if (err)
			break;
2142

2143
		i915_gem_drain_freed_objects(dev_priv);
2144
		err = drm_gem_create_mmap_offset(&obj->base);
2145 2146 2147 2148
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2149

2150
	return err;
2151 2152 2153 2154 2155 2156 2157
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2158
int
2159 2160
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2161 2162
		  u32 handle,
		  u64 *offset)
2163
{
2164
	struct drm_i915_gem_object *obj;
2165 2166
	int ret;

2167
	obj = i915_gem_object_lookup(file, handle);
2168 2169
	if (!obj)
		return -ENOENT;
2170

2171
	ret = i915_gem_object_create_mmap_offset(obj);
2172 2173
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2174

C
Chris Wilson 已提交
2175
	i915_gem_object_put(obj);
2176
	return ret;
2177 2178
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2200
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2201 2202
}

D
Daniel Vetter 已提交
2203 2204 2205
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2206
{
2207
	i915_gem_object_free_mmap_offset(obj);
2208

2209 2210
	if (obj->base.filp == NULL)
		return;
2211

D
Daniel Vetter 已提交
2212 2213 2214 2215 2216
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2217
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2218
	obj->mm.madv = __I915_MADV_PURGED;
2219
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2220
}
2221

2222
/* Try to discard unwanted pages */
2223
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2224
{
2225 2226
	struct address_space *mapping;

2227
	lockdep_assert_held(&obj->mm.lock);
2228
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2229

C
Chris Wilson 已提交
2230
	switch (obj->mm.madv) {
2231 2232 2233 2234 2235 2236 2237 2238 2239
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2240
	mapping = obj->base.filp->f_mapping,
2241
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2242 2243
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2255
static void
2256 2257
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2258
{
2259
	struct sgt_iter sgt_iter;
2260
	struct pagevec pvec;
2261
	struct page *page;
2262

2263
	__i915_gem_object_release_shmem(obj, pages, true);
2264

2265
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2266

2267
	if (i915_gem_object_needs_bit17_swizzle(obj))
2268
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2269

2270 2271 2272
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2273
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2274
		if (obj->mm.dirty)
2275
			set_page_dirty(page);
2276

C
Chris Wilson 已提交
2277
		if (obj->mm.madv == I915_MADV_WILLNEED)
2278
			mark_page_accessed(page);
2279

2280 2281
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2282
	}
2283 2284
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2285
	obj->mm.dirty = false;
2286

2287 2288
	sg_free_table(pages);
	kfree(pages);
2289
}
C
Chris Wilson 已提交
2290

2291 2292 2293
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2294
	void __rcu **slot;
2295

2296
	rcu_read_lock();
C
Chris Wilson 已提交
2297 2298
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2299
	rcu_read_unlock();
2300 2301
}

2302 2303
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2304
{
2305
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2306
	struct sg_table *pages;
2307

2308
	pages = fetch_and_zero(&obj->mm.pages);
2309 2310
	if (IS_ERR_OR_NULL(pages))
		return pages;
2311

2312 2313 2314 2315
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2316
	if (obj->mm.mapping) {
2317 2318
		void *ptr;

2319
		ptr = page_mask_bits(obj->mm.mapping);
2320 2321
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2322
		else
2323 2324
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2325
		obj->mm.mapping = NULL;
2326 2327
	}

2328
	__i915_gem_object_reset_page_iter(obj);
2329 2330 2331 2332
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2333

2334 2335
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2336 2337
{
	struct sg_table *pages;
2338
	int ret;
2339 2340

	if (i915_gem_object_has_pinned_pages(obj))
2341
		return -EBUSY;
2342 2343 2344 2345 2346

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2347 2348
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2349
		goto unlock;
2350
	}
2351 2352 2353 2354 2355 2356 2357

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2368 2369 2370
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2371
	ret = 0;
2372 2373
unlock:
	mutex_unlock(&obj->mm.lock);
2374 2375

	return ret;
C
Chris Wilson 已提交
2376 2377
}

2378
bool i915_sg_trim(struct sg_table *orig_st)
2379 2380 2381 2382 2383 2384
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2385
		return false;
2386

2387
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2388
		return false;
2389 2390 2391 2392

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2393 2394 2395
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2396 2397
		new_sg = sg_next(new_sg);
	}
2398
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2399 2400 2401 2402

	sg_free_table(orig_st);

	*orig_st = new_st;
2403
	return true;
2404 2405
}

2406
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2407
{
2408
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2409 2410
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2411
	struct address_space *mapping;
2412 2413
	struct sg_table *st;
	struct scatterlist *sg;
2414
	struct sgt_iter sgt_iter;
2415
	struct page *page;
2416
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2417
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2418
	unsigned int sg_page_sizes;
2419
	struct pagevec pvec;
2420
	gfp_t noreclaim;
I
Imre Deak 已提交
2421
	int ret;
2422

2423 2424
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2425 2426 2427
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2428 2429
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2430

2431 2432 2433 2434
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2435
	if (page_count > totalram_pages())
2436 2437
		return -ENOMEM;

2438 2439
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2440
		return -ENOMEM;
2441

2442
rebuild_st:
2443 2444
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2445
		return -ENOMEM;
2446
	}
2447

2448 2449
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2450 2451 2452 2453
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2454
	mapping = obj->base.filp->f_mapping;
2455
	mapping_set_unevictable(mapping);
2456
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2457 2458
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2459 2460
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2461
	sg_page_sizes = 0;
2462
	for (i = 0; i < page_count; i++) {
2463 2464 2465 2466 2467 2468 2469
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2470
			cond_resched();
C
Chris Wilson 已提交
2471
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2472 2473 2474 2475 2476 2477 2478 2479
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2480
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2481

2482 2483
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2484 2485
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2486 2487 2488 2489
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2490
			 */
2491 2492 2493
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2494

2495 2496
				/*
				 * Our bo are always dirty and so we require
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2507
				 * this we want __GFP_RETRY_MAYFAIL.
2508
				 */
M
Michal Hocko 已提交
2509
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2510
			}
2511 2512
		} while (1);

2513 2514 2515
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2516
			if (i) {
M
Matthew Auld 已提交
2517
				sg_page_sizes |= sg->length;
2518
				sg = sg_next(sg);
2519
			}
2520 2521 2522 2523 2524 2525
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2526 2527 2528

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2529
	}
2530
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2531
		sg_page_sizes |= sg->length;
2532
		sg_mark_end(sg);
2533
	}
2534

2535 2536 2537
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2538
	ret = i915_gem_gtt_prepare_pages(obj, st);
2539
	if (ret) {
2540 2541
		/*
		 * DMA remapping failed? One possible cause is that
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2559

2560
	if (i915_gem_object_needs_bit17_swizzle(obj))
2561
		i915_gem_object_do_bit_17_swizzle(obj, st);
2562

M
Matthew Auld 已提交
2563
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2564 2565

	return 0;
2566

2567
err_sg:
2568
	sg_mark_end(sg);
2569
err_pages:
2570 2571 2572 2573 2574 2575 2576 2577
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2578 2579
	sg_free_table(st);
	kfree(st);
2580

2581 2582
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2583 2584 2585 2586 2587 2588 2589
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2590 2591 2592
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2593
	return ret;
2594 2595 2596
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2597
				 struct sg_table *pages,
M
Matthew Auld 已提交
2598
				 unsigned int sg_page_sizes)
2599
{
2600 2601 2602 2603
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2604
	lockdep_assert_held(&obj->mm.lock);
2605 2606 2607 2608 2609

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2610 2611

	if (i915_gem_object_is_tiled(obj) &&
2612
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2613 2614 2615 2616
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2617

M
Matthew Auld 已提交
2618 2619
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2620 2621

	/*
M
Matthew Auld 已提交
2622 2623 2624 2625 2626 2627
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2628 2629 2630 2631 2632 2633 2634
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2635 2636 2637 2638

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2639 2640 2641 2642
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2643
	int err;
2644 2645 2646 2647 2648 2649

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2650
	err = obj->ops->get_pages(obj);
2651
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2652

2653
	return err;
2654 2655
}

2656
/* Ensure that the associated pages are gathered from the backing storage
2657
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2658
 * multiple times before they are released by a single call to
2659
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2660 2661 2662
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2663
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2664
{
2665
	int err;
2666

2667 2668 2669
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2670

2671
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2672 2673
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2674 2675 2676
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2677

2678 2679 2680
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2681

2682 2683
unlock:
	mutex_unlock(&obj->mm.lock);
2684
	return err;
2685 2686
}

2687
/* The 'mapping' part of i915_gem_object_pin_map() below */
2688 2689
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2690 2691
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2692
	struct sg_table *sgt = obj->mm.pages;
2693 2694
	struct sgt_iter sgt_iter;
	struct page *page;
2695 2696
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2697
	unsigned long i = 0;
2698
	pgprot_t pgprot;
2699 2700 2701
	void *addr;

	/* A single page can always be kmapped */
2702
	if (n_pages == 1 && type == I915_MAP_WB)
2703 2704
		return kmap(sg_page(sgt->sgl));

2705 2706
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2707
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2708 2709 2710
		if (!pages)
			return NULL;
	}
2711

2712 2713
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2714 2715 2716 2717

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2718
	switch (type) {
2719 2720 2721
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2722 2723 2724 2725 2726 2727 2728 2729
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2730

2731
	if (pages != stack_pages)
M
Michal Hocko 已提交
2732
		kvfree(pages);
2733 2734 2735 2736 2737

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2738 2739
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2740
{
2741 2742 2743
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2744 2745
	int ret;

T
Tina Zhang 已提交
2746 2747
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2748

2749
	ret = mutex_lock_interruptible(&obj->mm.lock);
2750 2751 2752
	if (ret)
		return ERR_PTR(ret);

2753 2754 2755
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2756
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2757
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2758 2759
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2760 2761 2762
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2763

2764 2765 2766
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2767 2768
		pinned = false;
	}
2769
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2770

2771
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2772 2773 2774
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2775
			goto err_unpin;
2776
		}
2777 2778 2779 2780 2781 2782

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2783
		ptr = obj->mm.mapping = NULL;
2784 2785
	}

2786 2787 2788 2789
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2790
			goto err_unpin;
2791 2792
		}

2793
		obj->mm.mapping = page_pack_bits(ptr, type);
2794 2795
	}

2796 2797
out_unlock:
	mutex_unlock(&obj->mm.lock);
2798 2799
	return ptr;

2800 2801 2802 2803 2804
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2805 2806
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2824
	if (i915_gem_object_has_pages(obj))
2825 2826
		return -ENODEV;

2827 2828 2829
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2879
struct i915_request *
2880
i915_gem_find_active_request(struct intel_engine_cs *engine)
2881
{
2882
	struct i915_request *request, *active = NULL;
2883
	unsigned long flags;
2884

2885 2886 2887 2888 2889 2890
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
2891 2892
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2893 2894
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
2895
	 */
2896 2897
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2898
		if (__i915_request_completed(request, request->global_seqno))
2899
			continue;
2900

2901 2902
		active = request;
		break;
2903
	}
2904
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2905

2906
	return active;
2907 2908
}

2909
static void
2910 2911
i915_gem_retire_work_handler(struct work_struct *work)
{
2912
	struct drm_i915_private *dev_priv =
2913
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2914
	struct drm_device *dev = &dev_priv->drm;
2915

2916
	/* Come back later if the device is busy... */
2917
	if (mutex_trylock(&dev->struct_mutex)) {
2918
		i915_retire_requests(dev_priv);
2919
		mutex_unlock(&dev->struct_mutex);
2920
	}
2921

2922 2923
	/*
	 * Keep the retire handler running until we are finally idle.
2924 2925 2926
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2927
	if (READ_ONCE(dev_priv->gt.awake))
2928 2929
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2930
				   round_jiffies_up_relative(HZ));
2931
}
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

2984 2985
	destroy_rcu_head(&s->rcu);

2986 2987 2988 2989 2990 2991 2992 2993
	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

2994 2995 2996 2997 2998 2999 3000
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3017 3018 3019 3020
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3021
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3022
	unsigned int epoch = I915_EPOCH_INVALID;
3023 3024 3025 3026 3027
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3046 3047
	/*
	 * Wait for last execlists context complete, but bail out in case a
3048 3049 3050 3051 3052
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3053
	 */
3054 3055 3056 3057
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3058 3059 3060 3061

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3062
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3063 3064 3065 3066 3067 3068 3069
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3070 3071 3072 3073
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3074
	if (new_requests_since_last_retire(dev_priv))
3075
		goto out_unlock;
3076

3077
	epoch = __i915_gem_park(dev_priv);
3078

3079 3080
	assert_kernel_context_is_current(dev_priv);

3081 3082
	rearm_hangcheck = false;
out_unlock:
3083
	mutex_unlock(&dev_priv->drm.struct_mutex);
3084

3085 3086 3087 3088
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3089
	}
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
3102
			init_rcu_head(&s->rcu);
3103 3104 3105 3106 3107
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3108 3109
}

3110 3111
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3112
	struct drm_i915_private *i915 = to_i915(gem->dev);
3113 3114
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3115
	struct i915_lut_handle *lut, *ln;
3116

3117 3118 3119 3120 3121 3122
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3123
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3124 3125 3126 3127
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3128 3129 3130 3131 3132 3133 3134
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3135
			i915_vma_close(vma);
3136

3137 3138
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3139

3140 3141
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3142
	}
3143 3144

	mutex_unlock(&i915->drm.struct_mutex);
3145 3146
}

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3158 3159
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3160 3161 3162
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3163 3164 3165 3166 3167 3168 3169
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3170
 *  -EAGAIN: incomplete, restart syscall
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3187 3188
	ktime_t start;
	long ret;
3189

3190 3191 3192
	if (args->flags != 0)
		return -EINVAL;

3193
	obj = i915_gem_object_lookup(file, args->bo_handle);
3194
	if (!obj)
3195 3196
		return -ENOENT;

3197 3198 3199
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3200 3201 3202
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3203 3204 3205 3206 3207 3208 3209
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3220 3221 3222 3223

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3224 3225
	}

C
Chris Wilson 已提交
3226
	i915_gem_object_put(obj);
3227
	return ret;
3228 3229
}

3230 3231
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3232
{
3233 3234 3235 3236
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3237
		return timeout;
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3251
	timeout = i915_request_wait(rq, flags, timeout);
3252 3253
	i915_request_put(rq);

3254
	return timeout;
3255 3256
}

3257 3258
static int wait_for_engines(struct drm_i915_private *i915)
{
3259
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3260 3261
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3262
		GEM_TRACE_DUMP();
3263 3264
		i915_gem_set_wedged(i915);
		return -EIO;
3265 3266 3267 3268 3269
	}

	return 0;
}

3270 3271
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3272
{
3273 3274 3275
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3276

3277 3278 3279 3280
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3281
	if (flags & I915_WAIT_LOCKED) {
3282 3283
		struct i915_timeline *tl;
		int err;
3284 3285 3286 3287

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3288 3289 3290
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3291
		}
3292 3293 3294 3295 3296 3297
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3298 3299 3300 3301 3302

		err = wait_for_engines(i915);
		if (err)
			return err;

3303
		i915_retire_requests(i915);
3304
		GEM_BUG_ON(i915->gt.active_requests);
3305
	} else {
3306 3307
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3308

3309
		for_each_engine(engine, i915, id) {
3310 3311 3312 3313 3314
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3315 3316
		}
	}
3317 3318

	return 0;
3319 3320
}

3321 3322
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3323 3324 3325 3326 3327 3328 3329
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3330
	obj->write_domain = 0;
3331 3332 3333 3334
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3335
	if (!READ_ONCE(obj->pin_global))
3336 3337 3338 3339 3340 3341 3342
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3367
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3388
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3389 3390 3391 3392 3393
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3394 3395
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3396
	if (write) {
3397 3398
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3399 3400 3401 3402 3403 3404 3405
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3406 3407
/**
 * Moves a single object to the GTT read, and possibly write domain.
3408 3409
 * @obj: object to act on
 * @write: ask for write access or read only
3410 3411 3412 3413
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3414
int
3415
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3416
{
3417
	int ret;
3418

3419
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3420

3421 3422 3423 3424 3425 3426
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3427 3428 3429
	if (ret)
		return ret;

3430
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3431 3432
		return 0;

3433 3434 3435 3436 3437 3438 3439 3440
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3441
	ret = i915_gem_object_pin_pages(obj);
3442 3443 3444
	if (ret)
		return ret;

3445
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3446

3447 3448 3449 3450
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3451
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3452 3453
		mb();

3454 3455 3456
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3457 3458
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3459
	if (write) {
3460 3461
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3462
		obj->mm.dirty = true;
3463 3464
	}

C
Chris Wilson 已提交
3465
	i915_gem_object_unpin_pages(obj);
3466 3467 3468
	return 0;
}

3469 3470
/**
 * Changes the cache-level of an object across all VMA.
3471 3472
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3484 3485 3486
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3487
	struct i915_vma *vma;
3488
	int ret;
3489

3490 3491
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3492
	if (obj->cache_level == cache_level)
3493
		return 0;
3494

3495 3496 3497 3498 3499
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3500 3501
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3502 3503 3504
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3505
		if (i915_vma_is_pinned(vma)) {
3506 3507 3508 3509
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3510 3511
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3523 3524
	}

3525 3526 3527 3528 3529 3530 3531
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3532
	if (obj->bind_count) {
3533 3534 3535 3536
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3537 3538 3539 3540 3541 3542
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3543 3544 3545
		if (ret)
			return ret;

3546 3547
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3564
			for_each_ggtt_vma(vma, obj) {
3565 3566 3567 3568
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3569 3570 3571 3572 3573 3574 3575 3576
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3577 3578
		}

3579
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3580 3581 3582 3583 3584 3585 3586
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3587 3588
	}

3589
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3590
		vma->node.color = cache_level;
3591
	i915_gem_object_set_cache_coherency(obj, cache_level);
3592
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3593

3594 3595 3596
	return 0;
}

B
Ben Widawsky 已提交
3597 3598
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3599
{
B
Ben Widawsky 已提交
3600
	struct drm_i915_gem_caching *args = data;
3601
	struct drm_i915_gem_object *obj;
3602
	int err = 0;
3603

3604 3605 3606 3607 3608 3609
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3610

3611 3612 3613 3614 3615 3616
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3617 3618 3619 3620
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3621 3622 3623 3624
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3625 3626 3627
out:
	rcu_read_unlock();
	return err;
3628 3629
}

B
Ben Widawsky 已提交
3630 3631
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3632
{
3633
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3634
	struct drm_i915_gem_caching *args = data;
3635 3636
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3637
	int ret = 0;
3638

B
Ben Widawsky 已提交
3639 3640
	switch (args->caching) {
	case I915_CACHING_NONE:
3641 3642
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3643
	case I915_CACHING_CACHED:
3644 3645 3646 3647 3648 3649
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3650
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3651 3652
			return -ENODEV;

3653 3654
		level = I915_CACHE_LLC;
		break;
3655
	case I915_CACHING_DISPLAY:
3656
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3657
		break;
3658 3659 3660 3661
	default:
		return -EINVAL;
	}

3662 3663 3664 3665
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3675 3676 3677 3678 3679 3680 3681
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3682
	if (ret)
3683
		goto out;
B
Ben Widawsky 已提交
3684

3685 3686 3687
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3688 3689 3690

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3691 3692 3693

out:
	i915_gem_object_put(obj);
3694 3695 3696
	return ret;
}

3697
/*
3698 3699 3700 3701
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3702
 */
C
Chris Wilson 已提交
3703
struct i915_vma *
3704 3705
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3706 3707
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3708
{
C
Chris Wilson 已提交
3709
	struct i915_vma *vma;
3710 3711
	int ret;

3712 3713
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3714
	/* Mark the global pin early so that we account for the
3715 3716
	 * display coherency whilst setting up the cache domains.
	 */
3717
	obj->pin_global++;
3718

3719 3720 3721 3722 3723 3724 3725 3726 3727
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3728
	ret = i915_gem_object_set_cache_level(obj,
3729 3730
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3731 3732
	if (ret) {
		vma = ERR_PTR(ret);
3733
		goto err_unpin_global;
C
Chris Wilson 已提交
3734
	}
3735

3736 3737
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3738 3739 3740 3741
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3742
	 */
3743
	vma = ERR_PTR(-ENOSPC);
3744 3745
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3746
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3747 3748 3749 3750
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3751
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3752
	if (IS_ERR(vma))
3753
		goto err_unpin_global;
3754

3755 3756
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3757
	__i915_gem_object_flush_for_display(obj);
3758

3759 3760 3761
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3762
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3763

C
Chris Wilson 已提交
3764
	return vma;
3765

3766 3767
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3768
	return vma;
3769 3770 3771
}

void
C
Chris Wilson 已提交
3772
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3773
{
3774
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3775

3776
	if (WARN_ON(vma->obj->pin_global == 0))
3777 3778
		return;

3779
	if (--vma->obj->pin_global == 0)
3780
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3781

3782
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3783
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3784

C
Chris Wilson 已提交
3785
	i915_vma_unpin(vma);
3786 3787
}

3788 3789
/**
 * Moves a single object to the CPU read, and possibly write domain.
3790 3791
 * @obj: object to act on
 * @write: requesting write or read-only access
3792 3793 3794 3795
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3796
int
3797
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3798 3799 3800
{
	int ret;

3801
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3802

3803 3804 3805 3806 3807 3808
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3809 3810 3811
	if (ret)
		return ret;

3812
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3813

3814
	/* Flush the CPU cache if it's still invalid. */
3815
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3816
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3817
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3818 3819 3820 3821 3822
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3823
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3824 3825 3826 3827

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3828 3829
	if (write)
		__start_cpu_write(obj);
3830 3831 3832 3833

	return 0;
}

3834 3835 3836
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3837 3838 3839 3840
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3841 3842 3843
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3844
static int
3845
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3846
{
3847
	struct drm_i915_private *dev_priv = to_i915(dev);
3848
	struct drm_i915_file_private *file_priv = file->driver_priv;
3849
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3850
	struct i915_request *request, *target = NULL;
3851
	long ret;
3852

3853 3854 3855
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3856

3857
	spin_lock(&file_priv->mm.lock);
3858
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3859 3860
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3861

3862 3863 3864 3865
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3866

3867
		target = request;
3868
	}
3869
	if (target)
3870
		i915_request_get(target);
3871
	spin_unlock(&file_priv->mm.lock);
3872

3873
	if (target == NULL)
3874
		return 0;
3875

3876
	ret = i915_request_wait(target,
3877 3878
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3879
	i915_request_put(target);
3880

3881
	return ret < 0 ? ret : 0;
3882 3883
}

C
Chris Wilson 已提交
3884
struct i915_vma *
3885 3886
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3887
			 u64 size,
3888 3889
			 u64 alignment,
			 u64 flags)
3890
{
3891
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3892
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3893 3894
	struct i915_vma *vma;
	int ret;
3895

3896 3897
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3898 3899
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3930
	vma = i915_vma_instance(obj, vm, view);
3931
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3932
		return vma;
3933 3934

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3935 3936 3937
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3938

3939
			if (flags & PIN_MAPPABLE &&
3940
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3941 3942 3943
				return ERR_PTR(-ENOSPC);
		}

3944 3945
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3946 3947 3948
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3949
		     !!(flags & PIN_MAPPABLE),
3950
		     i915_vma_is_map_and_fenceable(vma));
3951 3952
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3953
			return ERR_PTR(ret);
3954 3955
	}

C
Chris Wilson 已提交
3956 3957 3958
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3959

C
Chris Wilson 已提交
3960
	return vma;
3961 3962
}

3963
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3978 3979 3980 3981 3982 3983 3984 3985 3986
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3987 3988
}

3989
static __always_inline unsigned int
3990
__busy_set_if_active(const struct dma_fence *fence,
3991 3992
		     unsigned int (*flag)(unsigned int id))
{
3993
	struct i915_request *rq;
3994

3995 3996 3997 3998
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3999
	 *
4000
	 * Note we only report on the status of native fences.
4001
	 */
4002 4003 4004 4005
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4006 4007
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4008 4009
		return 0;

4010
	return flag(rq->engine->uabi_id);
4011 4012
}

4013
static __always_inline unsigned int
4014
busy_check_reader(const struct dma_fence *fence)
4015
{
4016
	return __busy_set_if_active(fence, __busy_read_flag);
4017 4018
}

4019
static __always_inline unsigned int
4020
busy_check_writer(const struct dma_fence *fence)
4021
{
4022 4023 4024 4025
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4026 4027
}

4028 4029
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4030
		    struct drm_file *file)
4031 4032
{
	struct drm_i915_gem_busy *args = data;
4033
	struct drm_i915_gem_object *obj;
4034 4035
	struct reservation_object_list *list;
	unsigned int seq;
4036
	int err;
4037

4038
	err = -ENOENT;
4039 4040
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4041
	if (!obj)
4042
		goto out;
4043

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4062

4063 4064
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4065

4066 4067 4068 4069
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4070

4071 4072 4073 4074 4075 4076
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4077
	}
4078

4079 4080 4081 4082
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4083 4084 4085
out:
	rcu_read_unlock();
	return err;
4086 4087 4088 4089 4090 4091
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4092
	return i915_gem_ring_throttle(dev, file_priv);
4093 4094
}

4095 4096 4097 4098
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4099
	struct drm_i915_private *dev_priv = to_i915(dev);
4100
	struct drm_i915_gem_madvise *args = data;
4101
	struct drm_i915_gem_object *obj;
4102
	int err;
4103 4104 4105 4106 4107 4108 4109 4110 4111

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4112
	obj = i915_gem_object_lookup(file_priv, args->handle);
4113 4114 4115 4116 4117 4118
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4119

4120
	if (i915_gem_object_has_pages(obj) &&
4121
	    i915_gem_object_is_tiled(obj) &&
4122
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4123 4124
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4125
			__i915_gem_object_unpin_pages(obj);
4126 4127 4128
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4129
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4130
			__i915_gem_object_pin_pages(obj);
4131 4132
			obj->mm.quirked = true;
		}
4133 4134
	}

C
Chris Wilson 已提交
4135 4136
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4137

C
Chris Wilson 已提交
4138
	/* if the object is no longer attached, discard its backing storage */
4139 4140
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4141 4142
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4143
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4144
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4145

4146
out:
4147
	i915_gem_object_put(obj);
4148
	return err;
4149 4150
}

4151
static void
4152
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4153 4154 4155 4156
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4157
	intel_fb_obj_flush(obj, ORIGIN_CS);
4158 4159
}

4160 4161
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4162
{
4163 4164
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4165
	INIT_LIST_HEAD(&obj->vma_list);
4166
	INIT_LIST_HEAD(&obj->lut_list);
4167
	INIT_LIST_HEAD(&obj->batch_pool_link);
4168

4169 4170
	init_rcu_head(&obj->rcu);

4171 4172
	obj->ops = ops;

4173 4174 4175
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4176
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4177
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4178 4179 4180 4181

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4182

4183
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4184 4185
}

4186
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4187 4188
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4189

4190 4191
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4192 4193

	.pwrite = i915_gem_object_pwrite_gtt,
4194 4195
};

M
Matthew Auld 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4220
struct drm_i915_gem_object *
4221
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4222
{
4223
	struct drm_i915_gem_object *obj;
4224
	struct address_space *mapping;
4225
	unsigned int cache_level;
D
Daniel Vetter 已提交
4226
	gfp_t mask;
4227
	int ret;
4228

4229 4230 4231 4232 4233
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4234
	if (size >> PAGE_SHIFT > INT_MAX)
4235 4236 4237 4238 4239
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4240
	obj = i915_gem_object_alloc(dev_priv);
4241
	if (obj == NULL)
4242
		return ERR_PTR(-ENOMEM);
4243

M
Matthew Auld 已提交
4244
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4245 4246
	if (ret)
		goto fail;
4247

4248
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4249
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4250 4251 4252 4253 4254
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4255
	mapping = obj->base.filp->f_mapping;
4256
	mapping_set_gfp_mask(mapping, mask);
4257
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4258

4259
	i915_gem_object_init(obj, &i915_gem_object_ops);
4260

4261 4262
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4263

4264
	if (HAS_LLC(dev_priv))
4265
		/* On some devices, we can have the GPU use the LLC (the CPU
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4277 4278 4279
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4280

4281
	i915_gem_object_set_cache_coherency(obj, cache_level);
4282

4283 4284
	trace_i915_gem_object_create(obj);

4285
	return obj;
4286 4287 4288 4289

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4290 4291
}

4292 4293 4294 4295 4296 4297 4298 4299
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4300
	if (obj->mm.madv != I915_MADV_WILLNEED)
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4316 4317
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4318
{
4319
	struct drm_i915_gem_object *obj, *on;
4320
	intel_wakeref_t wakeref;
4321

4322
	wakeref = intel_runtime_pm_get(i915);
4323
	llist_for_each_entry_safe(obj, on, freed, freed) {
4324 4325 4326 4327
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4328 4329
		mutex_lock(&i915->drm.struct_mutex);

4330 4331 4332 4333 4334
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4335
			i915_vma_destroy(vma);
4336
		}
4337 4338
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4352
		mutex_unlock(&i915->drm.struct_mutex);
4353 4354

		GEM_BUG_ON(obj->bind_count);
4355
		GEM_BUG_ON(obj->userfault_count);
4356
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4357
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4358 4359 4360

		if (obj->ops->release)
			obj->ops->release(obj);
4361

4362 4363
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4364
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4365
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4366 4367 4368 4369

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4370
		reservation_object_fini(&obj->__builtin_resv);
4371 4372 4373 4374 4375
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4376

4377 4378 4379
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4380 4381
		if (on)
			cond_resched();
4382
	}
4383
	intel_runtime_pm_put(i915, wakeref);
4384 4385 4386 4387 4388 4389
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4400
		__i915_gem_free_objects(i915, freed);
4401
	}
4402 4403 4404 4405 4406 4407 4408
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4409

4410 4411
	/*
	 * All file-owned VMA should have been released by this point through
4412 4413 4414 4415 4416 4417
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4418

4419
	spin_lock(&i915->mm.free_lock);
4420
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4421 4422
		spin_unlock(&i915->mm.free_lock);

4423
		__i915_gem_free_objects(i915, freed);
4424
		if (need_resched())
4425 4426 4427
			return;

		spin_lock(&i915->mm.free_lock);
4428
	}
4429
	spin_unlock(&i915->mm.free_lock);
4430
}
4431

4432 4433 4434 4435 4436
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4437 4438 4439 4440 4441 4442 4443

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4444

4445 4446 4447 4448 4449 4450 4451 4452 4453
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4454 4455
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4456
		queue_work(i915->wq, &i915->mm.free_work);
4457
}
4458

4459 4460 4461
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4462

4463 4464 4465
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4466
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4467
		obj->mm.madv = I915_MADV_DONTNEED;
4468

4469 4470
	/*
	 * Before we free the object, make sure any pure RCU-only
4471 4472 4473 4474
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4475
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4476
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4477 4478
}

4479 4480 4481 4482
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4483 4484
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4485 4486 4487 4488 4489
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4490 4491
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4492 4493
	intel_wakeref_t wakeref;

4494 4495
	GEM_TRACE("\n");

4496
	mutex_lock(&i915->drm.struct_mutex);
4497

4498
	wakeref = intel_runtime_pm_get(i915);
4499 4500 4501 4502 4503 4504 4505 4506
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4507
	if (i915_terminally_wedged(&i915->gpu_error))
4508 4509
		i915_gem_unset_wedged(i915);

4510 4511 4512 4513 4514 4515
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4516
	 * of the reset, so this could be applied to even earlier gen.
4517
	 */
4518
	intel_engines_sanitize(i915, false);
4519 4520

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4521
	intel_runtime_pm_put(i915, wakeref);
4522

4523 4524
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4525 4526
}

C
Chris Wilson 已提交
4527
int i915_gem_suspend(struct drm_i915_private *i915)
4528
{
4529
	intel_wakeref_t wakeref;
4530
	int ret;
4531

4532 4533
	GEM_TRACE("\n");

4534
	wakeref = intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
4535
	intel_suspend_gt_powersave(i915);
4536

C
Chris Wilson 已提交
4537
	mutex_lock(&i915->drm.struct_mutex);
4538

C
Chris Wilson 已提交
4539 4540
	/*
	 * We have to flush all the executing contexts to main memory so
4541 4542
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4543
	 * leaves the i915->kernel_context still active when
4544 4545 4546 4547
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
4548 4549
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
4550 4551
		if (ret)
			goto err_unlock;
4552

C
Chris Wilson 已提交
4553
		ret = i915_gem_wait_for_idle(i915,
4554
					     I915_WAIT_INTERRUPTIBLE |
4555
					     I915_WAIT_LOCKED |
4556 4557
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
4558 4559
		if (ret && ret != -EIO)
			goto err_unlock;
4560

C
Chris Wilson 已提交
4561
		assert_kernel_context_is_current(i915);
4562
	}
4563 4564
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
4565
	mutex_unlock(&i915->drm.struct_mutex);
4566

C
Chris Wilson 已提交
4567
	intel_uc_suspend(i915);
4568

C
Chris Wilson 已提交
4569 4570
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
4571

C
Chris Wilson 已提交
4572 4573
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4574 4575
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4576
	drain_delayed_work(&i915->gt.idle_work);
4577

C
Chris Wilson 已提交
4578 4579
	/*
	 * Assert that we successfully flushed all the work and
4580 4581
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
4582 4583 4584
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
4585

4586
	intel_runtime_pm_put(i915, wakeref);
4587 4588 4589
	return 0;

err_unlock:
C
Chris Wilson 已提交
4590
	mutex_unlock(&i915->drm.struct_mutex);
4591
	intel_runtime_pm_put(i915, wakeref);
4592 4593 4594 4595 4596
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4597 4598 4599 4600 4601 4602 4603
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4624 4625 4626 4627 4628 4629 4630
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4631 4632
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4633 4634
}

4635
void i915_gem_resume(struct drm_i915_private *i915)
4636
{
4637 4638
	GEM_TRACE("\n");

4639
	WARN_ON(i915->gt.awake);
4640

4641 4642
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4643

4644 4645
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4646

4647 4648
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4649 4650 4651
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4652
	i915->gt.resume(i915);
4653

4654 4655 4656
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4657
	intel_uc_resume(i915);
4658

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4669 4670 4671 4672
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
4673
	goto out_unlock;
4674 4675
}

4676
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4677
{
4678
	if (INTEL_GEN(dev_priv) < 5 ||
4679 4680 4681 4682 4683 4684
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4685
	if (IS_GEN(dev_priv, 5))
4686 4687
		return;

4688
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4689
	if (IS_GEN(dev_priv, 6))
4690
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4691
	else if (IS_GEN(dev_priv, 7))
4692
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4693
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4694
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4695 4696
	else
		BUG();
4697
}
D
Daniel Vetter 已提交
4698

4699
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4700 4701 4702 4703 4704 4705 4706
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4707
static void init_unused_rings(struct drm_i915_private *dev_priv)
4708
{
4709 4710 4711 4712 4713 4714
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4715
	} else if (IS_GEN(dev_priv, 2)) {
4716 4717
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4718
	} else if (IS_GEN(dev_priv, 3)) {
4719 4720
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4721 4722 4723
	}
}

4724
static int __i915_gem_restart_engines(void *data)
4725
{
4726
	struct drm_i915_private *i915 = data;
4727
	struct intel_engine_cs *engine;
4728
	enum intel_engine_id id;
4729 4730 4731 4732
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4733 4734 4735
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4736
			return err;
4737
		}
4738 4739 4740 4741 4742 4743 4744
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4745
	int ret;
4746

4747 4748
	dev_priv->gt.last_init_time = ktime_get();

4749 4750 4751
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4752
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4753
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4754

4755
	if (IS_HASWELL(dev_priv))
4756
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4757
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4758

4759
	/* Apply the GT workarounds... */
4760
	intel_gt_apply_workarounds(dev_priv);
4761 4762
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4763

4764
	i915_gem_init_swizzling(dev_priv);
4765

4766 4767 4768 4769 4770 4771
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4772
	init_unused_rings(dev_priv);
4773

4774
	BUG_ON(!dev_priv->kernel_context);
4775 4776 4777 4778
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
4779

4780
	ret = i915_ppgtt_init_hw(dev_priv);
4781
	if (ret) {
4782
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4783 4784 4785
		goto out;
	}

4786 4787 4788 4789 4790 4791
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4792 4793
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4794 4795
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4796
		goto out;
4797
	}
4798

4799
	intel_mocs_init_l3cc_table(dev_priv);
4800

4801 4802
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4803 4804
	if (ret)
		goto cleanup_uc;
4805

4806
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4807 4808

	return 0;
4809 4810 4811

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4812 4813 4814 4815
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
4816 4817
}

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4839
		struct i915_request *rq;
4840

4841
		rq = i915_request_alloc(engine, ctx);
4842 4843 4844 4845 4846
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4847
		err = 0;
4848 4849 4850
		if (engine->init_context)
			err = engine->init_context(rq);

4851
		i915_request_add(rq);
4852 4853 4854 4855 4856 4857 4858 4859
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

4860 4861 4862
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
4863
		goto err_active;
4864
	}
4865 4866 4867

	assert_kernel_context_is_current(i915);

4868 4869 4870 4871 4872 4873 4874 4875
	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

4876 4877
	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
4878
		void *vaddr;
4879

4880 4881
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

4882
		state = to_intel_context(ctx, engine)->state;
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4903 4904 4905

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4906
						I915_MAP_FORCE_WB);
4907 4908 4909 4910 4911 4912
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

4948 4949 4950
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
4951 4952 4953 4954 4955 4956
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4995
int i915_gem_init(struct drm_i915_private *dev_priv)
4996 4997 4998
{
	int ret;

4999 5000
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5001 5002 5003
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5004
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5005

5006
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5007
		dev_priv->gt.resume = intel_lr_context_resume;
5008
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5009 5010 5011
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5012 5013
	}

5014 5015 5016 5017
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5018
	ret = intel_uc_init_misc(dev_priv);
5019 5020 5021
	if (ret)
		return ret;

5022
	ret = intel_wopcm_init(&dev_priv->wopcm);
5023
	if (ret)
5024
		goto err_uc_misc;
5025

5026 5027 5028 5029 5030 5031
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5032
	mutex_lock(&dev_priv->drm.struct_mutex);
5033 5034
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5035
	ret = i915_gem_init_ggtt(dev_priv);
5036 5037 5038 5039
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5040

5041
	ret = i915_gem_init_scratch(dev_priv,
5042
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
5043 5044 5045 5046
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5047

5048 5049 5050 5051 5052 5053
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

5054
	ret = intel_engines_init(dev_priv);
5055 5056 5057 5058
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5059

5060 5061
	intel_init_gt_powersave(dev_priv);

5062
	ret = intel_uc_init(dev_priv);
5063
	if (ret)
5064
		goto err_pm;
5065

5066 5067 5068 5069
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5081
	ret = __intel_engines_record_defaults(dev_priv);
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5107 5108 5109 5110 5111
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5112 5113
	i915_gem_drain_workqueue(dev_priv);

5114
	mutex_lock(&dev_priv->drm.struct_mutex);
5115
	intel_uc_fini_hw(dev_priv);
5116 5117
err_uc_init:
	intel_uc_fini(dev_priv);
5118 5119 5120 5121 5122 5123 5124 5125
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
5126 5127
err_scratch:
	i915_gem_fini_scratch(dev_priv);
5128 5129 5130 5131 5132
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5133
err_uc_misc:
5134
	intel_uc_fini_misc(dev_priv);
5135

5136 5137 5138
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5139
	if (ret == -EIO) {
5140 5141
		mutex_lock(&dev_priv->drm.struct_mutex);

5142 5143
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5144 5145 5146
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5147
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5148 5149
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5150 5151
			i915_gem_set_wedged(dev_priv);
		}
5152 5153 5154 5155 5156 5157 5158 5159

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5160 5161
	}

5162
	i915_gem_drain_freed_objects(dev_priv);
5163
	return ret;
5164 5165
}

5166 5167 5168
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5169
	intel_disable_gt_powersave(dev_priv);
5170 5171 5172 5173 5174 5175 5176 5177 5178

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5179
	i915_gem_fini_scratch(dev_priv);
5180 5181
	mutex_unlock(&dev_priv->drm.struct_mutex);

5182 5183
	intel_wa_list_free(&dev_priv->gt_wa_list);

5184 5185
	intel_cleanup_gt_powersave(dev_priv);

5186 5187 5188 5189 5190 5191 5192 5193
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5194 5195 5196 5197 5198
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5199
void
5200
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5201
{
5202
	struct intel_engine_cs *engine;
5203
	enum intel_engine_id id;
5204

5205
	for_each_engine(engine, dev_priv, id)
5206
		dev_priv->gt.cleanup_engine(engine);
5207 5208
}

5209 5210 5211
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5212
	int i;
5213

5214
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5215 5216
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5217
	else if (INTEL_GEN(dev_priv) >= 4 ||
5218 5219
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5220 5221 5222 5223
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5224
	if (intel_vgpu_active(dev_priv))
5225 5226 5227 5228
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5229 5230 5231 5232 5233 5234 5235
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5236
	i915_gem_restore_fences(dev_priv);
5237

5238
	i915_gem_detect_bit_6_swizzle(dev_priv);
5239 5240
}

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5257
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5258
{
5259
	int err = -ENOMEM;
5260

5261 5262
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5263 5264
		goto err_out;

5265 5266
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5267 5268
		goto err_objects;

5269 5270 5271 5272
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5273
	dev_priv->requests = KMEM_CACHE(i915_request,
5274 5275
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5276
					SLAB_TYPESAFE_BY_RCU);
5277
	if (!dev_priv->requests)
5278
		goto err_luts;
5279

5280 5281 5282 5283 5284 5285
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5286 5287 5288 5289
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5290
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5291
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5292
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5293

5294
	i915_gem_init__mm(dev_priv);
5295

5296
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5297
			  i915_gem_retire_work_handler);
5298
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5299
			  i915_gem_idle_work_handler);
5300
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5301
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5302
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5303

5304 5305
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5306
	spin_lock_init(&dev_priv->fb_tracking.lock);
5307

M
Matthew Auld 已提交
5308 5309 5310 5311
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5312 5313
	return 0;

5314 5315
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5316 5317
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5318 5319
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5320 5321 5322 5323 5324 5325
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5326
}
5327

5328
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5329
{
5330
	i915_gem_drain_freed_objects(dev_priv);
5331 5332
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5333
	WARN_ON(dev_priv->mm.object_count);
5334 5335
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5336
	kmem_cache_destroy(dev_priv->priorities);
5337
	kmem_cache_destroy(dev_priv->dependencies);
5338
	kmem_cache_destroy(dev_priv->requests);
5339
	kmem_cache_destroy(dev_priv->luts);
5340 5341
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5342 5343 5344

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5345 5346

	i915_gemfs_fini(dev_priv);
5347 5348
}

5349 5350
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5351 5352 5353
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5354 5355 5356 5357 5358
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5359
int i915_gem_freeze_late(struct drm_i915_private *i915)
5360 5361
{
	struct drm_i915_gem_object *obj;
5362
	struct list_head *phases[] = {
5363 5364
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5365
		NULL
5366
	}, **phase;
5367

5368 5369
	/*
	 * Called just before we write the hibernation image.
5370 5371 5372 5373 5374 5375 5376 5377
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5378 5379
	 *
	 * To try and reduce the hibernation image, we manually shrink
5380
	 * the objects as well, see i915_gem_freeze()
5381 5382
	 */

5383 5384
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5385

5386 5387 5388 5389
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5390
	}
5391
	mutex_unlock(&i915->drm.struct_mutex);
5392 5393 5394 5395

	return 0;
}

5396
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5397
{
5398
	struct drm_i915_file_private *file_priv = file->driver_priv;
5399
	struct i915_request *request;
5400 5401 5402 5403 5404

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5405
	spin_lock(&file_priv->mm.lock);
5406
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5407
		request->file_priv = NULL;
5408
	spin_unlock(&file_priv->mm.lock);
5409 5410
}

5411
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5412 5413
{
	struct drm_i915_file_private *file_priv;
5414
	int ret;
5415

5416
	DRM_DEBUG("\n");
5417 5418 5419 5420 5421 5422

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5423
	file_priv->dev_priv = i915;
5424
	file_priv->file = file;
5425 5426 5427 5428

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5429
	file_priv->bsd_engine = -1;
5430
	file_priv->hang_timestamp = jiffies;
5431

5432
	ret = i915_gem_context_open(i915, file);
5433 5434
	if (ret)
		kfree(file_priv);
5435

5436
	return ret;
5437 5438
}

5439 5440
/**
 * i915_gem_track_fb - update frontbuffer tracking
5441 5442 5443
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5444 5445 5446 5447
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5448 5449 5450 5451
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5452 5453 5454 5455 5456 5457 5458
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5459
		     BITS_PER_TYPE(atomic_t));
5460

5461
	if (old) {
5462 5463
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5464 5465 5466
	}

	if (new) {
5467 5468
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5469 5470 5471
	}
}

5472 5473
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5474
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5475 5476 5477
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5478 5479 5480
	struct file *file;
	size_t offset;
	int err;
5481

5482
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5483
	if (IS_ERR(obj))
5484 5485
		return obj;

5486
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5487

5488 5489 5490 5491 5492 5493
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5494

5495 5496 5497 5498 5499
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5500

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5515 5516 5517 5518

	return obj;

fail:
5519
	i915_gem_object_put(obj);
5520
	return ERR_PTR(err);
5521
}
5522 5523 5524 5525 5526 5527

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5528
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5529 5530 5531 5532 5533
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5534
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5560 5561
		void *entry;
		unsigned long i;
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5576
		entry = xa_mk_value(idx);
5577
		for (i = 1; i < count; i++) {
5578
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5616
	 * the radix tree will contain a value entry that points
5617 5618 5619 5620 5621
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5622 5623
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5656
	if (!obj->mm.dirty)
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5672

5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5708
	pages = __i915_gem_object_unset_pages(obj);
5709

5710 5711
	obj->ops = &i915_gem_phys_ops;

5712
	err = ____i915_gem_object_get_pages(obj);
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5726 5727 5728 5729 5730
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5731 5732 5733 5734 5735
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5736 5737
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5738
#include "selftests/mock_gem_device.c"
5739
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5740
#include "selftests/huge_pages.c"
5741
#include "selftests/i915_gem_object.c"
5742
#include "selftests/i915_gem_coherency.c"
5743
#include "selftests/i915_gem.c"
5744
#endif