i915_gem.c 161.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/i915_drm.h>
30
#include "i915_drv.h"
31
#include "i915_gem_clflush.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include "intel_workarounds.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58
		return true;

59
	return obj->pin_global; /* currently in use by HW, keep flushed */
60 61
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
68 69 70
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
141 142
	GEM_TRACE("\n");

143 144
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
145
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
166
	i915_timelines_park(i915);
167 168

	i915_pmu_gt_parked(i915);
169
	i915_vma_parked(i915);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
185 186
	GEM_TRACE("\n");

187 188 189 190 191 192 193 194 195 196 197 198
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
199 200
	GEM_TRACE("\n");

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

241 242
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
243
			    struct drm_file *file)
244
{
245
	struct drm_i915_private *dev_priv = to_i915(dev);
246
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
247
	struct drm_i915_gem_get_aperture *args = data;
248
	struct i915_vma *vma;
249
	u64 pinned;
250

251
	pinned = ggtt->vm.reserved;
252
	mutex_lock(&dev->struct_mutex);
253
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
254
		if (i915_vma_is_pinned(vma))
255
			pinned += vma->node.size;
256
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
257
		if (i915_vma_is_pinned(vma))
258
			pinned += vma->node.size;
259
	mutex_unlock(&dev->struct_mutex);
260

261
	args->aper_size = ggtt->vm.total;
262
	args->aper_available_size = args->aper_size - pinned;
263

264 265 266
	return 0;
}

267
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
268
{
269
	struct address_space *mapping = obj->base.filp->f_mapping;
270
	drm_dma_handle_t *phys;
271 272
	struct sg_table *st;
	struct scatterlist *sg;
273
	char *vaddr;
274
	int i;
275
	int err;
276

277
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
278
		return -EINVAL;
279

280 281 282 283 284
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
285
			     roundup_pow_of_two(obj->base.size),
286 287
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
288
		return -ENOMEM;
289 290

	vaddr = phys->vaddr;
291 292 293 294 295
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
296
		if (IS_ERR(page)) {
297
			err = PTR_ERR(page);
298 299
			goto err_phys;
		}
300 301 302 303 304 305

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

306
		put_page(page);
307 308 309
		vaddr += PAGE_SIZE;
	}

310
	i915_gem_chipset_flush(to_i915(obj->base.dev));
311 312

	st = kmalloc(sizeof(*st), GFP_KERNEL);
313
	if (!st) {
314
		err = -ENOMEM;
315 316
		goto err_phys;
	}
317 318 319

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
320
		err = -ENOMEM;
321
		goto err_phys;
322 323 324 325 326
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
327

328
	sg_dma_address(sg) = phys->busaddr;
329 330
	sg_dma_len(sg) = obj->base.size;

331
	obj->phys_handle = phys;
332

333
	__i915_gem_object_set_pages(obj, st, sg->length);
334 335

	return 0;
336 337 338

err_phys:
	drm_pci_free(obj->base.dev, phys);
339 340

	return err;
341 342
}

343 344
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
345 346
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
347 348 349 350
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

351
static void
352
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
353 354
				struct sg_table *pages,
				bool needs_clflush)
355
{
C
Chris Wilson 已提交
356
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
357

C
Chris Wilson 已提交
358 359
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
360

361
	if (needs_clflush &&
362
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
363
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
364
		drm_clflush_sg(pages);
365

366
	__start_cpu_write(obj);
367 368 369 370 371 372
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
373
	__i915_gem_object_release_shmem(obj, pages, false);
374

C
Chris Wilson 已提交
375
	if (obj->mm.dirty) {
376
		struct address_space *mapping = obj->base.filp->f_mapping;
377
		char *vaddr = obj->phys_handle->vaddr;
378 379 380
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
381 382 383 384 385 386 387 388 389 390 391 392 393
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
394
			if (obj->mm.madv == I915_MADV_WILLNEED)
395
				mark_page_accessed(page);
396
			put_page(page);
397 398
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
399
		obj->mm.dirty = false;
400 401
	}

402 403
	sg_free_table(pages);
	kfree(pages);
404 405

	drm_pci_free(obj->base.dev, obj->phys_handle);
406 407 408 409 410
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
411
	i915_gem_object_unpin_pages(obj);
412 413 414 415 416 417 418 419
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

420 421
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

422
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
423 424 425
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
426 427 428
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
429

430 431 432 433
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
434
	 */
435
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
436 437 438
	if (ret)
		return ret;

439 440 441 442 443 444 445 446 447 448 449 450 451
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

452 453 454 455
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
456
			   struct intel_rps_client *rps_client)
457
{
458
	struct i915_request *rq;
459

460
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
461

462 463 464 465 466 467 468 469 470
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
471
	if (i915_request_completed(rq))
472 473
		goto out;

474 475
	/*
	 * This client is about to stall waiting for the GPU. In many cases
476 477 478 479 480 481 482 483 484 485 486 487 488 489
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
490
	if (rps_client && !i915_request_started(rq)) {
491
		if (INTEL_GEN(rq->i915) >= 6)
492
			gen6_rps_boost(rq, rps_client);
493 494
	}

495
	timeout = i915_request_wait(rq, flags, timeout);
496 497

out:
498 499
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
500 501 502 503 504 505 506 507

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
508
				 struct intel_rps_client *rps_client)
509
{
510
	unsigned int seq = __read_seqcount_begin(&resv->seq);
511
	struct dma_fence *excl;
512
	bool prune_fences = false;
513 514 515 516

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
517 518
		int ret;

519 520
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
521 522 523
		if (ret)
			return ret;

524 525 526
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
527
							     rps_client);
528
			if (timeout < 0)
529
				break;
530

531 532 533 534 535 536
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
537

538 539 540 541 542 543 544 545 546
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
547
		prune_fences = count && timeout >= 0;
548 549
	} else {
		excl = reservation_object_get_excl_rcu(resv);
550 551
	}

552
	if (excl && timeout >= 0)
553 554
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
555 556 557

	dma_fence_put(excl);

558 559
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
560 561 562
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
563
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
564 565 566 567 568
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
569 570
	}

571
	return timeout;
572 573
}

574 575
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
576
{
577
	struct i915_request *rq;
578 579
	struct intel_engine_cs *engine;

580
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
581 582 583 584 585
		return;

	rq = to_request(fence);
	engine = rq->engine;

586 587
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
588
	if (engine->schedule)
589
		engine->schedule(rq, attr);
590
	rcu_read_unlock();
591
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
592 593
}

594 595
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
596 597 598 599 600 601 602
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
603
			__fence_set_priority(array->fences[i], attr);
604
	} else {
605
		__fence_set_priority(fence, attr);
606 607 608 609 610 611
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
612
			      const struct i915_sched_attr *attr)
613 614 615 616 617 618 619 620 621 622 623 624 625 626
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
627
			fence_set_priority(shared[i], attr);
628 629 630 631 632 633 634 635 636
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
637
		fence_set_priority(excl, attr);
638 639 640 641 642
		dma_fence_put(excl);
	}
	return 0;
}

643 644 645 646 647
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
648
 * @rps_client: client (user process) to charge for any waitboosting
649
 */
650 651 652 653
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
654
		     struct intel_rps_client *rps_client)
655
{
656 657 658 659 660 661 662
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
663

664 665
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
666
						   rps_client);
667
	return timeout < 0 ? timeout : 0;
668 669 670 671 672 673
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

674
	return &fpriv->rps_client;
675 676
}

677 678 679
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
680
		     struct drm_file *file)
681 682
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
683
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
684 685 686 687

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
688
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
689 690
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
691

692
	drm_clflush_virt_range(vaddr, args->size);
693
	i915_gem_chipset_flush(to_i915(obj->base.dev));
694

695
	intel_fb_obj_flush(obj, ORIGIN_CPU);
696
	return 0;
697 698
}

699
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
700
{
701
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
702 703 704 705
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
706
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
707
	kmem_cache_free(dev_priv->objects, obj);
708 709
}

710 711
static int
i915_gem_create(struct drm_file *file,
712
		struct drm_i915_private *dev_priv,
713 714
		uint64_t size,
		uint32_t *handle_p)
715
{
716
	struct drm_i915_gem_object *obj;
717 718
	int ret;
	u32 handle;
719

720
	size = roundup(size, PAGE_SIZE);
721 722
	if (size == 0)
		return -EINVAL;
723 724

	/* Allocate the new object */
725
	obj = i915_gem_object_create(dev_priv, size);
726 727
	if (IS_ERR(obj))
		return PTR_ERR(obj);
728

729
	ret = drm_gem_handle_create(file, &obj->base, &handle);
730
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
731
	i915_gem_object_put(obj);
732 733
	if (ret)
		return ret;
734

735
	*handle_p = handle;
736 737 738
	return 0;
}

739 740 741 742 743 744
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
745
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
746
	args->size = args->pitch * args->height;
747
	return i915_gem_create(file, to_i915(dev),
748
			       args->size, &args->handle);
749 750
}

751 752 753 754 755 756
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

757 758
/**
 * Creates a new mm object and returns a handle to it.
759 760 761
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
762 763 764 765 766
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
767
	struct drm_i915_private *dev_priv = to_i915(dev);
768
	struct drm_i915_gem_create *args = data;
769

770
	i915_gem_flush_free_objects(dev_priv);
771

772
	return i915_gem_create(file, dev_priv,
773
			       args->size, &args->handle);
774 775
}

776 777 778 779 780 781 782
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

783
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
784
{
785 786 787 788 789
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
790 791 792 793 794 795 796 797 798 799
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
800 801
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
802
	 */
803

804 805 806 807 808
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

809
	i915_gem_chipset_flush(dev_priv);
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

826
	if (!(obj->write_domain & flush_domains))
827 828
		return;

829
	switch (obj->write_domain) {
830
	case I915_GEM_DOMAIN_GTT:
831
		i915_gem_flush_ggtt_writes(dev_priv);
832 833 834

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
835

836
		for_each_ggtt_vma(vma, obj) {
837 838 839 840 841
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
842 843
		break;

844 845 846 847
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

848 849 850
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
851 852 853 854 855

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
856 857
	}

858
	obj->write_domain = 0;
859 860
}

861 862 863 864 865 866
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
867
				    unsigned int *needs_clflush)
868 869 870
{
	int ret;

871
	lockdep_assert_held(&obj->base.dev->struct_mutex);
872

873
	*needs_clflush = 0;
874 875
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
876

877 878 879 880 881
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
882 883 884
	if (ret)
		return ret;

C
Chris Wilson 已提交
885
	ret = i915_gem_object_pin_pages(obj);
886 887 888
	if (ret)
		return ret;

889 890
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
891 892 893 894 895 896 897
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

898
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
899

900 901 902 903 904
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
905
	if (!obj->cache_dirty &&
906
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
907
		*needs_clflush = CLFLUSH_BEFORE;
908

909
out:
910
	/* return with the pages pinned */
911
	return 0;
912 913 914 915

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
916 917 918 919 920 921 922
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

923 924
	lockdep_assert_held(&obj->base.dev->struct_mutex);

925 926 927 928
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

929 930 931 932 933 934
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
935 936 937
	if (ret)
		return ret;

C
Chris Wilson 已提交
938
	ret = i915_gem_object_pin_pages(obj);
939 940 941
	if (ret)
		return ret;

942 943
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 945 946 947 948 949 950
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

951
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952

953 954 955 956 957
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
958
	if (!obj->cache_dirty) {
959
		*needs_clflush |= CLFLUSH_AFTER;
960

961 962 963 964
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
965
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
966 967
			*needs_clflush |= CLFLUSH_BEFORE;
	}
968

969
out:
970
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
971
	obj->mm.dirty = true;
972
	/* return with the pages pinned */
973
	return 0;
974 975 976 977

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
978 979
}

980
static int
981 982
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
983 984 985 986 987 988
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

989 990
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
991

992
	ret = __copy_to_user(user_data, vaddr + offset, len);
993

994
	kunmap(page);
995

996
	return ret ? -EFAULT : 0;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1023
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1043
{
1044
	void __iomem *vaddr;
1045
	unsigned long unwritten;
1046 1047

	/* We can use the cpu mem copy function because this is X86. */
1048 1049 1050 1051
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1052 1053
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1054 1055 1056 1057
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1058 1059
		io_mapping_unmap(vaddr);
	}
1060 1061 1062 1063
	return unwritten;
}

static int
1064 1065
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1066
{
1067 1068
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1069
	struct drm_mm_node node;
1070 1071 1072
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1073 1074
	int ret;

1075 1076 1077 1078 1079 1080
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1081 1082 1083
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1084 1085 1086
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1087
		ret = i915_vma_put_fence(vma);
1088 1089 1090 1091 1092
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1093
	if (IS_ERR(vma)) {
1094
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1095
		if (ret)
1096 1097
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1098 1099 1100 1101 1102 1103
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1104
	mutex_unlock(&i915->drm.struct_mutex);
1105

1106 1107 1108
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1123 1124 1125
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1126 1127 1128 1129
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1130

1131
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1132
				  user_data, page_length)) {
1133 1134 1135 1136 1137 1138 1139 1140 1141
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1142
	mutex_lock(&i915->drm.struct_mutex);
1143 1144 1145
out_unpin:
	if (node.allocated) {
		wmb();
1146
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1147 1148
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1149
		i915_vma_unpin(vma);
1150
	}
1151 1152 1153
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1154

1155 1156 1157
	return ret;
}

1158 1159
/**
 * Reads data from the object referenced by handle.
1160 1161 1162
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1163 1164 1165 1166 1167
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1168
		     struct drm_file *file)
1169 1170
{
	struct drm_i915_gem_pread *args = data;
1171
	struct drm_i915_gem_object *obj;
1172
	int ret;
1173

1174 1175 1176
	if (args->size == 0)
		return 0;

1177
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1178 1179 1180
		       args->size))
		return -EFAULT;

1181
	obj = i915_gem_object_lookup(file, args->handle);
1182 1183
	if (!obj)
		return -ENOENT;
1184

1185
	/* Bounds check source.  */
1186
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1187
		ret = -EINVAL;
1188
		goto out;
C
Chris Wilson 已提交
1189 1190
	}

C
Chris Wilson 已提交
1191 1192
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1193 1194 1195 1196
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1197
	if (ret)
1198
		goto out;
1199

1200
	ret = i915_gem_object_pin_pages(obj);
1201
	if (ret)
1202
		goto out;
1203

1204
	ret = i915_gem_shmem_pread(obj, args);
1205
	if (ret == -EFAULT || ret == -ENODEV)
1206
		ret = i915_gem_gtt_pread(obj, args);
1207

1208 1209
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1210
	i915_gem_object_put(obj);
1211
	return ret;
1212 1213
}

1214 1215
/* This is the fast write path which cannot handle
 * page faults in the source data
1216
 */
1217

1218 1219 1220 1221
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1222
{
1223
	void __iomem *vaddr;
1224
	unsigned long unwritten;
1225

1226
	/* We can use the cpu mem copy function because this is X86. */
1227 1228
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1229
						      user_data, length);
1230 1231
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1232 1233 1234
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1235 1236
		io_mapping_unmap(vaddr);
	}
1237 1238 1239 1240

	return unwritten;
}

1241 1242 1243
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1244
 * @obj: i915 GEM object
1245
 * @args: pwrite arguments structure
1246
 */
1247
static int
1248 1249
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1250
{
1251
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1252 1253
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1254 1255 1256
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1257
	int ret;
1258

1259 1260 1261
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1280
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1281 1282 1283
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1284 1285 1286
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1287
		ret = i915_vma_put_fence(vma);
1288 1289 1290 1291 1292
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1293
	if (IS_ERR(vma)) {
1294
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1295
		if (ret)
1296
			goto out_rpm;
1297
		GEM_BUG_ON(!node.allocated);
1298
	}
D
Daniel Vetter 已提交
1299 1300 1301 1302 1303

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1304 1305
	mutex_unlock(&i915->drm.struct_mutex);

1306
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1307

1308 1309 1310 1311
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1312 1313
		/* Operation in this page
		 *
1314 1315 1316
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1317
		 */
1318
		u32 page_base = node.start;
1319 1320
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1321 1322 1323
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1324 1325 1326
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1327 1328 1329 1330
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1331
		/* If we get a fault while copying data, then (presumably) our
1332 1333
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1334 1335
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1336
		 */
1337
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1338 1339 1340
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1341
		}
1342

1343 1344 1345
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1346
	}
1347
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1348 1349

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1350
out_unpin:
1351 1352
	if (node.allocated) {
		wmb();
1353
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1354 1355
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1356
		i915_vma_unpin(vma);
1357
	}
1358
out_rpm:
1359
	intel_runtime_pm_put(i915);
1360
out_unlock:
1361
	mutex_unlock(&i915->drm.struct_mutex);
1362
	return ret;
1363 1364
}

1365 1366 1367 1368 1369
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1370
static int
1371 1372 1373
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1374
{
1375
	char *vaddr;
1376 1377
	int ret;

1378
	vaddr = kmap(page);
1379

1380 1381
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1382

1383 1384 1385
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1386

1387 1388 1389
	kunmap(page);

	return ret ? -EFAULT : 0;
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1400
	unsigned int needs_clflush;
1401 1402
	unsigned int offset, idx;
	int ret;
1403

1404
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1405 1406 1407
	if (ret)
		return ret;

1408 1409 1410 1411
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1412

1413 1414 1415 1416 1417 1418 1419
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1420

1421 1422 1423 1424 1425
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1426
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1427

1428 1429 1430
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1431
		if (ret)
1432
			break;
1433

1434 1435 1436
		remain -= length;
		user_data += length;
		offset = 0;
1437
	}
1438

1439
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1440
	i915_gem_obj_finish_shmem_access(obj);
1441
	return ret;
1442 1443 1444 1445
}

/**
 * Writes data to the object referenced by handle.
1446 1447 1448
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1449 1450 1451 1452 1453
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1454
		      struct drm_file *file)
1455 1456
{
	struct drm_i915_gem_pwrite *args = data;
1457
	struct drm_i915_gem_object *obj;
1458 1459 1460 1461 1462
	int ret;

	if (args->size == 0)
		return 0;

1463
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1464 1465
		return -EFAULT;

1466
	obj = i915_gem_object_lookup(file, args->handle);
1467 1468
	if (!obj)
		return -ENOENT;
1469

1470
	/* Bounds check destination. */
1471
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1472
		ret = -EINVAL;
1473
		goto err;
C
Chris Wilson 已提交
1474 1475
	}

1476 1477 1478 1479 1480 1481
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1482 1483
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1484 1485 1486 1487 1488 1489
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1490 1491 1492 1493 1494
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1495 1496 1497
	if (ret)
		goto err;

1498
	ret = i915_gem_object_pin_pages(obj);
1499
	if (ret)
1500
		goto err;
1501

D
Daniel Vetter 已提交
1502
	ret = -EFAULT;
1503 1504 1505 1506 1507 1508
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1509
	if (!i915_gem_object_has_struct_page(obj) ||
1510
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1511 1512
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1513 1514
		 * textures). Fallback to the shmem path in that case.
		 */
1515
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1516

1517
	if (ret == -EFAULT || ret == -ENOSPC) {
1518 1519
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1520
		else
1521
			ret = i915_gem_shmem_pwrite(obj, args);
1522
	}
1523

1524
	i915_gem_object_unpin_pages(obj);
1525
err:
C
Chris Wilson 已提交
1526
	i915_gem_object_put(obj);
1527
	return ret;
1528 1529
}

1530 1531 1532 1533 1534 1535
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1536 1537
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1538
	for_each_ggtt_vma(vma, obj) {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1549
	spin_lock(&i915->mm.obj_lock);
1550
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1551 1552
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1553 1554
}

1555
/**
1556 1557
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1558 1559 1560
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1561 1562 1563
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1564
			  struct drm_file *file)
1565 1566
{
	struct drm_i915_gem_set_domain *args = data;
1567
	struct drm_i915_gem_object *obj;
1568 1569
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1570
	int err;
1571

1572
	/* Only handle setting domains to types used by the CPU. */
1573
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1574 1575 1576 1577 1578 1579 1580 1581
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1582
	obj = i915_gem_object_lookup(file, args->handle);
1583 1584
	if (!obj)
		return -ENOENT;
1585

1586 1587 1588 1589
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1590
	err = i915_gem_object_wait(obj,
1591
				   I915_WAIT_INTERRUPTIBLE |
1592
				   I915_WAIT_PRIORITY |
1593 1594 1595
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1596
	if (err)
C
Chris Wilson 已提交
1597
		goto out;
1598

T
Tina Zhang 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1612 1613 1614 1615 1616 1617 1618 1619 1620
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1621
		goto out;
1622 1623 1624

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1625
		goto out_unpin;
1626

1627 1628 1629 1630
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1631
	else
1632
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1633

1634 1635
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1636

1637
	mutex_unlock(&dev->struct_mutex);
1638

1639
	if (write_domain != 0)
1640 1641
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1642

C
Chris Wilson 已提交
1643
out_unpin:
1644
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1645 1646
out:
	i915_gem_object_put(obj);
1647
	return err;
1648 1649 1650 1651
}

/**
 * Called when user space has done writes to this buffer
1652 1653 1654
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1655 1656 1657
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1658
			 struct drm_file *file)
1659 1660
{
	struct drm_i915_gem_sw_finish *args = data;
1661
	struct drm_i915_gem_object *obj;
1662

1663
	obj = i915_gem_object_lookup(file, args->handle);
1664 1665
	if (!obj)
		return -ENOENT;
1666

T
Tina Zhang 已提交
1667 1668 1669 1670 1671
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1672
	/* Pinned buffers may be scanout, so flush the cache */
1673
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1674
	i915_gem_object_put(obj);
1675 1676

	return 0;
1677 1678 1679
}

/**
1680 1681 1682 1683 1684
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1685 1686 1687
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1698 1699 1700
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1701
		    struct drm_file *file)
1702 1703
{
	struct drm_i915_gem_mmap *args = data;
1704
	struct drm_i915_gem_object *obj;
1705 1706
	unsigned long addr;

1707 1708 1709
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1710
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1711 1712
		return -ENODEV;

1713 1714
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1715
		return -ENOENT;
1716

1717 1718 1719
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1720
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1721
		i915_gem_object_put(obj);
1722
		return -ENXIO;
1723 1724
	}

1725
	addr = vm_mmap(obj->base.filp, 0, args->size,
1726 1727
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1728 1729 1730 1731
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1732
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1733
			i915_gem_object_put(obj);
1734 1735
			return -EINTR;
		}
1736 1737 1738 1739 1740 1741 1742
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1743 1744

		/* This may race, but that's ok, it only gets set */
1745
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1746
	}
C
Chris Wilson 已提交
1747
	i915_gem_object_put(obj);
1748 1749 1750 1751 1752 1753 1754 1755
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1756
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1757
{
1758
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1759 1760
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1781 1782 1783
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1811
	return 2;
1812 1813
}

1814
static inline struct i915_ggtt_view
1815
compute_partial_view(const struct drm_i915_gem_object *obj,
1816 1817 1818 1819 1820 1821 1822 1823 1824
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1825 1826
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1827
		min_t(unsigned int, chunk,
1828
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1829 1830 1831 1832 1833 1834 1835 1836

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1837 1838
/**
 * i915_gem_fault - fault a page into the GTT
1839
 * @vmf: fault info
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1851 1852 1853
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1854
 */
1855
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1856
{
1857
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1858
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1859
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1860
	struct drm_device *dev = obj->base.dev;
1861 1862
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1863
	bool write = area->vm_flags & VM_WRITE;
C
Chris Wilson 已提交
1864
	struct i915_vma *vma;
1865
	pgoff_t page_offset;
1866
	int ret;
1867

1868 1869 1870 1871
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1872
	/* We don't use vmf->pgoff since that has the fake offset */
1873
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1874

C
Chris Wilson 已提交
1875 1876
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1877
	/* Try to flush the object off the GPU first without holding the lock.
1878
	 * Upon acquiring the lock, we will perform our sanity checks and then
1879 1880 1881
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1882 1883 1884 1885
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1886
	if (ret)
1887 1888
		goto err;

1889 1890 1891 1892
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1893 1894 1895 1896 1897
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1898

1899
	/* Access to snoopable pages through the GTT is incoherent. */
1900
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1901
		ret = -EFAULT;
1902
		goto err_unlock;
1903 1904
	}

1905

1906
	/* Now pin it into the GTT as needed */
1907 1908 1909 1910
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1911 1912
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1913
		struct i915_ggtt_view view =
1914
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1915
		unsigned int flags;
1916

1917 1918 1919 1920 1921 1922
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1923 1924 1925 1926
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1927 1928 1929 1930 1931 1932
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1933
	}
C
Chris Wilson 已提交
1934 1935
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1936
		goto err_unlock;
C
Chris Wilson 已提交
1937
	}
1938

1939 1940
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1941
		goto err_unpin;
1942

1943
	ret = i915_vma_pin_fence(vma);
1944
	if (ret)
1945
		goto err_unpin;
1946

1947
	/* Finally, remap it using the new GTT offset */
1948
	ret = remap_io_mapping(area,
1949
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1950
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1951
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1952
			       &ggtt->iomap);
1953 1954
	if (ret)
		goto err_fence;
1955

1956 1957 1958 1959 1960 1961
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1962 1963
	i915_vma_set_ggtt_write(vma);

1964
err_fence:
1965
	i915_vma_unpin_fence(vma);
1966
err_unpin:
C
Chris Wilson 已提交
1967
	__i915_vma_unpin(vma);
1968
err_unlock:
1969
	mutex_unlock(&dev->struct_mutex);
1970 1971
err_rpm:
	intel_runtime_pm_put(dev_priv);
1972
	i915_gem_object_unpin_pages(obj);
1973
err:
1974
	switch (ret) {
1975
	case -EIO:
1976 1977 1978 1979 1980 1981
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1982 1983
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
1984
		/* else: fall through */
1985
	case -EAGAIN:
D
Daniel Vetter 已提交
1986 1987 1988 1989
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1990
		 */
1991 1992
	case 0:
	case -ERESTARTSYS:
1993
	case -EINTR:
1994 1995 1996 1997 1998
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1999
		return VM_FAULT_NOPAGE;
2000
	case -ENOMEM:
2001
		return VM_FAULT_OOM;
2002
	case -ENOSPC:
2003
	case -EFAULT:
2004
		return VM_FAULT_SIGBUS;
2005
	default:
2006
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2007
		return VM_FAULT_SIGBUS;
2008 2009 2010
	}
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2022
	for_each_ggtt_vma(vma, obj)
2023 2024 2025
		i915_vma_unset_userfault(vma);
}

2026 2027 2028 2029
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2030
 * Preserve the reservation of the mmapping with the DRM core code, but
2031 2032 2033 2034 2035 2036 2037 2038 2039
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2040
void
2041
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2042
{
2043 2044
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2045 2046 2047
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2048 2049 2050 2051
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2052
	 */
2053
	lockdep_assert_held(&i915->drm.struct_mutex);
2054
	intel_runtime_pm_get(i915);
2055

2056
	if (!obj->userfault_count)
2057
		goto out;
2058

2059
	__i915_gem_object_release_mmap(obj);
2060 2061 2062 2063 2064 2065 2066 2067 2068

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2069 2070 2071

out:
	intel_runtime_pm_put(i915);
2072 2073
}

2074
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2075
{
2076
	struct drm_i915_gem_object *obj, *on;
2077
	int i;
2078

2079 2080 2081 2082 2083 2084
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2085

2086
	list_for_each_entry_safe(obj, on,
2087 2088
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2089 2090 2091 2092 2093 2094 2095 2096

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2107 2108 2109 2110

		if (!reg->vma)
			continue;

2111
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2112 2113
		reg->dirty = true;
	}
2114 2115
}

2116 2117
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2118
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2119
	int err;
2120

2121
	err = drm_gem_create_mmap_offset(&obj->base);
2122
	if (likely(!err))
2123
		return 0;
2124

2125 2126
	/* Attempt to reap some mmap space from dead objects */
	do {
2127 2128 2129
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2130 2131
		if (err)
			break;
2132

2133
		i915_gem_drain_freed_objects(dev_priv);
2134
		err = drm_gem_create_mmap_offset(&obj->base);
2135 2136 2137 2138
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2139

2140
	return err;
2141 2142 2143 2144 2145 2146 2147
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2148
int
2149 2150
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2151
		  uint32_t handle,
2152
		  uint64_t *offset)
2153
{
2154
	struct drm_i915_gem_object *obj;
2155 2156
	int ret;

2157
	obj = i915_gem_object_lookup(file, handle);
2158 2159
	if (!obj)
		return -ENOENT;
2160

2161
	ret = i915_gem_object_create_mmap_offset(obj);
2162 2163
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2164

C
Chris Wilson 已提交
2165
	i915_gem_object_put(obj);
2166
	return ret;
2167 2168
}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2190
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2191 2192
}

D
Daniel Vetter 已提交
2193 2194 2195
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2196
{
2197
	i915_gem_object_free_mmap_offset(obj);
2198

2199 2200
	if (obj->base.filp == NULL)
		return;
2201

D
Daniel Vetter 已提交
2202 2203 2204 2205 2206
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2207
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2208
	obj->mm.madv = __I915_MADV_PURGED;
2209
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2210
}
2211

2212
/* Try to discard unwanted pages */
2213
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2214
{
2215 2216
	struct address_space *mapping;

2217
	lockdep_assert_held(&obj->mm.lock);
2218
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2219

C
Chris Wilson 已提交
2220
	switch (obj->mm.madv) {
2221 2222 2223 2224 2225 2226 2227 2228 2229
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2230
	mapping = obj->base.filp->f_mapping,
2231
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2245
static void
2246 2247
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2248
{
2249
	struct sgt_iter sgt_iter;
2250
	struct pagevec pvec;
2251
	struct page *page;
2252

2253
	__i915_gem_object_release_shmem(obj, pages, true);
2254

2255
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2256

2257
	if (i915_gem_object_needs_bit17_swizzle(obj))
2258
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2259

2260 2261 2262
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2263
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2264
		if (obj->mm.dirty)
2265
			set_page_dirty(page);
2266

C
Chris Wilson 已提交
2267
		if (obj->mm.madv == I915_MADV_WILLNEED)
2268
			mark_page_accessed(page);
2269

2270 2271
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2272
	}
2273 2274
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2275
	obj->mm.dirty = false;
2276

2277 2278
	sg_free_table(pages);
	kfree(pages);
2279
}
C
Chris Wilson 已提交
2280

2281 2282 2283
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2284
	void __rcu **slot;
2285

2286
	rcu_read_lock();
C
Chris Wilson 已提交
2287 2288
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2289
	rcu_read_unlock();
2290 2291
}

2292 2293
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2294
{
2295
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2296
	struct sg_table *pages;
2297

2298
	pages = fetch_and_zero(&obj->mm.pages);
2299 2300
	if (!pages)
		return NULL;
2301

2302 2303 2304 2305
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2306
	if (obj->mm.mapping) {
2307 2308
		void *ptr;

2309
		ptr = page_mask_bits(obj->mm.mapping);
2310 2311
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2312
		else
2313 2314
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2315
		obj->mm.mapping = NULL;
2316 2317
	}

2318
	__i915_gem_object_reset_page_iter(obj);
2319 2320 2321 2322
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2347 2348 2349
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2350 2351
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2352 2353
}

2354
bool i915_sg_trim(struct sg_table *orig_st)
2355 2356 2357 2358 2359 2360
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2361
		return false;
2362

2363
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2364
		return false;
2365 2366 2367 2368

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2369 2370 2371
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2372 2373
		new_sg = sg_next(new_sg);
	}
2374
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2375 2376 2377 2378

	sg_free_table(orig_st);

	*orig_st = new_st;
2379
	return true;
2380 2381
}

2382
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2383
{
2384
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2385 2386
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2387
	struct address_space *mapping;
2388 2389
	struct sg_table *st;
	struct scatterlist *sg;
2390
	struct sgt_iter sgt_iter;
2391
	struct page *page;
2392
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2393
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2394
	unsigned int sg_page_sizes;
2395
	struct pagevec pvec;
2396
	gfp_t noreclaim;
I
Imre Deak 已提交
2397
	int ret;
2398

2399 2400
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2401 2402 2403
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2404 2405
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2406

2407 2408 2409 2410
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2411
	if (page_count > totalram_pages())
2412 2413
		return -ENOMEM;

2414 2415
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2416
		return -ENOMEM;
2417

2418
rebuild_st:
2419 2420
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2421
		return -ENOMEM;
2422
	}
2423

2424 2425
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2426 2427 2428 2429
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2430
	mapping = obj->base.filp->f_mapping;
2431
	mapping_set_unevictable(mapping);
2432
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2433 2434
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2435 2436
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2437
	sg_page_sizes = 0;
2438
	for (i = 0; i < page_count; i++) {
2439 2440 2441 2442 2443 2444 2445
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2446
			cond_resched();
C
Chris Wilson 已提交
2447
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2448 2449 2450 2451 2452 2453 2454 2455
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2456
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2457

2458 2459
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2460 2461
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2462 2463 2464 2465
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2466
			 */
2467 2468 2469
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2470

2471 2472
				/*
				 * Our bo are always dirty and so we require
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2483
				 * this we want __GFP_RETRY_MAYFAIL.
2484
				 */
M
Michal Hocko 已提交
2485
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2486
			}
2487 2488
		} while (1);

2489 2490 2491
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2492
			if (i) {
M
Matthew Auld 已提交
2493
				sg_page_sizes |= sg->length;
2494
				sg = sg_next(sg);
2495
			}
2496 2497 2498 2499 2500 2501
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2502 2503 2504

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2505
	}
2506
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2507
		sg_page_sizes |= sg->length;
2508
		sg_mark_end(sg);
2509
	}
2510

2511 2512 2513
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2514
	ret = i915_gem_gtt_prepare_pages(obj, st);
2515
	if (ret) {
2516 2517
		/*
		 * DMA remapping failed? One possible cause is that
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2535

2536
	if (i915_gem_object_needs_bit17_swizzle(obj))
2537
		i915_gem_object_do_bit_17_swizzle(obj, st);
2538

M
Matthew Auld 已提交
2539
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2540 2541

	return 0;
2542

2543
err_sg:
2544
	sg_mark_end(sg);
2545
err_pages:
2546 2547 2548 2549 2550 2551 2552 2553
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2554 2555
	sg_free_table(st);
	kfree(st);
2556

2557 2558
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2559 2560 2561 2562 2563 2564 2565
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2566 2567 2568
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2569
	return ret;
2570 2571 2572
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2573
				 struct sg_table *pages,
M
Matthew Auld 已提交
2574
				 unsigned int sg_page_sizes)
2575
{
2576 2577 2578 2579
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2580
	lockdep_assert_held(&obj->mm.lock);
2581 2582 2583 2584 2585

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2586 2587

	if (i915_gem_object_is_tiled(obj) &&
2588
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2589 2590 2591 2592
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2593

M
Matthew Auld 已提交
2594 2595
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2596 2597

	/*
M
Matthew Auld 已提交
2598 2599 2600 2601 2602 2603
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2604 2605 2606 2607 2608 2609 2610
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2611 2612 2613 2614

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2615 2616 2617 2618
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2619
	int err;
2620 2621 2622 2623 2624 2625

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2626
	err = obj->ops->get_pages(obj);
2627
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2628

2629
	return err;
2630 2631
}

2632
/* Ensure that the associated pages are gathered from the backing storage
2633
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2634
 * multiple times before they are released by a single call to
2635
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2636 2637 2638
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2639
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2640
{
2641
	int err;
2642

2643 2644 2645
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2646

2647
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2648 2649
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2650 2651 2652
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2653

2654 2655 2656
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2657

2658 2659
unlock:
	mutex_unlock(&obj->mm.lock);
2660
	return err;
2661 2662
}

2663
/* The 'mapping' part of i915_gem_object_pin_map() below */
2664 2665
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2666 2667
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2668
	struct sg_table *sgt = obj->mm.pages;
2669 2670
	struct sgt_iter sgt_iter;
	struct page *page;
2671 2672
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2673
	unsigned long i = 0;
2674
	pgprot_t pgprot;
2675 2676 2677
	void *addr;

	/* A single page can always be kmapped */
2678
	if (n_pages == 1 && type == I915_MAP_WB)
2679 2680
		return kmap(sg_page(sgt->sgl));

2681 2682
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2683
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2684 2685 2686
		if (!pages)
			return NULL;
	}
2687

2688 2689
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2690 2691 2692 2693

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2694
	switch (type) {
2695 2696 2697
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2698 2699 2700 2701 2702 2703 2704 2705
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2706

2707
	if (pages != stack_pages)
M
Michal Hocko 已提交
2708
		kvfree(pages);
2709 2710 2711 2712 2713

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2714 2715
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2716
{
2717 2718 2719
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2720 2721
	int ret;

T
Tina Zhang 已提交
2722 2723
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2724

2725
	ret = mutex_lock_interruptible(&obj->mm.lock);
2726 2727 2728
	if (ret)
		return ERR_PTR(ret);

2729 2730 2731
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2732
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2733
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2734 2735
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2736 2737 2738
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2739

2740 2741 2742
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2743 2744
		pinned = false;
	}
2745
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2746

2747
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2748 2749 2750
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2751
			goto err_unpin;
2752
		}
2753 2754 2755 2756 2757 2758

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2759
		ptr = obj->mm.mapping = NULL;
2760 2761
	}

2762 2763 2764 2765
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2766
			goto err_unpin;
2767 2768
		}

2769
		obj->mm.mapping = page_pack_bits(ptr, type);
2770 2771
	}

2772 2773
out_unlock:
	mutex_unlock(&obj->mm.lock);
2774 2775
	return ptr;

2776 2777 2778 2779 2780
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2781 2782
}

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2800
	if (i915_gem_object_has_pages(obj))
2801 2802
		return -ENODEV;

2803 2804 2805
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

2879
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2880
{
2881 2882
	unsigned int score;
	bool banned, bannable;
2883

2884
	atomic_inc(&ctx->guilty_count);
2885

2886 2887 2888
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2889

2890 2891
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
2892 2893
		return;

2894 2895 2896 2897
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
2898
		i915_gem_context_set_banned(ctx);
2899
	}
2900 2901 2902

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
2903 2904 2905 2906
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2907
	atomic_inc(&ctx->active_count);
2908 2909
}

2910
struct i915_request *
2911
i915_gem_find_active_request(struct intel_engine_cs *engine)
2912
{
2913
	struct i915_request *request, *active = NULL;
2914
	unsigned long flags;
2915

2916 2917 2918 2919 2920 2921
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
2922 2923
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2924 2925
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
2926
	 */
2927 2928
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2929
		if (__i915_request_completed(request, request->global_seqno))
2930
			continue;
2931

2932 2933
		active = request;
		break;
2934
	}
2935
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2936

2937
	return active;
2938 2939
}

2940 2941 2942 2943
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
2944
struct i915_request *
2945 2946
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
2947
	struct i915_request *request;
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

2958
	request = engine->reset.prepare(engine);
2959 2960
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2961 2962 2963 2964

	return request;
}

2965
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2966 2967
{
	struct intel_engine_cs *engine;
2968
	struct i915_request *request;
2969
	enum intel_engine_id id;
2970
	int err = 0;
2971

2972
	for_each_engine(engine, dev_priv, id) {
2973 2974 2975 2976
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2977
		}
2978 2979

		engine->hangcheck.active_request = request;
2980 2981
	}

2982
	i915_gem_revoke_fences(dev_priv);
2983
	intel_uc_sanitize(dev_priv);
2984 2985

	return err;
2986 2987
}

2988
static void engine_skip_context(struct i915_request *request)
2989 2990
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
2991
	struct i915_gem_context *hung_ctx = request->gem_context;
2992
	struct i915_timeline *timeline = request->timeline;
2993 2994
	unsigned long flags;

2995
	GEM_BUG_ON(timeline == &engine->timeline);
2996

2997
	spin_lock_irqsave(&engine->timeline.lock, flags);
2998
	spin_lock(&timeline->lock);
2999

3000
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3001
		if (request->gem_context == hung_ctx)
3002
			i915_request_skip(request, -EIO);
3003 3004

	list_for_each_entry(request, &timeline->requests, link)
3005
		i915_request_skip(request, -EIO);
3006 3007

	spin_unlock(&timeline->lock);
3008
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3009 3010
}

3011
/* Returns the request if it was guilty of the hang */
3012
static struct i915_request *
3013
i915_gem_reset_request(struct intel_engine_cs *engine,
3014 3015
		       struct i915_request *request,
		       bool stalled)
3016
{
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3038
	if (i915_request_completed(request)) {
3039
		GEM_TRACE("%s pardoned global=%d (fence %llx:%lld), current %d\n",
3040 3041 3042 3043 3044 3045 3046
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3047
		i915_gem_context_mark_guilty(request->gem_context);
3048
		i915_request_skip(request, -EIO);
3049 3050

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3051
		if (i915_gem_context_is_banned(request->gem_context))
3052
			engine_skip_context(request);
3053
	} else {
3054 3055 3056 3057 3058 3059 3060
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3061 3062
			unsigned long flags;

C
Chris Wilson 已提交
3063
			i915_gem_context_mark_innocent(request->gem_context);
3064 3065 3066
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3067
			spin_lock_irqsave(&engine->timeline.lock, flags);
3068
			request = list_prev_entry(request, link);
3069
			if (&request->link == &engine->timeline.requests)
3070
				request = NULL;
C
Chris Wilson 已提交
3071
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3072
		}
3073 3074
	}

3075
	return request;
3076 3077
}

3078
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3079 3080
			   struct i915_request *request,
			   bool stalled)
3081
{
3082
	if (request)
3083
		request = i915_gem_reset_request(engine, request, stalled);
3084

3085
	/* Setup the CS to resume from the breadcrumb of the hung request */
3086
	engine->reset.reset(engine, request);
3087
}
3088

3089 3090
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3091
{
3092
	struct intel_engine_cs *engine;
3093
	enum intel_engine_id id;
3094

3095 3096
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3097
	i915_retire_requests(dev_priv);
3098

3099
	for_each_engine(engine, dev_priv, id) {
3100
		struct intel_context *ce;
3101

3102 3103
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3104
				      stalled_mask & ENGINE_MASK(id));
3105 3106 3107
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3119
		if (intel_engine_is_idle(engine)) {
3120
			struct i915_request *rq;
3121

3122 3123
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3124
			if (!IS_ERR(rq))
3125
				i915_request_add(rq);
3126
		}
3127
	}
3128

3129
	i915_gem_restore_fences(dev_priv);
3130 3131
}

3132 3133
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3134 3135
	engine->reset.finish(engine);

3136
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3137 3138
}

3139 3140
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3141 3142 3143
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3144
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3145

3146
	for_each_engine(engine, dev_priv, id) {
3147
		engine->hangcheck.active_request = NULL;
3148
		i915_gem_reset_finish_engine(engine);
3149
	}
3150 3151
}

3152
static void nop_submit_request(struct i915_request *request)
3153
{
3154 3155
	unsigned long flags;

3156
	GEM_TRACE("%s fence %llx:%lld -> -EIO\n",
3157 3158
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3159
	dma_fence_set_error(&request->fence, -EIO);
3160

3161
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3162
	__i915_request_submit(request);
3163
	intel_engine_write_global_seqno(request->engine, request->global_seqno);
3164
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3165 3166
}

3167
void i915_gem_set_wedged(struct drm_i915_private *i915)
3168
{
3169 3170 3171
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3172 3173
	GEM_TRACE("start\n");

3174
	if (GEM_SHOW_DEBUG()) {
3175 3176 3177 3178 3179 3180
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3181 3182
	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
		goto out;
3183

3184 3185 3186 3187 3188
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3189
	for_each_engine(engine, i915, id)
3190
		i915_gem_reset_prepare_engine(engine);
3191

3192
	/* Even if the GPU reset fails, it should still stop the engines */
3193 3194
	if (INTEL_GEN(i915) >= 5)
		intel_gpu_reset(i915, ALL_ENGINES);
3195

3196
	for_each_engine(engine, i915, id) {
3197 3198
		engine->submit_request = nop_submit_request;
		engine->schedule = NULL;
3199
	}
3200
	i915->caps.scheduler = 0;
3201 3202 3203

	/*
	 * Make sure no request can slip through without getting completed by
3204
	 * either this call here to intel_engine_write_global_seqno, or the one
3205
	 * in nop_submit_request.
3206
	 */
3207
	synchronize_rcu();
3208

3209 3210 3211
	/* Mark all executing requests as skipped */
	for_each_engine(engine, i915, id)
		engine->cancel_requests(engine);
3212

3213
	for_each_engine(engine, i915, id) {
3214
		i915_gem_reset_finish_engine(engine);
3215
		intel_engine_wakeup(engine);
3216
	}
3217

3218
out:
3219 3220
	GEM_TRACE("end\n");

3221
	wake_up_all(&i915->gpu_error.reset_queue);
3222 3223
}

3224 3225
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3226
	struct i915_timeline *tl;
3227 3228 3229 3230 3231

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3232 3233 3234
	if (!i915->gt.scratch) /* Never full initialised, recovery impossible */
		return false;

3235 3236
	GEM_TRACE("start\n");

3237 3238
	/*
	 * Before unwedging, make sure that all pending operations
3239 3240 3241 3242 3243 3244 3245 3246 3247
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3248
		struct i915_request *rq;
3249

3250 3251 3252 3253
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3269
	}
3270 3271
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3272

3273
	intel_engines_sanitize(i915, false);
3274

3275 3276
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3277 3278 3279 3280 3281 3282 3283 3284
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3285
	i915_gem_contexts_lost(i915);
3286

3287 3288
	GEM_TRACE("end\n");

3289 3290 3291 3292 3293 3294
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3295
static void
3296 3297
i915_gem_retire_work_handler(struct work_struct *work)
{
3298
	struct drm_i915_private *dev_priv =
3299
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3300
	struct drm_device *dev = &dev_priv->drm;
3301

3302
	/* Come back later if the device is busy... */
3303
	if (mutex_trylock(&dev->struct_mutex)) {
3304
		i915_retire_requests(dev_priv);
3305
		mutex_unlock(&dev->struct_mutex);
3306
	}
3307

3308 3309
	/*
	 * Keep the retire handler running until we are finally idle.
3310 3311 3312
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3313
	if (READ_ONCE(dev_priv->gt.awake))
3314 3315
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3316
				   round_jiffies_up_relative(HZ));
3317
}
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

3370 3371
	destroy_rcu_head(&s->rcu);

3372 3373 3374 3375 3376 3377 3378 3379
	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3380 3381 3382 3383 3384 3385 3386
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3403 3404 3405 3406
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3407
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3408
	unsigned int epoch = I915_EPOCH_INVALID;
3409 3410 3411 3412 3413
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3432 3433
	/*
	 * Wait for last execlists context complete, but bail out in case a
3434 3435 3436 3437 3438
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3439
	 */
3440 3441 3442 3443
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3444 3445 3446 3447

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3448
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3449 3450 3451 3452 3453 3454 3455
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3456 3457 3458 3459
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3460
	if (new_requests_since_last_retire(dev_priv))
3461
		goto out_unlock;
3462

3463
	epoch = __i915_gem_park(dev_priv);
3464

3465 3466
	assert_kernel_context_is_current(dev_priv);

3467 3468
	rearm_hangcheck = false;
out_unlock:
3469
	mutex_unlock(&dev_priv->drm.struct_mutex);
3470

3471 3472 3473 3474
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3475
	}
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
3488
			init_rcu_head(&s->rcu);
3489 3490 3491 3492 3493
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3494 3495
}

3496 3497
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3498
	struct drm_i915_private *i915 = to_i915(gem->dev);
3499 3500
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3501
	struct i915_lut_handle *lut, *ln;
3502

3503 3504 3505 3506 3507 3508
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3509
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3510 3511 3512 3513
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3514 3515 3516 3517 3518 3519 3520
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3521
			i915_vma_close(vma);
3522

3523 3524
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3525

3526 3527
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3528
	}
3529 3530

	mutex_unlock(&i915->drm.struct_mutex);
3531 3532
}

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3544 3545
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3546 3547 3548
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3549 3550 3551 3552 3553 3554 3555
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3556
 *  -EAGAIN: incomplete, restart syscall
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3573 3574
	ktime_t start;
	long ret;
3575

3576 3577 3578
	if (args->flags != 0)
		return -EINVAL;

3579
	obj = i915_gem_object_lookup(file, args->bo_handle);
3580
	if (!obj)
3581 3582
		return -ENOENT;

3583 3584 3585
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3586 3587 3588
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3589 3590 3591 3592 3593 3594 3595
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3606 3607 3608 3609

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3610 3611
	}

C
Chris Wilson 已提交
3612
	i915_gem_object_put(obj);
3613
	return ret;
3614 3615
}

3616 3617
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3618
{
3619 3620 3621 3622
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3623
		return timeout;
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3637
	timeout = i915_request_wait(rq, flags, timeout);
3638 3639
	i915_request_put(rq);

3640
	return timeout;
3641 3642
}

3643 3644
static int wait_for_engines(struct drm_i915_private *i915)
{
3645
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3646 3647
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3648
		GEM_TRACE_DUMP();
3649 3650
		i915_gem_set_wedged(i915);
		return -EIO;
3651 3652 3653 3654 3655
	}

	return 0;
}

3656 3657
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3658
{
3659 3660 3661
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3662

3663 3664 3665 3666
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3667
	if (flags & I915_WAIT_LOCKED) {
3668 3669
		struct i915_timeline *tl;
		int err;
3670 3671 3672 3673

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3674 3675 3676
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3677
		}
3678 3679 3680 3681 3682 3683
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3684 3685 3686 3687 3688

		err = wait_for_engines(i915);
		if (err)
			return err;

3689
		i915_retire_requests(i915);
3690
		GEM_BUG_ON(i915->gt.active_requests);
3691
	} else {
3692 3693
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3694

3695
		for_each_engine(engine, i915, id) {
3696 3697 3698 3699 3700
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3701 3702
		}
	}
3703 3704

	return 0;
3705 3706
}

3707 3708
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3709 3710 3711 3712 3713 3714 3715
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3716
	obj->write_domain = 0;
3717 3718 3719 3720
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3721
	if (!READ_ONCE(obj->pin_global))
3722 3723 3724 3725 3726 3727 3728
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3753
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3774
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3775 3776 3777 3778 3779
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3780 3781
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3782
	if (write) {
3783 3784
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3785 3786 3787 3788 3789 3790 3791
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3792 3793
/**
 * Moves a single object to the GTT read, and possibly write domain.
3794 3795
 * @obj: object to act on
 * @write: ask for write access or read only
3796 3797 3798 3799
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3800
int
3801
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3802
{
3803
	int ret;
3804

3805
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3806

3807 3808 3809 3810 3811 3812
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3813 3814 3815
	if (ret)
		return ret;

3816
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3817 3818
		return 0;

3819 3820 3821 3822 3823 3824 3825 3826
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3827
	ret = i915_gem_object_pin_pages(obj);
3828 3829 3830
	if (ret)
		return ret;

3831
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3832

3833 3834 3835 3836
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3837
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3838 3839
		mb();

3840 3841 3842
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3843 3844
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3845
	if (write) {
3846 3847
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3848
		obj->mm.dirty = true;
3849 3850
	}

C
Chris Wilson 已提交
3851
	i915_gem_object_unpin_pages(obj);
3852 3853 3854
	return 0;
}

3855 3856
/**
 * Changes the cache-level of an object across all VMA.
3857 3858
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3870 3871 3872
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3873
	struct i915_vma *vma;
3874
	int ret;
3875

3876 3877
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3878
	if (obj->cache_level == cache_level)
3879
		return 0;
3880

3881 3882 3883 3884 3885
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3886 3887
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3888 3889 3890
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3891
		if (i915_vma_is_pinned(vma)) {
3892 3893 3894 3895
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3896 3897
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3909 3910
	}

3911 3912 3913 3914 3915 3916 3917
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3918
	if (obj->bind_count) {
3919 3920 3921 3922
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3923 3924 3925 3926 3927 3928
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3929 3930 3931
		if (ret)
			return ret;

3932 3933
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3950
			for_each_ggtt_vma(vma, obj) {
3951 3952 3953 3954
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3955 3956 3957 3958 3959 3960 3961 3962
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3963 3964
		}

3965
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3966 3967 3968 3969 3970 3971 3972
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3973 3974
	}

3975
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3976
		vma->node.color = cache_level;
3977
	i915_gem_object_set_cache_coherency(obj, cache_level);
3978
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3979

3980 3981 3982
	return 0;
}

B
Ben Widawsky 已提交
3983 3984
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3985
{
B
Ben Widawsky 已提交
3986
	struct drm_i915_gem_caching *args = data;
3987
	struct drm_i915_gem_object *obj;
3988
	int err = 0;
3989

3990 3991 3992 3993 3994 3995
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3996

3997 3998 3999 4000 4001 4002
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4003 4004 4005 4006
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4007 4008 4009 4010
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4011 4012 4013
out:
	rcu_read_unlock();
	return err;
4014 4015
}

B
Ben Widawsky 已提交
4016 4017
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4018
{
4019
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4020
	struct drm_i915_gem_caching *args = data;
4021 4022
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4023
	int ret = 0;
4024

B
Ben Widawsky 已提交
4025 4026
	switch (args->caching) {
	case I915_CACHING_NONE:
4027 4028
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4029
	case I915_CACHING_CACHED:
4030 4031 4032 4033 4034 4035
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4036
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4037 4038
			return -ENODEV;

4039 4040
		level = I915_CACHE_LLC;
		break;
4041
	case I915_CACHING_DISPLAY:
4042
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4043
		break;
4044 4045 4046 4047
	default:
		return -EINVAL;
	}

4048 4049 4050 4051
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4061 4062 4063 4064 4065 4066 4067
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4068
	if (ret)
4069
		goto out;
B
Ben Widawsky 已提交
4070

4071 4072 4073
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4074 4075 4076

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4077 4078 4079

out:
	i915_gem_object_put(obj);
4080 4081 4082
	return ret;
}

4083
/*
4084 4085 4086 4087
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4088
 */
C
Chris Wilson 已提交
4089
struct i915_vma *
4090 4091
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4092 4093
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4094
{
C
Chris Wilson 已提交
4095
	struct i915_vma *vma;
4096 4097
	int ret;

4098 4099
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4100
	/* Mark the global pin early so that we account for the
4101 4102
	 * display coherency whilst setting up the cache domains.
	 */
4103
	obj->pin_global++;
4104

4105 4106 4107 4108 4109 4110 4111 4112 4113
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4114
	ret = i915_gem_object_set_cache_level(obj,
4115 4116
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4117 4118
	if (ret) {
		vma = ERR_PTR(ret);
4119
		goto err_unpin_global;
C
Chris Wilson 已提交
4120
	}
4121

4122 4123
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4124 4125 4126 4127
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4128
	 */
4129
	vma = ERR_PTR(-ENOSPC);
4130 4131
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4132
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4133 4134 4135 4136
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4137
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4138
	if (IS_ERR(vma))
4139
		goto err_unpin_global;
4140

4141 4142
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4143
	__i915_gem_object_flush_for_display(obj);
4144

4145 4146 4147
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4148
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4149

C
Chris Wilson 已提交
4150
	return vma;
4151

4152 4153
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4154
	return vma;
4155 4156 4157
}

void
C
Chris Wilson 已提交
4158
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4159
{
4160
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4161

4162
	if (WARN_ON(vma->obj->pin_global == 0))
4163 4164
		return;

4165
	if (--vma->obj->pin_global == 0)
4166
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4167

4168
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4169
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4170

C
Chris Wilson 已提交
4171
	i915_vma_unpin(vma);
4172 4173
}

4174 4175
/**
 * Moves a single object to the CPU read, and possibly write domain.
4176 4177
 * @obj: object to act on
 * @write: requesting write or read-only access
4178 4179 4180 4181
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4182
int
4183
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4184 4185 4186
{
	int ret;

4187
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4188

4189 4190 4191 4192 4193 4194
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4195 4196 4197
	if (ret)
		return ret;

4198
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4199

4200
	/* Flush the CPU cache if it's still invalid. */
4201
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4202
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4203
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4204 4205 4206 4207 4208
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4209
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4210 4211 4212 4213

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4214 4215
	if (write)
		__start_cpu_write(obj);
4216 4217 4218 4219

	return 0;
}

4220 4221 4222
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4223 4224 4225 4226
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4227 4228 4229
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4230
static int
4231
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4232
{
4233
	struct drm_i915_private *dev_priv = to_i915(dev);
4234
	struct drm_i915_file_private *file_priv = file->driver_priv;
4235
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4236
	struct i915_request *request, *target = NULL;
4237
	long ret;
4238

4239 4240 4241
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4242

4243
	spin_lock(&file_priv->mm.lock);
4244
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4245 4246
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4247

4248 4249 4250 4251
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4252

4253
		target = request;
4254
	}
4255
	if (target)
4256
		i915_request_get(target);
4257
	spin_unlock(&file_priv->mm.lock);
4258

4259
	if (target == NULL)
4260
		return 0;
4261

4262
	ret = i915_request_wait(target,
4263 4264
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4265
	i915_request_put(target);
4266

4267
	return ret < 0 ? ret : 0;
4268 4269
}

C
Chris Wilson 已提交
4270
struct i915_vma *
4271 4272
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4273
			 u64 size,
4274 4275
			 u64 alignment,
			 u64 flags)
4276
{
4277
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4278
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4279 4280
	struct i915_vma *vma;
	int ret;
4281

4282 4283
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4284 4285
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4316
	vma = i915_vma_instance(obj, vm, view);
4317
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4318
		return vma;
4319 4320

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4321 4322 4323
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4324

4325
			if (flags & PIN_MAPPABLE &&
4326
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4327 4328 4329
				return ERR_PTR(-ENOSPC);
		}

4330 4331
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4332 4333 4334
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4335
		     !!(flags & PIN_MAPPABLE),
4336
		     i915_vma_is_map_and_fenceable(vma));
4337 4338
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4339
			return ERR_PTR(ret);
4340 4341
	}

C
Chris Wilson 已提交
4342 4343 4344
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4345

C
Chris Wilson 已提交
4346
	return vma;
4347 4348
}

4349
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4364 4365 4366 4367 4368 4369 4370 4371 4372
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4373 4374
}

4375
static __always_inline unsigned int
4376
__busy_set_if_active(const struct dma_fence *fence,
4377 4378
		     unsigned int (*flag)(unsigned int id))
{
4379
	struct i915_request *rq;
4380

4381 4382 4383 4384
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4385
	 *
4386
	 * Note we only report on the status of native fences.
4387
	 */
4388 4389 4390 4391
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4392 4393
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4394 4395
		return 0;

4396
	return flag(rq->engine->uabi_id);
4397 4398
}

4399
static __always_inline unsigned int
4400
busy_check_reader(const struct dma_fence *fence)
4401
{
4402
	return __busy_set_if_active(fence, __busy_read_flag);
4403 4404
}

4405
static __always_inline unsigned int
4406
busy_check_writer(const struct dma_fence *fence)
4407
{
4408 4409 4410 4411
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4412 4413
}

4414 4415
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4416
		    struct drm_file *file)
4417 4418
{
	struct drm_i915_gem_busy *args = data;
4419
	struct drm_i915_gem_object *obj;
4420 4421
	struct reservation_object_list *list;
	unsigned int seq;
4422
	int err;
4423

4424
	err = -ENOENT;
4425 4426
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4427
	if (!obj)
4428
		goto out;
4429

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4448

4449 4450
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4451

4452 4453 4454 4455
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4456

4457 4458 4459 4460 4461 4462
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4463
	}
4464

4465 4466 4467 4468
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4469 4470 4471
out:
	rcu_read_unlock();
	return err;
4472 4473 4474 4475 4476 4477
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4478
	return i915_gem_ring_throttle(dev, file_priv);
4479 4480
}

4481 4482 4483 4484
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4485
	struct drm_i915_private *dev_priv = to_i915(dev);
4486
	struct drm_i915_gem_madvise *args = data;
4487
	struct drm_i915_gem_object *obj;
4488
	int err;
4489 4490 4491 4492 4493 4494 4495 4496 4497

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4498
	obj = i915_gem_object_lookup(file_priv, args->handle);
4499 4500 4501 4502 4503 4504
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4505

4506
	if (i915_gem_object_has_pages(obj) &&
4507
	    i915_gem_object_is_tiled(obj) &&
4508
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4509 4510
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4511
			__i915_gem_object_unpin_pages(obj);
4512 4513 4514
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4515
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4516
			__i915_gem_object_pin_pages(obj);
4517 4518
			obj->mm.quirked = true;
		}
4519 4520
	}

C
Chris Wilson 已提交
4521 4522
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4523

C
Chris Wilson 已提交
4524
	/* if the object is no longer attached, discard its backing storage */
4525 4526
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4527 4528
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4529
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4530
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4531

4532
out:
4533
	i915_gem_object_put(obj);
4534
	return err;
4535 4536
}

4537
static void
4538
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4539 4540 4541 4542
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4543
	intel_fb_obj_flush(obj, ORIGIN_CS);
4544 4545
}

4546 4547
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4548
{
4549 4550
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4551
	INIT_LIST_HEAD(&obj->vma_list);
4552
	INIT_LIST_HEAD(&obj->lut_list);
4553
	INIT_LIST_HEAD(&obj->batch_pool_link);
4554

4555 4556
	init_rcu_head(&obj->rcu);

4557 4558
	obj->ops = ops;

4559 4560 4561
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4562
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4563
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4564 4565 4566 4567

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4568

4569
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4570 4571
}

4572
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4573 4574
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4575

4576 4577
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4578 4579

	.pwrite = i915_gem_object_pwrite_gtt,
4580 4581
};

M
Matthew Auld 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4606
struct drm_i915_gem_object *
4607
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4608
{
4609
	struct drm_i915_gem_object *obj;
4610
	struct address_space *mapping;
4611
	unsigned int cache_level;
D
Daniel Vetter 已提交
4612
	gfp_t mask;
4613
	int ret;
4614

4615 4616 4617 4618 4619
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4620
	if (size >> PAGE_SHIFT > INT_MAX)
4621 4622 4623 4624 4625
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4626
	obj = i915_gem_object_alloc(dev_priv);
4627
	if (obj == NULL)
4628
		return ERR_PTR(-ENOMEM);
4629

M
Matthew Auld 已提交
4630
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4631 4632
	if (ret)
		goto fail;
4633

4634
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4635
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4636 4637 4638 4639 4640
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4641
	mapping = obj->base.filp->f_mapping;
4642
	mapping_set_gfp_mask(mapping, mask);
4643
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4644

4645
	i915_gem_object_init(obj, &i915_gem_object_ops);
4646

4647 4648
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4649

4650
	if (HAS_LLC(dev_priv))
4651
		/* On some devices, we can have the GPU use the LLC (the CPU
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4663 4664 4665
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4666

4667
	i915_gem_object_set_cache_coherency(obj, cache_level);
4668

4669 4670
	trace_i915_gem_object_create(obj);

4671
	return obj;
4672 4673 4674 4675

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4676 4677
}

4678 4679 4680 4681 4682 4683 4684 4685
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4686
	if (obj->mm.madv != I915_MADV_WILLNEED)
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4702 4703
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4704
{
4705
	struct drm_i915_gem_object *obj, *on;
4706

4707
	intel_runtime_pm_get(i915);
4708
	llist_for_each_entry_safe(obj, on, freed, freed) {
4709 4710 4711 4712
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4713 4714
		mutex_lock(&i915->drm.struct_mutex);

4715 4716 4717 4718 4719
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4720
			i915_vma_destroy(vma);
4721
		}
4722 4723
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4724

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4737
		mutex_unlock(&i915->drm.struct_mutex);
4738 4739

		GEM_BUG_ON(obj->bind_count);
4740
		GEM_BUG_ON(obj->userfault_count);
4741
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4742
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4743 4744 4745

		if (obj->ops->release)
			obj->ops->release(obj);
4746

4747 4748
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4749
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4750
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4751 4752 4753 4754

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4755
		reservation_object_fini(&obj->__builtin_resv);
4756 4757 4758 4759 4760
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4761

4762 4763 4764
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4765 4766
		if (on)
			cond_resched();
4767
	}
4768
	intel_runtime_pm_put(i915);
4769 4770 4771 4772 4773 4774
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4785
		__i915_gem_free_objects(i915, freed);
4786
	}
4787 4788 4789 4790 4791 4792 4793
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4794

4795 4796
	/*
	 * All file-owned VMA should have been released by this point through
4797 4798 4799 4800 4801 4802
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4803

4804
	spin_lock(&i915->mm.free_lock);
4805
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4806 4807
		spin_unlock(&i915->mm.free_lock);

4808
		__i915_gem_free_objects(i915, freed);
4809
		if (need_resched())
4810 4811 4812
			return;

		spin_lock(&i915->mm.free_lock);
4813
	}
4814
	spin_unlock(&i915->mm.free_lock);
4815
}
4816

4817 4818 4819 4820 4821
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4822 4823 4824 4825 4826 4827 4828

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4829

4830 4831 4832 4833 4834 4835 4836 4837 4838
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4839 4840
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4841
		queue_work(i915->wq, &i915->mm.free_work);
4842
}
4843

4844 4845 4846
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4847

4848 4849 4850
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4851
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4852
		obj->mm.madv = I915_MADV_DONTNEED;
4853

4854 4855
	/*
	 * Before we free the object, make sure any pure RCU-only
4856 4857 4858 4859
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4860
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4861
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4862 4863
}

4864 4865 4866 4867
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4868 4869
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4870 4871 4872 4873 4874
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4875 4876
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4877 4878
	GEM_TRACE("\n");

4879
	mutex_lock(&i915->drm.struct_mutex);
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4890
	if (i915_terminally_wedged(&i915->gpu_error))
4891 4892
		i915_gem_unset_wedged(i915);

4893 4894 4895 4896 4897 4898
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4899
	 * of the reset, so this could be applied to even earlier gen.
4900
	 */
4901
	intel_engines_sanitize(i915, false);
4902 4903 4904 4905

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

4906 4907
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4908 4909
}

C
Chris Wilson 已提交
4910
int i915_gem_suspend(struct drm_i915_private *i915)
4911
{
4912
	int ret;
4913

4914 4915
	GEM_TRACE("\n");

C
Chris Wilson 已提交
4916 4917
	intel_runtime_pm_get(i915);
	intel_suspend_gt_powersave(i915);
4918

C
Chris Wilson 已提交
4919
	mutex_lock(&i915->drm.struct_mutex);
4920

C
Chris Wilson 已提交
4921 4922
	/*
	 * We have to flush all the executing contexts to main memory so
4923 4924
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4925
	 * leaves the i915->kernel_context still active when
4926 4927 4928 4929
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
4930 4931
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
4932 4933
		if (ret)
			goto err_unlock;
4934

C
Chris Wilson 已提交
4935
		ret = i915_gem_wait_for_idle(i915,
4936
					     I915_WAIT_INTERRUPTIBLE |
4937
					     I915_WAIT_LOCKED |
4938 4939
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
4940 4941
		if (ret && ret != -EIO)
			goto err_unlock;
4942

C
Chris Wilson 已提交
4943
		assert_kernel_context_is_current(i915);
4944
	}
4945 4946
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
4947
	mutex_unlock(&i915->drm.struct_mutex);
4948

C
Chris Wilson 已提交
4949
	intel_uc_suspend(i915);
4950

C
Chris Wilson 已提交
4951 4952
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
4953

C
Chris Wilson 已提交
4954 4955
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4956 4957
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4958
	drain_delayed_work(&i915->gt.idle_work);
4959

C
Chris Wilson 已提交
4960 4961
	/*
	 * Assert that we successfully flushed all the work and
4962 4963
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
4964 4965 4966
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
4967

C
Chris Wilson 已提交
4968
	intel_runtime_pm_put(i915);
4969 4970 4971
	return 0;

err_unlock:
C
Chris Wilson 已提交
4972 4973
	mutex_unlock(&i915->drm.struct_mutex);
	intel_runtime_pm_put(i915);
4974 4975 4976 4977 4978
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4979 4980 4981 4982 4983 4984 4985
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5006 5007 5008 5009 5010 5011 5012
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5013 5014
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5015 5016
}

5017
void i915_gem_resume(struct drm_i915_private *i915)
5018
{
5019 5020
	GEM_TRACE("\n");

5021
	WARN_ON(i915->gt.awake);
5022

5023 5024
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5025

5026 5027
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5028

5029 5030
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5031 5032 5033
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5034
	i915->gt.resume(i915);
5035

5036 5037 5038
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5039
	intel_uc_resume(i915);
5040

5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5051 5052 5053 5054
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5055
	goto out_unlock;
5056 5057
}

5058
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5059
{
5060
	if (INTEL_GEN(dev_priv) < 5 ||
5061 5062 5063 5064 5065 5066
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5067
	if (IS_GEN(dev_priv, 5))
5068 5069
		return;

5070
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5071
	if (IS_GEN(dev_priv, 6))
5072
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5073
	else if (IS_GEN(dev_priv, 7))
5074
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5075
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
5076
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5077 5078
	else
		BUG();
5079
}
D
Daniel Vetter 已提交
5080

5081
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5082 5083 5084 5085 5086 5087 5088
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5089
static void init_unused_rings(struct drm_i915_private *dev_priv)
5090
{
5091 5092 5093 5094 5095 5096
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
5097
	} else if (IS_GEN(dev_priv, 2)) {
5098 5099
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
5100
	} else if (IS_GEN(dev_priv, 3)) {
5101 5102
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5103 5104 5105
	}
}

5106
static int __i915_gem_restart_engines(void *data)
5107
{
5108
	struct drm_i915_private *i915 = data;
5109
	struct intel_engine_cs *engine;
5110
	enum intel_engine_id id;
5111 5112 5113 5114
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5115 5116 5117
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5118
			return err;
5119
		}
5120 5121 5122 5123 5124 5125 5126
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5127
	int ret;
5128

5129 5130
	dev_priv->gt.last_init_time = ktime_get();

5131 5132 5133
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5134
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5135
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5136

5137
	if (IS_HASWELL(dev_priv))
5138
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5139
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5140

5141
	/* Apply the GT workarounds... */
5142
	intel_gt_apply_workarounds(dev_priv);
5143 5144
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
5145

5146
	i915_gem_init_swizzling(dev_priv);
5147

5148 5149 5150 5151 5152 5153
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5154
	init_unused_rings(dev_priv);
5155

5156
	BUG_ON(!dev_priv->kernel_context);
5157 5158 5159 5160
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5161

5162
	ret = i915_ppgtt_init_hw(dev_priv);
5163
	if (ret) {
5164
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5165 5166 5167
		goto out;
	}

5168 5169 5170 5171 5172 5173
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5174 5175
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5176 5177
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5178
		goto out;
5179
	}
5180

5181
	intel_mocs_init_l3cc_table(dev_priv);
5182

5183 5184
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5185 5186
	if (ret)
		goto cleanup_uc;
5187

5188
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5189 5190

	return 0;
5191 5192 5193

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
5194 5195 5196 5197
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
5198 5199
}

5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5221
		struct i915_request *rq;
5222

5223
		rq = i915_request_alloc(engine, ctx);
5224 5225 5226 5227 5228
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5229
		err = 0;
5230 5231 5232
		if (engine->init_context)
			err = engine->init_context(rq);

5233
		i915_request_add(rq);
5234 5235 5236 5237 5238 5239 5240 5241
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5242 5243 5244
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5245
		goto err_active;
5246
	}
5247 5248 5249

	assert_kernel_context_is_current(i915);

5250 5251 5252 5253 5254 5255 5256 5257
	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

5258 5259
	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
5260
		void *vaddr;
5261

5262 5263
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

5264
		state = to_intel_context(ctx, engine)->state;
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
5285 5286 5287

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
5288
						I915_MAP_FORCE_WB);
5289 5290 5291 5292 5293 5294
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5330 5331 5332
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5333 5334 5335 5336 5337 5338
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

5377
int i915_gem_init(struct drm_i915_private *dev_priv)
5378 5379 5380
{
	int ret;

5381 5382
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5383 5384 5385
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5386
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5387

5388
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5389
		dev_priv->gt.resume = intel_lr_context_resume;
5390
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5391 5392 5393
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5394 5395
	}

5396 5397 5398 5399
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5400
	ret = intel_uc_init_misc(dev_priv);
5401 5402 5403
	if (ret)
		return ret;

5404
	ret = intel_wopcm_init(&dev_priv->wopcm);
5405
	if (ret)
5406
		goto err_uc_misc;
5407

5408 5409 5410 5411 5412 5413
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5414
	mutex_lock(&dev_priv->drm.struct_mutex);
5415 5416
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5417
	ret = i915_gem_init_ggtt(dev_priv);
5418 5419 5420 5421
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5422

5423
	ret = i915_gem_init_scratch(dev_priv,
5424
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
5425 5426 5427 5428
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5429

5430 5431 5432 5433 5434 5435
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

5436
	ret = intel_engines_init(dev_priv);
5437 5438 5439 5440
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5441

5442 5443
	intel_init_gt_powersave(dev_priv);

5444
	ret = intel_uc_init(dev_priv);
5445
	if (ret)
5446
		goto err_pm;
5447

5448 5449 5450 5451
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5463
	ret = __intel_engines_record_defaults(dev_priv);
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5489 5490 5491 5492 5493
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5494 5495
	i915_gem_drain_workqueue(dev_priv);

5496
	mutex_lock(&dev_priv->drm.struct_mutex);
5497
	intel_uc_fini_hw(dev_priv);
5498 5499
err_uc_init:
	intel_uc_fini(dev_priv);
5500 5501 5502 5503 5504 5505 5506 5507
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
5508 5509
err_scratch:
	i915_gem_fini_scratch(dev_priv);
5510 5511 5512 5513 5514
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5515
err_uc_misc:
5516
	intel_uc_fini_misc(dev_priv);
5517

5518 5519 5520
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5521
	if (ret == -EIO) {
5522 5523
		mutex_lock(&dev_priv->drm.struct_mutex);

5524 5525
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5526 5527 5528
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5529
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5530 5531
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5532 5533
			i915_gem_set_wedged(dev_priv);
		}
5534 5535 5536 5537 5538 5539 5540 5541

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5542 5543
	}

5544
	i915_gem_drain_freed_objects(dev_priv);
5545
	return ret;
5546 5547
}

5548 5549 5550
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5551
	intel_disable_gt_powersave(dev_priv);
5552 5553 5554 5555 5556 5557 5558 5559 5560

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5561
	i915_gem_fini_scratch(dev_priv);
5562 5563
	mutex_unlock(&dev_priv->drm.struct_mutex);

5564 5565
	intel_wa_list_free(&dev_priv->gt_wa_list);

5566 5567
	intel_cleanup_gt_powersave(dev_priv);

5568 5569 5570 5571 5572 5573 5574 5575
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5576 5577 5578 5579 5580
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5581
void
5582
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5583
{
5584
	struct intel_engine_cs *engine;
5585
	enum intel_engine_id id;
5586

5587
	for_each_engine(engine, dev_priv, id)
5588
		dev_priv->gt.cleanup_engine(engine);
5589 5590
}

5591 5592 5593
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5594
	int i;
5595

5596
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5597 5598
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5599
	else if (INTEL_GEN(dev_priv) >= 4 ||
5600 5601
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5602 5603 5604 5605
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5606
	if (intel_vgpu_active(dev_priv))
5607 5608 5609 5610
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5611 5612 5613 5614 5615 5616 5617
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5618
	i915_gem_restore_fences(dev_priv);
5619

5620
	i915_gem_detect_bit_6_swizzle(dev_priv);
5621 5622
}

5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5639
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5640
{
5641
	int err = -ENOMEM;
5642

5643 5644
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5645 5646
		goto err_out;

5647 5648
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5649 5650
		goto err_objects;

5651 5652 5653 5654
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5655
	dev_priv->requests = KMEM_CACHE(i915_request,
5656 5657
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5658
					SLAB_TYPESAFE_BY_RCU);
5659
	if (!dev_priv->requests)
5660
		goto err_luts;
5661

5662 5663 5664 5665 5666 5667
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5668 5669 5670 5671
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5672
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5673
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5674
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5675

5676
	i915_gem_init__mm(dev_priv);
5677

5678
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5679
			  i915_gem_retire_work_handler);
5680
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5681
			  i915_gem_idle_work_handler);
5682
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5683
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5684

5685 5686
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5687
	spin_lock_init(&dev_priv->fb_tracking.lock);
5688

M
Matthew Auld 已提交
5689 5690 5691 5692
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5693 5694
	return 0;

5695 5696
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5697 5698
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5699 5700
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5701 5702 5703 5704 5705 5706
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5707
}
5708

5709
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5710
{
5711
	i915_gem_drain_freed_objects(dev_priv);
5712 5713
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5714
	WARN_ON(dev_priv->mm.object_count);
5715 5716
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5717
	kmem_cache_destroy(dev_priv->priorities);
5718
	kmem_cache_destroy(dev_priv->dependencies);
5719
	kmem_cache_destroy(dev_priv->requests);
5720
	kmem_cache_destroy(dev_priv->luts);
5721 5722
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5723 5724 5725

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5726 5727

	i915_gemfs_fini(dev_priv);
5728 5729
}

5730 5731
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5732 5733 5734
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5735 5736 5737 5738 5739
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5740
int i915_gem_freeze_late(struct drm_i915_private *i915)
5741 5742
{
	struct drm_i915_gem_object *obj;
5743
	struct list_head *phases[] = {
5744 5745
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5746
		NULL
5747
	}, **phase;
5748

5749 5750
	/*
	 * Called just before we write the hibernation image.
5751 5752 5753 5754 5755 5756 5757 5758
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5759 5760
	 *
	 * To try and reduce the hibernation image, we manually shrink
5761
	 * the objects as well, see i915_gem_freeze()
5762 5763
	 */

5764 5765
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5766

5767 5768 5769 5770
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5771
	}
5772
	mutex_unlock(&i915->drm.struct_mutex);
5773 5774 5775 5776

	return 0;
}

5777
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5778
{
5779
	struct drm_i915_file_private *file_priv = file->driver_priv;
5780
	struct i915_request *request;
5781 5782 5783 5784 5785

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5786
	spin_lock(&file_priv->mm.lock);
5787
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5788
		request->file_priv = NULL;
5789
	spin_unlock(&file_priv->mm.lock);
5790 5791
}

5792
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5793 5794
{
	struct drm_i915_file_private *file_priv;
5795
	int ret;
5796

5797
	DRM_DEBUG("\n");
5798 5799 5800 5801 5802 5803

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5804
	file_priv->dev_priv = i915;
5805
	file_priv->file = file;
5806 5807 5808 5809

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5810
	file_priv->bsd_engine = -1;
5811
	file_priv->hang_timestamp = jiffies;
5812

5813
	ret = i915_gem_context_open(i915, file);
5814 5815
	if (ret)
		kfree(file_priv);
5816

5817
	return ret;
5818 5819
}

5820 5821
/**
 * i915_gem_track_fb - update frontbuffer tracking
5822 5823 5824
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5825 5826 5827 5828
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5829 5830 5831 5832
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5833 5834 5835 5836 5837 5838 5839
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5840
		     BITS_PER_TYPE(atomic_t));
5841

5842
	if (old) {
5843 5844
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5845 5846 5847
	}

	if (new) {
5848 5849
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5850 5851 5852
	}
}

5853 5854
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5855
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5856 5857 5858
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5859 5860 5861
	struct file *file;
	size_t offset;
	int err;
5862

5863
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5864
	if (IS_ERR(obj))
5865 5866
		return obj;

5867
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5868

5869 5870 5871 5872 5873 5874
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5875

5876 5877 5878 5879 5880
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5881

5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5896 5897 5898 5899

	return obj;

fail:
5900
	i915_gem_object_put(obj);
5901
	return ERR_PTR(err);
5902
}
5903 5904 5905 5906 5907 5908

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5909
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5910 5911 5912 5913 5914
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5915
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5941 5942
		void *entry;
		unsigned long i;
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5957
		entry = xa_mk_value(idx);
5958
		for (i = 1; i < count; i++) {
5959
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5997
	 * the radix tree will contain a value entry that points
5998 5999 6000 6001 6002
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
6003 6004
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6037
	if (!obj->mm.dirty)
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6053

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6089
	pages = __i915_gem_object_unset_pages(obj);
6090

6091 6092
	obj->ops = &i915_gem_phys_ops;

6093
	err = ____i915_gem_object_get_pages(obj);
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6107 6108 6109 6110 6111
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6112 6113 6114 6115 6116
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6117 6118
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6119
#include "selftests/mock_gem_device.c"
6120
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6121
#include "selftests/huge_pages.c"
6122
#include "selftests/i915_gem_object.c"
6123
#include "selftests/i915_gem_coherency.c"
6124
#include "selftests/i915_gem.c"
6125
#endif