i915_gem.c 145.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
M
Matthew Auld 已提交
38
#include "i915_gemfs.h"
39
#include <linux/dma-fence-array.h>
40
#include <linux/kthread.h>
41
#include <linux/reservation.h>
42
#include <linux/shmem_fs.h>
43
#include <linux/slab.h>
44
#include <linux/stop_machine.h>
45
#include <linux/swap.h>
J
Jesse Barnes 已提交
46
#include <linux/pci.h>
47
#include <linux/dma-buf.h>
48

49
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50

51 52
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
53
	if (obj->cache_dirty)
54 55
		return false;

56
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 58 59 60 61
		return true;

	return obj->pin_display;
}

62
static int
63
insert_mappable_node(struct i915_ggtt *ggtt,
64 65 66
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
67 68 69 70
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
71 72 73 74 75 76 77 78
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

79 80
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81
				  u64 size)
82
{
83
	spin_lock(&dev_priv->mm.object_stat_lock);
84 85
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
86
	spin_unlock(&dev_priv->mm.object_stat_lock);
87 88 89
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90
				     u64 size)
91
{
92
	spin_lock(&dev_priv->mm.object_stat_lock);
93 94
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
95
	spin_unlock(&dev_priv->mm.object_stat_lock);
96 97
}

98
static int
99
i915_gem_wait_for_error(struct i915_gpu_error *error)
100 101 102
{
	int ret;

103 104
	might_sleep();

105 106 107 108 109
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
110
	ret = wait_event_interruptible_timeout(error->reset_queue,
111
					       !i915_reset_backoff(error),
112
					       I915_RESET_TIMEOUT);
113 114 115 116
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
117
		return ret;
118 119
	} else {
		return 0;
120
	}
121 122
}

123
int i915_mutex_lock_interruptible(struct drm_device *dev)
124
{
125
	struct drm_i915_private *dev_priv = to_i915(dev);
126 127
	int ret;

128
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 130 131 132 133 134 135 136 137
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
138

139 140
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141
			    struct drm_file *file)
142
{
143
	struct drm_i915_private *dev_priv = to_i915(dev);
144
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
145
	struct drm_i915_gem_get_aperture *args = data;
146
	struct i915_vma *vma;
147
	u64 pinned;
148

149
	pinned = ggtt->base.reserved;
150
	mutex_lock(&dev->struct_mutex);
151
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152
		if (i915_vma_is_pinned(vma))
153
			pinned += vma->node.size;
154
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155
		if (i915_vma_is_pinned(vma))
156
			pinned += vma->node.size;
157
	mutex_unlock(&dev->struct_mutex);
158

159
	args->aper_size = ggtt->base.total;
160
	args->aper_available_size = args->aper_size - pinned;
161

162 163 164
	return 0;
}

165
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173
	int err;
174

175
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176
		return -EINVAL;
177

178 179 180 181 182
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
183
			     roundup_pow_of_two(obj->base.size),
184 185
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
186
		return -ENOMEM;
187 188

	vaddr = phys->vaddr;
189 190 191 192 193
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
194
		if (IS_ERR(page)) {
195
			err = PTR_ERR(page);
196 197
			goto err_phys;
		}
198 199 200 201 202 203

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

204
		put_page(page);
205 206 207
		vaddr += PAGE_SIZE;
	}

208
	i915_gem_chipset_flush(to_i915(obj->base.dev));
209 210

	st = kmalloc(sizeof(*st), GFP_KERNEL);
211
	if (!st) {
212
		err = -ENOMEM;
213 214
		goto err_phys;
	}
215 216 217

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
218
		err = -ENOMEM;
219
		goto err_phys;
220 221 222 223 224
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
225

226
	sg_dma_address(sg) = phys->busaddr;
227 228
	sg_dma_len(sg) = obj->base.size;

229
	obj->phys_handle = phys;
230

231
	__i915_gem_object_set_pages(obj, st, sg->length);
232 233

	return 0;
234 235 236

err_phys:
	drm_pci_free(obj->base.dev, phys);
237 238

	return err;
239 240
}

241 242 243 244 245 246 247 248
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

249
static void
250
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 252
				struct sg_table *pages,
				bool needs_clflush)
253
{
C
Chris Wilson 已提交
254
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255

C
Chris Wilson 已提交
256 257
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
258

259 260
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262
		drm_clflush_sg(pages);
263

264
	__start_cpu_write(obj);
265 266 267 268 269 270
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
271
	__i915_gem_object_release_shmem(obj, pages, false);
272

C
Chris Wilson 已提交
273
	if (obj->mm.dirty) {
274
		struct address_space *mapping = obj->base.filp->f_mapping;
275
		char *vaddr = obj->phys_handle->vaddr;
276 277 278
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 280 281 282 283 284 285 286 287 288 289 290 291
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
292
			if (obj->mm.madv == I915_MADV_WILLNEED)
293
				mark_page_accessed(page);
294
			put_page(page);
295 296
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
297
		obj->mm.dirty = false;
298 299
	}

300 301
	sg_free_table(pages);
	kfree(pages);
302 303

	drm_pci_free(obj->base.dev, obj->phys_handle);
304 305 306 307 308
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
309
	i915_gem_object_unpin_pages(obj);
310 311 312 313 314 315 316 317
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

318 319
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

320
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 322 323
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
324 325 326
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
327

328 329 330 331
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
332
	 */
333 334 335 336 337 338
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
339 340 341 342 343
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

344 345 346 347 348 349 350 351 352 353 354 355 356
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

357 358 359 360 361
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
362
{
363
	struct drm_i915_gem_request *rq;
364

365
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
396
			gen6_rps_boost(rq, rps);
397 398
		else
			rps = NULL;
399 400
	}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
416
	unsigned int seq = __read_seqcount_begin(&resv->seq);
417
	struct dma_fence *excl;
418
	bool prune_fences = false;
419 420 421 422

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
423 424
		int ret;

425 426
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
427 428 429
		if (ret)
			return ret;

430 431 432 433
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
434
			if (timeout < 0)
435
				break;
436

437 438 439 440 441 442
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
443 444

		prune_fences = count && timeout >= 0;
445 446
	} else {
		excl = reservation_object_get_excl_rcu(resv);
447 448
	}

449
	if (excl && timeout >= 0) {
450
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
451 452
		prune_fences = timeout >= 0;
	}
453 454 455

	dma_fence_put(excl);

456 457 458 459
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
460
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
461 462 463 464 465
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
466 467
	}

468
	return timeout;
469 470
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

535 536 537 538 539 540
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
541
 */
542 543 544 545 546
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
547
{
548 549 550 551 552 553 554
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
555

556 557 558
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
559
	return timeout < 0 ? timeout : 0;
560 561 562 563 564 565 566 567 568
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

569 570 571
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
572
		     struct drm_file *file)
573 574
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
575
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
576 577 578 579

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
580
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
581 582
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
583

584
	drm_clflush_virt_range(vaddr, args->size);
585
	i915_gem_chipset_flush(to_i915(obj->base.dev));
586

587
	intel_fb_obj_flush(obj, ORIGIN_CPU);
588
	return 0;
589 590
}

591
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
592
{
593
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
594 595 596 597
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
598
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
599
	kmem_cache_free(dev_priv->objects, obj);
600 601
}

602 603
static int
i915_gem_create(struct drm_file *file,
604
		struct drm_i915_private *dev_priv,
605 606
		uint64_t size,
		uint32_t *handle_p)
607
{
608
	struct drm_i915_gem_object *obj;
609 610
	int ret;
	u32 handle;
611

612
	size = roundup(size, PAGE_SIZE);
613 614
	if (size == 0)
		return -EINVAL;
615 616

	/* Allocate the new object */
617
	obj = i915_gem_object_create(dev_priv, size);
618 619
	if (IS_ERR(obj))
		return PTR_ERR(obj);
620

621
	ret = drm_gem_handle_create(file, &obj->base, &handle);
622
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
623
	i915_gem_object_put(obj);
624 625
	if (ret)
		return ret;
626

627
	*handle_p = handle;
628 629 630
	return 0;
}

631 632 633 634 635 636
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
637
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
638
	args->size = args->pitch * args->height;
639
	return i915_gem_create(file, to_i915(dev),
640
			       args->size, &args->handle);
641 642
}

643 644 645 646 647 648
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

649 650
/**
 * Creates a new mm object and returns a handle to it.
651 652 653
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
654 655 656 657 658
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
659
	struct drm_i915_private *dev_priv = to_i915(dev);
660
	struct drm_i915_gem_create *args = data;
661

662
	i915_gem_flush_free_objects(dev_priv);
663

664
	return i915_gem_create(file, dev_priv,
665
			       args->size, &args->handle);
666 667
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
702
		if (!HAS_LLC(dev_priv)) {
703 704
			intel_runtime_pm_get(dev_priv);
			spin_lock_irq(&dev_priv->uncore.lock);
705
			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
706 707
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
708 709 710 711 712 713 714 715 716
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
717 718 719 720 721

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
722 723 724 725 726
	}

	obj->base.write_domain = 0;
}

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

753
static inline int
754 755
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

779 780 781 782 783 784
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
785
				    unsigned int *needs_clflush)
786 787 788
{
	int ret;

789
	lockdep_assert_held(&obj->base.dev->struct_mutex);
790

791
	*needs_clflush = 0;
792 793
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
794

795 796 797 798 799
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
800 801 802
	if (ret)
		return ret;

C
Chris Wilson 已提交
803
	ret = i915_gem_object_pin_pages(obj);
804 805 806
	if (ret)
		return ret;

807 808
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
809 810 811 812 813 814 815
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

816
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
817

818 819 820 821 822
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
823 824
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
825
		*needs_clflush = CLFLUSH_BEFORE;
826

827
out:
828
	/* return with the pages pinned */
829
	return 0;
830 831 832 833

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
834 835 836 837 838 839 840
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

841 842
	lockdep_assert_held(&obj->base.dev->struct_mutex);

843 844 845 846
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

847 848 849 850 851 852
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
853 854 855
	if (ret)
		return ret;

C
Chris Wilson 已提交
856
	ret = i915_gem_object_pin_pages(obj);
857 858 859
	if (ret)
		return ret;

860 861
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
862 863 864 865 866 867 868
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

869
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
870

871 872 873 874 875
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
876
	if (!obj->cache_dirty) {
877
		*needs_clflush |= CLFLUSH_AFTER;
878

879 880 881 882 883 884 885
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
886

887
out:
888
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
889
	obj->mm.dirty = true;
890
	/* return with the pages pinned */
891
	return 0;
892 893 894 895

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
896 897
}

898 899 900 901
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
902
	if (unlikely(swizzled)) {
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

920 921 922
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
923
shmem_pread_slow(struct page *page, int offset, int length,
924 925 926 927 928 929 930 931
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
932
		shmem_clflush_swizzled_range(vaddr + offset, length,
933
					     page_do_bit17_swizzling);
934 935

	if (page_do_bit17_swizzling)
936
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
937
	else
938
		ret = __copy_to_user(user_data, vaddr + offset, length);
939 940
	kunmap(page);

941
	return ret ? - EFAULT : 0;
942 943
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1020
{
1021
	void __iomem *vaddr;
1022
	unsigned long unwritten;
1023 1024

	/* We can use the cpu mem copy function because this is X86. */
1025 1026 1027 1028
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1029 1030
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1031 1032 1033 1034
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1035 1036
		io_mapping_unmap(vaddr);
	}
1037 1038 1039 1040
	return unwritten;
}

static int
1041 1042
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1043
{
1044 1045
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1046
	struct drm_mm_node node;
1047 1048 1049
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1050 1051
	int ret;

1052 1053 1054 1055 1056 1057 1058
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1059 1060 1061
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1062
		ret = i915_vma_put_fence(vma);
1063 1064 1065 1066 1067
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1068
	if (IS_ERR(vma)) {
1069
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1070
		if (ret)
1071 1072
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1073 1074 1075 1076 1077 1078
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1079
	mutex_unlock(&i915->drm.struct_mutex);
1080

1081 1082 1083
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1100
					       node.start, I915_CACHE_NONE, 0);
1101 1102 1103 1104
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1105 1106 1107

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1117
	mutex_lock(&i915->drm.struct_mutex);
1118 1119 1120 1121
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1122
				       node.start, node.size);
1123 1124
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1125
		i915_vma_unpin(vma);
1126
	}
1127 1128 1129
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1130

1131 1132 1133
	return ret;
}

1134 1135
/**
 * Reads data from the object referenced by handle.
1136 1137 1138
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1139 1140 1141 1142 1143
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1144
		     struct drm_file *file)
1145 1146
{
	struct drm_i915_gem_pread *args = data;
1147
	struct drm_i915_gem_object *obj;
1148
	int ret;
1149

1150 1151 1152 1153
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1154
		       u64_to_user_ptr(args->data_ptr),
1155 1156 1157
		       args->size))
		return -EFAULT;

1158
	obj = i915_gem_object_lookup(file, args->handle);
1159 1160
	if (!obj)
		return -ENOENT;
1161

1162
	/* Bounds check source.  */
1163
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1164
		ret = -EINVAL;
1165
		goto out;
C
Chris Wilson 已提交
1166 1167
	}

C
Chris Wilson 已提交
1168 1169
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1170 1171 1172 1173
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1174
	if (ret)
1175
		goto out;
1176

1177
	ret = i915_gem_object_pin_pages(obj);
1178
	if (ret)
1179
		goto out;
1180

1181
	ret = i915_gem_shmem_pread(obj, args);
1182
	if (ret == -EFAULT || ret == -ENODEV)
1183
		ret = i915_gem_gtt_pread(obj, args);
1184

1185 1186
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1187
	i915_gem_object_put(obj);
1188
	return ret;
1189 1190
}

1191 1192
/* This is the fast write path which cannot handle
 * page faults in the source data
1193
 */
1194

1195 1196 1197 1198
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1199
{
1200
	void __iomem *vaddr;
1201
	unsigned long unwritten;
1202

1203
	/* We can use the cpu mem copy function because this is X86. */
1204 1205
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1206
						      user_data, length);
1207 1208
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1209 1210 1211
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1212 1213
		io_mapping_unmap(vaddr);
	}
1214 1215 1216 1217

	return unwritten;
}

1218 1219 1220
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1221
 * @obj: i915 GEM object
1222
 * @args: pwrite arguments structure
1223
 */
1224
static int
1225 1226
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1227
{
1228
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1229 1230
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1231 1232 1233
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1234
	int ret;
1235

1236 1237 1238
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1239

1240
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1241
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1242
				       PIN_MAPPABLE | PIN_NONBLOCK);
1243 1244 1245
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1246
		ret = i915_vma_put_fence(vma);
1247 1248 1249 1250 1251
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1252
	if (IS_ERR(vma)) {
1253
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1254
		if (ret)
1255 1256
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1257
	}
D
Daniel Vetter 已提交
1258 1259 1260 1261 1262

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1263 1264
	mutex_unlock(&i915->drm.struct_mutex);

1265
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1266

1267 1268 1269 1270
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1271 1272
		/* Operation in this page
		 *
1273 1274 1275
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1276
		 */
1277
		u32 page_base = node.start;
1278 1279
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1290
		/* If we get a fault while copying data, then (presumably) our
1291 1292
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1293 1294
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1295
		 */
1296 1297 1298 1299
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1300
		}
1301

1302 1303 1304
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1305
	}
1306
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1307 1308

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1309
out_unpin:
1310 1311 1312
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1313
				       node.start, node.size);
1314 1315
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1316
		i915_vma_unpin(vma);
1317
	}
1318
out_unlock:
1319
	intel_runtime_pm_put(i915);
1320
	mutex_unlock(&i915->drm.struct_mutex);
1321
	return ret;
1322 1323
}

1324
static int
1325
shmem_pwrite_slow(struct page *page, int offset, int length,
1326 1327 1328 1329
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1330
{
1331 1332
	char *vaddr;
	int ret;
1333

1334
	vaddr = kmap(page);
1335
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1336
		shmem_clflush_swizzled_range(vaddr + offset, length,
1337
					     page_do_bit17_swizzling);
1338
	if (page_do_bit17_swizzling)
1339 1340
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1341
	else
1342
		ret = __copy_from_user(vaddr + offset, user_data, length);
1343
	if (needs_clflush_after)
1344
		shmem_clflush_swizzled_range(vaddr + offset, length,
1345
					     page_do_bit17_swizzling);
1346
	kunmap(page);
1347

1348
	return ret ? -EFAULT : 0;
1349 1350
}

1351 1352 1353 1354 1355
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1356
static int
1357 1358 1359 1360
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1361
{
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1394
	unsigned int needs_clflush;
1395 1396
	unsigned int offset, idx;
	int ret;
1397

1398
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1399 1400 1401
	if (ret)
		return ret;

1402 1403 1404 1405
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1406

1407 1408 1409
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1410

1411 1412 1413 1414 1415 1416 1417
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1418

1419 1420 1421 1422 1423 1424
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1425

1426 1427 1428
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1429

1430 1431 1432 1433
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1434
		if (ret)
1435
			break;
1436

1437 1438 1439
		remain -= length;
		user_data += length;
		offset = 0;
1440
	}
1441

1442
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1443
	i915_gem_obj_finish_shmem_access(obj);
1444
	return ret;
1445 1446 1447 1448
}

/**
 * Writes data to the object referenced by handle.
1449 1450 1451
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1452 1453 1454 1455 1456
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1457
		      struct drm_file *file)
1458 1459
{
	struct drm_i915_gem_pwrite *args = data;
1460
	struct drm_i915_gem_object *obj;
1461 1462 1463 1464 1465 1466
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1467
		       u64_to_user_ptr(args->data_ptr),
1468 1469 1470
		       args->size))
		return -EFAULT;

1471
	obj = i915_gem_object_lookup(file, args->handle);
1472 1473
	if (!obj)
		return -ENOENT;
1474

1475
	/* Bounds check destination. */
1476
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1477
		ret = -EINVAL;
1478
		goto err;
C
Chris Wilson 已提交
1479 1480
	}

C
Chris Wilson 已提交
1481 1482
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1483 1484 1485 1486 1487 1488
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1489 1490 1491 1492 1493
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1494 1495 1496
	if (ret)
		goto err;

1497
	ret = i915_gem_object_pin_pages(obj);
1498
	if (ret)
1499
		goto err;
1500

D
Daniel Vetter 已提交
1501
	ret = -EFAULT;
1502 1503 1504 1505 1506 1507
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1508
	if (!i915_gem_object_has_struct_page(obj) ||
1509
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1510 1511
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1512 1513
		 * textures). Fallback to the shmem path in that case.
		 */
1514
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1515

1516
	if (ret == -EFAULT || ret == -ENOSPC) {
1517 1518
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1519
		else
1520
			ret = i915_gem_shmem_pwrite(obj, args);
1521
	}
1522

1523
	i915_gem_object_unpin_pages(obj);
1524
err:
C
Chris Wilson 已提交
1525
	i915_gem_object_put(obj);
1526
	return ret;
1527 1528
}

1529 1530 1531 1532 1533 1534 1535 1536
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1537
			break;
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1550
	list_move_tail(&obj->global_link, list);
1551 1552
}

1553
/**
1554 1555
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1556 1557 1558
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1559 1560 1561
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1562
			  struct drm_file *file)
1563 1564
{
	struct drm_i915_gem_set_domain *args = data;
1565
	struct drm_i915_gem_object *obj;
1566 1567
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1568
	int err;
1569

1570
	/* Only handle setting domains to types used by the CPU. */
1571
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1572 1573 1574 1575 1576 1577 1578 1579
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1580
	obj = i915_gem_object_lookup(file, args->handle);
1581 1582
	if (!obj)
		return -ENOENT;
1583

1584 1585 1586 1587
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1588
	err = i915_gem_object_wait(obj,
1589 1590 1591 1592
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1593
	if (err)
C
Chris Wilson 已提交
1594
		goto out;
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1606
		goto out;
1607 1608 1609

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1610
		goto out_unpin;
1611

1612 1613 1614 1615
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1616
	else
1617
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1618

1619 1620
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1621

1622
	mutex_unlock(&dev->struct_mutex);
1623

1624
	if (write_domain != 0)
1625 1626
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1627

C
Chris Wilson 已提交
1628
out_unpin:
1629
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1630 1631
out:
	i915_gem_object_put(obj);
1632
	return err;
1633 1634 1635 1636
}

/**
 * Called when user space has done writes to this buffer
1637 1638 1639
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1640 1641 1642
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1643
			 struct drm_file *file)
1644 1645
{
	struct drm_i915_gem_sw_finish *args = data;
1646
	struct drm_i915_gem_object *obj;
1647

1648
	obj = i915_gem_object_lookup(file, args->handle);
1649 1650
	if (!obj)
		return -ENOENT;
1651 1652

	/* Pinned buffers may be scanout, so flush the cache */
1653
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1654
	i915_gem_object_put(obj);
1655 1656

	return 0;
1657 1658 1659
}

/**
1660 1661 1662 1663 1664
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1665 1666 1667
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1678 1679 1680
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1681
		    struct drm_file *file)
1682 1683
{
	struct drm_i915_gem_mmap *args = data;
1684
	struct drm_i915_gem_object *obj;
1685 1686
	unsigned long addr;

1687 1688 1689
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1690
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1691 1692
		return -ENODEV;

1693 1694
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1695
		return -ENOENT;
1696

1697 1698 1699
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1700
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1701
		i915_gem_object_put(obj);
1702 1703 1704
		return -EINVAL;
	}

1705
	addr = vm_mmap(obj->base.filp, 0, args->size,
1706 1707
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1708 1709 1710 1711
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1712
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1713
			i915_gem_object_put(obj);
1714 1715
			return -EINTR;
		}
1716 1717 1718 1719 1720 1721 1722
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1723 1724

		/* This may race, but that's ok, it only gets set */
1725
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1726
	}
C
Chris Wilson 已提交
1727
	i915_gem_object_put(obj);
1728 1729 1730 1731 1732 1733 1734 1735
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1736 1737
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1738
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1761 1762 1763
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1791
	return 2;
1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1805 1806
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1807
		min_t(unsigned int, chunk,
1808
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1809 1810 1811 1812 1813 1814 1815 1816

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1817 1818
/**
 * i915_gem_fault - fault a page into the GTT
1819
 * @vmf: fault info
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1831 1832 1833
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1834
 */
1835
int i915_gem_fault(struct vm_fault *vmf)
1836
{
1837
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1838
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1839
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1840
	struct drm_device *dev = obj->base.dev;
1841 1842
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1843
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1844
	struct i915_vma *vma;
1845
	pgoff_t page_offset;
1846
	unsigned int flags;
1847
	int ret;
1848

1849
	/* We don't use vmf->pgoff since that has the fake offset */
1850
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1851

C
Chris Wilson 已提交
1852 1853
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1854
	/* Try to flush the object off the GPU first without holding the lock.
1855
	 * Upon acquiring the lock, we will perform our sanity checks and then
1856 1857 1858
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1859 1860 1861 1862
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1863
	if (ret)
1864 1865
		goto err;

1866 1867 1868 1869
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1870 1871 1872 1873 1874
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1875

1876
	/* Access to snoopable pages through the GTT is incoherent. */
1877
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1878
		ret = -EFAULT;
1879
		goto err_unlock;
1880 1881
	}

1882 1883 1884 1885 1886 1887 1888 1889
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1890
	/* Now pin it into the GTT as needed */
1891
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1892 1893
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1894
		struct i915_ggtt_view view =
1895
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1896

1897 1898 1899 1900 1901
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1902 1903
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1904 1905
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1906
		goto err_unlock;
C
Chris Wilson 已提交
1907
	}
1908

1909 1910
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1911
		goto err_unpin;
1912

1913
	ret = i915_vma_pin_fence(vma);
1914
	if (ret)
1915
		goto err_unpin;
1916

1917
	/* Mark as being mmapped into userspace for later revocation */
1918
	assert_rpm_wakelock_held(dev_priv);
1919 1920 1921
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1922
	/* Finally, remap it using the new GTT offset */
1923
	ret = remap_io_mapping(area,
1924
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1925 1926 1927
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1928

1929
	i915_vma_unpin_fence(vma);
1930
err_unpin:
C
Chris Wilson 已提交
1931
	__i915_vma_unpin(vma);
1932
err_unlock:
1933
	mutex_unlock(&dev->struct_mutex);
1934 1935
err_rpm:
	intel_runtime_pm_put(dev_priv);
1936
	i915_gem_object_unpin_pages(obj);
1937
err:
1938
	switch (ret) {
1939
	case -EIO:
1940 1941 1942 1943 1944 1945 1946
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1947 1948 1949
			ret = VM_FAULT_SIGBUS;
			break;
		}
1950
	case -EAGAIN:
D
Daniel Vetter 已提交
1951 1952 1953 1954
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1955
		 */
1956 1957
	case 0:
	case -ERESTARTSYS:
1958
	case -EINTR:
1959 1960 1961 1962 1963
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1964 1965
		ret = VM_FAULT_NOPAGE;
		break;
1966
	case -ENOMEM:
1967 1968
		ret = VM_FAULT_OOM;
		break;
1969
	case -ENOSPC:
1970
	case -EFAULT:
1971 1972
		ret = VM_FAULT_SIGBUS;
		break;
1973
	default:
1974
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1975 1976
		ret = VM_FAULT_SIGBUS;
		break;
1977
	}
1978
	return ret;
1979 1980
}

1981 1982 1983 1984
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1985
 * Preserve the reservation of the mmapping with the DRM core code, but
1986 1987 1988 1989 1990 1991 1992 1993 1994
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1995
void
1996
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1997
{
1998 1999
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2000 2001 2002
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2003 2004 2005 2006
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2007
	 */
2008
	lockdep_assert_held(&i915->drm.struct_mutex);
2009
	intel_runtime_pm_get(i915);
2010

2011
	if (list_empty(&obj->userfault_link))
2012
		goto out;
2013

2014
	list_del_init(&obj->userfault_link);
2015 2016
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2017 2018 2019 2020 2021 2022 2023 2024 2025

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2026 2027 2028

out:
	intel_runtime_pm_put(i915);
2029 2030
}

2031
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2032
{
2033
	struct drm_i915_gem_object *obj, *on;
2034
	int i;
2035

2036 2037 2038 2039 2040 2041
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2042

2043 2044 2045
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2046 2047 2048
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2049 2050 2051 2052 2053 2054 2055 2056

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2067 2068 2069 2070 2071 2072 2073

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2074 2075
}

2076 2077
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2078
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2079
	int err;
2080

2081
	err = drm_gem_create_mmap_offset(&obj->base);
2082
	if (likely(!err))
2083
		return 0;
2084

2085 2086 2087 2088 2089
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2090

2091
		i915_gem_drain_freed_objects(dev_priv);
2092
		err = drm_gem_create_mmap_offset(&obj->base);
2093 2094 2095 2096
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2097

2098
	return err;
2099 2100 2101 2102 2103 2104 2105
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2106
int
2107 2108
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2109
		  uint32_t handle,
2110
		  uint64_t *offset)
2111
{
2112
	struct drm_i915_gem_object *obj;
2113 2114
	int ret;

2115
	obj = i915_gem_object_lookup(file, handle);
2116 2117
	if (!obj)
		return -ENOENT;
2118

2119
	ret = i915_gem_object_create_mmap_offset(obj);
2120 2121
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2122

C
Chris Wilson 已提交
2123
	i915_gem_object_put(obj);
2124
	return ret;
2125 2126
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2148
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2149 2150
}

D
Daniel Vetter 已提交
2151 2152 2153
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2154
{
2155
	i915_gem_object_free_mmap_offset(obj);
2156

2157 2158
	if (obj->base.filp == NULL)
		return;
2159

D
Daniel Vetter 已提交
2160 2161 2162 2163 2164
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2165
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2166
	obj->mm.madv = __I915_MADV_PURGED;
2167
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2168
}
2169

2170
/* Try to discard unwanted pages */
2171
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2172
{
2173 2174
	struct address_space *mapping;

2175 2176 2177
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2178
	switch (obj->mm.madv) {
2179 2180 2181 2182 2183 2184 2185 2186 2187
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2188
	mapping = obj->base.filp->f_mapping,
2189
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2190 2191
}

2192
static void
2193 2194
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2195
{
2196 2197
	struct sgt_iter sgt_iter;
	struct page *page;
2198

2199
	__i915_gem_object_release_shmem(obj, pages, true);
2200

2201
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2202

2203
	if (i915_gem_object_needs_bit17_swizzle(obj))
2204
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2205

2206
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2207
		if (obj->mm.dirty)
2208
			set_page_dirty(page);
2209

C
Chris Wilson 已提交
2210
		if (obj->mm.madv == I915_MADV_WILLNEED)
2211
			mark_page_accessed(page);
2212

2213
		put_page(page);
2214
	}
C
Chris Wilson 已提交
2215
	obj->mm.dirty = false;
2216

2217 2218
	sg_free_table(pages);
	kfree(pages);
2219
}
C
Chris Wilson 已提交
2220

2221 2222 2223
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2224
	void __rcu **slot;
2225

C
Chris Wilson 已提交
2226 2227
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2228 2229
}

2230 2231
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2232
{
2233
	struct sg_table *pages;
2234

C
Chris Wilson 已提交
2235
	if (i915_gem_object_has_pinned_pages(obj))
2236
		return;
2237

2238
	GEM_BUG_ON(obj->bind_count);
2239 2240 2241 2242
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2243
	mutex_lock_nested(&obj->mm.lock, subclass);
2244 2245
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2246

2247 2248 2249
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2250 2251
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2252

C
Chris Wilson 已提交
2253
	if (obj->mm.mapping) {
2254 2255
		void *ptr;

2256
		ptr = page_mask_bits(obj->mm.mapping);
2257 2258
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2259
		else
2260 2261
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2262
		obj->mm.mapping = NULL;
2263 2264
	}

2265 2266
	__i915_gem_object_reset_page_iter(obj);

2267 2268 2269
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2270 2271
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2272 2273
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2274 2275
}

2276
static bool i915_sg_trim(struct sg_table *orig_st)
2277 2278 2279 2280 2281 2282
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2283
		return false;
2284

2285
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2286
		return false;
2287 2288 2289 2290 2291 2292 2293

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2294
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2295 2296 2297 2298

	sg_free_table(orig_st);

	*orig_st = new_st;
2299
	return true;
2300 2301
}

2302
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2303
{
2304
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2305 2306
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2307
	struct address_space *mapping;
2308 2309
	struct sg_table *st;
	struct scatterlist *sg;
2310
	struct sgt_iter sgt_iter;
2311
	struct page *page;
2312
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2313
	unsigned int max_segment = i915_sg_segment_size();
2314
	unsigned int sg_mask;
2315
	gfp_t noreclaim;
I
Imre Deak 已提交
2316
	int ret;
2317

C
Chris Wilson 已提交
2318 2319 2320 2321
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2322 2323
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2324

2325 2326
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2327
		return -ENOMEM;
2328

2329
rebuild_st:
2330 2331
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2332
		return -ENOMEM;
2333
	}
2334

2335 2336 2337 2338 2339
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2340
	mapping = obj->base.filp->f_mapping;
2341
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2342 2343
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2344 2345
	sg = st->sgl;
	st->nents = 0;
2346
	sg_mask = 0;
2347
	for (i = 0; i < page_count; i++) {
2348 2349 2350 2351 2352 2353 2354
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2355
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2356 2357 2358 2359 2360 2361 2362 2363
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2364
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2365
			cond_resched();
2366

C
Chris Wilson 已提交
2367 2368 2369
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2370 2371 2372 2373
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2374
			 */
2375 2376 2377
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2390
				 * this we want __GFP_RETRY_MAYFAIL.
2391
				 */
M
Michal Hocko 已提交
2392
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2393
			}
2394 2395
		} while (1);

2396 2397 2398
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2399 2400
			if (i) {
				sg_mask |= sg->length;
2401
				sg = sg_next(sg);
2402
			}
2403 2404 2405 2406 2407 2408
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2409 2410 2411

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2412
	}
2413 2414
	if (sg) { /* loop terminated early; short sg table */
		sg_mask |= sg->length;
2415
		sg_mark_end(sg);
2416
	}
2417

2418 2419 2420
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2421
	ret = i915_gem_gtt_prepare_pages(obj, st);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2441

2442
	if (i915_gem_object_needs_bit17_swizzle(obj))
2443
		i915_gem_object_do_bit_17_swizzle(obj, st);
2444

2445
	__i915_gem_object_set_pages(obj, st, sg_mask);
2446 2447

	return 0;
2448

2449
err_sg:
2450
	sg_mark_end(sg);
2451
err_pages:
2452 2453
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2454 2455
	sg_free_table(st);
	kfree(st);
2456 2457 2458 2459 2460 2461 2462 2463 2464

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2465 2466 2467
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2468
	return ret;
2469 2470 2471
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2472 2473
				 struct sg_table *pages,
				 unsigned int sg_mask)
2474
{
2475 2476 2477 2478
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2479
	lockdep_assert_held(&obj->mm.lock);
2480 2481 2482 2483 2484

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2485 2486 2487 2488 2489 2490 2491

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

	GEM_BUG_ON(!sg_mask);
	obj->mm.page_sizes.phys = sg_mask;

	/*
	 * Calculate the supported page-sizes which fit into the given sg_mask.
	 * This will give us the page-sizes which we may be able to use
	 * opportunistically when later inserting into the GTT. For example if
	 * phys=2G, then in theory we should be able to use 1G, 2M, 64K or 4K
	 * pages, although in practice this will depend on a number of other
	 * factors.
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}

	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2511 2512 2513 2514
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2515
	int err;
2516 2517 2518 2519 2520 2521

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2522 2523
	err = obj->ops->get_pages(obj);
	GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2524

2525
	return err;
2526 2527
}

2528
/* Ensure that the associated pages are gathered from the backing storage
2529
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2530
 * multiple times before they are released by a single call to
2531
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2532 2533 2534
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2535
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2536
{
2537
	int err;
2538

2539 2540 2541
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2542

2543
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2544 2545
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2546 2547 2548
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2549

2550 2551 2552
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2553

2554 2555
unlock:
	mutex_unlock(&obj->mm.lock);
2556
	return err;
2557 2558
}

2559
/* The 'mapping' part of i915_gem_object_pin_map() below */
2560 2561
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2562 2563
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2564
	struct sg_table *sgt = obj->mm.pages;
2565 2566
	struct sgt_iter sgt_iter;
	struct page *page;
2567 2568
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2569
	unsigned long i = 0;
2570
	pgprot_t pgprot;
2571 2572 2573
	void *addr;

	/* A single page can always be kmapped */
2574
	if (n_pages == 1 && type == I915_MAP_WB)
2575 2576
		return kmap(sg_page(sgt->sgl));

2577 2578
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2579
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2580 2581 2582
		if (!pages)
			return NULL;
	}
2583

2584 2585
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2586 2587 2588 2589

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2590
	switch (type) {
2591 2592 2593
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2594 2595 2596 2597 2598 2599 2600 2601
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2602

2603
	if (pages != stack_pages)
M
Michal Hocko 已提交
2604
		kvfree(pages);
2605 2606 2607 2608 2609

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2610 2611
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2612
{
2613 2614 2615
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2616 2617
	int ret;

2618
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2619

2620
	ret = mutex_lock_interruptible(&obj->mm.lock);
2621 2622 2623
	if (ret)
		return ERR_PTR(ret);

2624 2625 2626
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2627
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2628
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2629 2630
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2631 2632 2633
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2634

2635 2636 2637
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2638 2639 2640
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2641

2642
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2643 2644 2645
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2646
			goto err_unpin;
2647
		}
2648 2649 2650 2651 2652 2653

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2654
		ptr = obj->mm.mapping = NULL;
2655 2656
	}

2657 2658 2659 2660
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2661
			goto err_unpin;
2662 2663
		}

2664
		obj->mm.mapping = page_pack_bits(ptr, type);
2665 2666
	}

2667 2668
out_unlock:
	mutex_unlock(&obj->mm.lock);
2669 2670
	return ptr;

2671 2672 2673 2674 2675
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2747 2748
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2749
{
2750
	return (i915_gem_context_is_bannable(ctx) &&
2751
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2752 2753
}

2754
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2755
{
2756 2757
	unsigned int score;
	bool banned;
2758

2759
	atomic_inc(&ctx->guilty_count);
2760

2761 2762 2763 2764 2765
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2766 2767
		return;

2768 2769 2770 2771 2772 2773
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2774 2775 2776 2777
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2778
	atomic_inc(&ctx->active_count);
2779 2780
}

2781
struct drm_i915_gem_request *
2782
i915_gem_find_active_request(struct intel_engine_cs *engine)
2783
{
2784 2785
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2786

2787 2788 2789 2790 2791 2792 2793 2794
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2795
	spin_lock_irqsave(&engine->timeline->lock, flags);
2796
	list_for_each_entry(request, &engine->timeline->requests, link) {
2797 2798
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2799
			continue;
2800

2801
		GEM_BUG_ON(request->engine != engine);
2802 2803
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2804 2805 2806

		active = request;
		break;
2807
	}
2808
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2809

2810
	return active;
2811 2812
}

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2827 2828 2829 2830 2831 2832 2833 2834 2835
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

	/*
	 * Prevent the signaler thread from updating the request
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

2857 2858
	/*
	 * Prevent request submission to the hardware until we have
2859 2860 2861 2862 2863 2864 2865
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
2866 2867
	tasklet_kill(&engine->execlists.irq_tasklet);
	tasklet_disable(&engine->execlists.irq_tasklet);
2868 2869 2870 2871

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2872 2873 2874
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2875 2876 2877 2878

	return request;
}

2879
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2880 2881
{
	struct intel_engine_cs *engine;
2882
	struct drm_i915_gem_request *request;
2883
	enum intel_engine_id id;
2884
	int err = 0;
2885

2886
	for_each_engine(engine, dev_priv, id) {
2887 2888 2889 2890
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2891
		}
2892 2893

		engine->hangcheck.active_request = request;
2894 2895
	}

2896
	i915_gem_revoke_fences(dev_priv);
2897 2898

	return err;
2899 2900
}

2901
static void skip_request(struct drm_i915_gem_request *request)
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2916 2917

	dma_fence_set_error(&request->fence, -EIO);
2918 2919
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2943 2944 2945 2946
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2947
{
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2969
	if (engine_stalled(engine)) {
2970 2971
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2972 2973 2974 2975

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2976
	} else {
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
2994 2995
	}

2996
	return request;
2997 2998
}

2999 3000
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
3001
{
3002 3003
	engine->irq_posted = 0;

3004 3005 3006 3007
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
3008 3009 3010
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
3011 3012 3013

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
3014
}
3015

3016
void i915_gem_reset(struct drm_i915_private *dev_priv)
3017
{
3018
	struct intel_engine_cs *engine;
3019
	enum intel_engine_id id;
3020

3021 3022
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3023 3024
	i915_gem_retire_requests(dev_priv);

3025 3026 3027
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

3028
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3029 3030 3031 3032
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
3033

3034
	i915_gem_restore_fences(dev_priv);
3035 3036 3037 3038 3039 3040 3041

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3042 3043
}

3044 3045
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3046
	tasklet_enable(&engine->execlists.irq_tasklet);
3047
	kthread_unpark(engine->breadcrumbs.signaler);
3048 3049

	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3050 3051
}

3052 3053
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3054 3055 3056
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3057
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3058

3059
	for_each_engine(engine, dev_priv, id) {
3060
		engine->hangcheck.active_request = NULL;
3061
		i915_gem_reset_finish_engine(engine);
3062
	}
3063 3064
}

3065 3066
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3067 3068
	unsigned long flags;

3069
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3070
	dma_fence_set_error(&request->fence, -EIO);
3071 3072 3073

	spin_lock_irqsave(&request->engine->timeline->lock, flags);
	__i915_gem_request_submit(request);
3074
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3075
	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3076 3077
}

3078
static void engine_set_wedged(struct intel_engine_cs *engine)
3079
{
3080 3081 3082 3083 3084 3085
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3086
	engine->submit_request = nop_submit_request;
3087

3088
	/* Mark all executing requests as skipped */
3089
	engine->cancel_requests(engine);
3090 3091 3092 3093 3094 3095 3096

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3097 3098
}

3099
static int __i915_gem_set_wedged_BKL(void *data)
3100
{
3101
	struct drm_i915_private *i915 = data;
3102
	struct intel_engine_cs *engine;
3103
	enum intel_engine_id id;
3104

3105
	for_each_engine(engine, i915, id)
3106
		engine_set_wedged(engine);
3107

3108 3109 3110
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3111 3112 3113 3114 3115 3116
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3117 3118
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3171
	i915_gem_contexts_lost(i915);
3172 3173 3174 3175 3176 3177 3178

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3179
static void
3180 3181
i915_gem_retire_work_handler(struct work_struct *work)
{
3182
	struct drm_i915_private *dev_priv =
3183
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3184
	struct drm_device *dev = &dev_priv->drm;
3185

3186
	/* Come back later if the device is busy... */
3187
	if (mutex_trylock(&dev->struct_mutex)) {
3188
		i915_gem_retire_requests(dev_priv);
3189
		mutex_unlock(&dev->struct_mutex);
3190
	}
3191 3192 3193 3194 3195

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3196 3197
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3198 3199
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3200
				   round_jiffies_up_relative(HZ));
3201
	}
3202
}
3203

3204 3205 3206 3207
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3208
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3209
	struct drm_device *dev = &dev_priv->drm;
3210 3211 3212 3213 3214
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3215 3216 3217 3218
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3219
	wait_for(intel_engines_are_idle(dev_priv), 10);
3220
	if (READ_ONCE(dev_priv->gt.active_requests))
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3234 3235 3236 3237 3238 3239 3240
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3241
	if (dev_priv->gt.active_requests)
3242
		goto out_unlock;
3243

3244
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3245 3246
		DRM_ERROR("Timeout waiting for engines to idle\n");

3247
	intel_engines_mark_idle(dev_priv);
3248
	i915_gem_timelines_mark_idle(dev_priv);
3249

3250 3251 3252
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3253

3254 3255 3256 3257 3258
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3259

3260 3261 3262 3263
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3264
	}
3265 3266
}

3267 3268
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3269
	struct drm_i915_private *i915 = to_i915(gem->dev);
3270 3271
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3272
	struct i915_lut_handle *lut, *ln;
3273

3274 3275 3276 3277 3278 3279
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3280
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3281 3282 3283 3284
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3285 3286 3287 3288 3289 3290 3291
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3292
			i915_vma_close(vma);
3293

3294 3295
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3296

3297 3298
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3299
	}
3300 3301

	mutex_unlock(&i915->drm.struct_mutex);
3302 3303
}

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3315 3316
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3317 3318 3319
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3320 3321 3322 3323 3324 3325 3326
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3327
 *  -EAGAIN: incomplete, restart syscall
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3344 3345
	ktime_t start;
	long ret;
3346

3347 3348 3349
	if (args->flags != 0)
		return -EINVAL;

3350
	obj = i915_gem_object_lookup(file, args->bo_handle);
3351
	if (!obj)
3352 3353
		return -ENOENT;

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3375 3376 3377 3378

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3379 3380
	}

C
Chris Wilson 已提交
3381
	i915_gem_object_put(obj);
3382
	return ret;
3383 3384
}

3385
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3386
{
3387
	int ret, i;
3388

3389 3390 3391 3392 3393
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3394

3395 3396 3397
	return 0;
}

3398 3399
static int wait_for_engines(struct drm_i915_private *i915)
{
3400 3401 3402 3403
	if (wait_for(intel_engines_are_idle(i915), 50)) {
		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
		i915_gem_set_wedged(i915);
		return -EIO;
3404 3405 3406 3407 3408
	}

	return 0;
}

3409 3410 3411 3412
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3413 3414 3415 3416
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3427 3428 3429

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3430 3431

		ret = wait_for_engines(i915);
3432 3433
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3434
	}
3435

3436
	return ret;
3437 3438
}

3439 3440
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3441 3442 3443 3444 3445 3446 3447
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3524 3525
/**
 * Moves a single object to the GTT read, and possibly write domain.
3526 3527
 * @obj: object to act on
 * @write: ask for write access or read only
3528 3529 3530 3531
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3532
int
3533
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3534
{
3535
	int ret;
3536

3537
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3538

3539 3540 3541 3542 3543 3544
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3545 3546 3547
	if (ret)
		return ret;

3548 3549 3550
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3551 3552 3553 3554 3555 3556 3557 3558
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3559
	ret = i915_gem_object_pin_pages(obj);
3560 3561 3562
	if (ret)
		return ret;

3563
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3564

3565 3566 3567 3568 3569 3570 3571
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3572 3573 3574
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3575
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3576
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3577
	if (write) {
3578 3579
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3580
		obj->mm.dirty = true;
3581 3582
	}

C
Chris Wilson 已提交
3583
	i915_gem_object_unpin_pages(obj);
3584 3585 3586
	return 0;
}

3587 3588
/**
 * Changes the cache-level of an object across all VMA.
3589 3590
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3602 3603 3604
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3605
	struct i915_vma *vma;
3606
	int ret;
3607

3608 3609
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3610
	if (obj->cache_level == cache_level)
3611
		return 0;
3612

3613 3614 3615 3616 3617
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3618 3619
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3620 3621 3622
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3623
		if (i915_vma_is_pinned(vma)) {
3624 3625 3626 3627
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3640 3641
	}

3642 3643 3644 3645 3646 3647 3648
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3649
	if (obj->bind_count) {
3650 3651 3652 3653
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3654 3655 3656 3657 3658 3659
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3660 3661 3662
		if (ret)
			return ret;

3663 3664
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3681 3682 3683 3684 3685
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3686 3687 3688 3689 3690 3691 3692 3693
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3694 3695
		}

3696
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3697 3698 3699 3700 3701 3702 3703
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3704 3705
	}

3706
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3707
		vma->node.color = cache_level;
3708
	i915_gem_object_set_cache_coherency(obj, cache_level);
3709
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3710

3711 3712 3713
	return 0;
}

B
Ben Widawsky 已提交
3714 3715
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3716
{
B
Ben Widawsky 已提交
3717
	struct drm_i915_gem_caching *args = data;
3718
	struct drm_i915_gem_object *obj;
3719
	int err = 0;
3720

3721 3722 3723 3724 3725 3726
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3727

3728 3729 3730 3731 3732 3733
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3734 3735 3736 3737
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3738 3739 3740 3741
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3742 3743 3744
out:
	rcu_read_unlock();
	return err;
3745 3746
}

B
Ben Widawsky 已提交
3747 3748
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3749
{
3750
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3751
	struct drm_i915_gem_caching *args = data;
3752 3753
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3754
	int ret = 0;
3755

B
Ben Widawsky 已提交
3756 3757
	switch (args->caching) {
	case I915_CACHING_NONE:
3758 3759
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3760
	case I915_CACHING_CACHED:
3761 3762 3763 3764 3765 3766
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3767
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3768 3769
			return -ENODEV;

3770 3771
		level = I915_CACHE_LLC;
		break;
3772
	case I915_CACHING_DISPLAY:
3773
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3774
		break;
3775 3776 3777 3778
	default:
		return -EINVAL;
	}

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3790
	if (ret)
3791
		goto out;
B
Ben Widawsky 已提交
3792

3793 3794 3795
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3796 3797 3798

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3799 3800 3801

out:
	i915_gem_object_put(obj);
3802 3803 3804
	return ret;
}

3805
/*
3806 3807 3808
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3809
 */
C
Chris Wilson 已提交
3810
struct i915_vma *
3811 3812
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3813
				     const struct i915_ggtt_view *view)
3814
{
C
Chris Wilson 已提交
3815
	struct i915_vma *vma;
3816 3817
	int ret;

3818 3819
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3820 3821 3822
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3823
	obj->pin_display++;
3824

3825 3826 3827 3828 3829 3830 3831 3832 3833
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3834
	ret = i915_gem_object_set_cache_level(obj,
3835 3836
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3837 3838
	if (ret) {
		vma = ERR_PTR(ret);
3839
		goto err_unpin_display;
C
Chris Wilson 已提交
3840
	}
3841

3842 3843
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3844 3845 3846 3847
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3848
	 */
3849
	vma = ERR_PTR(-ENOSPC);
3850
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3851 3852
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3869
	if (IS_ERR(vma))
3870
		goto err_unpin_display;
3871

3872 3873
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3874
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3875
	__i915_gem_object_flush_for_display(obj);
3876
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3877

3878 3879 3880
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3881
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3882

C
Chris Wilson 已提交
3883
	return vma;
3884 3885

err_unpin_display:
3886
	obj->pin_display--;
C
Chris Wilson 已提交
3887
	return vma;
3888 3889 3890
}

void
C
Chris Wilson 已提交
3891
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3892
{
3893
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3894

C
Chris Wilson 已提交
3895
	if (WARN_ON(vma->obj->pin_display == 0))
3896 3897
		return;

3898
	if (--vma->obj->pin_display == 0)
3899
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3900

3901
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3902
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3903

C
Chris Wilson 已提交
3904
	i915_vma_unpin(vma);
3905 3906
}

3907 3908
/**
 * Moves a single object to the CPU read, and possibly write domain.
3909 3910
 * @obj: object to act on
 * @write: requesting write or read-only access
3911 3912 3913 3914
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3915
int
3916
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3917 3918 3919
{
	int ret;

3920
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3921

3922 3923 3924 3925 3926 3927
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3928 3929 3930
	if (ret)
		return ret;

3931
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3932

3933
	/* Flush the CPU cache if it's still invalid. */
3934
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3935
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3936
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3937 3938 3939 3940 3941
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3942
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3943 3944 3945 3946

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3947 3948
	if (write)
		__start_cpu_write(obj);
3949 3950 3951 3952

	return 0;
}

3953 3954 3955
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3956 3957 3958 3959
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3960 3961 3962
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3963
static int
3964
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3965
{
3966
	struct drm_i915_private *dev_priv = to_i915(dev);
3967
	struct drm_i915_file_private *file_priv = file->driver_priv;
3968
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3969
	struct drm_i915_gem_request *request, *target = NULL;
3970
	long ret;
3971

3972 3973 3974
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3975

3976
	spin_lock(&file_priv->mm.lock);
3977
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3978 3979
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3980

3981 3982 3983 3984
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3985

3986
		target = request;
3987
	}
3988
	if (target)
3989
		i915_gem_request_get(target);
3990
	spin_unlock(&file_priv->mm.lock);
3991

3992
	if (target == NULL)
3993
		return 0;
3994

3995 3996 3997
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3998
	i915_gem_request_put(target);
3999

4000
	return ret < 0 ? ret : 0;
4001 4002
}

C
Chris Wilson 已提交
4003
struct i915_vma *
4004 4005
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4006
			 u64 size,
4007 4008
			 u64 alignment,
			 u64 flags)
4009
{
4010 4011
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4012 4013
	struct i915_vma *vma;
	int ret;
4014

4015 4016
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4017
	vma = i915_vma_instance(obj, vm, view);
4018
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4019
		return vma;
4020 4021 4022 4023

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4024
			return ERR_PTR(-ENOSPC);
4025

4026 4027 4028 4029 4030 4031 4032 4033
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4034
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4053
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4054 4055 4056
				return ERR_PTR(-ENOSPC);
		}

4057 4058
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4059 4060 4061
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4062
		     !!(flags & PIN_MAPPABLE),
4063
		     i915_vma_is_map_and_fenceable(vma));
4064 4065
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4066
			return ERR_PTR(ret);
4067 4068
	}

C
Chris Wilson 已提交
4069 4070 4071
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4072

C
Chris Wilson 已提交
4073
	return vma;
4074 4075
}

4076
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4091 4092 4093 4094 4095 4096 4097 4098 4099
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4100 4101
}

4102
static __always_inline unsigned int
4103
__busy_set_if_active(const struct dma_fence *fence,
4104 4105
		     unsigned int (*flag)(unsigned int id))
{
4106
	struct drm_i915_gem_request *rq;
4107

4108 4109 4110 4111
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4112
	 *
4113
	 * Note we only report on the status of native fences.
4114
	 */
4115 4116 4117 4118 4119 4120 4121 4122
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4123
	return flag(rq->engine->uabi_id);
4124 4125
}

4126
static __always_inline unsigned int
4127
busy_check_reader(const struct dma_fence *fence)
4128
{
4129
	return __busy_set_if_active(fence, __busy_read_flag);
4130 4131
}

4132
static __always_inline unsigned int
4133
busy_check_writer(const struct dma_fence *fence)
4134
{
4135 4136 4137 4138
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4139 4140
}

4141 4142
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4143
		    struct drm_file *file)
4144 4145
{
	struct drm_i915_gem_busy *args = data;
4146
	struct drm_i915_gem_object *obj;
4147 4148
	struct reservation_object_list *list;
	unsigned int seq;
4149
	int err;
4150

4151
	err = -ENOENT;
4152 4153
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4154
	if (!obj)
4155
		goto out;
4156

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4175

4176 4177
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4178

4179 4180 4181 4182
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4183

4184 4185 4186 4187 4188 4189
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4190
	}
4191

4192 4193 4194 4195
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4196 4197 4198
out:
	rcu_read_unlock();
	return err;
4199 4200 4201 4202 4203 4204
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4205
	return i915_gem_ring_throttle(dev, file_priv);
4206 4207
}

4208 4209 4210 4211
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4212
	struct drm_i915_private *dev_priv = to_i915(dev);
4213
	struct drm_i915_gem_madvise *args = data;
4214
	struct drm_i915_gem_object *obj;
4215
	int err;
4216 4217 4218 4219 4220 4221 4222 4223 4224

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4225
	obj = i915_gem_object_lookup(file_priv, args->handle);
4226 4227 4228 4229 4230 4231
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4232

C
Chris Wilson 已提交
4233
	if (obj->mm.pages &&
4234
	    i915_gem_object_is_tiled(obj) &&
4235
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4236 4237
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4238
			__i915_gem_object_unpin_pages(obj);
4239 4240 4241
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4242
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4243
			__i915_gem_object_pin_pages(obj);
4244 4245
			obj->mm.quirked = true;
		}
4246 4247
	}

C
Chris Wilson 已提交
4248 4249
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4250

C
Chris Wilson 已提交
4251
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4252
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4253 4254
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4255
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4256
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4257

4258
out:
4259
	i915_gem_object_put(obj);
4260
	return err;
4261 4262
}

4263 4264 4265 4266 4267 4268 4269
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4270
	intel_fb_obj_flush(obj, ORIGIN_CS);
4271 4272
}

4273 4274
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4275
{
4276 4277
	mutex_init(&obj->mm.lock);

4278
	INIT_LIST_HEAD(&obj->global_link);
4279
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4280
	INIT_LIST_HEAD(&obj->vma_list);
4281
	INIT_LIST_HEAD(&obj->lut_list);
4282
	INIT_LIST_HEAD(&obj->batch_pool_link);
4283

4284 4285
	obj->ops = ops;

4286 4287 4288
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4289
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4290
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4291 4292 4293 4294

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4295

4296
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4297 4298
}

4299
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4300 4301
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4302

4303 4304
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4305 4306

	.pwrite = i915_gem_object_pwrite_gtt,
4307 4308
};

M
Matthew Auld 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4333
struct drm_i915_gem_object *
4334
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4335
{
4336
	struct drm_i915_gem_object *obj;
4337
	struct address_space *mapping;
4338
	unsigned int cache_level;
D
Daniel Vetter 已提交
4339
	gfp_t mask;
4340
	int ret;
4341

4342 4343 4344 4345 4346
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4347
	if (size >> PAGE_SHIFT > INT_MAX)
4348 4349 4350 4351 4352
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4353
	obj = i915_gem_object_alloc(dev_priv);
4354
	if (obj == NULL)
4355
		return ERR_PTR(-ENOMEM);
4356

M
Matthew Auld 已提交
4357
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4358 4359
	if (ret)
		goto fail;
4360

4361
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4362
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4363 4364 4365 4366 4367
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4368
	mapping = obj->base.filp->f_mapping;
4369
	mapping_set_gfp_mask(mapping, mask);
4370
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4371

4372
	i915_gem_object_init(obj, &i915_gem_object_ops);
4373

4374 4375
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4376

4377
	if (HAS_LLC(dev_priv))
4378
		/* On some devices, we can have the GPU use the LLC (the CPU
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4390 4391 4392
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4393

4394
	i915_gem_object_set_cache_coherency(obj, cache_level);
4395

4396 4397
	trace_i915_gem_object_create(obj);

4398
	return obj;
4399 4400 4401 4402

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4403 4404
}

4405 4406 4407 4408 4409 4410 4411 4412
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4413
	if (obj->mm.madv != I915_MADV_WILLNEED)
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4429 4430
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4431
{
4432
	struct drm_i915_gem_object *obj, *on;
4433

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4448 4449
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4450

4451
		list_del(&obj->global_link);
4452 4453 4454 4455
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4456 4457
	cond_resched();

4458 4459 4460
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4461
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4462 4463 4464

		if (obj->ops->release)
			obj->ops->release(obj);
4465

4466 4467
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4468
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4469 4470 4471 4472 4473
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4474
		reservation_object_fini(&obj->__builtin_resv);
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4497

4498 4499 4500 4501 4502 4503 4504
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4505

4506
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4507
		__i915_gem_free_objects(i915, freed);
4508 4509 4510
		if (need_resched())
			break;
	}
4511
}
4512

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4527

4528 4529 4530
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4531

4532 4533 4534
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4535
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4536
		obj->mm.madv = I915_MADV_DONTNEED;
4537

4538 4539 4540 4541 4542 4543
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4544 4545
}

4546 4547 4548 4549
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4550 4551
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4552 4553 4554 4555 4556
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4557 4558 4559 4560 4561 4562
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4563 4564
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4565 4566
}

4567 4568
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4569 4570 4571 4572 4573 4574
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4575 4576 4577 4578 4579 4580
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4581
	 * of the reset, so this could be applied to even earlier gen.
4582
	 */
4583
	if (INTEL_GEN(i915) >= 5) {
4584 4585 4586 4587 4588
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4589
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4590
{
4591
	struct drm_device *dev = &dev_priv->drm;
4592
	int ret;
4593

4594
	intel_runtime_pm_get(dev_priv);
4595 4596
	intel_suspend_gt_powersave(dev_priv);

4597
	mutex_lock(&dev->struct_mutex);
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4609
		goto err_unlock;
4610

4611 4612 4613
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4614
	if (ret && ret != -EIO)
4615
		goto err_unlock;
4616

4617
	assert_kernel_context_is_current(dev_priv);
4618
	i915_gem_contexts_lost(dev_priv);
4619 4620
	mutex_unlock(&dev->struct_mutex);

4621 4622
	intel_guc_suspend(dev_priv);

4623
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4624
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4625 4626 4627 4628

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4629
	drain_delayed_work(&dev_priv->gt.idle_work);
4630

4631 4632 4633
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4634
	WARN_ON(dev_priv->gt.awake);
4635 4636
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4637

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4657
	i915_gem_sanitize(dev_priv);
4658 4659 4660

	intel_runtime_pm_put(dev_priv);
	return 0;
4661

4662
err_unlock:
4663
	mutex_unlock(&dev->struct_mutex);
4664
	intel_runtime_pm_put(dev_priv);
4665
	return ret;
4666 4667
}

4668
void i915_gem_resume(struct drm_i915_private *dev_priv)
4669
{
4670
	struct drm_device *dev = &dev_priv->drm;
4671

4672 4673
	WARN_ON(dev_priv->gt.awake);

4674
	mutex_lock(&dev->struct_mutex);
4675
	i915_gem_restore_gtt_mappings(dev_priv);
4676
	i915_gem_restore_fences(dev_priv);
4677 4678 4679 4680 4681

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4682
	dev_priv->gt.resume(dev_priv);
4683 4684 4685 4686

	mutex_unlock(&dev->struct_mutex);
}

4687
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4688
{
4689
	if (INTEL_GEN(dev_priv) < 5 ||
4690 4691 4692 4693 4694 4695
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4696
	if (IS_GEN5(dev_priv))
4697 4698
		return;

4699
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4700
	if (IS_GEN6(dev_priv))
4701
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4702
	else if (IS_GEN7(dev_priv))
4703
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4704
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4705
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4706 4707
	else
		BUG();
4708
}
D
Daniel Vetter 已提交
4709

4710
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4711 4712 4713 4714 4715 4716 4717
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4718
static void init_unused_rings(struct drm_i915_private *dev_priv)
4719
{
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4732 4733 4734
	}
}

4735
static int __i915_gem_restart_engines(void *data)
4736
{
4737
	struct drm_i915_private *i915 = data;
4738
	struct intel_engine_cs *engine;
4739
	enum intel_engine_id id;
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4753
	int ret;
4754

4755 4756
	dev_priv->gt.last_init_time = ktime_get();

4757 4758 4759
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4760
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4761
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4762

4763
	if (IS_HASWELL(dev_priv))
4764
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4765
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4766

4767
	if (HAS_PCH_NOP(dev_priv)) {
4768
		if (IS_IVYBRIDGE(dev_priv)) {
4769 4770 4771
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4772
		} else if (INTEL_GEN(dev_priv) >= 7) {
4773 4774 4775 4776
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4777 4778
	}

4779
	i915_gem_init_swizzling(dev_priv);
4780

4781 4782 4783 4784 4785 4786
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4787
	init_unused_rings(dev_priv);
4788

4789
	BUG_ON(!dev_priv->kernel_context);
4790

4791
	ret = i915_ppgtt_init_hw(dev_priv);
4792 4793 4794 4795 4796 4797
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4798 4799 4800
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4801

4802
	intel_mocs_init_l3cc_table(dev_priv);
4803

4804 4805 4806 4807
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4808

4809 4810
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4811
	return ret;
4812 4813
}

4814 4815 4816 4817 4818 4819
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
4820
	if (i915_modparams.enable_execlists)
4821 4822 4823 4824 4825 4826
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4827
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4828 4829 4830 4831 4832
		return false;

	return true;
}

4833
int i915_gem_init(struct drm_i915_private *dev_priv)
4834 4835 4836
{
	int ret;

4837
	mutex_lock(&dev_priv->drm.struct_mutex);
4838

4839 4840 4841 4842 4843 4844 4845 4846 4847
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4848
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4849

4850
	if (!i915_modparams.enable_execlists) {
4851
		dev_priv->gt.resume = intel_legacy_submission_resume;
4852
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4853
	} else {
4854
		dev_priv->gt.resume = intel_lr_context_resume;
4855
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4856 4857
	}

4858 4859 4860 4861 4862 4863 4864 4865
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4866 4867 4868
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4869 4870 4871 4872

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4873

4874
	ret = i915_gem_contexts_init(dev_priv);
4875 4876
	if (ret)
		goto out_unlock;
4877

4878
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4879
	if (ret)
4880
		goto out_unlock;
4881

4882
	ret = i915_gem_init_hw(dev_priv);
4883
	if (ret == -EIO) {
4884
		/* Allow engine initialisation to fail by marking the GPU as
4885 4886 4887 4888
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4889
		i915_gem_set_wedged(dev_priv);
4890
		ret = 0;
4891
	}
4892 4893

out_unlock:
4894
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4895
	mutex_unlock(&dev_priv->drm.struct_mutex);
4896

4897
	return ret;
4898 4899
}

4900 4901 4902 4903 4904
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4905
void
4906
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4907
{
4908
	struct intel_engine_cs *engine;
4909
	enum intel_engine_id id;
4910

4911
	for_each_engine(engine, dev_priv, id)
4912
		dev_priv->gt.cleanup_engine(engine);
4913 4914
}

4915 4916 4917
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4918
	int i;
4919 4920 4921 4922

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4923 4924 4925
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4926 4927 4928 4929
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4930
	if (intel_vgpu_active(dev_priv))
4931 4932 4933 4934
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4935 4936 4937 4938 4939 4940 4941
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4942
	i915_gem_restore_fences(dev_priv);
4943

4944
	i915_gem_detect_bit_6_swizzle(dev_priv);
4945 4946
}

4947
int
4948
i915_gem_load_init(struct drm_i915_private *dev_priv)
4949
{
4950
	int err = -ENOMEM;
4951

4952 4953
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4954 4955
		goto err_out;

4956 4957
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4958 4959
		goto err_objects;

4960 4961 4962 4963
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

4964 4965 4966
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4967
					SLAB_TYPESAFE_BY_RCU);
4968
	if (!dev_priv->requests)
4969
		goto err_luts;
4970

4971 4972 4973 4974 4975 4976
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4977 4978 4979 4980
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4981 4982
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4983
	err = i915_gem_timeline_init__global(dev_priv);
4984 4985
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4986
		goto err_priorities;
4987

4988 4989
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4990 4991
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4992
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4993
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4994
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4995
			  i915_gem_retire_work_handler);
4996
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4997
			  i915_gem_idle_work_handler);
4998
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4999
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5000

5001 5002
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5003
	spin_lock_init(&dev_priv->fb_tracking.lock);
5004

M
Matthew Auld 已提交
5005 5006 5007 5008
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5009 5010
	return 0;

5011 5012
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
5013 5014
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5015 5016
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5017 5018
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5019 5020 5021 5022 5023 5024
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5025
}
5026

5027
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5028
{
5029
	i915_gem_drain_freed_objects(dev_priv);
5030
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5031
	WARN_ON(dev_priv->mm.object_count);
5032

5033 5034 5035 5036 5037
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

5038
	kmem_cache_destroy(dev_priv->priorities);
5039
	kmem_cache_destroy(dev_priv->dependencies);
5040
	kmem_cache_destroy(dev_priv->requests);
5041
	kmem_cache_destroy(dev_priv->luts);
5042 5043
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5044 5045 5046

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5047 5048

	i915_gemfs_fini(dev_priv);
5049 5050
}

5051 5052
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5053 5054 5055
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5056 5057 5058 5059 5060
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5061 5062 5063
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5064 5065 5066 5067 5068
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5079 5080
	 *
	 * To try and reduce the hibernation image, we manually shrink
5081
	 * the objects as well, see i915_gem_freeze()
5082 5083
	 */

5084
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5085
	i915_gem_drain_freed_objects(dev_priv);
5086

5087
	mutex_lock(&dev_priv->drm.struct_mutex);
5088
	for (p = phases; *p; p++) {
5089 5090
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5091
	}
5092
	mutex_unlock(&dev_priv->drm.struct_mutex);
5093 5094 5095 5096

	return 0;
}

5097
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5098
{
5099
	struct drm_i915_file_private *file_priv = file->driver_priv;
5100
	struct drm_i915_gem_request *request;
5101 5102 5103 5104 5105

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5106
	spin_lock(&file_priv->mm.lock);
5107
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5108
		request->file_priv = NULL;
5109
	spin_unlock(&file_priv->mm.lock);
5110 5111
}

5112
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5113 5114
{
	struct drm_i915_file_private *file_priv;
5115
	int ret;
5116

5117
	DRM_DEBUG("\n");
5118 5119 5120 5121 5122 5123

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5124
	file_priv->dev_priv = i915;
5125
	file_priv->file = file;
5126 5127 5128 5129

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5130
	file_priv->bsd_engine = -1;
5131

5132
	ret = i915_gem_context_open(i915, file);
5133 5134
	if (ret)
		kfree(file_priv);
5135

5136
	return ret;
5137 5138
}

5139 5140
/**
 * i915_gem_track_fb - update frontbuffer tracking
5141 5142 5143
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5144 5145 5146 5147
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5148 5149 5150 5151
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5152 5153 5154 5155 5156 5157 5158 5159 5160
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5161
	if (old) {
5162 5163
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5164 5165 5166
	}

	if (new) {
5167 5168
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5169 5170 5171
	}
}

5172 5173
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5174
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5175 5176 5177
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5178 5179 5180
	struct file *file;
	size_t offset;
	int err;
5181

5182
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5183
	if (IS_ERR(obj))
5184 5185
		return obj;

5186
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5187

5188 5189 5190 5191 5192 5193
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5194

5195 5196 5197 5198 5199
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5200

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5215 5216 5217 5218

	return obj;

fail:
5219
	i915_gem_object_put(obj);
5220
	return ERR_PTR(err);
5221
}
5222 5223 5224 5225 5226 5227

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5228
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5229 5230 5231 5232 5233
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5234
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5359
	if (!obj->mm.dirty)
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5375

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5414
	err = ____i915_gem_object_get_pages(obj);
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5434 5435
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5436
#include "selftests/mock_gem_device.c"
5437
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5438
#include "selftests/huge_pages.c"
5439
#include "selftests/i915_gem_object.c"
5440
#include "selftests/i915_gem_coherency.c"
5441
#endif