i915_gem.c 135.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/oom.h>
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 43
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
						   bool force);
44
static __must_check int
45 46
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
47 48 49
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57
					     struct shrink_control *sc);
58
static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59
					    struct shrink_control *sc);
60 61 62
static int i915_gem_shrinker_oom(struct notifier_block *nb,
				 unsigned long event,
				 void *ptr);
63
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64

65 66 67 68 69 70
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

71 72 73 74 75 76 77 78
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

79 80 81 82 83 84 85 86
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
87
	obj->fence_dirty = false;
88 89 90
	obj->fence_reg = I915_FENCE_REG_NONE;
}

91 92 93 94
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
95
	spin_lock(&dev_priv->mm.object_stat_lock);
96 97
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
98
	spin_unlock(&dev_priv->mm.object_stat_lock);
99 100 101 102 103
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
104
	spin_lock(&dev_priv->mm.object_stat_lock);
105 106
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
107
	spin_unlock(&dev_priv->mm.object_stat_lock);
108 109
}

110
static int
111
i915_gem_wait_for_error(struct i915_gpu_error *error)
112 113 114
{
	int ret;

115 116
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
117
	if (EXIT_COND)
118 119
		return 0;

120 121 122 123 124
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
125 126 127
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
128 129 130 131
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
132
		return ret;
133
	}
134
#undef EXIT_COND
135

136
	return 0;
137 138
}

139
int i915_mutex_lock_interruptible(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142 143
	int ret;

144
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 146 147 148 149 150 151
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

152
	WARN_ON(i915_verify_lists(dev));
153 154
	return 0;
}
155

156 157
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158
			    struct drm_file *file)
159
{
160
	struct drm_i915_private *dev_priv = dev->dev_private;
161
	struct drm_i915_gem_get_aperture *args = data;
162 163
	struct drm_i915_gem_object *obj;
	size_t pinned;
164

165
	pinned = 0;
166
	mutex_lock(&dev->struct_mutex);
167
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
168
		if (i915_gem_obj_is_pinned(obj))
169
			pinned += i915_gem_obj_ggtt_size(obj);
170
	mutex_unlock(&dev->struct_mutex);
171

172
	args->aper_size = dev_priv->gtt.base.total;
173
	args->aper_available_size = args->aper_size - pinned;
174

175 176 177
	return 0;
}

178 179
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180
{
181 182 183 184 185
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
236

237 238 239 240 241 242 243 244 245 246 247 248 249
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
250
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251
		char *vaddr = obj->phys_handle->vaddr;
252 253 254
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255 256 257 258 259 260 261 262 263 264 265 266 267 268
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
269
				mark_page_accessed(page);
270
			page_cache_release(page);
271 272
			vaddr += PAGE_SIZE;
		}
273
		obj->dirty = 0;
274 275
	}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
309 310 311 312 313 314 315
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
316
	int ret;
317 318 319 320 321 322 323 324 325 326 327 328 329 330

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

331 332 333 334
	ret = drop_pages(obj);
	if (ret)
		return ret;

335 336 337 338 339 340
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
341 342 343
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
344 345 346 347 348 349 350 351 352 353
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
354 355 356 357 358 359 360 361
	int ret;

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}

377
	drm_clflush_virt_range(vaddr, args->size);
378 379 380 381
	i915_gem_chipset_flush(dev);
	return 0;
}

382 383 384
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
385
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
386 387 388 389 390 391 392 393
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

394 395 396 397
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
398
		bool dumb,
399
		uint32_t *handle_p)
400
{
401
	struct drm_i915_gem_object *obj;
402 403
	int ret;
	u32 handle;
404

405
	size = roundup(size, PAGE_SIZE);
406 407
	if (size == 0)
		return -EINVAL;
408 409

	/* Allocate the new object */
410
	obj = i915_gem_alloc_object(dev, size);
411 412 413
	if (obj == NULL)
		return -ENOMEM;

414
	obj->base.dumb = dumb;
415
	ret = drm_gem_handle_create(file, &obj->base, &handle);
416
	/* drop reference from allocate - handle holds it now */
417 418 419
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
420

421
	*handle_p = handle;
422 423 424
	return 0;
}

425 426 427 428 429 430
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
431
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
432 433
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
434
			       args->size, true, &args->handle);
435 436 437 438 439 440 441 442 443 444
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
445

446
	return i915_gem_create(file, dev,
447
			       args->size, false, &args->handle);
448 449
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

476
static inline int
477 478
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
527 528

		i915_gem_object_retire(obj);
529 530 531 532 533 534 535 536 537 538 539
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

540 541 542
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
543
static int
544 545 546 547 548 549 550
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

551
	if (unlikely(page_do_bit17_swizzling))
552 553 554 555 556 557 558 559 560 561 562
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

563
	return ret ? -EFAULT : 0;
564 565
}

566 567 568 569
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
570
	if (unlikely(swizzled)) {
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

588 589 590 591 592 593 594 595 596 597 598 599
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
600 601 602
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
603 604 605 606 607 608 609 610 611 612 613

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

614
	return ret ? - EFAULT : 0;
615 616
}

617
static int
618 619 620 621
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
622
{
623
	char __user *user_data;
624
	ssize_t remain;
625
	loff_t offset;
626
	int shmem_page_offset, page_length, ret = 0;
627
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
628
	int prefaulted = 0;
629
	int needs_clflush = 0;
630
	struct sg_page_iter sg_iter;
631

V
Ville Syrjälä 已提交
632
	user_data = to_user_ptr(args->data_ptr);
633 634
	remain = args->size;

635
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
636

637
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
638 639 640
	if (ret)
		return ret;

641
	offset = args->offset;
642

643 644
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
645
		struct page *page = sg_page_iter_page(&sg_iter);
646 647 648 649

		if (remain <= 0)
			break;

650 651 652 653 654
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
655
		shmem_page_offset = offset_in_page(offset);
656 657 658 659
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

660 661 662
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

663 664 665 666 667
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
668 669 670

		mutex_unlock(&dev->struct_mutex);

671
		if (likely(!i915.prefault_disable) && !prefaulted) {
672
			ret = fault_in_multipages_writeable(user_data, remain);
673 674 675 676 677 678 679
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
680

681 682 683
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
684

685
		mutex_lock(&dev->struct_mutex);
686 687

		if (ret)
688 689
			goto out;

690
next_page:
691
		remain -= page_length;
692
		user_data += page_length;
693 694 695
		offset += page_length;
	}

696
out:
697 698
	i915_gem_object_unpin_pages(obj);

699 700 701
	return ret;
}

702 703 704 705 706 707 708
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
709
		     struct drm_file *file)
710 711
{
	struct drm_i915_gem_pread *args = data;
712
	struct drm_i915_gem_object *obj;
713
	int ret = 0;
714

715 716 717 718
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
719
		       to_user_ptr(args->data_ptr),
720 721 722
		       args->size))
		return -EFAULT;

723
	ret = i915_mutex_lock_interruptible(dev);
724
	if (ret)
725
		return ret;
726

727
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
728
	if (&obj->base == NULL) {
729 730
		ret = -ENOENT;
		goto unlock;
731
	}
732

733
	/* Bounds check source.  */
734 735
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
736
		ret = -EINVAL;
737
		goto out;
C
Chris Wilson 已提交
738 739
	}

740 741 742 743 744 745 746 747
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
748 749
	trace_i915_gem_object_pread(obj, args->offset, args->size);

750
	ret = i915_gem_shmem_pread(dev, obj, args, file);
751

752
out:
753
	drm_gem_object_unreference(&obj->base);
754
unlock:
755
	mutex_unlock(&dev->struct_mutex);
756
	return ret;
757 758
}

759 760
/* This is the fast write path which cannot handle
 * page faults in the source data
761
 */
762 763 764 765 766 767

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
768
{
769 770
	void __iomem *vaddr_atomic;
	void *vaddr;
771
	unsigned long unwritten;
772

P
Peter Zijlstra 已提交
773
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
774 775 776
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
777
						      user_data, length);
P
Peter Zijlstra 已提交
778
	io_mapping_unmap_atomic(vaddr_atomic);
779
	return unwritten;
780 781
}

782 783 784 785
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
786
static int
787 788
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
789
			 struct drm_i915_gem_pwrite *args,
790
			 struct drm_file *file)
791
{
792
	struct drm_i915_private *dev_priv = dev->dev_private;
793
	ssize_t remain;
794
	loff_t offset, page_base;
795
	char __user *user_data;
D
Daniel Vetter 已提交
796 797
	int page_offset, page_length, ret;

798
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
799 800 801 802 803 804 805 806 807 808
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
809

V
Ville Syrjälä 已提交
810
	user_data = to_user_ptr(args->data_ptr);
811 812
	remain = args->size;

813
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
814 815 816 817

	while (remain > 0) {
		/* Operation in this page
		 *
818 819 820
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
821
		 */
822 823
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
824 825 826 827 828
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
829 830
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
831
		 */
B
Ben Widawsky 已提交
832
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
833 834 835 836
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
837

838 839 840
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
841 842
	}

D
Daniel Vetter 已提交
843
out_unpin:
B
Ben Widawsky 已提交
844
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
845
out:
846
	return ret;
847 848
}

849 850 851 852
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
853
static int
854 855 856 857 858
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
859
{
860
	char *vaddr;
861
	int ret;
862

863
	if (unlikely(page_do_bit17_swizzling))
864
		return -EINVAL;
865

866 867 868 869
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
870 871
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
872 873 874 875
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
876

877
	return ret ? -EFAULT : 0;
878 879
}

880 881
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
882
static int
883 884 885 886 887
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
888
{
889 890
	char *vaddr;
	int ret;
891

892
	vaddr = kmap(page);
893
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
894 895 896
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
897 898
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
899 900
						user_data,
						page_length);
901 902 903 904 905
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
906 907 908
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
909
	kunmap(page);
910

911
	return ret ? -EFAULT : 0;
912 913 914
}

static int
915 916 917 918
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
919 920
{
	ssize_t remain;
921 922
	loff_t offset;
	char __user *user_data;
923
	int shmem_page_offset, page_length, ret = 0;
924
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
925
	int hit_slowpath = 0;
926 927
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
928
	struct sg_page_iter sg_iter;
929

V
Ville Syrjälä 已提交
930
	user_data = to_user_ptr(args->data_ptr);
931 932
	remain = args->size;

933
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
934

935 936 937 938 939
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
940
		needs_clflush_after = cpu_write_needs_clflush(obj);
941 942 943
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
944 945

		i915_gem_object_retire(obj);
946
	}
947 948 949 950 951
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
952

953 954 955 956 957 958
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	return ret;
1036 1037 1038 1039 1040 1041 1042 1043 1044
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1045
		      struct drm_file *file)
1046 1047
{
	struct drm_i915_gem_pwrite *args = data;
1048
	struct drm_i915_gem_object *obj;
1049 1050 1051 1052 1053 1054
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1055
		       to_user_ptr(args->data_ptr),
1056 1057 1058
		       args->size))
		return -EFAULT;

1059
	if (likely(!i915.prefault_disable)) {
1060 1061 1062 1063 1064
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1065

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		return ret;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
	return ret;
}

1123
int
1124
i915_gem_check_wedge(struct i915_gpu_error *error,
1125 1126
		     bool interruptible)
{
1127
	if (i915_reset_in_progress(error)) {
1128 1129 1130 1131 1132
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1133 1134
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1135 1136
			return -EIO;

1137 1138 1139 1140 1141 1142 1143
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1144 1145 1146 1147 1148 1149
	}

	return 0;
}

/*
1150
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1151
 */
1152
int
1153
i915_gem_check_olr(struct drm_i915_gem_request *req)
1154 1155 1156
{
	int ret;

1157
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1158 1159

	ret = 0;
1160
	if (req == req->ring->outstanding_lazy_request)
1161
		ret = i915_add_request(req->ring);
1162 1163 1164 1165

	return ret;
}

1166 1167 1168 1169 1170 1171
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1172
		       struct intel_engine_cs *ring)
1173 1174 1175 1176
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1177 1178 1179 1180 1181 1182 1183 1184
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1185
/**
1186 1187 1188
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1189 1190 1191
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1192 1193 1194 1195 1196 1197 1198
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1199
 * Returns 0 if the request was found within the alloted time. Else returns the
1200 1201
 * errno with remaining time filled in timeout argument.
 */
1202
int __i915_wait_request(struct drm_i915_gem_request *req,
1203
			unsigned reset_counter,
1204
			bool interruptible,
1205
			s64 *timeout,
1206
			struct drm_i915_file_private *file_priv)
1207
{
1208
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1209
	struct drm_device *dev = ring->dev;
1210
	struct drm_i915_private *dev_priv = dev->dev_private;
1211 1212
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1213
	DEFINE_WAIT(wait);
1214
	unsigned long timeout_expire;
1215
	s64 before, now;
1216 1217
	int ret;

1218
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1219

1220
	if (i915_gem_request_completed(req, true))
1221 1222
		return 0;

1223
	timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1224

1225
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1226 1227 1228 1229 1230 1231 1232
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1233
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1234 1235
		return -ENODEV;

1236
	/* Record current time in case interrupted by signal, or wedged */
1237
	trace_i915_gem_request_wait_begin(req);
1238
	before = ktime_get_raw_ns();
1239 1240
	for (;;) {
		struct timer_list timer;
1241

1242 1243
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1244

1245 1246
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1247 1248 1249 1250 1251 1252 1253 1254
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1255

1256
		if (i915_gem_request_completed(req, false)) {
1257 1258 1259
			ret = 0;
			break;
		}
1260

1261 1262 1263 1264 1265
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1266
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1267 1268 1269 1270 1271 1272
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1273 1274
			unsigned long expire;

1275
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1276
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1277 1278 1279
			mod_timer(&timer, expire);
		}

1280
		io_schedule();
1281 1282 1283 1284 1285 1286

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1287
	now = ktime_get_raw_ns();
1288
	trace_i915_gem_request_wait_end(req);
1289

1290 1291
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1292 1293

	finish_wait(&ring->irq_queue, &wait);
1294 1295

	if (timeout) {
1296 1297 1298
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1299 1300
	}

1301
	return ret;
1302 1303 1304
}

/**
1305
 * Waits for a request to be signaled, and cleans up the
1306 1307 1308
 * request and object lists appropriately for that event.
 */
int
1309
i915_wait_request(struct drm_i915_gem_request *req)
1310
{
1311 1312 1313
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1314
	unsigned reset_counter;
1315 1316
	int ret;

1317 1318 1319 1320 1321 1322
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1323 1324
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1325
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1326 1327 1328
	if (ret)
		return ret;

1329
	ret = i915_gem_check_olr(req);
1330 1331 1332
	if (ret)
		return ret;

1333
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1334
	i915_gem_request_reference(req);
1335 1336
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1337 1338
	i915_gem_request_unreference(req);
	return ret;
1339 1340
}

1341
static int
1342
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1343
{
1344 1345
	if (!obj->active)
		return 0;
1346 1347 1348 1349

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1350 1351
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1352 1353
	 * we know we have passed the last write.
	 */
1354
	i915_gem_request_assign(&obj->last_write_req, NULL);
1355 1356 1357 1358

	return 0;
}

1359 1360 1361 1362 1363 1364 1365 1366
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1367
	struct drm_i915_gem_request *req;
1368 1369
	int ret;

1370 1371
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1372 1373
		return 0;

1374
	ret = i915_wait_request(req);
1375 1376 1377
	if (ret)
		return ret;

1378
	return i915_gem_object_wait_rendering__tail(obj);
1379 1380
}

1381 1382 1383 1384 1385
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1386
					    struct drm_i915_file_private *file_priv,
1387 1388
					    bool readonly)
{
1389
	struct drm_i915_gem_request *req;
1390 1391
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1392
	unsigned reset_counter;
1393 1394 1395 1396 1397
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1398 1399
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1400 1401
		return 0;

1402
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1403 1404 1405
	if (ret)
		return ret;

1406
	ret = i915_gem_check_olr(req);
1407 1408 1409
	if (ret)
		return ret;

1410
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1411
	i915_gem_request_reference(req);
1412
	mutex_unlock(&dev->struct_mutex);
1413
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1414
	mutex_lock(&dev->struct_mutex);
1415
	i915_gem_request_unreference(req);
1416 1417
	if (ret)
		return ret;
1418

1419
	return i915_gem_object_wait_rendering__tail(obj);
1420 1421
}

1422
/**
1423 1424
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1425 1426 1427
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1428
			  struct drm_file *file)
1429 1430
{
	struct drm_i915_gem_set_domain *args = data;
1431
	struct drm_i915_gem_object *obj;
1432 1433
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1434 1435
	int ret;

1436
	/* Only handle setting domains to types used by the CPU. */
1437
	if (write_domain & I915_GEM_GPU_DOMAINS)
1438 1439
		return -EINVAL;

1440
	if (read_domains & I915_GEM_GPU_DOMAINS)
1441 1442 1443 1444 1445 1446 1447 1448
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1449
	ret = i915_mutex_lock_interruptible(dev);
1450
	if (ret)
1451
		return ret;
1452

1453
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1454
	if (&obj->base == NULL) {
1455 1456
		ret = -ENOENT;
		goto unlock;
1457
	}
1458

1459 1460 1461 1462
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1463 1464 1465
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1466 1467 1468
	if (ret)
		goto unref;

1469
	if (read_domains & I915_GEM_DOMAIN_GTT)
1470
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1471
	else
1472
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1473

1474
unref:
1475
	drm_gem_object_unreference(&obj->base);
1476
unlock:
1477 1478 1479 1480 1481 1482 1483 1484 1485
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1486
			 struct drm_file *file)
1487 1488
{
	struct drm_i915_gem_sw_finish *args = data;
1489
	struct drm_i915_gem_object *obj;
1490 1491
	int ret = 0;

1492
	ret = i915_mutex_lock_interruptible(dev);
1493
	if (ret)
1494
		return ret;
1495

1496
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1497
	if (&obj->base == NULL) {
1498 1499
		ret = -ENOENT;
		goto unlock;
1500 1501 1502
	}

	/* Pinned buffers may be scanout, so flush the cache */
1503 1504
	if (obj->pin_display)
		i915_gem_object_flush_cpu_write_domain(obj, true);
1505

1506
	drm_gem_object_unreference(&obj->base);
1507
unlock:
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1528 1529 1530
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1531
		    struct drm_file *file)
1532 1533 1534 1535 1536
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1537
	obj = drm_gem_object_lookup(dev, file, args->handle);
1538
	if (obj == NULL)
1539
		return -ENOENT;
1540

1541 1542 1543 1544 1545 1546 1547 1548
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1549
	addr = vm_mmap(obj->filp, 0, args->size,
1550 1551
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1552
	drm_gem_object_unreference_unlocked(obj);
1553 1554 1555 1556 1557 1558 1559 1560
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1579 1580
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1581
	struct drm_i915_private *dev_priv = dev->dev_private;
1582 1583 1584
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1585
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1586

1587 1588
	intel_runtime_pm_get(dev_priv);

1589 1590 1591 1592
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1593 1594 1595
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1596

C
Chris Wilson 已提交
1597 1598
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1599 1600 1601 1602 1603 1604 1605 1606 1607
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1608 1609
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1610
		ret = -EFAULT;
1611 1612 1613
		goto unlock;
	}

1614
	/* Now bind it into the GTT if needed */
1615
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1616 1617
	if (ret)
		goto unlock;
1618

1619 1620 1621
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1622

1623
	ret = i915_gem_object_get_fence(obj);
1624
	if (ret)
1625
		goto unpin;
1626

1627
	/* Finally, remap it using the new GTT offset */
1628 1629
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1630

1631
	if (!obj->fault_mappable) {
1632 1633 1634
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1635 1636
		int i;

1637
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1650
unpin:
B
Ben Widawsky 已提交
1651
	i915_gem_object_ggtt_unpin(obj);
1652
unlock:
1653
	mutex_unlock(&dev->struct_mutex);
1654
out:
1655
	switch (ret) {
1656
	case -EIO:
1657 1658 1659 1660 1661 1662 1663
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1664 1665 1666
			ret = VM_FAULT_SIGBUS;
			break;
		}
1667
	case -EAGAIN:
D
Daniel Vetter 已提交
1668 1669 1670 1671
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1672
		 */
1673 1674
	case 0:
	case -ERESTARTSYS:
1675
	case -EINTR:
1676 1677 1678 1679 1680
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1681 1682
		ret = VM_FAULT_NOPAGE;
		break;
1683
	case -ENOMEM:
1684 1685
		ret = VM_FAULT_OOM;
		break;
1686
	case -ENOSPC:
1687
	case -EFAULT:
1688 1689
		ret = VM_FAULT_SIGBUS;
		break;
1690
	default:
1691
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1692 1693
		ret = VM_FAULT_SIGBUS;
		break;
1694
	}
1695 1696 1697

	intel_runtime_pm_put(dev_priv);
	return ret;
1698 1699
}

1700 1701 1702 1703
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1704
 * Preserve the reservation of the mmapping with the DRM core code, but
1705 1706 1707 1708 1709 1710 1711 1712 1713
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1714
void
1715
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1716
{
1717 1718
	if (!obj->fault_mappable)
		return;
1719

1720 1721
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1722
	obj->fault_mappable = false;
1723 1724
}

1725 1726 1727 1728 1729 1730 1731 1732 1733
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1734
uint32_t
1735
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1736
{
1737
	uint32_t gtt_size;
1738 1739

	if (INTEL_INFO(dev)->gen >= 4 ||
1740 1741
	    tiling_mode == I915_TILING_NONE)
		return size;
1742 1743 1744

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1745
		gtt_size = 1024*1024;
1746
	else
1747
		gtt_size = 512*1024;
1748

1749 1750
	while (gtt_size < size)
		gtt_size <<= 1;
1751

1752
	return gtt_size;
1753 1754
}

1755 1756 1757 1758 1759
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1760
 * potential fence register mapping.
1761
 */
1762 1763 1764
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1765 1766 1767 1768 1769
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1770
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1771
	    tiling_mode == I915_TILING_NONE)
1772 1773
		return 4096;

1774 1775 1776 1777
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1778
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1779 1780
}

1781 1782 1783 1784 1785
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1786
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1787 1788
		return 0;

1789 1790
	dev_priv->mm.shrinker_no_lock_stealing = true;

1791 1792
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1793
		goto out;
1794 1795 1796 1797 1798 1799 1800 1801

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1802 1803 1804 1805 1806
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1807 1808
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1809
		goto out;
1810 1811

	i915_gem_shrink_all(dev_priv);
1812 1813 1814 1815 1816
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1817 1818 1819 1820 1821 1822 1823
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1824
static int
1825 1826
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1827
		  uint32_t handle, bool dumb,
1828
		  uint64_t *offset)
1829
{
1830
	struct drm_i915_private *dev_priv = dev->dev_private;
1831
	struct drm_i915_gem_object *obj;
1832 1833
	int ret;

1834
	ret = i915_mutex_lock_interruptible(dev);
1835
	if (ret)
1836
		return ret;
1837

1838
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1839
	if (&obj->base == NULL) {
1840 1841 1842
		ret = -ENOENT;
		goto unlock;
	}
1843

1844 1845 1846 1847 1848 1849 1850
	/*
	 * We don't allow dumb mmaps on objects created using another
	 * interface.
	 */
	WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
		  "Illegal dumb map of accelerated buffer.\n");

B
Ben Widawsky 已提交
1851
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1852
		ret = -E2BIG;
1853
		goto out;
1854 1855
	}

1856
	if (obj->madv != I915_MADV_WILLNEED) {
1857
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1858
		ret = -EFAULT;
1859
		goto out;
1860 1861
	}

1862 1863 1864
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1865

1866
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1867

1868
out:
1869
	drm_gem_object_unreference(&obj->base);
1870
unlock:
1871
	mutex_unlock(&dev->struct_mutex);
1872
	return ret;
1873 1874
}

1875 1876 1877 1878 1879 1880 1881 1882 1883
int
i915_gem_dumb_map_offset(struct drm_file *file,
			 struct drm_device *dev,
			 uint32_t handle,
			 uint64_t *offset)
{
	return i915_gem_mmap_gtt(file, dev, handle, true, offset);
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1905
	return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1906 1907
}

1908 1909 1910 1911 1912 1913
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
}

D
Daniel Vetter 已提交
1914 1915 1916
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1917
{
1918
	i915_gem_object_free_mmap_offset(obj);
1919

1920 1921
	if (obj->base.filp == NULL)
		return;
1922

D
Daniel Vetter 已提交
1923 1924 1925 1926 1927
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1928
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1929 1930
	obj->madv = __I915_MADV_PURGED;
}
1931

1932 1933 1934
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1935
{
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1950 1951
}

1952
static void
1953
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1954
{
1955 1956
	struct sg_page_iter sg_iter;
	int ret;
1957

1958
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1959

C
Chris Wilson 已提交
1960 1961 1962 1963 1964 1965
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1966
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1967 1968 1969
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1970
	if (i915_gem_object_needs_bit17_swizzle(obj))
1971 1972
		i915_gem_object_save_bit_17_swizzle(obj);

1973 1974
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1975

1976
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1977
		struct page *page = sg_page_iter_page(&sg_iter);
1978

1979
		if (obj->dirty)
1980
			set_page_dirty(page);
1981

1982
		if (obj->madv == I915_MADV_WILLNEED)
1983
			mark_page_accessed(page);
1984

1985
		page_cache_release(page);
1986
	}
1987
	obj->dirty = 0;
1988

1989 1990
	sg_free_table(obj->pages);
	kfree(obj->pages);
1991
}
C
Chris Wilson 已提交
1992

1993
int
1994 1995 1996 1997
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1998
	if (obj->pages == NULL)
1999 2000
		return 0;

2001 2002 2003
	if (obj->pages_pin_count)
		return -EBUSY;

2004
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2005

2006 2007 2008
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2009
	list_del(&obj->global_list);
2010

2011
	ops->put_pages(obj);
2012
	obj->pages = NULL;
2013

2014
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2015 2016 2017 2018

	return 0;
}

2019 2020 2021
unsigned long
i915_gem_shrink(struct drm_i915_private *dev_priv,
		long target, unsigned flags)
C
Chris Wilson 已提交
2022
{
2023 2024 2025 2026 2027 2028 2029 2030
	const struct {
		struct list_head *list;
		unsigned int bit;
	} phases[] = {
		{ &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
		{ &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
		{ NULL, 0 },
	}, *phase;
2031
	unsigned long count = 0;
C
Chris Wilson 已提交
2032

2033
	/*
2034
	 * As we may completely rewrite the (un)bound list whilst unbinding
2035 2036 2037
	 * (due to retiring requests) we have to strictly process only
	 * one element of the list at the time, and recheck the list
	 * on every iteration.
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	 *
	 * In particular, we must hold a reference whilst removing the
	 * object as we may end up waiting for and/or retiring the objects.
	 * This might release the final reference (held by the active list)
	 * and result in the object being freed from under us. This is
	 * similar to the precautions the eviction code must take whilst
	 * removing objects.
	 *
	 * Also note that although these lists do not hold a reference to
	 * the object we can safely grab one here: The final object
	 * unreferencing and the bound_list are both protected by the
	 * dev->struct_mutex and so we won't ever be able to observe an
	 * object on the bound_list with a reference count equals 0.
2051
	 */
2052
	for (phase = phases; phase->list; phase++) {
2053
		struct list_head still_in_list;
2054

2055 2056
		if ((flags & phase->bit) == 0)
			continue;
2057

2058
		INIT_LIST_HEAD(&still_in_list);
2059
		while (count < target && !list_empty(phase->list)) {
2060 2061
			struct drm_i915_gem_object *obj;
			struct i915_vma *vma, *v;
2062

2063
			obj = list_first_entry(phase->list,
2064 2065
					       typeof(*obj), global_list);
			list_move_tail(&obj->global_list, &still_in_list);
2066

2067 2068
			if (flags & I915_SHRINK_PURGEABLE &&
			    !i915_gem_object_is_purgeable(obj))
2069
				continue;
2070

2071
			drm_gem_object_reference(&obj->base);
2072

2073 2074 2075
			/* For the unbound phase, this should be a no-op! */
			list_for_each_entry_safe(vma, v,
						 &obj->vma_list, vma_link)
2076 2077
				if (i915_vma_unbind(vma))
					break;
2078

2079 2080 2081 2082 2083
			if (i915_gem_object_put_pages(obj) == 0)
				count += obj->base.size >> PAGE_SHIFT;

			drm_gem_object_unreference(&obj->base);
		}
2084
		list_splice(&still_in_list, phase->list);
C
Chris Wilson 已提交
2085 2086 2087 2088 2089
	}

	return count;
}

2090
static unsigned long
C
Chris Wilson 已提交
2091 2092 2093
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	i915_gem_evict_everything(dev_priv->dev);
2094 2095
	return i915_gem_shrink(dev_priv, LONG_MAX,
			       I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
D
Daniel Vetter 已提交
2096 2097
}

2098
static int
C
Chris Wilson 已提交
2099
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2100
{
C
Chris Wilson 已提交
2101
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2102 2103
	int page_count, i;
	struct address_space *mapping;
2104 2105
	struct sg_table *st;
	struct scatterlist *sg;
2106
	struct sg_page_iter sg_iter;
2107
	struct page *page;
2108
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2109
	gfp_t gfp;
2110

C
Chris Wilson 已提交
2111 2112 2113 2114 2115 2116 2117
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2118 2119 2120 2121
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2122
	page_count = obj->base.size / PAGE_SIZE;
2123 2124
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2125
		return -ENOMEM;
2126
	}
2127

2128 2129 2130 2131 2132
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2133
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2134
	gfp = mapping_gfp_mask(mapping);
2135
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2136
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2137 2138 2139
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2140 2141
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2142 2143 2144 2145 2146
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2147 2148 2149 2150 2151 2152 2153 2154
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2155
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2156 2157 2158
			if (IS_ERR(page))
				goto err_pages;
		}
2159 2160 2161 2162 2163 2164 2165 2166
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2167 2168 2169 2170 2171 2172 2173 2174 2175
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2176 2177 2178

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2179
	}
2180 2181 2182 2183
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2184 2185
	obj->pages = st;

2186
	if (i915_gem_object_needs_bit17_swizzle(obj))
2187 2188
		i915_gem_object_do_bit_17_swizzle(obj);

2189 2190 2191 2192
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2193 2194 2195
	return 0;

err_pages:
2196 2197
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2198
		page_cache_release(sg_page_iter_page(&sg_iter));
2199 2200
	sg_free_table(st);
	kfree(st);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2230
	if (obj->pages)
2231 2232
		return 0;

2233
	if (obj->madv != I915_MADV_WILLNEED) {
2234
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2235
		return -EFAULT;
2236 2237
	}

2238 2239
	BUG_ON(obj->pages_pin_count);

2240 2241 2242 2243
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2244
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2245
	return 0;
2246 2247
}

B
Ben Widawsky 已提交
2248
static void
2249
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2250
			       struct intel_engine_cs *ring)
2251
{
2252 2253
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2254

2255
	BUG_ON(ring == NULL);
2256 2257 2258 2259 2260

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2261 2262
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2263
	}
2264 2265

	/* Add a reference if we're newly entering the active list. */
2266 2267 2268
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2269
	}
2270

2271
	list_move_tail(&obj->ring_list, &ring->active_list);
2272

2273
	i915_gem_request_assign(&obj->last_read_req, req);
2274 2275
}

B
Ben Widawsky 已提交
2276
void i915_vma_move_to_active(struct i915_vma *vma,
2277
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2278 2279 2280 2281 2282
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2283 2284
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2285
{
2286
	struct i915_vma *vma;
2287

2288
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2289
	BUG_ON(!obj->active);
2290

2291 2292 2293
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2294
	}
2295

2296 2297
	intel_fb_obj_flush(obj, true);

2298
	list_del_init(&obj->ring_list);
2299

2300 2301
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2302 2303
	obj->base.write_domain = 0;

2304
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2305 2306 2307 2308 2309

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2310
}
2311

2312 2313 2314
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2315
	if (obj->last_read_req == NULL)
2316 2317
		return;

2318
	if (i915_gem_request_completed(obj->last_read_req, true))
2319 2320 2321
		i915_gem_object_move_to_inactive(obj);
}

2322
static int
2323
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2324
{
2325
	struct drm_i915_private *dev_priv = dev->dev_private;
2326
	struct intel_engine_cs *ring;
2327
	int ret, i, j;
2328

2329
	/* Carefully retire all requests without writing to the rings */
2330
	for_each_ring(ring, dev_priv, i) {
2331 2332 2333
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2334 2335
	}
	i915_gem_retire_requests(dev);
2336 2337

	/* Finally reset hw state */
2338
	for_each_ring(ring, dev_priv, i) {
2339
		intel_ring_init_seqno(ring, seqno);
2340

2341 2342
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2343
	}
2344

2345
	return 0;
2346 2347
}

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2374 2375
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2376
{
2377 2378 2379 2380
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2381
		int ret = i915_gem_init_seqno(dev, 0);
2382 2383
		if (ret)
			return ret;
2384

2385 2386
		dev_priv->next_seqno = 1;
	}
2387

2388
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2389
	return 0;
2390 2391
}

2392
int __i915_add_request(struct intel_engine_cs *ring,
2393
		       struct drm_file *file,
2394
		       struct drm_i915_gem_object *obj)
2395
{
2396
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2397
	struct drm_i915_gem_request *request;
2398
	struct intel_ringbuffer *ringbuf;
2399
	u32 request_ring_position, request_start;
2400 2401
	int ret;

2402
	request = ring->outstanding_lazy_request;
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
		struct intel_context *ctx = request->ctx;
		ringbuf = ctx->engine[ring->id].ringbuf;
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2413 2414 2415 2416 2417 2418 2419
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (i915.enable_execlists) {
		ret = logical_ring_flush_all_caches(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2429

2430 2431 2432 2433 2434
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2435
	request_ring_position = intel_ring_get_tail(ringbuf);
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445
	if (i915.enable_execlists) {
		ret = ring->emit_request(ringbuf);
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2446

2447
	request->head = request_start;
2448
	request->tail = request_ring_position;
2449 2450 2451 2452 2453 2454 2455

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2456
	request->batch_obj = obj;
2457

2458 2459 2460 2461 2462 2463 2464 2465
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2466

2467
	request->emitted_jiffies = jiffies;
2468
	list_add_tail(&request->list, &ring->request_list);
2469
	request->file_priv = NULL;
2470

C
Chris Wilson 已提交
2471 2472 2473
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2474
		spin_lock(&file_priv->mm.lock);
2475
		request->file_priv = file_priv;
2476
		list_add_tail(&request->client_list,
2477
			      &file_priv->mm.request_list);
2478
		spin_unlock(&file_priv->mm.lock);
2479
	}
2480

2481
	trace_i915_gem_request_add(request);
2482
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2483

2484
	i915_queue_hangcheck(ring->dev);
2485

2486 2487 2488 2489 2490
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2491

2492
	return 0;
2493 2494
}

2495 2496
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2497
{
2498
	struct drm_i915_file_private *file_priv = request->file_priv;
2499

2500 2501
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2502

2503
	spin_lock(&file_priv->mm.lock);
2504 2505
	list_del(&request->client_list);
	request->file_priv = NULL;
2506
	spin_unlock(&file_priv->mm.lock);
2507 2508
}

2509
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2510
				   const struct intel_context *ctx)
2511
{
2512
	unsigned long elapsed;
2513

2514 2515 2516
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2517 2518 2519
		return true;

	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2520
		if (!i915_gem_context_is_default(ctx)) {
2521
			DRM_DEBUG("context hanging too fast, banning!\n");
2522
			return true;
2523 2524 2525
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2526
			return true;
2527
		}
2528 2529 2530 2531 2532
	}

	return false;
}

2533
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2534
				  struct intel_context *ctx,
2535
				  const bool guilty)
2536
{
2537 2538 2539 2540
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2541

2542 2543 2544
	hs = &ctx->hang_stats;

	if (guilty) {
2545
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2546 2547 2548 2549
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2550 2551 2552
	}
}

2553 2554 2555 2556 2557
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2558 2559 2560 2561 2562 2563 2564 2565 2566
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2567 2568
	if (ctx) {
		if (i915.enable_execlists) {
2569
			struct intel_engine_cs *ring = req->ring;
2570

2571 2572 2573
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2574

2575 2576
		i915_gem_context_unreference(ctx);
	}
2577 2578

	kfree(req);
2579 2580
}

2581
struct drm_i915_gem_request *
2582
i915_gem_find_active_request(struct intel_engine_cs *ring)
2583
{
2584 2585 2586
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2587
		if (i915_gem_request_completed(request, false))
2588
			continue;
2589

2590
		return request;
2591
	}
2592 2593 2594 2595 2596

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2597
				       struct intel_engine_cs *ring)
2598 2599 2600 2601
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2602
	request = i915_gem_find_active_request(ring);
2603 2604 2605 2606 2607 2608

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2609
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2610 2611

	list_for_each_entry_continue(request, &ring->request_list, list)
2612
		i915_set_reset_status(dev_priv, request->ctx, false);
2613
}
2614

2615
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2616
					struct intel_engine_cs *ring)
2617
{
2618
	while (!list_empty(&ring->active_list)) {
2619
		struct drm_i915_gem_object *obj;
2620

2621 2622 2623
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2624

2625
		i915_gem_object_move_to_inactive(obj);
2626
	}
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
		struct intel_ctx_submit_request *submit_req;

		submit_req = list_first_entry(&ring->execlist_queue,
				struct intel_ctx_submit_request,
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
		i915_gem_context_unreference(submit_req->ctx);
		kfree(submit_req);
	}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2661

2662 2663
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2664 2665
}

2666
void i915_gem_restore_fences(struct drm_device *dev)
2667 2668 2669 2670
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2671
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2672
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2673

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2684 2685 2686
	}
}

2687
void i915_gem_reset(struct drm_device *dev)
2688
{
2689
	struct drm_i915_private *dev_priv = dev->dev_private;
2690
	struct intel_engine_cs *ring;
2691
	int i;
2692

2693 2694 2695 2696 2697 2698 2699 2700
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2701
	for_each_ring(ring, dev_priv, i)
2702
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2703

2704 2705
	i915_gem_context_reset(dev);

2706
	i915_gem_restore_fences(dev);
2707 2708 2709 2710 2711
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2712
void
2713
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2714
{
C
Chris Wilson 已提交
2715
	if (list_empty(&ring->request_list))
2716 2717
		return;

C
Chris Wilson 已提交
2718
	WARN_ON(i915_verify_lists(ring->dev));
2719

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2731
		if (!i915_gem_request_completed(obj->last_read_req, true))
2732 2733 2734 2735 2736 2737
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2738
	while (!list_empty(&ring->request_list)) {
2739
		struct drm_i915_gem_request *request;
2740
		struct intel_ringbuffer *ringbuf;
2741

2742
		request = list_first_entry(&ring->request_list,
2743 2744 2745
					   struct drm_i915_gem_request,
					   list);

2746
		if (!i915_gem_request_completed(request, true))
2747 2748
			break;

2749
		trace_i915_gem_request_retire(request);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

		/* This is one of the few common intersection points
		 * between legacy ringbuffer submission and execlists:
		 * we need to tell them apart in order to find the correct
		 * ringbuffer to which the request belongs to.
		 */
		if (i915.enable_execlists) {
			struct intel_context *ctx = request->ctx;
			ringbuf = ctx->engine[ring->id].ringbuf;
		} else
			ringbuf = ring->buffer;

2762 2763 2764 2765 2766
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2767
		ringbuf->last_retired_head = request->tail;
2768

2769
		i915_gem_free_request(request);
2770
	}
2771

2772 2773
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2774
		ring->irq_put(ring);
2775
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2776
	}
2777

C
Chris Wilson 已提交
2778
	WARN_ON(i915_verify_lists(ring->dev));
2779 2780
}

2781
bool
2782 2783
i915_gem_retire_requests(struct drm_device *dev)
{
2784
	struct drm_i915_private *dev_priv = dev->dev_private;
2785
	struct intel_engine_cs *ring;
2786
	bool idle = true;
2787
	int i;
2788

2789
	for_each_ring(ring, dev_priv, i) {
2790
		i915_gem_retire_requests_ring(ring);
2791
		idle &= list_empty(&ring->request_list);
2792 2793 2794 2795 2796 2797 2798 2799 2800
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2801 2802 2803 2804 2805 2806 2807 2808
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2809 2810
}

2811
static void
2812 2813
i915_gem_retire_work_handler(struct work_struct *work)
{
2814 2815 2816
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2817
	bool idle;
2818

2819
	/* Come back later if the device is busy... */
2820 2821 2822 2823
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2824
	}
2825
	if (!idle)
2826 2827
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2828
}
2829

2830 2831 2832 2833 2834 2835 2836
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2837 2838
}

2839 2840 2841 2842 2843 2844 2845 2846
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2847
	struct intel_engine_cs *ring;
2848 2849 2850
	int ret;

	if (obj->active) {
2851 2852
		ring = i915_gem_request_get_ring(obj->last_read_req);

2853
		ret = i915_gem_check_olr(obj->last_read_req);
2854 2855 2856
		if (ret)
			return ret;

2857
		i915_gem_retire_requests_ring(ring);
2858 2859 2860 2861 2862
	}

	return 0;
}

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2888
	struct drm_i915_private *dev_priv = dev->dev_private;
2889 2890
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2891
	struct drm_i915_gem_request *req;
2892
	unsigned reset_counter;
2893 2894
	int ret = 0;

2895 2896 2897
	if (args->flags != 0)
		return -EINVAL;

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2908 2909
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2910 2911 2912
	if (ret)
		goto out;

2913 2914
	if (!obj->active || !obj->last_read_req)
		goto out;
2915

2916
	req = obj->last_read_req;
2917 2918

	/* Do this after OLR check to make sure we make forward progress polling
2919
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
2920
	 */
2921
	if (args->timeout_ns <= 0) {
2922 2923 2924 2925 2926
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2927
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2928
	i915_gem_request_reference(req);
2929 2930
	mutex_unlock(&dev->struct_mutex);

2931 2932
	ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
				  file->driver_priv);
2933 2934 2935 2936
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2937 2938 2939 2940 2941 2942 2943

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2956 2957
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2958
		     struct intel_engine_cs *to)
2959
{
2960
	struct intel_engine_cs *from;
2961 2962 2963
	u32 seqno;
	int ret, idx;

2964 2965
	from = i915_gem_request_get_ring(obj->last_read_req);

2966 2967 2968
	if (from == NULL || to == from)
		return 0;

2969
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2970
		return i915_gem_object_wait_rendering(obj, false);
2971 2972 2973

	idx = intel_ring_sync_index(from, to);

2974
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2975 2976
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2977
	if (seqno <= from->semaphore.sync_seqno[idx])
2978 2979
		return 0;

2980
	ret = i915_gem_check_olr(obj->last_read_req);
2981 2982
	if (ret)
		return ret;
2983

2984
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2985
	ret = to->semaphore.sync_to(to, from, seqno);
2986
	if (!ret)
2987
		/* We use last_read_req because sync_to()
2988 2989 2990
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2991 2992
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
2993

2994
	return ret;
2995 2996
}

2997 2998 2999 3000 3001 3002 3003
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3004 3005 3006
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3007 3008 3009
	/* Wait for any direct GTT access to complete */
	mb();

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3021
int i915_vma_unbind(struct i915_vma *vma)
3022
{
3023
	struct drm_i915_gem_object *obj = vma->obj;
3024
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3025
	int ret;
3026

3027
	if (list_empty(&vma->vma_link))
3028 3029
		return 0;

3030 3031 3032 3033
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3034

B
Ben Widawsky 已提交
3035
	if (vma->pin_count)
3036
		return -EBUSY;
3037

3038 3039
	BUG_ON(obj->pages == NULL);

3040
	ret = i915_gem_object_finish_gpu(obj);
3041
	if (ret)
3042 3043 3044 3045 3046 3047
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3048 3049
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3050
		i915_gem_object_finish_gtt(obj);
3051

3052 3053 3054 3055 3056
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3057

3058
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3059

3060 3061
	vma->unbind_vma(vma);

3062
	list_del_init(&vma->mm_list);
3063 3064 3065 3066 3067 3068 3069 3070 3071
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3072

B
Ben Widawsky 已提交
3073 3074 3075 3076
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3077
	 * no more VMAs exist. */
3078
	if (list_empty(&obj->vma_list)) {
3079 3080 3081 3082
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3083
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3084
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3085
	}
3086

3087 3088 3089 3090 3091 3092
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3093
	return 0;
3094 3095
}

3096
int i915_gpu_idle(struct drm_device *dev)
3097
{
3098
	struct drm_i915_private *dev_priv = dev->dev_private;
3099
	struct intel_engine_cs *ring;
3100
	int ret, i;
3101 3102

	/* Flush everything onto the inactive list. */
3103
	for_each_ring(ring, dev_priv, i) {
3104 3105 3106 3107 3108
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3109

3110
		ret = intel_ring_idle(ring);
3111 3112 3113
		if (ret)
			return ret;
	}
3114

3115
	return 0;
3116 3117
}

3118 3119
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3120
{
3121
	struct drm_i915_private *dev_priv = dev->dev_private;
3122 3123
	int fence_reg;
	int fence_pitch_shift;
3124

3125 3126 3127 3128 3129 3130 3131 3132
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3147
	if (obj) {
3148
		u32 size = i915_gem_obj_ggtt_size(obj);
3149
		uint64_t val;
3150

3151
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3152
				 0xfffff000) << 32;
3153
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3154
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3155 3156 3157
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3158

3159 3160 3161 3162 3163 3164 3165 3166 3167
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3168 3169
}

3170 3171
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3172
{
3173
	struct drm_i915_private *dev_priv = dev->dev_private;
3174
	u32 val;
3175

3176
	if (obj) {
3177
		u32 size = i915_gem_obj_ggtt_size(obj);
3178 3179
		int pitch_val;
		int tile_width;
3180

3181
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3182
		     (size & -size) != size ||
3183 3184 3185
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3196
		val = i915_gem_obj_ggtt_offset(obj);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3212 3213
}

3214 3215
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3216
{
3217
	struct drm_i915_private *dev_priv = dev->dev_private;
3218 3219
	uint32_t val;

3220
	if (obj) {
3221
		u32 size = i915_gem_obj_ggtt_size(obj);
3222
		uint32_t pitch_val;
3223

3224
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3225
		     (size & -size) != size ||
3226 3227 3228
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3229

3230 3231
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3232

3233
		val = i915_gem_obj_ggtt_offset(obj);
3234 3235 3236 3237 3238 3239 3240
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3241

3242 3243 3244 3245
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3246 3247 3248 3249 3250
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3251 3252 3253
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3254 3255 3256 3257 3258 3259 3260 3261
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3262 3263 3264 3265
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3266 3267 3268 3269 3270 3271
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3272 3273 3274 3275 3276 3277

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3278 3279
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3290
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3291 3292 3293
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3294 3295

	if (enable) {
3296
		obj->fence_reg = reg;
3297 3298 3299 3300 3301 3302 3303
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3304
	obj->fence_dirty = false;
3305 3306
}

3307
static int
3308
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3309
{
3310
	if (obj->last_fenced_req) {
3311
		int ret = i915_wait_request(obj->last_fenced_req);
3312 3313
		if (ret)
			return ret;
3314

3315
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3316 3317 3318 3319 3320 3321 3322 3323
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3324
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3325
	struct drm_i915_fence_reg *fence;
3326 3327
	int ret;

3328
	ret = i915_gem_object_wait_fence(obj);
3329 3330 3331
	if (ret)
		return ret;

3332 3333
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3334

3335 3336
	fence = &dev_priv->fence_regs[obj->fence_reg];

3337 3338 3339
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3340
	i915_gem_object_fence_lost(obj);
3341
	i915_gem_object_update_fence(obj, fence, false);
3342 3343 3344 3345 3346

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3347
i915_find_fence_reg(struct drm_device *dev)
3348 3349
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3350
	struct drm_i915_fence_reg *reg, *avail;
3351
	int i;
3352 3353

	/* First try to find a free reg */
3354
	avail = NULL;
3355 3356 3357
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3358
			return reg;
3359

3360
		if (!reg->pin_count)
3361
			avail = reg;
3362 3363
	}

3364
	if (avail == NULL)
3365
		goto deadlock;
3366 3367

	/* None available, try to steal one or wait for a user to finish */
3368
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3369
		if (reg->pin_count)
3370 3371
			continue;

C
Chris Wilson 已提交
3372
		return reg;
3373 3374
	}

3375 3376 3377 3378 3379 3380
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3381 3382
}

3383
/**
3384
 * i915_gem_object_get_fence - set up fencing for an object
3385 3386 3387 3388 3389 3390 3391 3392 3393
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3394 3395
 *
 * For an untiled surface, this removes any existing fence.
3396
 */
3397
int
3398
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3399
{
3400
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3401
	struct drm_i915_private *dev_priv = dev->dev_private;
3402
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3403
	struct drm_i915_fence_reg *reg;
3404
	int ret;
3405

3406 3407 3408
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3409
	if (obj->fence_dirty) {
3410
		ret = i915_gem_object_wait_fence(obj);
3411 3412 3413
		if (ret)
			return ret;
	}
3414

3415
	/* Just update our place in the LRU if our fence is getting reused. */
3416 3417
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3418
		if (!obj->fence_dirty) {
3419 3420 3421 3422 3423
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3424 3425 3426
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3427
		reg = i915_find_fence_reg(dev);
3428 3429
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3430

3431 3432 3433
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3434
			ret = i915_gem_object_wait_fence(old);
3435 3436 3437
			if (ret)
				return ret;

3438
			i915_gem_object_fence_lost(old);
3439
		}
3440
	} else
3441 3442
		return 0;

3443 3444
	i915_gem_object_update_fence(obj, reg, enable);

3445
	return 0;
3446 3447
}

3448
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3449 3450
				     unsigned long cache_level)
{
3451
	struct drm_mm_node *gtt_space = &vma->node;
3452 3453
	struct drm_mm_node *other;

3454 3455 3456 3457 3458 3459
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3460
	 */
3461
	if (vma->vm->mm.color_adjust == NULL)
3462 3463
		return true;

3464
	if (!drm_mm_node_allocated(gtt_space))
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3481 3482 3483
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3484
static struct i915_vma *
3485 3486 3487
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
			   unsigned alignment,
3488 3489
			   uint64_t flags,
			   const struct i915_ggtt_view *view)
3490
{
3491
	struct drm_device *dev = obj->base.dev;
3492
	struct drm_i915_private *dev_priv = dev->dev_private;
3493
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3494 3495 3496
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3497
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3498
	struct i915_vma *vma;
3499
	int ret;
3500

3501 3502 3503 3504 3505
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3506
						     obj->tiling_mode, true);
3507
	unfenced_alignment =
3508
		i915_gem_get_gtt_alignment(dev,
3509 3510
					   obj->base.size,
					   obj->tiling_mode, false);
3511

3512
	if (alignment == 0)
3513
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3514
						unfenced_alignment;
3515
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3516
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3517
		return ERR_PTR(-EINVAL);
3518 3519
	}

3520
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3521

3522 3523 3524
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3525 3526
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3527
			  obj->base.size,
3528
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3529
			  end);
3530
		return ERR_PTR(-E2BIG);
3531 3532
	}

3533
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3534
	if (ret)
3535
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3536

3537 3538
	i915_gem_object_pin_pages(obj);

3539
	vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3540
	if (IS_ERR(vma))
3541
		goto err_unpin;
B
Ben Widawsky 已提交
3542

3543
search_free:
3544
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3545
						  size, alignment,
3546 3547
						  obj->cache_level,
						  start, end,
3548 3549
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3550
	if (ret) {
3551
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3552 3553 3554
					       obj->cache_level,
					       start, end,
					       flags);
3555 3556
		if (ret == 0)
			goto search_free;
3557

3558
		goto err_free_vma;
3559
	}
3560
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3561
		ret = -EINVAL;
3562
		goto err_remove_node;
3563 3564
	}

3565
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3566
	if (ret)
3567
		goto err_remove_node;
3568

3569 3570 3571 3572 3573 3574
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3575
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3576
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3577

3578
	return vma;
B
Ben Widawsky 已提交
3579

3580 3581
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3582
err_remove_node:
3583
	drm_mm_remove_node(&vma->node);
3584
err_free_vma:
B
Ben Widawsky 已提交
3585
	i915_gem_vma_destroy(vma);
3586
	vma = ERR_PTR(ret);
3587
err_unpin:
B
Ben Widawsky 已提交
3588
	i915_gem_object_unpin_pages(obj);
3589
	return vma;
3590 3591
}

3592
bool
3593 3594
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3595 3596 3597 3598 3599
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3600
	if (obj->pages == NULL)
3601
		return false;
3602

3603 3604 3605 3606
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3607
	if (obj->stolen || obj->phys_handle)
3608
		return false;
3609

3610 3611 3612 3613 3614 3615 3616 3617
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3618
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3619
		return false;
3620

C
Chris Wilson 已提交
3621
	trace_i915_gem_object_clflush(obj);
3622
	drm_clflush_sg(obj->pages);
3623 3624

	return true;
3625 3626 3627 3628
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3629
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3630
{
C
Chris Wilson 已提交
3631 3632
	uint32_t old_write_domain;

3633
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3634 3635
		return;

3636
	/* No actual flushing is required for the GTT write domain.  Writes
3637 3638
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3639 3640 3641 3642
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3643
	 */
3644 3645
	wmb();

3646 3647
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3648

3649 3650
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3651
	trace_i915_gem_object_change_domain(obj,
3652
					    obj->base.read_domains,
C
Chris Wilson 已提交
3653
					    old_write_domain);
3654 3655 3656 3657
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3658 3659
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
				       bool force)
3660
{
C
Chris Wilson 已提交
3661
	uint32_t old_write_domain;
3662

3663
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3664 3665
		return;

3666 3667 3668
	if (i915_gem_clflush_object(obj, force))
		i915_gem_chipset_flush(obj->base.dev);

3669 3670
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3671

3672 3673
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3674
	trace_i915_gem_object_change_domain(obj,
3675
					    obj->base.read_domains,
C
Chris Wilson 已提交
3676
					    old_write_domain);
3677 3678
}

3679 3680 3681 3682 3683 3684
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3685
int
3686
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3687
{
C
Chris Wilson 已提交
3688
	uint32_t old_write_domain, old_read_domains;
3689
	struct i915_vma *vma;
3690
	int ret;
3691

3692 3693 3694
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3695
	ret = i915_gem_object_wait_rendering(obj, !write);
3696 3697 3698
	if (ret)
		return ret;

3699
	i915_gem_object_retire(obj);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3713
	i915_gem_object_flush_cpu_write_domain(obj, false);
C
Chris Wilson 已提交
3714

3715 3716 3717 3718 3719 3720 3721
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3722 3723
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3724

3725 3726 3727
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3728 3729
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3730
	if (write) {
3731 3732 3733
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3734 3735
	}

3736 3737 3738
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
3739 3740 3741 3742
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3743
	/* And bump the LRU for this access */
3744 3745
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3746
		list_move_tail(&vma->mm_list,
3747
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3748

3749 3750 3751
	return 0;
}

3752 3753 3754
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3755
	struct drm_device *dev = obj->base.dev;
3756
	struct i915_vma *vma, *next;
3757 3758 3759 3760 3761
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3762
	if (i915_gem_obj_is_pinned(obj)) {
3763 3764 3765 3766
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3767
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3768
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3769
			ret = i915_vma_unbind(vma);
3770 3771 3772
			if (ret)
				return ret;
		}
3773 3774
	}

3775
	if (i915_gem_obj_bound_any(obj)) {
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3786
		if (INTEL_INFO(dev)->gen < 6) {
3787 3788 3789 3790 3791
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3792
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3793 3794 3795 3796 3797 3798
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3799 3800
	}

3801 3802 3803 3804 3805
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

	if (cpu_write_needs_clflush(obj)) {
3806 3807 3808 3809 3810 3811 3812 3813
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
3814
		i915_gem_object_retire(obj);
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	return 0;
}

B
Ben Widawsky 已提交
3831 3832
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3833
{
B
Ben Widawsky 已提交
3834
	struct drm_i915_gem_caching *args = data;
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3848 3849 3850 3851 3852 3853
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3854 3855 3856 3857
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3858 3859 3860 3861
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3862 3863 3864 3865 3866 3867 3868

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3869 3870
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3871
{
B
Ben Widawsky 已提交
3872
	struct drm_i915_gem_caching *args = data;
3873 3874 3875 3876
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3877 3878
	switch (args->caching) {
	case I915_CACHING_NONE:
3879 3880
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3881
	case I915_CACHING_CACHED:
3882 3883
		level = I915_CACHE_LLC;
		break;
3884 3885 3886
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3887 3888 3889 3890
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3891 3892 3893 3894
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3909 3910
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3911 3912 3913 3914 3915 3916
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3917
	/* There are 2 sources that pin objects:
3918 3919 3920 3921
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3922
	 * are only called outside of the reservation path.
3923
	 */
D
Daniel Vetter 已提交
3924
	return vma->pin_count;
3925 3926
}

3927
/*
3928 3929 3930
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3931 3932
 */
int
3933 3934
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3935
				     struct intel_engine_cs *pipelined)
3936
{
3937
	u32 old_read_domains, old_write_domain;
3938
	bool was_pin_display;
3939 3940
	int ret;

3941
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3942 3943
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3944 3945 3946
			return ret;
	}

3947 3948 3949
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3950
	was_pin_display = obj->pin_display;
3951 3952
	obj->pin_display = true;

3953 3954 3955 3956 3957 3958 3959 3960 3961
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3962 3963
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3964
	if (ret)
3965
		goto err_unpin_display;
3966

3967 3968 3969 3970
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3971
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3972
	if (ret)
3973
		goto err_unpin_display;
3974

3975
	i915_gem_object_flush_cpu_write_domain(obj, true);
3976

3977
	old_write_domain = obj->base.write_domain;
3978
	old_read_domains = obj->base.read_domains;
3979 3980 3981 3982

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3983
	obj->base.write_domain = 0;
3984
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3985 3986 3987

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3988
					    old_write_domain);
3989 3990

	return 0;
3991 3992

err_unpin_display:
3993 3994
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3995 3996 3997 3998 3999 4000
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
4001
	i915_gem_object_ggtt_unpin(obj);
4002
	obj->pin_display = is_pin_display(obj);
4003 4004
}

4005
int
4006
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4007
{
4008 4009
	int ret;

4010
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4011 4012
		return 0;

4013
	ret = i915_gem_object_wait_rendering(obj, false);
4014 4015 4016
	if (ret)
		return ret;

4017 4018
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4019
	return 0;
4020 4021
}

4022 4023 4024 4025 4026 4027
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4028
int
4029
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4030
{
C
Chris Wilson 已提交
4031
	uint32_t old_write_domain, old_read_domains;
4032 4033
	int ret;

4034 4035 4036
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4037
	ret = i915_gem_object_wait_rendering(obj, !write);
4038 4039 4040
	if (ret)
		return ret;

4041
	i915_gem_object_retire(obj);
4042
	i915_gem_object_flush_gtt_write_domain(obj);
4043

4044 4045
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4046

4047
	/* Flush the CPU cache if it's still invalid. */
4048
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4049
		i915_gem_clflush_object(obj, false);
4050

4051
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4052 4053 4054 4055 4056
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4057
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4058 4059 4060 4061 4062

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4063 4064
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4065
	}
4066

4067 4068 4069
	if (write)
		intel_fb_obj_invalidate(obj, NULL);

C
Chris Wilson 已提交
4070 4071 4072 4073
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4074 4075 4076
	return 0;
}

4077 4078 4079
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4080 4081 4082 4083
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4084 4085 4086
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4087
static int
4088
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4089
{
4090 4091
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4092
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4093
	struct drm_i915_gem_request *request, *target = NULL;
4094
	unsigned reset_counter;
4095
	int ret;
4096

4097 4098 4099 4100 4101 4102 4103
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4104

4105
	spin_lock(&file_priv->mm.lock);
4106
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4107 4108
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4109

4110
		target = request;
4111
	}
4112
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4113 4114
	if (target)
		i915_gem_request_reference(target);
4115
	spin_unlock(&file_priv->mm.lock);
4116

4117
	if (target == NULL)
4118
		return 0;
4119

4120
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4121 4122
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4123

4124 4125 4126 4127
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4128 4129 4130
	return ret;
}

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4150
int
4151 4152 4153 4154 4155
i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
			 struct i915_address_space *vm,
			 uint32_t alignment,
			 uint64_t flags,
			 const struct i915_ggtt_view *view)
4156
{
4157
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4158
	struct i915_vma *vma;
4159
	unsigned bound;
4160 4161
	int ret;

4162 4163 4164
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4165
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4166
		return -EINVAL;
4167

4168 4169 4170
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4171
	vma = i915_gem_obj_to_vma_view(obj, vm, view);
4172
	if (vma) {
B
Ben Widawsky 已提交
4173 4174 4175
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4176
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4177
			WARN(vma->pin_count,
4178
			     "bo is already pinned with incorrect alignment:"
4179
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4180
			     " obj->map_and_fenceable=%d\n",
4181 4182
			     i915_gem_obj_offset_view(obj, vm, view->type),
			     alignment,
4183
			     !!(flags & PIN_MAPPABLE),
4184
			     obj->map_and_fenceable);
4185
			ret = i915_vma_unbind(vma);
4186 4187
			if (ret)
				return ret;
4188 4189

			vma = NULL;
4190 4191 4192
		}
	}

4193
	bound = vma ? vma->bound : 0;
4194
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4195 4196
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
						 flags, view);
4197 4198
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4199
	}
J
Jesse Barnes 已提交
4200

4201 4202 4203 4204 4205
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4206

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

		mappable = (vma->node.start + obj->base.size <=
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4230
	vma->pin_count++;
4231 4232
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4233 4234 4235 4236 4237

	return 0;
}

void
B
Ben Widawsky 已提交
4238
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4239
{
B
Ben Widawsky 已提交
4240
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4241

B
Ben Widawsky 已提交
4242 4243 4244 4245 4246
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4247
		obj->pin_mappable = false;
4248 4249
}

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4276 4277
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4278
		    struct drm_file *file)
4279 4280
{
	struct drm_i915_gem_busy *args = data;
4281
	struct drm_i915_gem_object *obj;
4282 4283
	int ret;

4284
	ret = i915_mutex_lock_interruptible(dev);
4285
	if (ret)
4286
		return ret;
4287

4288
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4289
	if (&obj->base == NULL) {
4290 4291
		ret = -ENOENT;
		goto unlock;
4292
	}
4293

4294 4295 4296 4297
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4298
	 */
4299
	ret = i915_gem_object_flush_active(obj);
4300

4301
	args->busy = obj->active;
4302 4303
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4304
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4305 4306
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4307
	}
4308

4309
	drm_gem_object_unreference(&obj->base);
4310
unlock:
4311
	mutex_unlock(&dev->struct_mutex);
4312
	return ret;
4313 4314 4315 4316 4317 4318
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4319
	return i915_gem_ring_throttle(dev, file_priv);
4320 4321
}

4322 4323 4324 4325
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4326
	struct drm_i915_private *dev_priv = dev->dev_private;
4327
	struct drm_i915_gem_madvise *args = data;
4328
	struct drm_i915_gem_object *obj;
4329
	int ret;
4330 4331 4332 4333 4334 4335 4336 4337 4338

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4339 4340 4341 4342
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4343
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4344
	if (&obj->base == NULL) {
4345 4346
		ret = -ENOENT;
		goto unlock;
4347 4348
	}

B
Ben Widawsky 已提交
4349
	if (i915_gem_obj_is_pinned(obj)) {
4350 4351
		ret = -EINVAL;
		goto out;
4352 4353
	}

4354 4355 4356 4357 4358 4359 4360 4361 4362
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4363 4364
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4365

C
Chris Wilson 已提交
4366 4367
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4368 4369
		i915_gem_object_truncate(obj);

4370
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4371

4372
out:
4373
	drm_gem_object_unreference(&obj->base);
4374
unlock:
4375
	mutex_unlock(&dev->struct_mutex);
4376
	return ret;
4377 4378
}

4379 4380
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4381
{
4382
	INIT_LIST_HEAD(&obj->global_list);
4383
	INIT_LIST_HEAD(&obj->ring_list);
4384
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4385
	INIT_LIST_HEAD(&obj->vma_list);
4386
	INIT_LIST_HEAD(&obj->batch_pool_list);
4387

4388 4389
	obj->ops = ops;

4390 4391 4392 4393 4394 4395
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4396 4397 4398 4399 4400
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4401 4402
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4403
{
4404
	struct drm_i915_gem_object *obj;
4405
	struct address_space *mapping;
D
Daniel Vetter 已提交
4406
	gfp_t mask;
4407

4408
	obj = i915_gem_object_alloc(dev);
4409 4410
	if (obj == NULL)
		return NULL;
4411

4412
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4413
		i915_gem_object_free(obj);
4414 4415
		return NULL;
	}
4416

4417 4418 4419 4420 4421 4422 4423
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4424
	mapping = file_inode(obj->base.filp)->i_mapping;
4425
	mapping_set_gfp_mask(mapping, mask);
4426

4427
	i915_gem_object_init(obj, &i915_gem_object_ops);
4428

4429 4430
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4431

4432 4433
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4449 4450
	trace_i915_gem_object_create(obj);

4451
	return obj;
4452 4453
}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4478
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4479
{
4480
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4481
	struct drm_device *dev = obj->base.dev;
4482
	struct drm_i915_private *dev_priv = dev->dev_private;
4483
	struct i915_vma *vma, *next;
4484

4485 4486
	intel_runtime_pm_get(dev_priv);

4487 4488
	trace_i915_gem_object_destroy(obj);

4489
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4490 4491 4492 4493
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4494 4495
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4496

4497 4498
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4499

4500
			WARN_ON(i915_vma_unbind(vma));
4501

4502 4503
			dev_priv->mm.interruptible = was_interruptible;
		}
4504 4505
	}

B
Ben Widawsky 已提交
4506 4507 4508 4509 4510
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4511 4512
	WARN_ON(obj->frontbuffer_bits);

4513 4514 4515 4516 4517
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4518 4519
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4520
	if (discard_backing_storage(obj))
4521
		obj->madv = I915_MADV_DONTNEED;
4522
	i915_gem_object_put_pages(obj);
4523
	i915_gem_object_free_mmap_offset(obj);
4524

4525 4526
	BUG_ON(obj->pages);

4527 4528
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4529

4530 4531 4532
	if (obj->ops->release)
		obj->ops->release(obj);

4533 4534
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4535

4536
	kfree(obj->bit_17);
4537
	i915_gem_object_free(obj);
4538 4539

	intel_runtime_pm_put(dev_priv);
4540 4541
}

4542 4543 4544
struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
					  struct i915_address_space *vm,
					  const struct i915_ggtt_view *view)
4545 4546 4547
{
	struct i915_vma *vma;
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4548
		if (vma->vm == vm && vma->ggtt_view.type == view->type)
4549 4550 4551 4552 4553
			return vma;

	return NULL;
}

B
Ben Widawsky 已提交
4554 4555
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4556
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4557
	WARN_ON(vma->node.allocated);
4558 4559 4560 4561 4562

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4563 4564
	vm = vma->vm;

4565 4566
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4567

4568
	list_del(&vma->vma_link);
4569

B
Ben Widawsky 已提交
4570 4571 4572
	kfree(vma);
}

4573 4574 4575 4576
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4577
	struct intel_engine_cs *ring;
4578 4579 4580
	int i;

	for_each_ring(ring, dev_priv, i)
4581
		dev_priv->gt.stop_ring(ring);
4582 4583
}

4584
int
4585
i915_gem_suspend(struct drm_device *dev)
4586
{
4587
	struct drm_i915_private *dev_priv = dev->dev_private;
4588
	int ret = 0;
4589

4590
	mutex_lock(&dev->struct_mutex);
4591
	ret = i915_gpu_idle(dev);
4592
	if (ret)
4593
		goto err;
4594

4595
	i915_gem_retire_requests(dev);
4596

4597
	/* Under UMS, be paranoid and evict. */
4598
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
4599
		i915_gem_evict_everything(dev);
4600

4601
	i915_gem_stop_ringbuffers(dev);
4602 4603 4604
	mutex_unlock(&dev->struct_mutex);

	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4605
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4606
	flush_delayed_work(&dev_priv->mm.idle_work);
4607

4608 4609 4610 4611 4612
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4613
	return 0;
4614 4615 4616 4617

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4618 4619
}

4620
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4621
{
4622
	struct drm_device *dev = ring->dev;
4623
	struct drm_i915_private *dev_priv = dev->dev_private;
4624 4625
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4626
	int i, ret;
B
Ben Widawsky 已提交
4627

4628
	if (!HAS_L3_DPF(dev) || !remap_info)
4629
		return 0;
B
Ben Widawsky 已提交
4630

4631 4632 4633
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4634

4635 4636 4637 4638 4639
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4640
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4641 4642 4643
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4644 4645
	}

4646
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4647

4648
	return ret;
B
Ben Widawsky 已提交
4649 4650
}

4651 4652
void i915_gem_init_swizzling(struct drm_device *dev)
{
4653
	struct drm_i915_private *dev_priv = dev->dev_private;
4654

4655
	if (INTEL_INFO(dev)->gen < 5 ||
4656 4657 4658 4659 4660 4661
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4662 4663 4664
	if (IS_GEN5(dev))
		return;

4665 4666
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4667
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4668
	else if (IS_GEN7(dev))
4669
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4670 4671
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4672 4673
	else
		BUG();
4674
}
D
Daniel Vetter 已提交
4675

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4719
int i915_gem_init_rings(struct drm_device *dev)
4720
{
4721
	struct drm_i915_private *dev_priv = dev->dev_private;
4722
	int ret;
4723

4724
	ret = intel_init_render_ring_buffer(dev);
4725
	if (ret)
4726
		return ret;
4727 4728

	if (HAS_BSD(dev)) {
4729
		ret = intel_init_bsd_ring_buffer(dev);
4730 4731
		if (ret)
			goto cleanup_render_ring;
4732
	}
4733

4734
	if (intel_enable_blt(dev)) {
4735 4736 4737 4738 4739
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4740 4741 4742 4743 4744 4745
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4746 4747 4748 4749 4750
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4751

4752
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4753
	if (ret)
4754
		goto cleanup_bsd2_ring;
4755 4756 4757

	return 0;

4758 4759
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4760 4761
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4775
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4776
	struct intel_engine_cs *ring;
4777
	int ret, i;
4778 4779 4780 4781

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
4782
	if (dev_priv->ellc_size)
4783
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4784

4785 4786 4787
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4788

4789
	if (HAS_PCH_NOP(dev)) {
4790 4791 4792 4793 4794 4795 4796 4797 4798
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4799 4800
	}

4801 4802
	i915_gem_init_swizzling(dev);

4803 4804 4805 4806 4807 4808 4809 4810
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4811 4812 4813 4814 4815
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
			return ret;
	}
4816

4817 4818 4819
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4820
	/*
4821 4822 4823 4824 4825
	 * XXX: Contexts should only be initialized once. Doing a switch to the
	 * default context switch however is something we'd like to do after
	 * reset or thaw (the latter may not actually be necessary for HW, but
	 * goes with our code better). Context switching requires rings (for
	 * the do_switch), but before enabling PPGTT. So don't move this.
4826
	 */
4827
	ret = i915_gem_context_enable(dev_priv);
4828
	if (ret && ret != -EIO) {
4829
		DRM_ERROR("Context enable failed %d\n", ret);
4830
		i915_gem_cleanup_ringbuffer(dev);
4831 4832 4833 4834 4835 4836 4837 4838

		return ret;
	}

	ret = i915_ppgtt_init_hw(dev);
	if (ret && ret != -EIO) {
		DRM_ERROR("PPGTT enable failed %d\n", ret);
		i915_gem_cleanup_ringbuffer(dev);
4839
	}
D
Daniel Vetter 已提交
4840

4841
	return ret;
4842 4843
}

4844 4845 4846 4847 4848
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4849 4850 4851
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4852
	mutex_lock(&dev->struct_mutex);
4853 4854 4855

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4856 4857 4858
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4859 4860 4861
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4862 4863 4864 4865 4866
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4867 4868 4869 4870 4871
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4872 4873
	}

4874
	ret = i915_gem_init_userptr(dev);
4875 4876
	if (ret)
		goto out_unlock;
4877

4878
	i915_gem_init_global_gtt(dev);
4879

4880
	ret = i915_gem_context_init(dev);
4881 4882
	if (ret)
		goto out_unlock;
4883

D
Daniel Vetter 已提交
4884 4885
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4886
		goto out_unlock;
D
Daniel Vetter 已提交
4887

4888
	ret = i915_gem_init_hw(dev);
4889 4890 4891 4892 4893 4894 4895 4896
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4897
	}
4898 4899

out_unlock:
4900
	mutex_unlock(&dev->struct_mutex);
4901

4902
	return ret;
4903 4904
}

4905 4906 4907
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4908
	struct drm_i915_private *dev_priv = dev->dev_private;
4909
	struct intel_engine_cs *ring;
4910
	int i;
4911

4912
	for_each_ring(ring, dev_priv, i)
4913
		dev_priv->gt.cleanup_ring(ring);
4914 4915
}

4916
static void
4917
init_ring_lists(struct intel_engine_cs *ring)
4918 4919 4920 4921 4922
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4923 4924
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4925
{
4926 4927
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4928 4929 4930 4931
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4932
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4933 4934
}

4935 4936 4937
void
i915_gem_load(struct drm_device *dev)
{
4938
	struct drm_i915_private *dev_priv = dev->dev_private;
4939 4940 4941 4942 4943 4944 4945
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4946

B
Ben Widawsky 已提交
4947 4948 4949
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4950
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4951 4952
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4953
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4954 4955
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4956
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4957
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4958 4959
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4960 4961
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4962
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4963

4964
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4965
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4966 4967
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4968 4969
	}

4970 4971
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4972
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4973 4974
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4975

4976 4977 4978
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4979 4980 4981 4982
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4983
	/* Initialize fence registers to zero */
4984 4985
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4986

4987
	i915_gem_detect_bit_6_swizzle(dev);
4988
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4989

4990 4991
	dev_priv->mm.interruptible = true;

4992 4993 4994 4995
	dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
	dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
	dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.shrinker);
4996 4997 4998

	dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
	register_oom_notifier(&dev_priv->mm.oom_notifier);
4999

5000 5001
	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);

5002
	mutex_init(&dev_priv->fb_tracking.lock);
5003
}
5004

5005
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5006
{
5007
	struct drm_i915_file_private *file_priv = file->driver_priv;
5008

5009 5010
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

5011 5012 5013 5014
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5015
	spin_lock(&file_priv->mm.lock);
5016 5017 5018 5019 5020 5021 5022 5023 5024
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5025
	spin_unlock(&file_priv->mm.lock);
5026
}
5027

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5040
	int ret;
5041 5042 5043 5044 5045 5046 5047 5048 5049

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5050
	file_priv->file = file;
5051 5052 5053 5054 5055 5056

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5057 5058 5059
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5060

5061
	return ret;
5062 5063
}

5064 5065 5066 5067 5068 5069 5070 5071 5072
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
{
	if (!mutex_is_locked(mutex))
		return false;

#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
	return mutex->owner == task;
#else
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
	return false;
#endif
}

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
{
	if (!mutex_trylock(&dev->struct_mutex)) {
		if (!mutex_is_locked_by(&dev->struct_mutex, current))
			return false;

		if (to_i915(dev)->mm.shrinker_no_lock_stealing)
			return false;

		*unlock = false;
	} else
		*unlock = true;

	return true;
}

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
static int num_vma_bound(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;
	int count = 0;

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
			count++;

	return count;
}

5131
static unsigned long
5132
i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5133
{
5134
	struct drm_i915_private *dev_priv =
5135
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5136
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
5137
	struct drm_i915_gem_object *obj;
5138
	unsigned long count;
5139
	bool unlock;
5140

5141 5142
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return 0;
5143

5144
	count = 0;
5145
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5146
		if (obj->pages_pin_count == 0)
5147
			count += obj->base.size >> PAGE_SHIFT;
5148 5149

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5150 5151
		if (!i915_gem_obj_is_pinned(obj) &&
		    obj->pages_pin_count == num_vma_bound(obj))
5152
			count += obj->base.size >> PAGE_SHIFT;
5153
	}
5154

5155 5156
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5157

5158
	return count;
5159
}
5160 5161

/* All the new VM stuff */
5162 5163 5164
unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
				       struct i915_address_space *vm,
				       enum i915_ggtt_view_type view)
5165 5166 5167 5168
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5169
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5170 5171

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5172
		if (vma->vm == vm && vma->ggtt_view.type == view)
5173 5174 5175
			return vma->node.start;

	}
5176 5177
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5178 5179 5180
	return -1;
}

5181 5182 5183
bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
			     struct i915_address_space *vm,
			     enum i915_ggtt_view_type view)
5184 5185 5186 5187
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5188 5189 5190
		if (vma->vm == vm &&
		    vma->ggtt_view.type == view &&
		    drm_mm_node_allocated(&vma->node))
5191 5192 5193 5194 5195 5196 5197
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5198
	struct i915_vma *vma;
5199

5200 5201
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5213
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223

	BUG_ON(list_empty(&o->vma_list));

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == vm)
			return vma->node.size;

	return 0;
}

5224
static unsigned long
5225
i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5226 5227
{
	struct drm_i915_private *dev_priv =
5228
		container_of(shrinker, struct drm_i915_private, mm.shrinker);
5229 5230
	struct drm_device *dev = dev_priv->dev;
	unsigned long freed;
5231
	bool unlock;
5232

5233 5234
	if (!i915_gem_shrinker_lock(dev, &unlock))
		return SHRINK_STOP;
5235

5236 5237 5238 5239 5240
	freed = i915_gem_shrink(dev_priv,
				sc->nr_to_scan,
				I915_SHRINK_BOUND |
				I915_SHRINK_UNBOUND |
				I915_SHRINK_PURGEABLE);
5241
	if (freed < sc->nr_to_scan)
5242 5243 5244 5245
		freed += i915_gem_shrink(dev_priv,
					 sc->nr_to_scan - freed,
					 I915_SHRINK_BOUND |
					 I915_SHRINK_UNBOUND);
5246 5247
	if (unlock)
		mutex_unlock(&dev->struct_mutex);
5248

5249 5250
	return freed;
}
5251

5252 5253 5254 5255 5256 5257 5258 5259
static int
i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
{
	struct drm_i915_private *dev_priv =
		container_of(nb, struct drm_i915_private, mm.oom_notifier);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj;
	unsigned long timeout = msecs_to_jiffies(5000) + 1;
5260
	unsigned long pinned, bound, unbound, freed_pages;
5261 5262 5263
	bool was_interruptible;
	bool unlock;

5264
	while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5265
		schedule_timeout_killable(1);
5266 5267 5268
		if (fatal_signal_pending(current))
			return NOTIFY_DONE;
	}
5269 5270 5271 5272 5273 5274 5275 5276
	if (timeout == 0) {
		pr_err("Unable to purge GPU memory due lock contention.\n");
		return NOTIFY_DONE;
	}

	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5277
	freed_pages = i915_gem_shrink_all(dev_priv);
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307

	dev_priv->mm.interruptible = was_interruptible;

	/* Because we may be allocating inside our own driver, we cannot
	 * assert that there are no objects with pinned pages that are not
	 * being pointed to by hardware.
	 */
	unbound = bound = pinned = 0;
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		if (!obj->base.filp) /* not backed by a freeable object */
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			unbound += obj->base.size;
	}
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		if (!obj->base.filp)
			continue;

		if (obj->pages_pin_count)
			pinned += obj->base.size;
		else
			bound += obj->base.size;
	}

	if (unlock)
		mutex_unlock(&dev->struct_mutex);

5308 5309 5310
	if (freed_pages || unbound || bound)
		pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
			freed_pages << PAGE_SHIFT, pinned);
5311 5312 5313 5314 5315
	if (unbound || bound)
		pr_err("%lu and %lu bytes still available in the "
		       "bound and unbound GPU page lists.\n",
		       bound, unbound);

5316
	*(unsigned long *)ptr += freed_pages;
5317 5318 5319
	return NOTIFY_DONE;
}

5320 5321
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
{
5322
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5323 5324
	struct i915_vma *vma;

5325 5326 5327
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == ggtt &&
		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5328
			return vma;
5329

5330
	return NULL;
5331
}