i915_gem.c 124.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

301 302 303 304 305 306 307 308 309 310 311 312 313
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 * @obj: i915 gem object
 * @readonly: waiting for just read access or read-write access
 */
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct reservation_object *resv;
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	if (!readonly) {
		active = obj->last_read;
		active_mask = i915_gem_object_get_active(obj);
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

	for_each_active(active_mask, idx) {
		int ret;

		ret = i915_gem_active_wait(&active[idx],
					   &obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv) {
		long err;

		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
							  MAX_SCHEDULE_TIMEOUT);
		if (err < 0)
			return err;
	}

	return 0;
}

361 362 363
/* A nonblocking variant of the above wait. Must be called prior to
 * acquiring the mutex for the object, as the object state may change
 * during this call. A reference must be held by the caller for the object.
364 365
 */
static __must_check int
366 367 368
__unsafe_wait_rendering(struct drm_i915_gem_object *obj,
			struct intel_rps_client *rps,
			bool readonly)
369 370 371
{
	struct i915_gem_active *active;
	unsigned long active_mask;
372
	int idx;
373

374
	active_mask = __I915_BO_ACTIVE(obj);
375 376 377 378 379 380 381 382 383 384
	if (!active_mask)
		return 0;

	if (!readonly) {
		active = obj->last_read;
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

385 386
	for_each_active(active_mask, idx) {
		int ret;
387

388 389 390 391
		ret = i915_gem_active_wait_unlocked(&active[idx],
						    true, NULL, rps);
		if (ret)
			return ret;
392 393
	}

394
	return 0;
395 396 397 398 399 400 401 402 403
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

404 405 406 407 408
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
409
	int ret;
410 411 412 413 414 415 416 417 418 419 420 421 422 423

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
424 425 426 427 428
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
429 430 431
	if (ret)
		return ret;

432 433 434 435 436 437
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
438 439 440
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
441 442 443 444 445 446 447 448 449
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
450
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
451
	int ret = 0;
452 453 454 455 456 457 458

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
459

460
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 462 463 464 465 466 467 468 469 470
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
471 472 473 474
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
475 476
	}

477
	drm_clflush_virt_range(vaddr, args->size);
478
	i915_gem_chipset_flush(to_i915(dev));
479 480

out:
481
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482
	return ret;
483 484
}

485 486
void *i915_gem_object_alloc(struct drm_device *dev)
{
487
	struct drm_i915_private *dev_priv = to_i915(dev);
488
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 490 491 492
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
493
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494
	kmem_cache_free(dev_priv->objects, obj);
495 496
}

497 498 499 500 501
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
502
{
503
	struct drm_i915_gem_object *obj;
504 505
	int ret;
	u32 handle;
506

507
	size = roundup(size, PAGE_SIZE);
508 509
	if (size == 0)
		return -EINVAL;
510 511

	/* Allocate the new object */
512
	obj = i915_gem_object_create(dev, size);
513 514
	if (IS_ERR(obj))
		return PTR_ERR(obj);
515

516
	ret = drm_gem_handle_create(file, &obj->base, &handle);
517
	/* drop reference from allocate - handle holds it now */
518
	i915_gem_object_put_unlocked(obj);
519 520
	if (ret)
		return ret;
521

522
	*handle_p = handle;
523 524 525
	return 0;
}

526 527 528 529 530 531
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
532
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 534
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
535
			       args->size, &args->handle);
536 537 538 539
}

/**
 * Creates a new mm object and returns a handle to it.
540 541 542
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
543 544 545 546 547 548
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
549

550
	return i915_gem_create(file, dev,
551
			       args->size, &args->handle);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

580
static inline int
581 582
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

606 607 608 609 610 611
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
612
				    unsigned int *needs_clflush)
613 614 615 616 617
{
	int ret;

	*needs_clflush = 0;

618 619
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
620

621 622 623 624
	ret = i915_gem_object_wait_rendering(obj, true);
	if (ret)
		return ret;

625 626 627 628 629 630
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

631 632
	i915_gem_object_flush_gtt_write_domain(obj);

633 634 635 636 637 638
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
639 640
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
641 642 643

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
644 645 646
		if (ret)
			goto err_unpin;

647
		*needs_clflush = 0;
648 649
	}

650
	/* return with the pages pinned */
651
	return 0;
652 653 654 655

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;

671 672 673 674 675 676
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

677 678
	i915_gem_object_flush_gtt_write_domain(obj);

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
696 697 698
		if (ret)
			goto err_unpin;

699 700 701 702 703 704 705 706
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
707
	/* return with the pages pinned */
708
	return 0;
709 710 711 712

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
713 714
}

715 716 717
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
718
static int
719 720 721 722 723 724 725
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

726
	if (unlikely(page_do_bit17_swizzling))
727 728 729 730 731 732 733 734 735 736 737
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

738
	return ret ? -EFAULT : 0;
739 740
}

741 742 743 744
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
745
	if (unlikely(swizzled)) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

763 764 765 766 767 768 769 770 771 772 773 774
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
775 776 777
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
778 779 780 781 782 783 784 785 786 787 788

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

789
	return ret ? - EFAULT : 0;
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
819
	struct drm_i915_private *dev_priv = to_i915(dev);
820
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
821
	struct i915_vma *vma;
822 823 824 825 826 827
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

C
Chris Wilson 已提交
828
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
829 830 831 832 833 834 835 836 837
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
838
	if (IS_ERR(vma)) {
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
		ret = fault_in_multipages_writeable(user_data, remain);
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
		if (slow_user_access(ggtt->mappable, page_base,
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
926
		i915_vma_unpin(vma);
927 928 929 930 931
	}
out:
	return ret;
}

932
static int
933 934 935 936
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
937
{
938
	char __user *user_data;
939
	ssize_t remain;
940
	loff_t offset;
941
	int shmem_page_offset, page_length, ret = 0;
942
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943
	int prefaulted = 0;
944
	int needs_clflush = 0;
945
	struct sg_page_iter sg_iter;
946

947
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948 949 950
	if (ret)
		return ret;

951 952
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
953
	offset = args->offset;
954
	remain = args->size;
955

956 957
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
958
		struct page *page = sg_page_iter_page(&sg_iter);
959 960 961 962

		if (remain <= 0)
			break;

963 964 965 966 967
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
968
		shmem_page_offset = offset_in_page(offset);
969 970 971 972
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

973 974 975
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

976 977 978 979 980
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
981 982 983

		mutex_unlock(&dev->struct_mutex);

984
		if (likely(!i915.prefault_disable) && !prefaulted) {
985
			ret = fault_in_multipages_writeable(user_data, remain);
986 987 988 989 990 991 992
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
993

994 995 996
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
997

998
		mutex_lock(&dev->struct_mutex);
999 1000

		if (ret)
1001 1002
			goto out;

1003
next_page:
1004
		remain -= page_length;
1005
		user_data += page_length;
1006 1007 1008
		offset += page_length;
	}

1009
out:
1010
	i915_gem_obj_finish_shmem_access(obj);
1011

1012 1013 1014
	return ret;
}

1015 1016
/**
 * Reads data from the object referenced by handle.
1017 1018 1019
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1020 1021 1022 1023 1024
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025
		     struct drm_file *file)
1026 1027
{
	struct drm_i915_gem_pread *args = data;
1028
	struct drm_i915_gem_object *obj;
1029
	int ret = 0;
1030

1031 1032 1033 1034
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1035
		       u64_to_user_ptr(args->data_ptr),
1036 1037 1038
		       args->size))
		return -EFAULT;

1039
	obj = i915_gem_object_lookup(file, args->handle);
1040 1041
	if (!obj)
		return -ENOENT;
1042

1043
	/* Bounds check source.  */
1044 1045
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1046
		ret = -EINVAL;
1047
		goto err;
C
Chris Wilson 已提交
1048 1049
	}

C
Chris Wilson 已提交
1050 1051
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1052 1053 1054 1055 1056 1057 1058 1059
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1060
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1061

1062
	/* pread for non shmem backed objects */
1063 1064
	if (ret == -EFAULT || ret == -ENODEV) {
		intel_runtime_pm_get(to_i915(dev));
1065 1066
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);
1067 1068
		intel_runtime_pm_put(to_i915(dev));
	}
1069

1070
	i915_gem_object_put(obj);
1071
	mutex_unlock(&dev->struct_mutex);
1072 1073 1074 1075 1076

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1077
	return ret;
1078 1079
}

1080 1081
/* This is the fast write path which cannot handle
 * page faults in the source data
1082
 */
1083 1084 1085 1086 1087 1088

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1089
{
1090 1091
	void __iomem *vaddr_atomic;
	void *vaddr;
1092
	unsigned long unwritten;
1093

P
Peter Zijlstra 已提交
1094
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095 1096 1097
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098
						      user_data, length);
P
Peter Zijlstra 已提交
1099
	io_mapping_unmap_atomic(vaddr_atomic);
1100
	return unwritten;
1101 1102
}

1103 1104 1105
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1106
 * @i915: i915 device private data
1107 1108 1109
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1110
 */
1111
static int
1112
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113
			 struct drm_i915_gem_object *obj,
1114
			 struct drm_i915_gem_pwrite *args,
1115
			 struct drm_file *file)
1116
{
1117
	struct i915_ggtt *ggtt = &i915->ggtt;
1118
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1119
	struct i915_vma *vma;
1120 1121
	struct drm_mm_node node;
	uint64_t remain, offset;
1122
	char __user *user_data;
1123
	int ret;
1124 1125
	bool hit_slow_path = false;

1126
	if (i915_gem_object_is_tiled(obj))
1127
		return -EFAULT;
D
Daniel Vetter 已提交
1128

C
Chris Wilson 已提交
1129
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130
				       PIN_MAPPABLE | PIN_NONBLOCK);
1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
		ret = i915_gem_object_put_fence(obj);
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1140
	if (IS_ERR(vma)) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1153 1154 1155 1156 1157

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1158
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
	obj->dirty = true;
1160

1161 1162 1163 1164
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1165 1166
		/* Operation in this page
		 *
1167 1168 1169
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1170
		 */
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1184
		/* If we get a fault while copying data, then (presumably) our
1185 1186
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1187 1188
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1189
		 */
1190
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1191
				    page_offset, user_data, page_length)) {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
			if (slow_user_access(ggtt->mappable,
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1204
		}
1205

1206 1207 1208
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1209 1210
	}

1211
out_flush:
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1225
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1226
out_unpin:
1227 1228 1229 1230 1231 1232 1233 1234
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
				       node.start, node.size,
				       true);
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1235
		i915_vma_unpin(vma);
1236
	}
D
Daniel Vetter 已提交
1237
out:
1238
	return ret;
1239 1240
}

1241 1242 1243 1244
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1245
static int
1246 1247 1248 1249 1250
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1251
{
1252
	char *vaddr;
1253
	int ret;
1254

1255
	if (unlikely(page_do_bit17_swizzling))
1256
		return -EINVAL;
1257

1258 1259 1260 1261
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1262 1263
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1264 1265 1266 1267
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1268

1269
	return ret ? -EFAULT : 0;
1270 1271
}

1272 1273
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1274
static int
1275 1276 1277 1278 1279
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1280
{
1281 1282
	char *vaddr;
	int ret;
1283

1284
	vaddr = kmap(page);
1285
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1286 1287 1288
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1289 1290
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1291 1292
						user_data,
						page_length);
1293 1294 1295 1296 1297
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1298 1299 1300
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1301
	kunmap(page);
1302

1303
	return ret ? -EFAULT : 0;
1304 1305 1306
}

static int
1307 1308 1309 1310
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1311 1312
{
	ssize_t remain;
1313 1314
	loff_t offset;
	char __user *user_data;
1315
	int shmem_page_offset, page_length, ret = 0;
1316
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1317
	int hit_slowpath = 0;
1318
	unsigned int needs_clflush;
1319
	struct sg_page_iter sg_iter;
1320

1321
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1322 1323 1324
	if (ret)
		return ret;

1325 1326
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1327
	offset = args->offset;
1328
	remain = args->size;
1329

1330 1331
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1332
		struct page *page = sg_page_iter_page(&sg_iter);
1333
		int partial_cacheline_write;
1334

1335 1336 1337
		if (remain <= 0)
			break;

1338 1339 1340 1341 1342
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1343
		shmem_page_offset = offset_in_page(offset);
1344 1345 1346 1347 1348

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1349 1350 1351
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1352
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1353 1354 1355
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1356 1357 1358
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1359 1360 1361
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1362
					needs_clflush & CLFLUSH_AFTER);
1363 1364
		if (ret == 0)
			goto next_page;
1365 1366 1367

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1368 1369 1370
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1371
					needs_clflush & CLFLUSH_AFTER);
1372

1373
		mutex_lock(&dev->struct_mutex);
1374 1375

		if (ret)
1376 1377
			goto out;

1378
next_page:
1379
		remain -= page_length;
1380
		user_data += page_length;
1381
		offset += page_length;
1382 1383
	}

1384
out:
1385
	i915_gem_obj_finish_shmem_access(obj);
1386

1387
	if (hit_slowpath) {
1388 1389 1390 1391 1392
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1393
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1394
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1395
			if (i915_gem_clflush_object(obj, obj->pin_display))
1396
				needs_clflush |= CLFLUSH_AFTER;
1397
		}
1398
	}
1399

1400
	if (needs_clflush & CLFLUSH_AFTER)
1401
		i915_gem_chipset_flush(to_i915(dev));
1402

1403
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1404
	return ret;
1405 1406 1407 1408
}

/**
 * Writes data to the object referenced by handle.
1409 1410 1411
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1412 1413 1414 1415 1416
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1417
		      struct drm_file *file)
1418
{
1419
	struct drm_i915_private *dev_priv = to_i915(dev);
1420
	struct drm_i915_gem_pwrite *args = data;
1421
	struct drm_i915_gem_object *obj;
1422 1423 1424 1425 1426 1427
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1428
		       u64_to_user_ptr(args->data_ptr),
1429 1430 1431
		       args->size))
		return -EFAULT;

1432
	if (likely(!i915.prefault_disable)) {
1433
		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1434 1435 1436 1437
						   args->size);
		if (ret)
			return -EFAULT;
	}
1438

1439
	obj = i915_gem_object_lookup(file, args->handle);
1440 1441
	if (!obj)
		return -ENOENT;
1442

1443
	/* Bounds check destination. */
1444 1445
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1446
		ret = -EINVAL;
1447
		goto err;
C
Chris Wilson 已提交
1448 1449
	}

C
Chris Wilson 已提交
1450 1451
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1462
	ret = -EFAULT;
1463 1464 1465 1466 1467 1468
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1469 1470
	if (!i915_gem_object_has_struct_page(obj) ||
	    cpu_write_needs_clflush(obj)) {
1471
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
D
Daniel Vetter 已提交
1472 1473 1474
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1475
	}
1476

1477
	if (ret == -EFAULT || ret == -ENOSPC) {
1478 1479
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1480
		else
1481
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1482
	}
1483

1484
	i915_gem_object_put(obj);
1485
	mutex_unlock(&dev->struct_mutex);
1486 1487
	intel_runtime_pm_put(dev_priv);

1488
	return ret;
1489 1490 1491 1492 1493 1494

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1495 1496
}

1497
static inline enum fb_op_origin
1498 1499 1500 1501 1502 1503
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
	       ORIGIN_GTT : ORIGIN_CPU;
}

1504
/**
1505 1506
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1507 1508 1509
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1510 1511 1512
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1513
			  struct drm_file *file)
1514 1515
{
	struct drm_i915_gem_set_domain *args = data;
1516
	struct drm_i915_gem_object *obj;
1517 1518
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1519 1520
	int ret;

1521
	/* Only handle setting domains to types used by the CPU. */
1522
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1523 1524 1525 1526 1527 1528 1529 1530
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1531
	obj = i915_gem_object_lookup(file, args->handle);
1532 1533
	if (!obj)
		return -ENOENT;
1534

1535 1536 1537 1538
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1539 1540 1541 1542 1543
	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1544
	if (ret)
1545
		goto err;
1546

1547
	if (read_domains & I915_GEM_DOMAIN_GTT)
1548
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1549
	else
1550
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1551

1552
	if (write_domain != 0)
1553
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1554

1555
	i915_gem_object_put(obj);
1556 1557
	mutex_unlock(&dev->struct_mutex);
	return ret;
1558 1559 1560 1561

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1562 1563 1564 1565
}

/**
 * Called when user space has done writes to this buffer
1566 1567 1568
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1569 1570 1571
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1572
			 struct drm_file *file)
1573 1574
{
	struct drm_i915_gem_sw_finish *args = data;
1575
	struct drm_i915_gem_object *obj;
1576
	int err = 0;
1577

1578
	obj = i915_gem_object_lookup(file, args->handle);
1579 1580
	if (!obj)
		return -ENOENT;
1581 1582

	/* Pinned buffers may be scanout, so flush the cache */
1583 1584 1585 1586 1587 1588 1589
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1590

1591 1592
	i915_gem_object_put_unlocked(obj);
	return err;
1593 1594 1595
}

/**
1596 1597 1598 1599 1600
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1601 1602 1603
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1614 1615 1616
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1617
		    struct drm_file *file)
1618 1619
{
	struct drm_i915_gem_mmap *args = data;
1620
	struct drm_i915_gem_object *obj;
1621 1622
	unsigned long addr;

1623 1624 1625
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1626
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1627 1628
		return -ENODEV;

1629 1630
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1631
		return -ENOENT;
1632

1633 1634 1635
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1636
	if (!obj->base.filp) {
1637
		i915_gem_object_put_unlocked(obj);
1638 1639 1640
		return -EINVAL;
	}

1641
	addr = vm_mmap(obj->base.filp, 0, args->size,
1642 1643
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1644 1645 1646 1647
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1648
		if (down_write_killable(&mm->mmap_sem)) {
1649
			i915_gem_object_put_unlocked(obj);
1650 1651
			return -EINTR;
		}
1652 1653 1654 1655 1656 1657 1658
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1659 1660

		/* This may race, but that's ok, it only gets set */
1661
		WRITE_ONCE(obj->has_wc_mmap, true);
1662
	}
1663
	i915_gem_object_put_unlocked(obj);
1664 1665 1666 1667 1668 1669 1670 1671
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1672 1673
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1674
 * @area: CPU VMA in question
1675
 * @vmf: fault info
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
C
Chris Wilson 已提交
1688
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1689
{
C
Chris Wilson 已提交
1690
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1691
	struct drm_device *dev = obj->base.dev;
1692 1693
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1694
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1695
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1696
	struct i915_vma *vma;
1697 1698
	pgoff_t page_offset;
	unsigned long pfn;
1699
	int ret;
1700

1701
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1702
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1703 1704
		PAGE_SHIFT;

C
Chris Wilson 已提交
1705 1706
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1707
	/* Try to flush the object off the GPU first without holding the lock.
1708
	 * Upon acquiring the lock, we will perform our sanity checks and then
1709 1710 1711
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1712
	ret = __unsafe_wait_rendering(obj, NULL, !write);
1713
	if (ret)
1714 1715 1716 1717 1718 1719 1720
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1721

1722 1723
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1724
		ret = -EFAULT;
1725
		goto err_unlock;
1726 1727
	}

1728
	/* Use a partial view if the object is bigger than the aperture. */
1729
	if (obj->base.size >= ggtt->mappable_end &&
1730
	    !i915_gem_object_is_tiled(obj)) {
1731
		static const unsigned int chunk_size = 256; // 1 MiB
1732

1733 1734 1735 1736 1737 1738
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
C
Chris Wilson 已提交
1739
			      (area->vm_end - area->vm_start) / PAGE_SIZE -
1740 1741 1742 1743
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
C
Chris Wilson 已提交
1744 1745 1746
	vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1747
		goto err_unlock;
C
Chris Wilson 已提交
1748
	}
1749

1750 1751
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1752
		goto err_unpin;
1753

1754
	ret = i915_gem_object_get_fence(obj);
1755
	if (ret)
1756
		goto err_unpin;
1757

1758
	/* Finally, remap it using the new GTT offset */
1759
	pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1760
	pfn >>= PAGE_SHIFT;
1761

1762 1763 1764 1765 1766 1767
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
C
Chris Wilson 已提交
1768
		unsigned long base = area->vm_start +
1769 1770
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1771

1772
		for (i = 0; i < view.params.partial.size; i++) {
C
Chris Wilson 已提交
1773 1774 1775
			ret = vm_insert_pfn(area,
					    base + i * PAGE_SIZE,
					    pfn + i);
1776 1777 1778 1779 1780
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1781 1782
	} else {
		if (!obj->fault_mappable) {
C
Chris Wilson 已提交
1783 1784 1785 1786 1787
			unsigned long size =
				min_t(unsigned long,
				      area->vm_end - area->vm_start,
				      obj->base.size) >> PAGE_SHIFT;
			unsigned long base = area->vm_start;
1788 1789
			int i;

C
Chris Wilson 已提交
1790 1791 1792
			for (i = 0; i < size; i++) {
				ret = vm_insert_pfn(area,
						    base + i * PAGE_SIZE,
1793 1794 1795 1796 1797 1798 1799
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
C
Chris Wilson 已提交
1800
			ret = vm_insert_pfn(area,
1801 1802 1803
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1804
err_unpin:
C
Chris Wilson 已提交
1805
	__i915_vma_unpin(vma);
1806
err_unlock:
1807
	mutex_unlock(&dev->struct_mutex);
1808 1809 1810
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1811
	switch (ret) {
1812
	case -EIO:
1813 1814 1815 1816 1817 1818 1819
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1820 1821 1822
			ret = VM_FAULT_SIGBUS;
			break;
		}
1823
	case -EAGAIN:
D
Daniel Vetter 已提交
1824 1825 1826 1827
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1828
		 */
1829 1830
	case 0:
	case -ERESTARTSYS:
1831
	case -EINTR:
1832 1833 1834 1835 1836
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1837 1838
		ret = VM_FAULT_NOPAGE;
		break;
1839
	case -ENOMEM:
1840 1841
		ret = VM_FAULT_OOM;
		break;
1842
	case -ENOSPC:
1843
	case -EFAULT:
1844 1845
		ret = VM_FAULT_SIGBUS;
		break;
1846
	default:
1847
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1848 1849
		ret = VM_FAULT_SIGBUS;
		break;
1850
	}
1851
	return ret;
1852 1853
}

1854 1855 1856 1857
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1858
 * Preserve the reservation of the mmapping with the DRM core code, but
1859 1860 1861 1862 1863 1864 1865 1866 1867
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1868
void
1869
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1870
{
1871 1872 1873 1874 1875 1876
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
	 */
	lockdep_assert_held(&obj->base.dev->struct_mutex);

1877 1878
	if (!obj->fault_mappable)
		return;
1879

1880 1881
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();

1892
	obj->fault_mappable = false;
1893 1894
}

1895 1896 1897 1898 1899 1900 1901 1902 1903
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1904 1905
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1906
 * @dev_priv: i915 device
1907 1908 1909 1910 1911 1912
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1913 1914
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1915
{
1916
	u64 ggtt_size;
1917

1918 1919
	GEM_BUG_ON(size == 0);

1920
	if (INTEL_GEN(dev_priv) >= 4 ||
1921 1922
	    tiling_mode == I915_TILING_NONE)
		return size;
1923 1924

	/* Previous chips need a power-of-two fence region when tiling */
1925
	if (IS_GEN3(dev_priv))
1926
		ggtt_size = 1024*1024;
1927
	else
1928
		ggtt_size = 512*1024;
1929

1930 1931
	while (ggtt_size < size)
		ggtt_size <<= 1;
1932

1933
	return ggtt_size;
1934 1935
}

1936
/**
1937
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1938
 * @dev_priv: i915 device
1939 1940
 * @size: object size
 * @tiling_mode: tiling mode
1941
 * @fenced: is fenced alignment required or not
1942
 *
1943
 * Return the required global GTT alignment for an object, taking into account
1944
 * potential fence register mapping.
1945
 */
1946
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1947
				int tiling_mode, bool fenced)
1948
{
1949 1950
	GEM_BUG_ON(size == 0);

1951 1952 1953 1954
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1955
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1956
	    tiling_mode == I915_TILING_NONE)
1957 1958
		return 4096;

1959 1960 1961 1962
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1963
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1964 1965
}

1966 1967
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1968
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1969
	int err;
1970

1971 1972 1973
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
1974

1975 1976 1977
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
1978
	 */
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	err = i915_gem_wait_for_idle(dev_priv, true);
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1989

1990
	return err;
1991 1992 1993 1994 1995 1996 1997
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1998
int
1999 2000
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2001
		  uint32_t handle,
2002
		  uint64_t *offset)
2003
{
2004
	struct drm_i915_gem_object *obj;
2005 2006
	int ret;

2007
	obj = i915_gem_object_lookup(file, handle);
2008 2009
	if (!obj)
		return -ENOENT;
2010

2011
	ret = i915_gem_object_create_mmap_offset(obj);
2012 2013
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2014

2015
	i915_gem_object_put_unlocked(obj);
2016
	return ret;
2017 2018
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2040
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2041 2042
}

D
Daniel Vetter 已提交
2043 2044 2045
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2046
{
2047
	i915_gem_object_free_mmap_offset(obj);
2048

2049 2050
	if (obj->base.filp == NULL)
		return;
2051

D
Daniel Vetter 已提交
2052 2053 2054 2055 2056
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2057
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2058 2059
	obj->madv = __I915_MADV_PURGED;
}
2060

2061 2062 2063
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2064
{
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2077
	mapping = obj->base.filp->f_mapping,
2078
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2079 2080
}

2081
static void
2082
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2083
{
2084 2085
	struct sgt_iter sgt_iter;
	struct page *page;
2086
	int ret;
2087

2088
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2089

C
Chris Wilson 已提交
2090
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2091
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2092 2093 2094
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2095
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2096 2097 2098
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2099 2100
	i915_gem_gtt_finish_object(obj);

2101
	if (i915_gem_object_needs_bit17_swizzle(obj))
2102 2103
		i915_gem_object_save_bit_17_swizzle(obj);

2104 2105
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2106

2107
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2108
		if (obj->dirty)
2109
			set_page_dirty(page);
2110

2111
		if (obj->madv == I915_MADV_WILLNEED)
2112
			mark_page_accessed(page);
2113

2114
		put_page(page);
2115
	}
2116
	obj->dirty = 0;
2117

2118 2119
	sg_free_table(obj->pages);
	kfree(obj->pages);
2120
}
C
Chris Wilson 已提交
2121

2122
int
2123 2124 2125 2126
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2127
	if (obj->pages == NULL)
2128 2129
		return 0;

2130 2131 2132
	if (obj->pages_pin_count)
		return -EBUSY;

2133
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2134

2135 2136 2137
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2138
	list_del(&obj->global_list);
2139

2140
	if (obj->mapping) {
2141 2142 2143 2144 2145
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2146
		else
2147 2148
			kunmap(kmap_to_page(ptr));

2149 2150 2151
		obj->mapping = NULL;
	}

2152
	ops->put_pages(obj);
2153
	obj->pages = NULL;
2154

2155
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2156 2157 2158 2159

	return 0;
}

2160
static int
C
Chris Wilson 已提交
2161
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2162
{
2163
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2164 2165
	int page_count, i;
	struct address_space *mapping;
2166 2167
	struct sg_table *st;
	struct scatterlist *sg;
2168
	struct sgt_iter sgt_iter;
2169
	struct page *page;
2170
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2171
	int ret;
C
Chris Wilson 已提交
2172
	gfp_t gfp;
2173

C
Chris Wilson 已提交
2174 2175 2176 2177 2178 2179 2180
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2181 2182 2183 2184
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2185
	page_count = obj->base.size / PAGE_SIZE;
2186 2187
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2188
		return -ENOMEM;
2189
	}
2190

2191 2192 2193 2194 2195
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2196
	mapping = obj->base.filp->f_mapping;
2197
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2198
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2199 2200 2201
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2202 2203
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2204 2205 2206 2207 2208
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2209 2210 2211 2212 2213 2214 2215 2216
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2217
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2218 2219
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2220
				goto err_pages;
I
Imre Deak 已提交
2221
			}
C
Chris Wilson 已提交
2222
		}
2223 2224 2225 2226 2227 2228 2229 2230
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2231 2232 2233 2234 2235 2236 2237 2238 2239
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2240 2241 2242

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2243
	}
2244 2245 2246 2247
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2248 2249
	obj->pages = st;

I
Imre Deak 已提交
2250 2251 2252 2253
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2254
	if (i915_gem_object_needs_bit17_swizzle(obj))
2255 2256
		i915_gem_object_do_bit_17_swizzle(obj);

2257
	if (i915_gem_object_is_tiled(obj) &&
2258 2259 2260
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2261 2262 2263
	return 0;

err_pages:
2264
	sg_mark_end(sg);
2265 2266
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2267 2268
	sg_free_table(st);
	kfree(st);
2269 2270 2271 2272 2273 2274 2275 2276 2277

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2278 2279 2280 2281
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2294
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2295 2296 2297
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2298
	if (obj->pages)
2299 2300
		return 0;

2301
	if (obj->madv != I915_MADV_WILLNEED) {
2302
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2303
		return -EFAULT;
2304 2305
	}

2306 2307
	BUG_ON(obj->pages_pin_count);

2308 2309 2310 2311
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2312
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2313 2314 2315 2316

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2317
	return 0;
2318 2319
}

2320
/* The 'mapping' part of i915_gem_object_pin_map() below */
2321 2322
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2323 2324 2325
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2326 2327
	struct sgt_iter sgt_iter;
	struct page *page;
2328 2329
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2330
	unsigned long i = 0;
2331
	pgprot_t pgprot;
2332 2333 2334
	void *addr;

	/* A single page can always be kmapped */
2335
	if (n_pages == 1 && type == I915_MAP_WB)
2336 2337
		return kmap(sg_page(sgt->sgl));

2338 2339 2340 2341 2342 2343
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2344

2345 2346
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2347 2348 2349 2350

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2351 2352 2353 2354 2355 2356 2357 2358 2359
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2360

2361 2362
	if (pages != stack_pages)
		drm_free_large(pages);
2363 2364 2365 2366 2367

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2368 2369
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2370
{
2371 2372 2373
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2374 2375 2376
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2377
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2378 2379 2380 2381 2382 2383

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2384
	pinned = obj->pages_pin_count > 1;
2385

2386 2387 2388 2389 2390
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2391
		}
2392 2393 2394 2395 2396 2397 2398

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2399 2400
	}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2416 2417
}

2418
static void
2419 2420
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2421
{
2422 2423
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2424

2425
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2426 2427
}

2428
static void
2429 2430
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2431
{
2432 2433 2434
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2435

2436
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2437

2438 2439
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2440
		return;
2441

2442 2443 2444 2445
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2446 2447 2448
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2449

2450
	i915_gem_object_put(obj);
2451 2452
}

2453
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2454
{
2455
	unsigned long elapsed;
2456

2457
	if (ctx->hang_stats.banned)
2458 2459
		return true;

2460
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2461 2462
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2463 2464
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2465 2466 2467 2468 2469
	}

	return false;
}

2470
static void i915_set_reset_status(struct i915_gem_context *ctx,
2471
				  const bool guilty)
2472
{
2473
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2474 2475

	if (guilty) {
2476
		hs->banned = i915_context_is_banned(ctx);
2477 2478 2479 2480
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2481 2482 2483
	}
}

2484
struct drm_i915_gem_request *
2485
i915_gem_find_active_request(struct intel_engine_cs *engine)
2486
{
2487 2488
	struct drm_i915_gem_request *request;

2489 2490 2491 2492 2493 2494 2495 2496
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2497
	list_for_each_entry(request, &engine->request_list, link) {
2498
		if (i915_gem_request_completed(request))
2499
			continue;
2500

2501
		return request;
2502
	}
2503 2504 2505 2506

	return NULL;
}

2507
static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2508 2509 2510 2511
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2512
	request = i915_gem_find_active_request(engine);
2513 2514 2515
	if (request == NULL)
		return;

2516
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2517

2518
	i915_set_reset_status(request->ctx, ring_hung);
2519
	list_for_each_entry_continue(request, &engine->request_list, link)
2520
		i915_set_reset_status(request->ctx, false);
2521
}
2522

2523
static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2524
{
2525
	struct drm_i915_gem_request *request;
2526
	struct intel_ring *ring;
2527

2528 2529 2530 2531
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2532
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2533

2534 2535 2536 2537 2538 2539
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2540
	if (i915.enable_execlists) {
2541 2542
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2543

2544
		intel_execlists_cancel_requests(engine);
2545 2546
	}

2547 2548 2549 2550 2551 2552 2553
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2554 2555
	request = i915_gem_active_raw(&engine->last_request,
				      &engine->i915->drm.struct_mutex);
2556
	if (request)
2557
		i915_gem_request_retire_upto(request);
2558
	GEM_BUG_ON(intel_engine_is_active(engine));
2559 2560 2561 2562 2563 2564 2565 2566

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2567 2568 2569
	list_for_each_entry(ring, &engine->buffers, link) {
		ring->last_retired_head = ring->tail;
		intel_ring_update_space(ring);
2570
	}
2571

2572
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2573 2574
}

2575
void i915_gem_reset(struct drm_device *dev)
2576
{
2577
	struct drm_i915_private *dev_priv = to_i915(dev);
2578
	struct intel_engine_cs *engine;
2579

2580 2581 2582 2583 2584
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2585
	for_each_engine(engine, dev_priv)
2586
		i915_gem_reset_engine_status(engine);
2587

2588
	for_each_engine(engine, dev_priv)
2589
		i915_gem_reset_engine_cleanup(engine);
2590
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2591

2592 2593
	i915_gem_context_reset(dev);

2594
	i915_gem_restore_fences(dev);
2595 2596
}

2597
static void
2598 2599
i915_gem_retire_work_handler(struct work_struct *work)
{
2600
	struct drm_i915_private *dev_priv =
2601
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2602
	struct drm_device *dev = &dev_priv->drm;
2603

2604
	/* Come back later if the device is busy... */
2605
	if (mutex_trylock(&dev->struct_mutex)) {
2606
		i915_gem_retire_requests(dev_priv);
2607
		mutex_unlock(&dev->struct_mutex);
2608
	}
2609 2610 2611 2612 2613

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2614 2615
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2616 2617
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2618
				   round_jiffies_up_relative(HZ));
2619
	}
2620
}
2621

2622 2623 2624 2625
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2626
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2627
	struct drm_device *dev = &dev_priv->drm;
2628
	struct intel_engine_cs *engine;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2650

2651
	for_each_engine(engine, dev_priv)
2652
		i915_gem_batch_pool_fini(&engine->batch_pool);
2653

2654 2655 2656
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2657

2658 2659 2660 2661 2662
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2663

2664 2665 2666 2667
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2668
	}
2669 2670
}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2684 2685
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686 2687 2688
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
2712
	struct intel_rps_client *rps = to_rps_client(file);
2713
	struct drm_i915_gem_object *obj;
2714 2715
	unsigned long active;
	int idx, ret = 0;
2716

2717 2718 2719
	if (args->flags != 0)
		return -EINVAL;

2720
	obj = i915_gem_object_lookup(file, args->bo_handle);
2721
	if (!obj)
2722 2723
		return -ENOENT;

2724 2725 2726 2727 2728 2729 2730
	active = __I915_BO_ACTIVE(obj);
	for_each_active(active, idx) {
		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
						    timeout, rps);
		if (ret)
			break;
2731 2732
	}

2733
	i915_gem_object_put_unlocked(obj);
2734
	return ret;
2735 2736
}

2737
static int
2738
__i915_gem_object_sync(struct drm_i915_gem_request *to,
2739
		       struct drm_i915_gem_request *from)
2740 2741 2742
{
	int ret;

2743
	if (to->engine == from->engine)
2744 2745
		return 0;

2746
	if (!i915.semaphores) {
2747 2748 2749 2750
		ret = i915_wait_request(from,
					from->i915->mm.interruptible,
					NULL,
					NO_WAITBOOST);
2751 2752 2753
		if (ret)
			return ret;
	} else {
2754
		int idx = intel_engine_sync_index(from->engine, to->engine);
2755
		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2756 2757
			return 0;

2758
		trace_i915_gem_ring_sync_to(to, from);
2759
		ret = to->engine->semaphore.sync_to(to, from);
2760 2761 2762
		if (ret)
			return ret;

2763
		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2764 2765 2766 2767 2768
	}

	return 0;
}

2769 2770 2771 2772
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
2773
 * @to: request we are wishing to use
2774 2775
 *
 * This code is meant to abstract object synchronization with the GPU.
2776 2777 2778
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
2779 2780 2781 2782 2783 2784 2785
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
2786 2787 2788
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2789 2790
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2791
		     struct drm_i915_gem_request *to)
2792
{
C
Chris Wilson 已提交
2793 2794 2795
	struct i915_gem_active *active;
	unsigned long active_mask;
	int idx;
2796

C
Chris Wilson 已提交
2797
	lockdep_assert_held(&obj->base.dev->struct_mutex);
2798

2799
	active_mask = i915_gem_object_get_active(obj);
C
Chris Wilson 已提交
2800 2801
	if (!active_mask)
		return 0;
2802

C
Chris Wilson 已提交
2803 2804
	if (obj->base.pending_write_domain) {
		active = obj->last_read;
2805
	} else {
C
Chris Wilson 已提交
2806 2807
		active_mask = 1;
		active = &obj->last_write;
2808
	}
C
Chris Wilson 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818

	for_each_active(active_mask, idx) {
		struct drm_i915_gem_request *request;
		int ret;

		request = i915_gem_active_peek(&active[idx],
					       &obj->base.dev->struct_mutex);
		if (!request)
			continue;

2819
		ret = __i915_gem_object_sync(to, request);
2820 2821 2822
		if (ret)
			return ret;
	}
2823

2824
	return 0;
2825 2826
}

2827 2828 2829 2830 2831 2832 2833
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2834 2835 2836
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2848 2849
static void __i915_vma_iounmap(struct i915_vma *vma)
{
2850
	GEM_BUG_ON(i915_vma_is_pinned(vma));
2851 2852 2853 2854 2855 2856 2857 2858

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

2859
int i915_vma_unbind(struct i915_vma *vma)
2860
{
2861
	struct drm_i915_gem_object *obj = vma->obj;
2862
	unsigned long active;
2863
	int ret;
2864

2865 2866 2867 2868
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
2869
	if (active) {
2870 2871
		int idx;

2872 2873 2874 2875 2876
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
2877
		__i915_vma_pin(vma);
2878

2879 2880 2881 2882
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
2883
				break;
2884 2885
		}

2886
		__i915_vma_unpin(vma);
2887 2888 2889
		if (ret)
			return ret;

2890 2891 2892
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

2893
	if (i915_vma_is_pinned(vma))
2894 2895
		return -EBUSY;

2896 2897
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
2898

2899 2900
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
2901

2902
	if (i915_vma_is_map_and_fenceable(vma)) {
2903
		i915_gem_object_finish_gtt(obj);
2904

2905 2906 2907 2908
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
2909 2910

		__i915_vma_iounmap(vma);
2911
		vma->flags &= ~I915_VMA_CAN_FENCE;
2912
	}
2913

2914 2915 2916 2917
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
2918
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2919

2920 2921 2922
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

2923 2924 2925 2926
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
2927
	}
2928
	vma->pages = NULL;
2929

B
Ben Widawsky 已提交
2930
	/* Since the unbound list is global, only move to that list if
2931
	 * no more VMAs exist. */
2932 2933 2934
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
2935

2936 2937 2938 2939 2940 2941
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

2942
destroy:
2943
	if (unlikely(i915_vma_is_closed(vma)))
2944 2945
		i915_vma_destroy(vma);

2946
	return 0;
2947 2948
}

2949 2950
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
			   bool interruptible)
2951
{
2952
	struct intel_engine_cs *engine;
2953
	int ret;
2954

2955
	for_each_engine(engine, dev_priv) {
2956 2957 2958
		if (engine->last_context == NULL)
			continue;

2959
		ret = intel_engine_idle(engine, interruptible);
2960 2961 2962
		if (ret)
			return ret;
	}
2963

2964
	return 0;
2965 2966
}

2967
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2968 2969
				     unsigned long cache_level)
{
2970
	struct drm_mm_node *gtt_space = &vma->node;
2971 2972
	struct drm_mm_node *other;

2973 2974 2975 2976 2977 2978
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
2979
	 */
2980
	if (vma->vm->mm.color_adjust == NULL)
2981 2982
		return true;

2983
	if (!drm_mm_node_allocated(gtt_space))
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3000
/**
3001 3002
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3003
 * @size: requested size in bytes (can be larger than the VMA)
3004
 * @alignment: required alignment
3005
 * @flags: mask of PIN_* flags to use
3006 3007 3008 3009 3010 3011 3012
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3013
 */
3014 3015
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3016
{
3017 3018
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3019 3020
	u64 start, end;
	u64 min_alignment;
3021
	int ret;
3022

3023
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3024
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3025 3026 3027

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3028 3029
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3030 3031

	min_alignment =
3032 3033
		i915_gem_get_ggtt_alignment(dev_priv, size,
					    i915_gem_object_get_tiling(obj),
3034 3035 3036 3037 3038 3039
					    flags & PIN_MAPPABLE);
	if (alignment == 0)
		alignment = min_alignment;
	if (alignment & (min_alignment - 1)) {
		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
			  alignment, min_alignment);
3040
		return -EINVAL;
3041
	}
3042

3043
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3044 3045

	end = vma->vm->total;
3046
	if (flags & PIN_MAPPABLE)
3047
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3048
	if (flags & PIN_ZONE_4G)
3049
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3050

3051 3052 3053
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3054
	 */
3055
	if (size > end) {
3056
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3057
			  size, obj->base.size,
3058
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3059
			  end);
3060
		return -E2BIG;
3061 3062
	}

3063
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3064
	if (ret)
3065
		return ret;
C
Chris Wilson 已提交
3066

3067 3068
	i915_gem_object_pin_pages(obj);

3069
	if (flags & PIN_OFFSET_FIXED) {
3070
		u64 offset = flags & PIN_OFFSET_MASK;
3071
		if (offset & (alignment - 1) || offset > end - size) {
3072
			ret = -EINVAL;
3073
			goto err_unpin;
3074
		}
3075

3076 3077 3078
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3079
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3080 3081 3082
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3083 3084 3085
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3086
		}
3087
	} else {
3088 3089
		u32 search_flag, alloc_flag;

3090 3091 3092 3093 3094 3095 3096
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3107
search_free:
3108 3109
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3110 3111 3112 3113 3114 3115
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3116
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3117 3118 3119 3120 3121
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3122

3123
			goto err_unpin;
3124
		}
3125
	}
3126
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3127

3128
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3129
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3130
	obj->bind_count++;
3131

3132
	return 0;
B
Ben Widawsky 已提交
3133

3134
err_unpin:
B
Ben Widawsky 已提交
3135
	i915_gem_object_unpin_pages(obj);
3136
	return ret;
3137 3138
}

3139
bool
3140 3141
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3142 3143 3144 3145 3146
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3147
	if (obj->pages == NULL)
3148
		return false;
3149

3150 3151 3152 3153
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3154
	if (obj->stolen || obj->phys_handle)
3155
		return false;
3156

3157 3158 3159 3160 3161 3162 3163 3164
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3165 3166
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3167
		return false;
3168
	}
3169

C
Chris Wilson 已提交
3170
	trace_i915_gem_object_clflush(obj);
3171
	drm_clflush_sg(obj->pages);
3172
	obj->cache_dirty = false;
3173 3174

	return true;
3175 3176 3177 3178
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3179
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3180
{
3181
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3182

3183
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3184 3185
		return;

3186
	/* No actual flushing is required for the GTT write domain.  Writes
3187
	 * to it "immediately" go to main memory as far as we know, so there's
3188
	 * no chipset flush.  It also doesn't land in render cache.
3189 3190 3191 3192
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3193 3194 3195 3196 3197 3198 3199
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3200
	 */
3201
	wmb();
3202 3203
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3204

3205
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3206

3207
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3208
	trace_i915_gem_object_change_domain(obj,
3209
					    obj->base.read_domains,
3210
					    I915_GEM_DOMAIN_GTT);
3211 3212 3213 3214
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3215
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3216
{
3217
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3218 3219
		return;

3220
	if (i915_gem_clflush_object(obj, obj->pin_display))
3221
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3222

3223
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3224

3225
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3226
	trace_i915_gem_object_change_domain(obj,
3227
					    obj->base.read_domains,
3228
					    I915_GEM_DOMAIN_CPU);
3229 3230
}

3231 3232
/**
 * Moves a single object to the GTT read, and possibly write domain.
3233 3234
 * @obj: object to act on
 * @write: ask for write access or read only
3235 3236 3237 3238
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3239
int
3240
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3241
{
C
Chris Wilson 已提交
3242
	uint32_t old_write_domain, old_read_domains;
3243
	struct i915_vma *vma;
3244
	int ret;
3245

3246
	ret = i915_gem_object_wait_rendering(obj, !write);
3247 3248 3249
	if (ret)
		return ret;

3250 3251 3252
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3265
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3266

3267 3268 3269 3270 3271 3272 3273
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3274 3275
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3276

3277 3278 3279
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3280 3281
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3282
	if (write) {
3283 3284 3285
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3286 3287
	}

C
Chris Wilson 已提交
3288 3289 3290 3291
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3292
	/* And bump the LRU for this access */
C
Chris Wilson 已提交
3293
	vma = i915_gem_object_to_ggtt(obj, NULL);
3294 3295 3296 3297
	if (vma &&
	    drm_mm_node_allocated(&vma->node) &&
	    !i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3298

3299 3300 3301
	return 0;
}

3302 3303
/**
 * Changes the cache-level of an object across all VMA.
3304 3305
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3317 3318 3319
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3320
	struct i915_vma *vma;
3321
	int ret = 0;
3322 3323

	if (obj->cache_level == cache_level)
3324
		goto out;
3325

3326 3327 3328 3329 3330
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3331 3332
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3333 3334 3335
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3336
		if (i915_vma_is_pinned(vma)) {
3337 3338 3339 3340
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3353 3354
	}

3355 3356 3357 3358 3359 3360 3361
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3362
	if (obj->bind_count) {
3363 3364 3365 3366
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3367
		ret = i915_gem_object_wait_rendering(obj, false);
3368 3369 3370
		if (ret)
			return ret;

3371
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3388 3389 3390
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3391 3392 3393 3394 3395 3396 3397 3398
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3399 3400
		}

3401
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3402 3403 3404 3405 3406 3407 3408
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3409 3410
	}

3411
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3412 3413 3414
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3415
out:
3416 3417 3418 3419
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3420
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3421
		if (i915_gem_clflush_object(obj, true))
3422
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3423 3424 3425 3426 3427
	}

	return 0;
}

B
Ben Widawsky 已提交
3428 3429
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3430
{
B
Ben Widawsky 已提交
3431
	struct drm_i915_gem_caching *args = data;
3432 3433
	struct drm_i915_gem_object *obj;

3434 3435
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3436
		return -ENOENT;
3437

3438 3439 3440 3441 3442 3443
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3444 3445 3446 3447
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3448 3449 3450 3451
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3452

3453
	i915_gem_object_put_unlocked(obj);
3454
	return 0;
3455 3456
}

B
Ben Widawsky 已提交
3457 3458
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3459
{
3460
	struct drm_i915_private *dev_priv = to_i915(dev);
B
Ben Widawsky 已提交
3461
	struct drm_i915_gem_caching *args = data;
3462 3463 3464 3465
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3466 3467
	switch (args->caching) {
	case I915_CACHING_NONE:
3468 3469
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3470
	case I915_CACHING_CACHED:
3471 3472 3473 3474 3475 3476
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3477
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3478 3479
			return -ENODEV;

3480 3481
		level = I915_CACHE_LLC;
		break;
3482 3483 3484
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3485 3486 3487 3488
	default:
		return -EINVAL;
	}

3489 3490
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3491 3492
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3493
		goto rpm_put;
B
Ben Widawsky 已提交
3494

3495 3496
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3497 3498 3499 3500 3501 3502
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

3503
	i915_gem_object_put(obj);
3504 3505
unlock:
	mutex_unlock(&dev->struct_mutex);
3506 3507 3508
rpm_put:
	intel_runtime_pm_put(dev_priv);

3509 3510 3511
	return ret;
}

3512
/*
3513 3514 3515
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3516
 */
C
Chris Wilson 已提交
3517
struct i915_vma *
3518 3519
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3520
				     const struct i915_ggtt_view *view)
3521
{
C
Chris Wilson 已提交
3522
	struct i915_vma *vma;
3523
	u32 old_read_domains, old_write_domain;
3524 3525
	int ret;

3526 3527 3528
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3529
	obj->pin_display++;
3530

3531 3532 3533 3534 3535 3536 3537 3538 3539
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3540 3541
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3542 3543
	if (ret) {
		vma = ERR_PTR(ret);
3544
		goto err_unpin_display;
C
Chris Wilson 已提交
3545
	}
3546

3547 3548 3549 3550
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
C
Chris Wilson 已提交
3551
	vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3552 3553
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
C
Chris Wilson 已提交
3554
	if (IS_ERR(vma))
3555
		goto err_unpin_display;
3556

C
Chris Wilson 已提交
3557 3558
	WARN_ON(obj->pin_display > i915_vma_pin_count(vma));

3559
	i915_gem_object_flush_cpu_write_domain(obj);
3560

3561
	old_write_domain = obj->base.write_domain;
3562
	old_read_domains = obj->base.read_domains;
3563 3564 3565 3566

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3567
	obj->base.write_domain = 0;
3568
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3569 3570 3571

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3572
					    old_write_domain);
3573

C
Chris Wilson 已提交
3574
	return vma;
3575 3576

err_unpin_display:
3577
	obj->pin_display--;
C
Chris Wilson 已提交
3578
	return vma;
3579 3580 3581
}

void
C
Chris Wilson 已提交
3582
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3583
{
C
Chris Wilson 已提交
3584
	if (WARN_ON(vma->obj->pin_display == 0))
3585 3586
		return;

C
Chris Wilson 已提交
3587
	vma->obj->pin_display--;
3588

C
Chris Wilson 已提交
3589 3590
	i915_vma_unpin(vma);
	WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3591 3592
}

3593 3594
/**
 * Moves a single object to the CPU read, and possibly write domain.
3595 3596
 * @obj: object to act on
 * @write: requesting write or read-only access
3597 3598 3599 3600
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3601
int
3602
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3603
{
C
Chris Wilson 已提交
3604
	uint32_t old_write_domain, old_read_domains;
3605 3606
	int ret;

3607
	ret = i915_gem_object_wait_rendering(obj, !write);
3608 3609 3610
	if (ret)
		return ret;

3611 3612 3613
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3614
	i915_gem_object_flush_gtt_write_domain(obj);
3615

3616 3617
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3618

3619
	/* Flush the CPU cache if it's still invalid. */
3620
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3621
		i915_gem_clflush_object(obj, false);
3622

3623
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3624 3625 3626 3627 3628
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3629
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3630 3631 3632 3633 3634

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3635 3636
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3637
	}
3638

C
Chris Wilson 已提交
3639 3640 3641 3642
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3643 3644 3645
	return 0;
}

3646 3647 3648
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3649 3650 3651 3652
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3653 3654 3655
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3656
static int
3657
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3658
{
3659
	struct drm_i915_private *dev_priv = to_i915(dev);
3660
	struct drm_i915_file_private *file_priv = file->driver_priv;
3661
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3662
	struct drm_i915_gem_request *request, *target = NULL;
3663
	int ret;
3664

3665 3666 3667 3668
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

3669 3670 3671
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3672

3673
	spin_lock(&file_priv->mm.lock);
3674
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3675 3676
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3677

3678 3679 3680 3681 3682 3683 3684
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3685
		target = request;
3686
	}
3687
	if (target)
3688
		i915_gem_request_get(target);
3689
	spin_unlock(&file_priv->mm.lock);
3690

3691
	if (target == NULL)
3692
		return 0;
3693

3694
	ret = i915_wait_request(target, true, NULL, NULL);
3695
	i915_gem_request_put(target);
3696

3697 3698 3699
	return ret;
}

3700
static bool
3701
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3702
{
3703 3704 3705
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3706 3707 3708 3709
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3710 3711
		return true;

3712
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3713 3714 3715 3716 3717 3718
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3719 3720 3721 3722
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3723 3724 3725
	return false;
}

3726 3727 3728
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3729
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3730 3731 3732
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3733
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3734
					    vma->size,
3735
					    i915_gem_object_get_tiling(obj));
3736
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3737
						      vma->size,
3738
						      i915_gem_object_get_tiling(obj),
3739
						      true);
3740 3741 3742 3743 3744

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3745
		    dev_priv->ggtt.mappable_end);
3746

3747 3748 3749 3750
	if (mappable && fenceable)
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3751 3752
}

3753 3754
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3755
{
3756
	unsigned int bound = vma->flags;
3757 3758
	int ret;

3759
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3760
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3761

3762 3763 3764 3765
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3766

3767
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3768 3769 3770
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3771
	}
3772

3773
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3774
	if (ret)
3775
		goto err;
3776

3777
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3778
		__i915_vma_set_map_and_fenceable(vma);
3779

3780
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3781 3782
	return 0;

3783 3784 3785
err:
	__i915_vma_unpin(vma);
	return ret;
3786 3787
}

C
Chris Wilson 已提交
3788
struct i915_vma *
3789 3790
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3791
			 u64 size,
3792 3793
			 u64 alignment,
			 u64 flags)
3794
{
C
Chris Wilson 已提交
3795
	struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3796 3797
	struct i915_vma *vma;
	int ret;
3798

C
Chris Wilson 已提交
3799
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3800
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3801
		return vma;
3802 3803 3804 3805

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3806
			return ERR_PTR(-ENOSPC);
3807 3808 3809

		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3810 3811 3812
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3813
		     !!(flags & PIN_MAPPABLE),
3814
		     i915_vma_is_map_and_fenceable(vma));
3815 3816
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3817
			return ERR_PTR(ret);
3818 3819
	}

C
Chris Wilson 已提交
3820 3821 3822
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3823

C
Chris Wilson 已提交
3824
	return vma;
3825 3826
}

3827
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3842 3843 3844 3845 3846 3847 3848 3849 3850
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3851 3852
}

3853
static __always_inline unsigned int
3854 3855 3856
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
3857
	struct drm_i915_gem_request *request;
3858

3859 3860 3861
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
3862

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
3919 3920
}

3921
static __always_inline unsigned int
3922 3923 3924 3925 3926
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

3927
static __always_inline unsigned int
3928 3929 3930 3931 3932
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

3933 3934
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3935
		    struct drm_file *file)
3936 3937
{
	struct drm_i915_gem_busy *args = data;
3938
	struct drm_i915_gem_object *obj;
3939
	unsigned long active;
3940

3941
	obj = i915_gem_object_lookup(file, args->handle);
3942 3943
	if (!obj)
		return -ENOENT;
3944

3945
	args->busy = 0;
3946 3947 3948
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
3949

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
3966 3967 3968 3969 3970 3971
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
3972 3973 3974 3975 3976 3977 3978
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
3979 3980 3981 3982 3983
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
3984 3985 3986 3987 3988 3989 3990 3991 3992
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
3993
	}
3994

3995 3996
	i915_gem_object_put_unlocked(obj);
	return 0;
3997 3998 3999 4000 4001 4002
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4003
	return i915_gem_ring_throttle(dev, file_priv);
4004 4005
}

4006 4007 4008 4009
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4010
	struct drm_i915_private *dev_priv = to_i915(dev);
4011
	struct drm_i915_gem_madvise *args = data;
4012
	struct drm_i915_gem_object *obj;
4013
	int ret;
4014 4015 4016 4017 4018 4019 4020 4021 4022

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4023 4024 4025 4026
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4027 4028
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4029 4030
		ret = -ENOENT;
		goto unlock;
4031 4032
	}

4033
	if (obj->pages &&
4034
	    i915_gem_object_is_tiled(obj) &&
4035 4036 4037 4038 4039 4040 4041
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4042 4043
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4044

C
Chris Wilson 已提交
4045
	/* if the object is no longer attached, discard its backing storage */
4046
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4047 4048
		i915_gem_object_truncate(obj);

4049
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4050

4051
	i915_gem_object_put(obj);
4052
unlock:
4053
	mutex_unlock(&dev->struct_mutex);
4054
	return ret;
4055 4056
}

4057 4058
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4059
{
4060 4061
	int i;

4062
	INIT_LIST_HEAD(&obj->global_list);
4063
	for (i = 0; i < I915_NUM_ENGINES; i++)
4064 4065 4066 4067 4068
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
	init_request_active(&obj->last_fence, NULL);
4069
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4070
	INIT_LIST_HEAD(&obj->vma_list);
4071
	INIT_LIST_HEAD(&obj->batch_pool_link);
4072

4073 4074
	obj->ops = ops;

4075 4076 4077
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

4078
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4079 4080
}

4081
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4082
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4083 4084 4085 4086
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4087
struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4088
						  size_t size)
4089
{
4090
	struct drm_i915_gem_object *obj;
4091
	struct address_space *mapping;
D
Daniel Vetter 已提交
4092
	gfp_t mask;
4093
	int ret;
4094

4095
	obj = i915_gem_object_alloc(dev);
4096
	if (obj == NULL)
4097
		return ERR_PTR(-ENOMEM);
4098

4099 4100 4101
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4102

4103 4104 4105 4106 4107 4108 4109
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4110
	mapping = obj->base.filp->f_mapping;
4111
	mapping_set_gfp_mask(mapping, mask);
4112

4113
	i915_gem_object_init(obj, &i915_gem_object_ops);
4114

4115 4116
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4117

4118 4119
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4135 4136
	trace_i915_gem_object_create(obj);

4137
	return obj;
4138 4139 4140 4141 4142

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4143 4144
}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4169
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4170
{
4171
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4172
	struct drm_device *dev = obj->base.dev;
4173
	struct drm_i915_private *dev_priv = to_i915(dev);
4174
	struct i915_vma *vma, *next;
4175

4176 4177
	intel_runtime_pm_get(dev_priv);

4178 4179
	trace_i915_gem_object_destroy(obj);

4180 4181 4182 4183 4184 4185 4186
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4187
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4188
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4189
		GEM_BUG_ON(i915_vma_is_active(vma));
4190
		vma->flags &= ~I915_VMA_PIN_MASK;
4191
		i915_vma_close(vma);
4192
	}
4193
	GEM_BUG_ON(obj->bind_count);
4194

B
Ben Widawsky 已提交
4195 4196 4197 4198 4199
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4200
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4201

4202 4203
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4204
	    i915_gem_object_is_tiled(obj))
4205 4206
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4207 4208
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4209
	if (discard_backing_storage(obj))
4210
		obj->madv = I915_MADV_DONTNEED;
4211
	i915_gem_object_put_pages(obj);
4212

4213 4214
	BUG_ON(obj->pages);

4215 4216
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4217

4218 4219 4220
	if (obj->ops->release)
		obj->ops->release(obj);

4221 4222
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4223

4224
	kfree(obj->bit_17);
4225
	i915_gem_object_free(obj);
4226 4227

	intel_runtime_pm_put(dev_priv);
4228 4229
}

4230
int i915_gem_suspend(struct drm_device *dev)
4231
{
4232
	struct drm_i915_private *dev_priv = to_i915(dev);
4233
	int ret;
4234

4235 4236
	intel_suspend_gt_powersave(dev_priv);

4237
	mutex_lock(&dev->struct_mutex);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4251
	ret = i915_gem_wait_for_idle(dev_priv, true);
4252
	if (ret)
4253
		goto err;
4254

4255
	i915_gem_retire_requests(dev_priv);
4256

4257
	i915_gem_context_lost(dev_priv);
4258 4259
	mutex_unlock(&dev->struct_mutex);

4260
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4261 4262
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4263

4264 4265 4266
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4267
	WARN_ON(dev_priv->gt.awake);
4268

4269
	return 0;
4270 4271 4272 4273

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4274 4275
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
	if (i915.enable_execlists)
		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);

	mutex_unlock(&dev->struct_mutex);
}

4293 4294
void i915_gem_init_swizzling(struct drm_device *dev)
{
4295
	struct drm_i915_private *dev_priv = to_i915(dev);
4296

4297
	if (INTEL_INFO(dev)->gen < 5 ||
4298 4299 4300 4301 4302 4303
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4304 4305 4306
	if (IS_GEN5(dev))
		return;

4307 4308
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4309
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4310
	else if (IS_GEN7(dev))
4311
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4312 4313
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4314 4315
	else
		BUG();
4316
}
D
Daniel Vetter 已提交
4317

4318 4319
static void init_unused_ring(struct drm_device *dev, u32 base)
{
4320
	struct drm_i915_private *dev_priv = to_i915(dev);
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4345 4346 4347
int
i915_gem_init_hw(struct drm_device *dev)
{
4348
	struct drm_i915_private *dev_priv = to_i915(dev);
4349
	struct intel_engine_cs *engine;
C
Chris Wilson 已提交
4350
	int ret;
4351

4352 4353 4354
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4355
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4356
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4357

4358 4359 4360
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4361

4362
	if (HAS_PCH_NOP(dev)) {
4363 4364 4365 4366 4367 4368 4369 4370 4371
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4372 4373
	}

4374 4375
	i915_gem_init_swizzling(dev);

4376 4377 4378 4379 4380 4381 4382 4383
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4384
	BUG_ON(!dev_priv->kernel_context);
4385

4386 4387 4388 4389 4390 4391 4392
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4393
	for_each_engine(engine, dev_priv) {
4394
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4395
		if (ret)
4396
			goto out;
D
Daniel Vetter 已提交
4397
	}
4398

4399 4400
	intel_mocs_init_l3cc_table(dev);

4401
	/* We can't enable contexts until all firmware is loaded */
4402 4403 4404
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4405

4406 4407
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4408
	return ret;
4409 4410
}

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4432 4433
int i915_gem_init(struct drm_device *dev)
{
4434
	struct drm_i915_private *dev_priv = to_i915(dev);
4435 4436 4437
	int ret;

	mutex_lock(&dev->struct_mutex);
4438

4439
	if (!i915.enable_execlists) {
4440
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4441
	} else {
4442
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4443 4444
	}

4445 4446 4447 4448 4449 4450 4451 4452
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4453
	i915_gem_init_userptr(dev_priv);
4454 4455 4456 4457

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4458

4459
	ret = i915_gem_context_init(dev);
4460 4461
	if (ret)
		goto out_unlock;
4462

4463
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4464
	if (ret)
4465
		goto out_unlock;
4466

4467
	ret = i915_gem_init_hw(dev);
4468
	if (ret == -EIO) {
4469
		/* Allow engine initialisation to fail by marking the GPU as
4470 4471 4472 4473
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4474
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4475
		ret = 0;
4476
	}
4477 4478

out_unlock:
4479
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4480
	mutex_unlock(&dev->struct_mutex);
4481

4482
	return ret;
4483 4484
}

4485
void
4486
i915_gem_cleanup_engines(struct drm_device *dev)
4487
{
4488
	struct drm_i915_private *dev_priv = to_i915(dev);
4489
	struct intel_engine_cs *engine;
4490

4491
	for_each_engine(engine, dev_priv)
4492
		dev_priv->gt.cleanup_engine(engine);
4493 4494
}

4495
static void
4496
init_engine_lists(struct intel_engine_cs *engine)
4497
{
4498
	INIT_LIST_HEAD(&engine->request_list);
4499 4500
}

4501 4502 4503
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4504
	struct drm_device *dev = &dev_priv->drm;
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4515
	if (intel_vgpu_active(dev_priv))
4516 4517 4518 4519 4520 4521 4522 4523 4524
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4525
void
4526
i915_gem_load_init(struct drm_device *dev)
4527
{
4528
	struct drm_i915_private *dev_priv = to_i915(dev);
4529 4530
	int i;

4531
	dev_priv->objects =
4532 4533 4534 4535
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4536 4537 4538 4539 4540
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4541 4542 4543
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4544 4545 4546
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4547
				  NULL);
4548

4549
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4550 4551
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4552
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4553 4554
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
4555
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4556
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].link);
4557
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4558
			  i915_gem_retire_work_handler);
4559
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4560
			  i915_gem_idle_work_handler);
4561
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4562
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4563

4564 4565
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4566
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4567

4568
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4569

4570 4571
	dev_priv->mm.interruptible = true;

4572
	spin_lock_init(&dev_priv->fb_tracking.lock);
4573
}
4574

4575 4576 4577 4578 4579 4580 4581
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4582 4583 4584

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4585 4586
}

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
	 */

	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	return 0;
}

4615
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4616
{
4617
	struct drm_i915_file_private *file_priv = file->driver_priv;
4618
	struct drm_i915_gem_request *request;
4619 4620 4621 4622 4623

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4624
	spin_lock(&file_priv->mm.lock);
4625
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4626
		request->file_priv = NULL;
4627
	spin_unlock(&file_priv->mm.lock);
4628

4629
	if (!list_empty(&file_priv->rps.link)) {
4630
		spin_lock(&to_i915(dev)->rps.client_lock);
4631
		list_del(&file_priv->rps.link);
4632
		spin_unlock(&to_i915(dev)->rps.client_lock);
4633
	}
4634 4635 4636 4637 4638
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4639
	int ret;
4640 4641 4642 4643 4644 4645 4646 4647

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4648
	file_priv->dev_priv = to_i915(dev);
4649
	file_priv->file = file;
4650
	INIT_LIST_HEAD(&file_priv->rps.link);
4651 4652 4653 4654

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4655
	file_priv->bsd_engine = -1;
4656

4657 4658 4659
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4660

4661
	return ret;
4662 4663
}

4664 4665
/**
 * i915_gem_track_fb - update frontbuffer tracking
4666 4667 4668
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4669 4670 4671 4672
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4673 4674 4675 4676
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4677 4678 4679 4680 4681 4682 4683 4684 4685
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4686
	if (old) {
4687 4688
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4689 4690 4691
	}

	if (new) {
4692 4693
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4694 4695 4696
	}
}

4697 4698 4699 4700 4701 4702 4703
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
4704
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4705 4706 4707 4708 4709 4710 4711
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4722
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4723
	if (IS_ERR(obj))
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4737
	obj->dirty = 1;		/* Backing store is now out of date */
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4749
	i915_gem_object_put(obj);
4750 4751
	return ERR_PTR(ret);
}