i915_gem.c 139.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107 108
	might_sleep();

109
	if (!i915_reset_in_progress(error))
110 111
		return 0;

112 113 114 115 116
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
117
	ret = wait_event_interruptible_timeout(error->reset_queue,
118
					       !i915_reset_in_progress(error),
119
					       I915_RESET_TIMEOUT);
120 121 122 123
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
124
		return ret;
125 126
	} else {
		return 0;
127
	}
128 129
}

130
int i915_mutex_lock_interruptible(struct drm_device *dev)
131
{
132
	struct drm_i915_private *dev_priv = to_i915(dev);
133 134
	int ret;

135
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 137 138 139 140 141 142 143 144
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172 173
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175
	struct address_space *mapping = obj->base.filp->f_mapping;
176 177 178 179
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204 205 206 207 208 209 210 211 212 213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

C
Chris Wilson 已提交
219
	obj->mm.pages = st;
220 221 222 223 224 225 226 227
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

C
Chris Wilson 已提交
228
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
229

230
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
231
	if (WARN_ON(ret)) {
232 233 234 235 236 237
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

C
Chris Wilson 已提交
238 239
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
240

C
Chris Wilson 已提交
241
	if (obj->mm.dirty) {
242
		struct address_space *mapping = obj->base.filp->f_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
260
			if (obj->mm.madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
265
		obj->mm.dirty = false;
266 267
	}

C
Chris Wilson 已提交
268 269
	sg_free_table(obj->mm.pages);
	kfree(obj->mm.pages);
270 271 272 273 274 275
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
C
Chris Wilson 已提交
276
	i915_gem_object_unpin_pages(obj);
277 278 279 280 281 282 283 284
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

285
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
286 287 288
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
289 290 291
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
292

293 294 295 296
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
297
	 */
298 299 300 301 302 303
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
304 305 306 307 308
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

309 310 311 312 313 314 315 316 317 318 319 320 321
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

322 323 324 325 326
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
327
{
328
	struct drm_i915_gem_request *rq;
329

330
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
364 365
	}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	if (rps && rq->fence.seqno == rq->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
402 403
		int ret;

404 405
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
406 407 408
		if (ret)
			return ret;

409 410 411 412 413 414
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
415

416 417 418 419 420 421 422 423
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
424 425
	}

426 427 428 429 430 431
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
432 433
}

434 435 436 437 438 439
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
440
 */
441 442 443 444 445
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
446
{
447
	struct reservation_object *resv;
448 449
	struct i915_gem_active *active;
	unsigned long active_mask;
450
	int idx;
451

452 453 454 455 456 457 458
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
459

460
	if (flags & I915_WAIT_ALL) {
461
		active = obj->last_read;
462
		active_mask = i915_gem_object_get_active(obj);
463 464 465 466 467
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

468
	for_each_active(active_mask, idx) {
469 470 471 472 473 474 475 476 477 478 479
		struct drm_i915_gem_request *request;

		request = i915_gem_active_get_unlocked(&active[idx]);
		if (request) {
			timeout = i915_gem_object_wait_fence(&request->fence,
							     flags, timeout,
							     rps);
			i915_gem_request_put(request);
		}
		if (timeout < 0)
			return timeout;
480 481
	}

482 483 484 485 486 487
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv)
		timeout = i915_gem_object_wait_reservation(resv,
							   flags, timeout,
							   rps);
	return timeout < 0 ? timeout : 0;
488 489 490 491 492 493 494 495 496
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

497 498 499 500 501
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
502
	int ret;
503 504 505 506 507 508 509 510

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

C
Chris Wilson 已提交
511
	if (obj->mm.madv != I915_MADV_WILLNEED)
512 513 514 515 516
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
517 518 519 520
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

C
Chris Wilson 已提交
521
	ret = __i915_gem_object_put_pages(obj);
522 523 524
	if (ret)
		return ret;

525 526 527 528 529 530
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
531 532
	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
533
	return i915_gem_object_pin_pages(obj);
534 535 536 537 538 539 540 541 542
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
543
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
544
	int ret;
545 546 547 548

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
549 550 551 552 553 554 555
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file_priv));
556 557
	if (ret)
		return ret;
558

559
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
560 561 562 563 564 565 566 567 568 569
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
570 571 572 573
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
574 575
	}

576
	drm_clflush_virt_range(vaddr, args->size);
577
	i915_gem_chipset_flush(to_i915(dev));
578 579

out:
580
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
581
	return ret;
582 583
}

584 585
void *i915_gem_object_alloc(struct drm_device *dev)
{
586
	struct drm_i915_private *dev_priv = to_i915(dev);
587
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
588 589 590 591
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
592
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
593
	kmem_cache_free(dev_priv->objects, obj);
594 595
}

596 597 598 599 600
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
601
{
602
	struct drm_i915_gem_object *obj;
603 604
	int ret;
	u32 handle;
605

606
	size = roundup(size, PAGE_SIZE);
607 608
	if (size == 0)
		return -EINVAL;
609 610

	/* Allocate the new object */
611
	obj = i915_gem_object_create(dev, size);
612 613
	if (IS_ERR(obj))
		return PTR_ERR(obj);
614

615
	ret = drm_gem_handle_create(file, &obj->base, &handle);
616
	/* drop reference from allocate - handle holds it now */
617
	i915_gem_object_put_unlocked(obj);
618 619
	if (ret)
		return ret;
620

621
	*handle_p = handle;
622 623 624
	return 0;
}

625 626 627 628 629 630
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
631
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
632 633
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
634
			       args->size, &args->handle);
635 636 637 638
}

/**
 * Creates a new mm object and returns a handle to it.
639 640 641
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
642 643 644 645 646 647
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
648

649
	return i915_gem_create(file, dev,
650
			       args->size, &args->handle);
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

679
static inline int
680 681
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

705 706 707 708 709 710
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
711
				    unsigned int *needs_clflush)
712 713 714
{
	int ret;

715
	lockdep_assert_held(&obj->base.dev->struct_mutex);
716

717
	*needs_clflush = 0;
718 719
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
720

721 722 723 724 725
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
726 727 728
	if (ret)
		return ret;

C
Chris Wilson 已提交
729
	ret = i915_gem_object_pin_pages(obj);
730 731 732
	if (ret)
		return ret;

733 734
	i915_gem_object_flush_gtt_write_domain(obj);

735 736 737 738 739 740
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
741 742
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
743 744 745

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
746 747 748
		if (ret)
			goto err_unpin;

749
		*needs_clflush = 0;
750 751
	}

752
	/* return with the pages pinned */
753
	return 0;
754 755 756 757

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
758 759 760 761 762 763 764
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

765 766
	lockdep_assert_held(&obj->base.dev->struct_mutex);

767 768 769 770
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

771 772 773 774 775 776
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
777 778 779
	if (ret)
		return ret;

C
Chris Wilson 已提交
780
	ret = i915_gem_object_pin_pages(obj);
781 782 783
	if (ret)
		return ret;

784 785
	i915_gem_object_flush_gtt_write_domain(obj);

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
803 804 805
		if (ret)
			goto err_unpin;

806 807 808 809 810 811 812
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
813
	obj->mm.dirty = true;
814
	/* return with the pages pinned */
815
	return 0;
816 817 818 819

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
820 821
}

822 823 824
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
825
static int
826 827 828 829 830 831 832
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

833
	if (unlikely(page_do_bit17_swizzling))
834 835 836 837 838 839 840 841 842 843 844
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

845
	return ret ? -EFAULT : 0;
846 847
}

848 849 850 851
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
852
	if (unlikely(swizzled)) {
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

870 871 872 873 874 875 876 877 878 879 880 881
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
882 883 884
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
885 886 887 888 889 890 891 892 893 894 895

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

896
	return ret ? - EFAULT : 0;
897 898
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
926
	struct drm_i915_private *dev_priv = to_i915(dev);
927
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
928
	struct i915_vma *vma;
929 930 931 932 933 934
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

935
	intel_runtime_pm_get(to_i915(dev));
C
Chris Wilson 已提交
936
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
937 938 939
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
940
		ret = i915_vma_put_fence(vma);
941 942 943 944 945
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
946
	if (IS_ERR(vma)) {
947 948 949 950
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

C
Chris Wilson 已提交
951
		ret = i915_gem_object_pin_pages(obj);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
968
		ret = fault_in_pages_writeable(user_data, remain);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
1000
		if (slow_user_access(&ggtt->mappable, page_base,
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1027
				       node.start, node.size);
1028 1029 1030
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1031
		i915_vma_unpin(vma);
1032 1033
	}
out:
1034
	intel_runtime_pm_put(to_i915(dev));
1035 1036 1037
	return ret;
}

1038
static int
1039 1040 1041 1042
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
1043
{
1044
	char __user *user_data;
1045
	ssize_t remain;
1046
	loff_t offset;
1047
	int shmem_page_offset, page_length, ret = 0;
1048
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1049
	int prefaulted = 0;
1050
	int needs_clflush = 0;
1051
	struct sg_page_iter sg_iter;
1052

1053
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1054 1055 1056
	if (ret)
		return ret;

1057 1058
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1059
	offset = args->offset;
1060
	remain = args->size;
1061

C
Chris Wilson 已提交
1062
	for_each_sg_page(obj->mm.pages->sgl, &sg_iter, obj->mm.pages->nents,
1063
			 offset >> PAGE_SHIFT) {
1064
		struct page *page = sg_page_iter_page(&sg_iter);
1065 1066 1067 1068

		if (remain <= 0)
			break;

1069 1070 1071 1072 1073
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1074
		shmem_page_offset = offset_in_page(offset);
1075 1076 1077 1078
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1079 1080 1081
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1082 1083 1084 1085 1086
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
1087 1088 1089

		mutex_unlock(&dev->struct_mutex);

1090
		if (likely(!i915.prefault_disable) && !prefaulted) {
1091
			ret = fault_in_pages_writeable(user_data, remain);
1092 1093 1094 1095 1096 1097 1098
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
1099

1100 1101 1102
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
1103

1104
		mutex_lock(&dev->struct_mutex);
1105 1106

		if (ret)
1107 1108
			goto out;

1109
next_page:
1110
		remain -= page_length;
1111
		user_data += page_length;
1112 1113 1114
		offset += page_length;
	}

1115
out:
1116
	i915_gem_obj_finish_shmem_access(obj);
1117

1118 1119 1120
	return ret;
}

1121 1122
/**
 * Reads data from the object referenced by handle.
1123 1124 1125
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1126 1127 1128 1129 1130
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1131
		     struct drm_file *file)
1132 1133
{
	struct drm_i915_gem_pread *args = data;
1134
	struct drm_i915_gem_object *obj;
1135
	int ret = 0;
1136

1137 1138 1139 1140
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1141
		       u64_to_user_ptr(args->data_ptr),
1142 1143 1144
		       args->size))
		return -EFAULT;

1145
	obj = i915_gem_object_lookup(file, args->handle);
1146 1147
	if (!obj)
		return -ENOENT;
1148

1149
	/* Bounds check source.  */
1150 1151
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1152
		ret = -EINVAL;
1153
		goto err;
C
Chris Wilson 已提交
1154 1155
	}

C
Chris Wilson 已提交
1156 1157
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1158 1159 1160 1161
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1162 1163 1164 1165 1166 1167 1168
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1169
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1170

1171
	/* pread for non shmem backed objects */
1172
	if (ret == -EFAULT || ret == -ENODEV)
1173 1174 1175
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

1176
	i915_gem_object_put(obj);
1177
	mutex_unlock(&dev->struct_mutex);
1178 1179 1180 1181 1182

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1183
	return ret;
1184 1185
}

1186 1187
/* This is the fast write path which cannot handle
 * page faults in the source data
1188
 */
1189 1190 1191 1192 1193 1194

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1195
{
1196 1197
	void __iomem *vaddr_atomic;
	void *vaddr;
1198
	unsigned long unwritten;
1199

P
Peter Zijlstra 已提交
1200
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1201 1202 1203
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1204
						      user_data, length);
P
Peter Zijlstra 已提交
1205
	io_mapping_unmap_atomic(vaddr_atomic);
1206
	return unwritten;
1207 1208
}

1209 1210 1211
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1212
 * @i915: i915 device private data
1213 1214 1215
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1216
 */
1217
static int
1218
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1219
			 struct drm_i915_gem_object *obj,
1220
			 struct drm_i915_gem_pwrite *args,
1221
			 struct drm_file *file)
1222
{
1223
	struct i915_ggtt *ggtt = &i915->ggtt;
1224
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1225
	struct i915_vma *vma;
1226 1227
	struct drm_mm_node node;
	uint64_t remain, offset;
1228
	char __user *user_data;
1229
	int ret;
1230 1231
	bool hit_slow_path = false;

1232
	if (i915_gem_object_is_tiled(obj))
1233
		return -EFAULT;
D
Daniel Vetter 已提交
1234

1235
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1236
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1237
				       PIN_MAPPABLE | PIN_NONBLOCK);
1238 1239 1240
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1241
		ret = i915_vma_put_fence(vma);
1242 1243 1244 1245 1246
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1247
	if (IS_ERR(vma)) {
1248 1249 1250 1251
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

C
Chris Wilson 已提交
1252
		ret = i915_gem_object_pin_pages(obj);
1253 1254 1255 1256 1257
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}
	}
D
Daniel Vetter 已提交
1258 1259 1260 1261 1262

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1263
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1264
	obj->mm.dirty = true;
1265

1266 1267 1268 1269
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1270 1271
		/* Operation in this page
		 *
1272 1273 1274
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1275
		 */
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1289
		/* If we get a fault while copying data, then (presumably) our
1290 1291
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1292 1293
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1294
		 */
1295
		if (fast_user_write(&ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1296
				    page_offset, user_data, page_length)) {
1297 1298
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
1299
			if (slow_user_access(&ggtt->mappable,
1300 1301 1302 1303 1304 1305 1306 1307 1308
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1309
		}
1310

1311 1312 1313
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1314 1315
	}

1316
out_flush:
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1330
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1331
out_unpin:
1332 1333 1334
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1335
				       node.start, node.size);
1336 1337 1338
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1339
		i915_vma_unpin(vma);
1340
	}
D
Daniel Vetter 已提交
1341
out:
1342
	intel_runtime_pm_put(i915);
1343
	return ret;
1344 1345
}

1346 1347 1348 1349
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1350
static int
1351 1352 1353 1354 1355
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1356
{
1357
	char *vaddr;
1358
	int ret;
1359

1360
	if (unlikely(page_do_bit17_swizzling))
1361
		return -EINVAL;
1362

1363 1364 1365 1366
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1367 1368
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1369 1370 1371 1372
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1373

1374
	return ret ? -EFAULT : 0;
1375 1376
}

1377 1378
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1379
static int
1380 1381 1382 1383 1384
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1385
{
1386 1387
	char *vaddr;
	int ret;
1388

1389
	vaddr = kmap(page);
1390
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1391 1392 1393
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1394 1395
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1396 1397
						user_data,
						page_length);
1398 1399 1400 1401 1402
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1403 1404 1405
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1406
	kunmap(page);
1407

1408
	return ret ? -EFAULT : 0;
1409 1410 1411
}

static int
1412 1413 1414 1415
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1416 1417
{
	ssize_t remain;
1418 1419
	loff_t offset;
	char __user *user_data;
1420
	int shmem_page_offset, page_length, ret = 0;
1421
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1422
	int hit_slowpath = 0;
1423
	unsigned int needs_clflush;
1424
	struct sg_page_iter sg_iter;
1425

1426
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1427 1428 1429
	if (ret)
		return ret;

1430 1431
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1432
	offset = args->offset;
1433
	remain = args->size;
1434

C
Chris Wilson 已提交
1435
	for_each_sg_page(obj->mm.pages->sgl, &sg_iter, obj->mm.pages->nents,
1436
			 offset >> PAGE_SHIFT) {
1437
		struct page *page = sg_page_iter_page(&sg_iter);
1438
		int partial_cacheline_write;
1439

1440 1441 1442
		if (remain <= 0)
			break;

1443 1444 1445 1446 1447
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1448
		shmem_page_offset = offset_in_page(offset);
1449 1450 1451 1452 1453

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1454 1455 1456
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1457
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1458 1459 1460
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1461 1462 1463
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1464 1465 1466
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1467
					needs_clflush & CLFLUSH_AFTER);
1468 1469
		if (ret == 0)
			goto next_page;
1470 1471 1472

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1473 1474 1475
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1476
					needs_clflush & CLFLUSH_AFTER);
1477

1478
		mutex_lock(&dev->struct_mutex);
1479 1480

		if (ret)
1481 1482
			goto out;

1483
next_page:
1484
		remain -= page_length;
1485
		user_data += page_length;
1486
		offset += page_length;
1487 1488
	}

1489
out:
1490
	i915_gem_obj_finish_shmem_access(obj);
1491

1492
	if (hit_slowpath) {
1493 1494 1495 1496 1497
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1498
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1499
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1500
			if (i915_gem_clflush_object(obj, obj->pin_display))
1501
				needs_clflush |= CLFLUSH_AFTER;
1502
		}
1503
	}
1504

1505
	if (needs_clflush & CLFLUSH_AFTER)
1506
		i915_gem_chipset_flush(to_i915(dev));
1507

1508
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1509
	return ret;
1510 1511 1512 1513
}

/**
 * Writes data to the object referenced by handle.
1514 1515 1516
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1517 1518 1519 1520 1521
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1522
		      struct drm_file *file)
1523
{
1524
	struct drm_i915_private *dev_priv = to_i915(dev);
1525
	struct drm_i915_gem_pwrite *args = data;
1526
	struct drm_i915_gem_object *obj;
1527 1528 1529 1530 1531 1532
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1533
		       u64_to_user_ptr(args->data_ptr),
1534 1535 1536
		       args->size))
		return -EFAULT;

1537
	if (likely(!i915.prefault_disable)) {
1538
		ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1539 1540 1541 1542
						   args->size);
		if (ret)
			return -EFAULT;
	}
1543

1544
	obj = i915_gem_object_lookup(file, args->handle);
1545 1546
	if (!obj)
		return -ENOENT;
1547

1548
	/* Bounds check destination. */
1549 1550
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1551
		ret = -EINVAL;
1552
		goto err;
C
Chris Wilson 已提交
1553 1554
	}

C
Chris Wilson 已提交
1555 1556
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1557 1558 1559 1560 1561
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1562 1563 1564 1565 1566 1567 1568 1569 1570
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1571
	ret = -EFAULT;
1572 1573 1574 1575 1576 1577
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1578
	if (!i915_gem_object_has_struct_page(obj) ||
1579
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1580 1581
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1582 1583 1584
		 * textures). Fallback to the shmem path in that case.
		 */
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1585

1586
	if (ret == -EFAULT || ret == -ENOSPC) {
1587 1588
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1589
		else
1590
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1591
	}
1592

1593
	i915_gem_object_put(obj);
1594
	mutex_unlock(&dev->struct_mutex);
1595 1596
	intel_runtime_pm_put(dev_priv);

1597
	return ret;
1598 1599 1600 1601 1602 1603

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1604 1605
}

1606
static inline enum fb_op_origin
1607 1608
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1609 1610
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1611 1612
}

1613
/**
1614 1615
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1616 1617 1618
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1619 1620 1621
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1622
			  struct drm_file *file)
1623 1624
{
	struct drm_i915_gem_set_domain *args = data;
1625
	struct drm_i915_gem_object *obj;
1626 1627
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1628 1629
	int ret;

1630
	/* Only handle setting domains to types used by the CPU. */
1631
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1632 1633 1634 1635 1636 1637 1638 1639
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1640
	obj = i915_gem_object_lookup(file, args->handle);
1641 1642
	if (!obj)
		return -ENOENT;
1643

1644 1645 1646 1647
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1648 1649 1650 1651 1652
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1653 1654 1655 1656
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1657
	if (ret)
1658
		goto err;
1659

1660
	if (read_domains & I915_GEM_DOMAIN_GTT)
1661
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1662
	else
1663
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1664

1665
	if (write_domain != 0)
1666
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1667

1668
	i915_gem_object_put(obj);
1669 1670
	mutex_unlock(&dev->struct_mutex);
	return ret;
1671 1672 1673 1674

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1675 1676 1677 1678
}

/**
 * Called when user space has done writes to this buffer
1679 1680 1681
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1682 1683 1684
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1685
			 struct drm_file *file)
1686 1687
{
	struct drm_i915_gem_sw_finish *args = data;
1688
	struct drm_i915_gem_object *obj;
1689
	int err = 0;
1690

1691
	obj = i915_gem_object_lookup(file, args->handle);
1692 1693
	if (!obj)
		return -ENOENT;
1694 1695

	/* Pinned buffers may be scanout, so flush the cache */
1696 1697 1698 1699 1700 1701 1702
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1703

1704 1705
	i915_gem_object_put_unlocked(obj);
	return err;
1706 1707 1708
}

/**
1709 1710 1711 1712 1713
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1714 1715 1716
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1727 1728 1729
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1730
		    struct drm_file *file)
1731 1732
{
	struct drm_i915_gem_mmap *args = data;
1733
	struct drm_i915_gem_object *obj;
1734 1735
	unsigned long addr;

1736 1737 1738
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1739
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1740 1741
		return -ENODEV;

1742 1743
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1744
		return -ENOENT;
1745

1746 1747 1748
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1749
	if (!obj->base.filp) {
1750
		i915_gem_object_put_unlocked(obj);
1751 1752 1753
		return -EINVAL;
	}

1754
	addr = vm_mmap(obj->base.filp, 0, args->size,
1755 1756
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1757 1758 1759 1760
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1761
		if (down_write_killable(&mm->mmap_sem)) {
1762
			i915_gem_object_put_unlocked(obj);
1763 1764
			return -EINTR;
		}
1765 1766 1767 1768 1769 1770 1771
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1772 1773

		/* This may race, but that's ok, it only gets set */
1774
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1775
	}
1776
	i915_gem_object_put_unlocked(obj);
1777 1778 1779 1780 1781 1782 1783 1784
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1845 1846
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1847
 * @area: CPU VMA in question
1848
 * @vmf: fault info
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1860 1861 1862
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1863
 */
C
Chris Wilson 已提交
1864
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1865
{
1866
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1867
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1868
	struct drm_device *dev = obj->base.dev;
1869 1870
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1871
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1872
	struct i915_vma *vma;
1873
	pgoff_t page_offset;
1874
	unsigned int flags;
1875
	int ret;
1876

1877
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1878
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1879 1880
		PAGE_SHIFT;

C
Chris Wilson 已提交
1881 1882
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1883
	/* Try to flush the object off the GPU first without holding the lock.
1884
	 * Upon acquiring the lock, we will perform our sanity checks and then
1885 1886 1887
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1888 1889 1890 1891
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1892
	if (ret)
1893 1894 1895 1896 1897 1898 1899
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1900

1901 1902
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1903
		ret = -EFAULT;
1904
		goto err_unlock;
1905 1906
	}

1907 1908 1909 1910 1911 1912 1913 1914
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1915
	/* Now pin it into the GTT as needed */
1916
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1917 1918
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1919 1920
		unsigned int chunk_size;

1921
		/* Use a partial view if it is bigger than available space */
1922 1923 1924
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1925

1926 1927 1928 1929
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1930
			min_t(unsigned int, chunk_size,
1931
			      vma_pages(area) - view.params.partial.offset);
1932

1933 1934 1935 1936 1937 1938
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1939 1940 1941 1942 1943
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1944 1945
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1946 1947
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1948
		goto err_unlock;
C
Chris Wilson 已提交
1949
	}
1950

1951 1952
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1953
		goto err_unpin;
1954

1955
	ret = i915_vma_get_fence(vma);
1956
	if (ret)
1957
		goto err_unpin;
1958

1959
	/* Mark as being mmapped into userspace for later revocation */
1960
	assert_rpm_wakelock_held(dev_priv);
1961 1962 1963
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1964
	/* Finally, remap it using the new GTT offset */
1965 1966 1967 1968 1969
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1970

1971
err_unpin:
C
Chris Wilson 已提交
1972
	__i915_vma_unpin(vma);
1973
err_unlock:
1974
	mutex_unlock(&dev->struct_mutex);
1975 1976 1977
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1978
	switch (ret) {
1979
	case -EIO:
1980 1981 1982 1983 1984 1985 1986
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1987 1988 1989
			ret = VM_FAULT_SIGBUS;
			break;
		}
1990
	case -EAGAIN:
D
Daniel Vetter 已提交
1991 1992 1993 1994
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1995
		 */
1996 1997
	case 0:
	case -ERESTARTSYS:
1998
	case -EINTR:
1999 2000 2001 2002 2003
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2004 2005
		ret = VM_FAULT_NOPAGE;
		break;
2006
	case -ENOMEM:
2007 2008
		ret = VM_FAULT_OOM;
		break;
2009
	case -ENOSPC:
2010
	case -EFAULT:
2011 2012
		ret = VM_FAULT_SIGBUS;
		break;
2013
	default:
2014
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2015 2016
		ret = VM_FAULT_SIGBUS;
		break;
2017
	}
2018
	return ret;
2019 2020
}

2021 2022 2023 2024
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2025
 * Preserve the reservation of the mmapping with the DRM core code, but
2026 2027 2028 2029 2030 2031 2032 2033 2034
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2035
void
2036
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2037
{
2038 2039
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2040 2041 2042
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2043 2044 2045 2046
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2047
	 */
2048
	lockdep_assert_held(&i915->drm.struct_mutex);
2049
	intel_runtime_pm_get(i915);
2050

2051
	if (list_empty(&obj->userfault_link))
2052
		goto out;
2053

2054
	list_del_init(&obj->userfault_link);
2055 2056
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2057 2058 2059 2060 2061 2062 2063 2064 2065

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2066 2067 2068

out:
	intel_runtime_pm_put(i915);
2069 2070
}

2071
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2072
{
2073
	struct drm_i915_gem_object *obj, *on;
2074
	int i;
2075

2076 2077 2078 2079 2080 2081
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2082

2083 2084 2085
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2086 2087 2088
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2106 2107
}

2108 2109
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2110
 * @dev_priv: i915 device
2111 2112 2113 2114 2115 2116
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2117 2118
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2119
{
2120
	u64 ggtt_size;
2121

2122 2123
	GEM_BUG_ON(size == 0);

2124
	if (INTEL_GEN(dev_priv) >= 4 ||
2125 2126
	    tiling_mode == I915_TILING_NONE)
		return size;
2127 2128

	/* Previous chips need a power-of-two fence region when tiling */
2129
	if (IS_GEN3(dev_priv))
2130
		ggtt_size = 1024*1024;
2131
	else
2132
		ggtt_size = 512*1024;
2133

2134 2135
	while (ggtt_size < size)
		ggtt_size <<= 1;
2136

2137
	return ggtt_size;
2138 2139
}

2140
/**
2141
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2142
 * @dev_priv: i915 device
2143 2144
 * @size: object size
 * @tiling_mode: tiling mode
2145
 * @fenced: is fenced alignment required or not
2146
 *
2147
 * Return the required global GTT alignment for an object, taking into account
2148
 * potential fence register mapping.
2149
 */
2150
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2151
				int tiling_mode, bool fenced)
2152
{
2153 2154
	GEM_BUG_ON(size == 0);

2155 2156 2157 2158
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2159
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2160
	    tiling_mode == I915_TILING_NONE)
2161 2162
		return 4096;

2163 2164 2165 2166
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2167
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2168 2169
}

2170 2171
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2172
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2173
	int err;
2174

2175 2176 2177
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2178

2179 2180 2181
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2182
	 */
2183
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2184 2185 2186 2187 2188 2189 2190 2191 2192
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2193

2194
	return err;
2195 2196 2197 2198 2199 2200 2201
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2202
int
2203 2204
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2205
		  uint32_t handle,
2206
		  uint64_t *offset)
2207
{
2208
	struct drm_i915_gem_object *obj;
2209 2210
	int ret;

2211
	obj = i915_gem_object_lookup(file, handle);
2212 2213
	if (!obj)
		return -ENOENT;
2214

2215
	ret = i915_gem_object_create_mmap_offset(obj);
2216 2217
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2218

2219
	i915_gem_object_put_unlocked(obj);
2220
	return ret;
2221 2222
}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2244
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2245 2246
}

D
Daniel Vetter 已提交
2247 2248 2249
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2250
{
2251
	i915_gem_object_free_mmap_offset(obj);
2252

2253 2254
	if (obj->base.filp == NULL)
		return;
2255

D
Daniel Vetter 已提交
2256 2257 2258 2259 2260
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2261
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2262
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2263
}
2264

2265 2266 2267
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2268
{
2269 2270
	struct address_space *mapping;

C
Chris Wilson 已提交
2271
	switch (obj->mm.madv) {
2272 2273 2274 2275 2276 2277 2278 2279 2280
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2281
	mapping = obj->base.filp->f_mapping,
2282
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2283 2284
}

2285
static void
2286
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2287
{
2288 2289
	struct sgt_iter sgt_iter;
	struct page *page;
2290
	int ret;
2291

C
Chris Wilson 已提交
2292
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
2293

C
Chris Wilson 已提交
2294
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2295
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2296 2297 2298
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2299
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2300 2301 2302
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2303 2304
	i915_gem_gtt_finish_object(obj);

2305
	if (i915_gem_object_needs_bit17_swizzle(obj))
2306 2307
		i915_gem_object_save_bit_17_swizzle(obj);

C
Chris Wilson 已提交
2308 2309
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
2310

C
Chris Wilson 已提交
2311 2312
	for_each_sgt_page(page, sgt_iter, obj->mm.pages) {
		if (obj->mm.dirty)
2313
			set_page_dirty(page);
2314

C
Chris Wilson 已提交
2315
		if (obj->mm.madv == I915_MADV_WILLNEED)
2316
			mark_page_accessed(page);
2317

2318
		put_page(page);
2319
	}
C
Chris Wilson 已提交
2320
	obj->mm.dirty = false;
2321

C
Chris Wilson 已提交
2322 2323
	sg_free_table(obj->mm.pages);
	kfree(obj->mm.pages);
2324
}
C
Chris Wilson 已提交
2325

2326 2327 2328 2329 2330
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2331 2332
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2333 2334
}

C
Chris Wilson 已提交
2335
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2336 2337 2338
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2339 2340
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
2341
	if (!obj->mm.pages)
2342 2343
		return 0;

C
Chris Wilson 已提交
2344
	if (i915_gem_object_has_pinned_pages(obj))
2345 2346
		return -EBUSY;

2347
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2348

2349 2350 2351
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2352
	list_del(&obj->global_list);
2353

C
Chris Wilson 已提交
2354
	if (obj->mm.mapping) {
2355 2356
		void *ptr;

C
Chris Wilson 已提交
2357
		ptr = ptr_mask_bits(obj->mm.mapping);
2358 2359
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2360
		else
2361 2362
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2363
		obj->mm.mapping = NULL;
2364 2365
	}

2366 2367
	__i915_gem_object_reset_page_iter(obj);

2368
	ops->put_pages(obj);
C
Chris Wilson 已提交
2369
	obj->mm.pages = NULL;
2370

2371
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2372 2373 2374 2375

	return 0;
}

2376
static unsigned int swiotlb_max_size(void)
2377 2378 2379 2380 2381 2382 2383 2384
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2385
static int
C
Chris Wilson 已提交
2386
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2387
{
2388
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2389 2390
	int page_count, i;
	struct address_space *mapping;
2391 2392
	struct sg_table *st;
	struct scatterlist *sg;
2393
	struct sgt_iter sgt_iter;
2394
	struct page *page;
2395
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2396
	unsigned int max_segment;
I
Imre Deak 已提交
2397
	int ret;
C
Chris Wilson 已提交
2398
	gfp_t gfp;
2399

C
Chris Wilson 已提交
2400 2401 2402 2403 2404 2405 2406
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2407 2408
	max_segment = swiotlb_max_size();
	if (!max_segment)
2409
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2410

2411 2412 2413 2414
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2415
	page_count = obj->base.size / PAGE_SIZE;
2416 2417
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2418
		return -ENOMEM;
2419
	}
2420

2421 2422 2423 2424 2425
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2426
	mapping = obj->base.filp->f_mapping;
2427
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2428
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2429 2430 2431
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2432 2433
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2434 2435 2436 2437 2438
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2439 2440 2441 2442 2443 2444 2445
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2446
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2447 2448
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2449
				goto err_pages;
I
Imre Deak 已提交
2450
			}
C
Chris Wilson 已提交
2451
		}
2452 2453 2454
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2455 2456 2457 2458 2459 2460 2461 2462
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2463 2464 2465

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2466
	}
2467
	if (sg) /* loop terminated early; short sg table */
2468
		sg_mark_end(sg);
C
Chris Wilson 已提交
2469
	obj->mm.pages = st;
2470

I
Imre Deak 已提交
2471 2472 2473 2474
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2475
	if (i915_gem_object_needs_bit17_swizzle(obj))
2476 2477
		i915_gem_object_do_bit_17_swizzle(obj);

2478
	if (i915_gem_object_is_tiled(obj) &&
2479
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
C
Chris Wilson 已提交
2480
		__i915_gem_object_pin_pages(obj);
2481

2482 2483 2484
	return 0;

err_pages:
2485
	sg_mark_end(sg);
2486 2487
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2488 2489
	sg_free_table(st);
	kfree(st);
2490 2491 2492 2493 2494 2495 2496 2497 2498

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2499 2500 2501 2502
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2503 2504
}

2505 2506 2507 2508 2509 2510 2511
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2512
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2513
{
2514
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2515 2516 2517
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2518 2519
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
2520
	if (obj->mm.pages)
2521 2522
		return 0;

C
Chris Wilson 已提交
2523
	if (obj->mm.madv != I915_MADV_WILLNEED) {
2524
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
C
Chris Wilson 已提交
2525
		__i915_gem_object_unpin_pages(obj);
2526
		return -EFAULT;
2527 2528
	}

2529
	ret = ops->get_pages(obj);
C
Chris Wilson 已提交
2530 2531
	if (ret) {
		__i915_gem_object_unpin_pages(obj);
2532
		return ret;
C
Chris Wilson 已提交
2533
	}
2534

2535
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2536

C
Chris Wilson 已提交
2537 2538
	obj->mm.get_page.sg_pos = obj->mm.pages->sgl;
	obj->mm.get_page.sg_idx = 0;
2539

2540
	return 0;
2541 2542
}

2543
/* The 'mapping' part of i915_gem_object_pin_map() below */
2544 2545
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2546 2547
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2548
	struct sg_table *sgt = obj->mm.pages;
2549 2550
	struct sgt_iter sgt_iter;
	struct page *page;
2551 2552
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2553
	unsigned long i = 0;
2554
	pgprot_t pgprot;
2555 2556 2557
	void *addr;

	/* A single page can always be kmapped */
2558
	if (n_pages == 1 && type == I915_MAP_WB)
2559 2560
		return kmap(sg_page(sgt->sgl));

2561 2562 2563 2564 2565 2566
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2567

2568 2569
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2570 2571 2572 2573

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2574 2575 2576 2577 2578 2579 2580 2581 2582
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2583

2584 2585
	if (pages != stack_pages)
		drm_free_large(pages);
2586 2587 2588 2589 2590

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2591 2592
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2593
{
2594 2595 2596
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2597 2598 2599
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2600
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2601

C
Chris Wilson 已提交
2602
	ret = i915_gem_object_pin_pages(obj);
2603 2604 2605
	if (ret)
		return ERR_PTR(ret);

C
Chris Wilson 已提交
2606
	pinned = obj->mm.pages_pin_count > 1;
2607

C
Chris Wilson 已提交
2608
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2609 2610 2611 2612
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2613
		}
2614 2615 2616 2617 2618 2619

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2620
		ptr = obj->mm.mapping = NULL;
2621 2622
	}

2623 2624 2625 2626 2627 2628 2629
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

C
Chris Wilson 已提交
2630
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2631 2632 2633 2634 2635 2636 2637
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2638 2639
}

2640
static void
2641 2642
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2643
{
2644 2645
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2646

2647
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2648 2649
}

2650
static void
2651 2652
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2653
{
2654 2655 2656
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2657

2658
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2659

2660 2661
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2662
		return;
2663

2664 2665 2666 2667
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2668 2669 2670
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2671

2672 2673 2674 2675
	if (i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_clear_active_reference(obj);
		i915_gem_object_put(obj);
	}
2676 2677
}

2678
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2679
{
2680
	unsigned long elapsed;
2681

2682
	if (ctx->hang_stats.banned)
2683 2684
		return true;

2685
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2686 2687
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2688 2689
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2690 2691 2692 2693 2694
	}

	return false;
}

2695
static void i915_set_reset_status(struct i915_gem_context *ctx,
2696
				  const bool guilty)
2697
{
2698
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2699 2700

	if (guilty) {
2701
		hs->banned = i915_context_is_banned(ctx);
2702 2703 2704 2705
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2706 2707 2708
	}
}

2709
struct drm_i915_gem_request *
2710
i915_gem_find_active_request(struct intel_engine_cs *engine)
2711
{
2712 2713
	struct drm_i915_gem_request *request;

2714 2715 2716 2717 2718 2719 2720 2721
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2722
	list_for_each_entry(request, &engine->request_list, link) {
2723
		if (i915_gem_request_completed(request))
2724
			continue;
2725

2726 2727 2728
		if (!i915_sw_fence_done(&request->submit))
			break;

2729
		return request;
2730
	}
2731 2732 2733 2734

	return NULL;
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2753 2754
{
	struct drm_i915_gem_request *request;
2755
	struct i915_gem_context *incomplete_ctx;
2756 2757
	bool ring_hung;

2758 2759 2760
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2761
	request = i915_gem_find_active_request(engine);
2762
	if (!request)
2763 2764
		return;

2765
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2766 2767 2768
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2769
	i915_set_reset_status(request->ctx, ring_hung);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
			 engine->name, request->fence.seqno);

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2791
	list_for_each_entry_continue(request, &engine->request_list, link)
2792 2793
		if (request->ctx == incomplete_ctx)
			reset_request(request);
2794
}
2795

2796
void i915_gem_reset(struct drm_i915_private *dev_priv)
2797
{
2798
	struct intel_engine_cs *engine;
2799
	enum intel_engine_id id;
2800

2801 2802
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2803 2804
	i915_gem_retire_requests(dev_priv);

2805
	for_each_engine(engine, dev_priv, id)
2806 2807 2808
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2809 2810 2811 2812 2813 2814 2815

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2816 2817 2818 2819 2820 2821 2822 2823 2824
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2825

2826 2827 2828 2829
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2830
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2831

2832 2833 2834 2835 2836 2837
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2838
	if (i915.enable_execlists) {
2839 2840 2841 2842 2843 2844
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2845 2846
	}

2847
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2848 2849
}

2850
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2851
{
2852
	struct intel_engine_cs *engine;
2853
	enum intel_engine_id id;
2854

2855 2856
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2857

2858
	i915_gem_context_lost(dev_priv);
2859
	for_each_engine(engine, dev_priv, id)
2860
		i915_gem_cleanup_engine(engine);
2861
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2862

2863
	i915_gem_retire_requests(dev_priv);
2864 2865
}

2866
static void
2867 2868
i915_gem_retire_work_handler(struct work_struct *work)
{
2869
	struct drm_i915_private *dev_priv =
2870
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2871
	struct drm_device *dev = &dev_priv->drm;
2872

2873
	/* Come back later if the device is busy... */
2874
	if (mutex_trylock(&dev->struct_mutex)) {
2875
		i915_gem_retire_requests(dev_priv);
2876
		mutex_unlock(&dev->struct_mutex);
2877
	}
2878 2879 2880 2881 2882

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2883 2884
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2885 2886
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2887
				   round_jiffies_up_relative(HZ));
2888
	}
2889
}
2890

2891 2892 2893 2894
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2895
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2896
	struct drm_device *dev = &dev_priv->drm;
2897
	struct intel_engine_cs *engine;
2898
	enum intel_engine_id id;
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2920

2921
	for_each_engine(engine, dev_priv, id)
2922
		i915_gem_batch_pool_fini(&engine->batch_pool);
2923

2924 2925 2926
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2927

2928 2929 2930 2931 2932
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2933

2934 2935 2936 2937
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2938
	}
2939 2940
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2951 2952 2953 2954 2955 2956

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2957 2958 2959
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2971 2972
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2973 2974 2975
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3000 3001
	ktime_t start;
	long ret;
3002

3003 3004 3005
	if (args->flags != 0)
		return -EINVAL;

3006
	obj = i915_gem_object_lookup(file, args->bo_handle);
3007
	if (!obj)
3008 3009
		return -ENOENT;

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3021 3022
	}

3023
	i915_gem_object_put_unlocked(obj);
3024
	return ret;
3025 3026
}

3027 3028
static void __i915_vma_iounmap(struct i915_vma *vma)
{
3029
	GEM_BUG_ON(i915_vma_is_pinned(vma));
3030 3031 3032 3033 3034 3035 3036 3037

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3038
int i915_vma_unbind(struct i915_vma *vma)
3039
{
3040
	struct drm_i915_gem_object *obj = vma->obj;
3041
	unsigned long active;
3042
	int ret;
3043

3044 3045
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3046 3047 3048 3049
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
3050
	if (active) {
3051 3052
		int idx;

3053 3054 3055 3056 3057
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
3058
		__i915_vma_pin(vma);
3059

3060 3061 3062 3063
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
3064
				break;
3065 3066
		}

3067
		__i915_vma_unpin(vma);
3068 3069 3070
		if (ret)
			return ret;

3071 3072 3073
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

3074
	if (i915_vma_is_pinned(vma))
3075 3076
		return -EBUSY;

3077 3078
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
3079

3080
	GEM_BUG_ON(obj->bind_count == 0);
C
Chris Wilson 已提交
3081
	GEM_BUG_ON(!obj->mm.pages);
3082

3083
	if (i915_vma_is_map_and_fenceable(vma)) {
3084
		/* release the fence reg _after_ flushing */
3085
		ret = i915_vma_put_fence(vma);
3086 3087
		if (ret)
			return ret;
3088

3089 3090 3091
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

3092
		__i915_vma_iounmap(vma);
3093
		vma->flags &= ~I915_VMA_CAN_FENCE;
3094
	}
3095

3096 3097 3098 3099
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
3100
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3101

3102 3103 3104
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

C
Chris Wilson 已提交
3105
	if (vma->pages != obj->mm.pages) {
3106 3107 3108
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
3109
	}
3110
	vma->pages = NULL;
3111

B
Ben Widawsky 已提交
3112
	/* Since the unbound list is global, only move to that list if
3113
	 * no more VMAs exist. */
3114 3115 3116
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3117

3118 3119 3120 3121 3122 3123
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3124
destroy:
3125
	if (unlikely(i915_vma_is_closed(vma)))
3126 3127
		i915_vma_destroy(vma);

3128
	return 0;
3129 3130
}

3131
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3132
			   unsigned int flags)
3133
{
3134
	struct intel_engine_cs *engine;
3135
	enum intel_engine_id id;
3136
	int ret;
3137

3138
	for_each_engine(engine, dev_priv, id) {
3139 3140 3141
		if (engine->last_context == NULL)
			continue;

3142
		ret = intel_engine_idle(engine, flags);
3143 3144 3145
		if (ret)
			return ret;
	}
3146

3147
	return 0;
3148 3149
}

3150
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3151 3152
				     unsigned long cache_level)
{
3153
	struct drm_mm_node *gtt_space = &vma->node;
3154 3155
	struct drm_mm_node *other;

3156 3157 3158 3159 3160 3161
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3162
	 */
3163
	if (vma->vm->mm.color_adjust == NULL)
3164 3165
		return true;

3166
	if (!drm_mm_node_allocated(gtt_space))
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3183
/**
3184 3185
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3186
 * @size: requested size in bytes (can be larger than the VMA)
3187
 * @alignment: required alignment
3188
 * @flags: mask of PIN_* flags to use
3189 3190 3191 3192 3193 3194 3195
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3196
 */
3197 3198
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3199
{
3200 3201
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3202
	u64 start, end;
3203
	int ret;
3204

3205
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3206
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3207 3208 3209

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3210 3211
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3212

3213 3214 3215 3216
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3217

3218
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3219 3220

	end = vma->vm->total;
3221
	if (flags & PIN_MAPPABLE)
3222
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3223
	if (flags & PIN_ZONE_4G)
3224
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3225

3226 3227 3228
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3229
	 */
3230
	if (size > end) {
3231
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3232
			  size, obj->base.size,
3233
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3234
			  end);
3235
		return -E2BIG;
3236 3237
	}

C
Chris Wilson 已提交
3238
	ret = i915_gem_object_pin_pages(obj);
C
Chris Wilson 已提交
3239
	if (ret)
3240
		return ret;
C
Chris Wilson 已提交
3241

3242
	if (flags & PIN_OFFSET_FIXED) {
3243
		u64 offset = flags & PIN_OFFSET_MASK;
3244
		if (offset & (alignment - 1) || offset > end - size) {
3245
			ret = -EINVAL;
3246
			goto err_unpin;
3247
		}
3248

3249 3250 3251
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3252
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3253 3254 3255
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3256 3257 3258
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3259
		}
3260
	} else {
3261 3262
		u32 search_flag, alloc_flag;

3263 3264 3265 3266 3267 3268 3269
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3280
search_free:
3281 3282
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3283 3284 3285 3286 3287 3288
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3289
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3290 3291 3292 3293 3294
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3295

3296
			goto err_unpin;
3297
		}
3298 3299 3300

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3301
	}
3302
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3303

3304
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3305
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3306
	obj->bind_count++;
3307

3308
	return 0;
B
Ben Widawsky 已提交
3309

3310
err_unpin:
B
Ben Widawsky 已提交
3311
	i915_gem_object_unpin_pages(obj);
3312
	return ret;
3313 3314
}

3315
bool
3316 3317
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3318 3319 3320 3321 3322
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
3323
	if (!obj->mm.pages)
3324
		return false;
3325

3326 3327 3328 3329
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3330
	if (obj->stolen || obj->phys_handle)
3331
		return false;
3332

3333 3334 3335 3336 3337 3338 3339 3340
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3341 3342
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3343
		return false;
3344
	}
3345

C
Chris Wilson 已提交
3346
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
3347
	drm_clflush_sg(obj->mm.pages);
3348
	obj->cache_dirty = false;
3349 3350

	return true;
3351 3352 3353 3354
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3355
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3356
{
3357
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3358

3359
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3360 3361
		return;

3362
	/* No actual flushing is required for the GTT write domain.  Writes
3363
	 * to it "immediately" go to main memory as far as we know, so there's
3364
	 * no chipset flush.  It also doesn't land in render cache.
3365 3366 3367 3368
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3369 3370 3371 3372 3373 3374 3375
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3376
	 */
3377
	wmb();
3378
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3379
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3380

3381
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3382

3383
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3384
	trace_i915_gem_object_change_domain(obj,
3385
					    obj->base.read_domains,
3386
					    I915_GEM_DOMAIN_GTT);
3387 3388 3389 3390
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3391
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3392
{
3393
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3394 3395
		return;

3396
	if (i915_gem_clflush_object(obj, obj->pin_display))
3397
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3398

3399
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3400

3401
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3402
	trace_i915_gem_object_change_domain(obj,
3403
					    obj->base.read_domains,
3404
					    I915_GEM_DOMAIN_CPU);
3405 3406
}

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}
}

3425 3426
/**
 * Moves a single object to the GTT read, and possibly write domain.
3427 3428
 * @obj: object to act on
 * @write: ask for write access or read only
3429 3430 3431 3432
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3433
int
3434
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3435
{
C
Chris Wilson 已提交
3436
	uint32_t old_write_domain, old_read_domains;
3437
	int ret;
3438

3439
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3440

3441 3442 3443 3444 3445 3446
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3447 3448 3449
	if (ret)
		return ret;

3450 3451 3452
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3453 3454 3455 3456 3457 3458 3459 3460
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3461
	ret = i915_gem_object_pin_pages(obj);
3462 3463 3464
	if (ret)
		return ret;

3465
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3466

3467 3468 3469 3470 3471 3472 3473
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3474 3475
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3476

3477 3478 3479
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3480 3481
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3482
	if (write) {
3483 3484
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3485
		obj->mm.dirty = true;
3486 3487
	}

C
Chris Wilson 已提交
3488 3489 3490 3491
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3492
	/* And bump the LRU for this access */
3493
	i915_gem_object_bump_inactive_ggtt(obj);
C
Chris Wilson 已提交
3494
	i915_gem_object_unpin_pages(obj);
3495

3496 3497 3498
	return 0;
}

3499 3500
/**
 * Changes the cache-level of an object across all VMA.
3501 3502
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3514 3515 3516
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3517
	struct i915_vma *vma;
3518
	int ret = 0;
3519

3520 3521
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3522
	if (obj->cache_level == cache_level)
3523
		goto out;
3524

3525 3526 3527 3528 3529
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3530 3531
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3532 3533 3534
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3535
		if (i915_vma_is_pinned(vma)) {
3536 3537 3538 3539
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3552 3553
	}

3554 3555 3556 3557 3558 3559 3560
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3561
	if (obj->bind_count) {
3562 3563 3564 3565
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3566 3567 3568 3569 3570 3571
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3572 3573 3574
		if (ret)
			return ret;

3575
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3592 3593 3594 3595 3596
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3597 3598 3599 3600 3601 3602 3603 3604
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3605 3606
		}

3607
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3608 3609 3610 3611 3612 3613 3614
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3615 3616
	}

3617
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3618 3619 3620
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3621
out:
3622 3623 3624 3625
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3626
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3627
		if (i915_gem_clflush_object(obj, true))
3628
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3629 3630 3631 3632 3633
	}

	return 0;
}

B
Ben Widawsky 已提交
3634 3635
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3636
{
B
Ben Widawsky 已提交
3637
	struct drm_i915_gem_caching *args = data;
3638 3639
	struct drm_i915_gem_object *obj;

3640 3641
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3642
		return -ENOENT;
3643

3644 3645 3646 3647 3648 3649
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3650 3651 3652 3653
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3654 3655 3656 3657
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3658

3659
	i915_gem_object_put_unlocked(obj);
3660
	return 0;
3661 3662
}

B
Ben Widawsky 已提交
3663 3664
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3665
{
3666
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3667
	struct drm_i915_gem_caching *args = data;
3668 3669 3670 3671
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3672 3673
	switch (args->caching) {
	case I915_CACHING_NONE:
3674 3675
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3676
	case I915_CACHING_CACHED:
3677 3678 3679 3680 3681 3682
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3683
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3684 3685
			return -ENODEV;

3686 3687
		level = I915_CACHE_LLC;
		break;
3688
	case I915_CACHING_DISPLAY:
3689
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3690
		break;
3691 3692 3693 3694
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3695 3696
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3697
		return ret;
B
Ben Widawsky 已提交
3698

3699 3700
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3701 3702 3703 3704 3705
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3706
	i915_gem_object_put(obj);
3707 3708 3709 3710 3711
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3712
/*
3713 3714 3715
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3716
 */
C
Chris Wilson 已提交
3717
struct i915_vma *
3718 3719
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3720
				     const struct i915_ggtt_view *view)
3721
{
C
Chris Wilson 已提交
3722
	struct i915_vma *vma;
3723
	u32 old_read_domains, old_write_domain;
3724 3725
	int ret;

3726 3727
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3728 3729 3730
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3731
	obj->pin_display++;
3732

3733 3734 3735 3736 3737 3738 3739 3740 3741
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3742
	ret = i915_gem_object_set_cache_level(obj,
3743 3744
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3745 3746
	if (ret) {
		vma = ERR_PTR(ret);
3747
		goto err_unpin_display;
C
Chris Wilson 已提交
3748
	}
3749

3750 3751
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3752 3753 3754 3755
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3756
	 */
3757 3758 3759 3760 3761 3762
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3763
	if (IS_ERR(vma))
3764
		goto err_unpin_display;
3765

3766 3767
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3768
	i915_gem_object_flush_cpu_write_domain(obj);
3769

3770
	old_write_domain = obj->base.write_domain;
3771
	old_read_domains = obj->base.read_domains;
3772 3773 3774 3775

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3776
	obj->base.write_domain = 0;
3777
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3778 3779 3780

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3781
					    old_write_domain);
3782

C
Chris Wilson 已提交
3783
	return vma;
3784 3785

err_unpin_display:
3786
	obj->pin_display--;
C
Chris Wilson 已提交
3787
	return vma;
3788 3789 3790
}

void
C
Chris Wilson 已提交
3791
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3792
{
3793 3794
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3795
	if (WARN_ON(vma->obj->pin_display == 0))
3796 3797
		return;

3798 3799
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3800

3801 3802 3803 3804
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3805
	i915_vma_unpin(vma);
3806 3807
}

3808 3809
/**
 * Moves a single object to the CPU read, and possibly write domain.
3810 3811
 * @obj: object to act on
 * @write: requesting write or read-only access
3812 3813 3814 3815
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3816
int
3817
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3818
{
C
Chris Wilson 已提交
3819
	uint32_t old_write_domain, old_read_domains;
3820 3821
	int ret;

3822
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3823

3824 3825 3826 3827 3828 3829
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3830 3831 3832
	if (ret)
		return ret;

3833 3834 3835
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3836
	i915_gem_object_flush_gtt_write_domain(obj);
3837

3838 3839
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3840

3841
	/* Flush the CPU cache if it's still invalid. */
3842
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3843
		i915_gem_clflush_object(obj, false);
3844

3845
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3846 3847 3848 3849 3850
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3851
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3852 3853 3854 3855 3856

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3857 3858
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3859
	}
3860

C
Chris Wilson 已提交
3861 3862 3863 3864
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3865 3866 3867
	return 0;
}

3868 3869 3870
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3871 3872 3873 3874
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3875 3876 3877
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3878
static int
3879
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3880
{
3881
	struct drm_i915_private *dev_priv = to_i915(dev);
3882
	struct drm_i915_file_private *file_priv = file->driver_priv;
3883
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3884
	struct drm_i915_gem_request *request, *target = NULL;
3885
	long ret;
3886

3887 3888 3889
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3890

3891
	spin_lock(&file_priv->mm.lock);
3892
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3893 3894
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3895

3896 3897 3898 3899 3900 3901 3902
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3903
		target = request;
3904
	}
3905
	if (target)
3906
		i915_gem_request_get(target);
3907
	spin_unlock(&file_priv->mm.lock);
3908

3909
	if (target == NULL)
3910
		return 0;
3911

3912 3913 3914
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3915
	i915_gem_request_put(target);
3916

3917
	return ret < 0 ? ret : 0;
3918 3919
}

3920
static bool
3921
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3922
{
3923 3924 3925
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3926 3927 3928 3929
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3930 3931
		return true;

3932
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3933 3934 3935 3936 3937 3938
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3939 3940 3941 3942
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3943 3944 3945
	return false;
}

3946 3947 3948
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3949
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3950 3951 3952
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3953
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3954
					    vma->size,
3955
					    i915_gem_object_get_tiling(obj));
3956
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3957
						      vma->size,
3958
						      i915_gem_object_get_tiling(obj),
3959
						      true);
3960 3961 3962 3963 3964

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3965
		    dev_priv->ggtt.mappable_end);
3966

3967 3968 3969 3970 3971 3972
	/*
	 * Explicitly disable for rotated VMA since the display does not
	 * need the fence and the VMA is not accessible to other users.
	 */
	if (mappable && fenceable &&
	    vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3973 3974 3975
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3976 3977
}

3978 3979
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3980
{
3981
	unsigned int bound = vma->flags;
3982 3983
	int ret;

3984
	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3985
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3986
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3987

3988 3989 3990 3991
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3992

3993
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3994 3995 3996
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3997
	}
3998

3999
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
4000
	if (ret)
4001
		goto err;
4002

4003
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
4004
		__i915_vma_set_map_and_fenceable(vma);
4005

4006
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
4007 4008
	return 0;

4009 4010 4011
err:
	__i915_vma_unpin(vma);
	return ret;
4012 4013
}

C
Chris Wilson 已提交
4014
struct i915_vma *
4015 4016
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4017
			 u64 size,
4018 4019
			 u64 alignment,
			 u64 flags)
4020
{
4021 4022
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4023 4024
	struct i915_vma *vma;
	int ret;
4025

4026 4027
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
4028
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
4029
	if (IS_ERR(vma))
C
Chris Wilson 已提交
4030
		return vma;
4031 4032 4033 4034

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4035
			return ERR_PTR(-ENOSPC);
4036

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

4072 4073
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4074 4075 4076
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4077
		     !!(flags & PIN_MAPPABLE),
4078
		     i915_vma_is_map_and_fenceable(vma));
4079 4080
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4081
			return ERR_PTR(ret);
4082 4083
	}

C
Chris Wilson 已提交
4084 4085 4086
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4087

C
Chris Wilson 已提交
4088
	return vma;
4089 4090
}

4091
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4106 4107 4108 4109 4110 4111 4112 4113 4114
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4115 4116
}

4117
static __always_inline unsigned int
4118 4119 4120
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
4121
	struct drm_i915_gem_request *request;
4122

4123 4124 4125
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
4183 4184
}

4185
static __always_inline unsigned int
4186 4187 4188 4189 4190
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

4191
static __always_inline unsigned int
4192 4193 4194 4195 4196
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

4197 4198
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4199
		    struct drm_file *file)
4200 4201
{
	struct drm_i915_gem_busy *args = data;
4202
	struct drm_i915_gem_object *obj;
4203
	unsigned long active;
4204

4205
	obj = i915_gem_object_lookup(file, args->handle);
4206 4207
	if (!obj)
		return -ENOENT;
4208

4209
	args->busy = 0;
4210 4211 4212
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
4213

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4230 4231 4232 4233 4234 4235
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4236 4237 4238 4239 4240 4241 4242
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4243 4244 4245 4246 4247
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4248 4249 4250 4251 4252 4253 4254 4255 4256
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4257
	}
4258

4259 4260
	i915_gem_object_put_unlocked(obj);
	return 0;
4261 4262 4263 4264 4265 4266
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4267
	return i915_gem_ring_throttle(dev, file_priv);
4268 4269
}

4270 4271 4272 4273
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4274
	struct drm_i915_private *dev_priv = to_i915(dev);
4275
	struct drm_i915_gem_madvise *args = data;
4276
	struct drm_i915_gem_object *obj;
4277
	int ret;
4278 4279 4280 4281 4282 4283 4284 4285 4286

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4287 4288 4289 4290
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4291 4292
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4293 4294
		ret = -ENOENT;
		goto unlock;
4295 4296
	}

C
Chris Wilson 已提交
4297
	if (obj->mm.pages &&
4298
	    i915_gem_object_is_tiled(obj) &&
4299
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
C
Chris Wilson 已提交
4300 4301
		if (obj->mm.madv == I915_MADV_WILLNEED)
			__i915_gem_object_unpin_pages(obj);
4302
		if (args->madv == I915_MADV_WILLNEED)
C
Chris Wilson 已提交
4303
			__i915_gem_object_pin_pages(obj);
4304 4305
	}

C
Chris Wilson 已提交
4306 4307
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4308

C
Chris Wilson 已提交
4309
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4310
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4311 4312
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4313
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4314

4315
	i915_gem_object_put(obj);
4316
unlock:
4317
	mutex_unlock(&dev->struct_mutex);
4318
	return ret;
4319 4320
}

4321 4322
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4323
{
4324 4325
	int i;

4326
	INIT_LIST_HEAD(&obj->global_list);
4327
	INIT_LIST_HEAD(&obj->userfault_link);
4328
	for (i = 0; i < I915_NUM_ENGINES; i++)
4329 4330 4331 4332
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4333
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4334
	INIT_LIST_HEAD(&obj->vma_list);
4335
	INIT_LIST_HEAD(&obj->batch_pool_link);
4336

4337 4338
	obj->ops = ops;

4339
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
C
Chris Wilson 已提交
4340 4341 4342 4343

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4344

4345
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4346 4347
}

4348
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4349
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4350 4351 4352 4353
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4354 4355 4356 4357 4358 4359
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
4360
{
4361
	struct drm_i915_gem_object *obj;
4362
	struct address_space *mapping;
D
Daniel Vetter 已提交
4363
	gfp_t mask;
4364
	int ret;
4365

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4377
	obj = i915_gem_object_alloc(dev);
4378
	if (obj == NULL)
4379
		return ERR_PTR(-ENOMEM);
4380

4381 4382 4383
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4384

4385 4386 4387 4388 4389 4390 4391
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4392
	mapping = obj->base.filp->f_mapping;
4393
	mapping_set_gfp_mask(mapping, mask);
4394

4395
	i915_gem_object_init(obj, &i915_gem_object_ops);
4396

4397 4398
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4399

4400 4401
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4417 4418
	trace_i915_gem_object_create(obj);

4419
	return obj;
4420 4421 4422 4423 4424

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4425 4426
}

4427 4428 4429 4430 4431 4432 4433 4434
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4435
	if (obj->mm.madv != I915_MADV_WILLNEED)
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4451
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4452
{
4453
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4454
	struct drm_device *dev = obj->base.dev;
4455
	struct drm_i915_private *dev_priv = to_i915(dev);
4456
	struct i915_vma *vma, *next;
4457

4458 4459
	intel_runtime_pm_get(dev_priv);

4460 4461
	trace_i915_gem_object_destroy(obj);

4462 4463 4464 4465 4466 4467 4468
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4469
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4470
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4471
		GEM_BUG_ON(i915_vma_is_active(vma));
4472
		vma->flags &= ~I915_VMA_PIN_MASK;
4473
		i915_vma_close(vma);
4474
	}
4475
	GEM_BUG_ON(obj->bind_count);
4476

4477
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4478

C
Chris Wilson 已提交
4479
	if (obj->mm.pages && obj->mm.madv == I915_MADV_WILLNEED &&
4480
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4481
	    i915_gem_object_is_tiled(obj))
C
Chris Wilson 已提交
4482
		__i915_gem_object_unpin_pages(obj);
4483

C
Chris Wilson 已提交
4484 4485 4486 4487 4488
	if (obj->ops->release)
		obj->ops->release(obj);

	if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
		obj->mm.pages_pin_count = 0;
4489
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4490 4491
		obj->mm.madv = I915_MADV_DONTNEED;
	__i915_gem_object_put_pages(obj);
4492

C
Chris Wilson 已提交
4493
	GEM_BUG_ON(obj->mm.pages);
4494

4495 4496
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4497

4498 4499
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4500

4501
	kfree(obj->bit_17);
4502
	i915_gem_object_free(obj);
4503 4504

	intel_runtime_pm_put(dev_priv);
4505 4506
}

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4518
int i915_gem_suspend(struct drm_device *dev)
4519
{
4520
	struct drm_i915_private *dev_priv = to_i915(dev);
4521
	int ret;
4522

4523 4524
	intel_suspend_gt_powersave(dev_priv);

4525
	mutex_lock(&dev->struct_mutex);
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4539 4540 4541
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4542
	if (ret)
4543
		goto err;
4544

4545
	i915_gem_retire_requests(dev_priv);
4546

4547
	i915_gem_context_lost(dev_priv);
4548 4549
	mutex_unlock(&dev->struct_mutex);

4550
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4551 4552
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4553

4554 4555 4556
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4557
	WARN_ON(dev_priv->gt.awake);
4558

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4583
	return 0;
4584 4585 4586 4587

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4588 4589
}

4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4601
	dev_priv->gt.resume(dev_priv);
4602 4603 4604 4605

	mutex_unlock(&dev->struct_mutex);
}

4606 4607
void i915_gem_init_swizzling(struct drm_device *dev)
{
4608
	struct drm_i915_private *dev_priv = to_i915(dev);
4609

4610
	if (INTEL_INFO(dev)->gen < 5 ||
4611 4612 4613 4614 4615 4616
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4617
	if (IS_GEN5(dev_priv))
4618 4619
		return;

4620
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4621
	if (IS_GEN6(dev_priv))
4622
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4623
	else if (IS_GEN7(dev_priv))
4624
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4625
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4626
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4627 4628
	else
		BUG();
4629
}
D
Daniel Vetter 已提交
4630

4631
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4632 4633 4634 4635 4636 4637 4638
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4639
static void init_unused_rings(struct drm_i915_private *dev_priv)
4640
{
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4653 4654 4655
	}
}

4656 4657 4658
int
i915_gem_init_hw(struct drm_device *dev)
{
4659
	struct drm_i915_private *dev_priv = to_i915(dev);
4660
	struct intel_engine_cs *engine;
4661
	enum intel_engine_id id;
C
Chris Wilson 已提交
4662
	int ret;
4663

4664 4665
	dev_priv->gt.last_init_time = ktime_get();

4666 4667 4668
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4669
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4670
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4671

4672
	if (IS_HASWELL(dev_priv))
4673
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4674
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4675

4676
	if (HAS_PCH_NOP(dev_priv)) {
4677
		if (IS_IVYBRIDGE(dev_priv)) {
4678 4679 4680 4681 4682 4683 4684 4685
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4686 4687
	}

4688 4689
	i915_gem_init_swizzling(dev);

4690 4691 4692 4693 4694 4695
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4696
	init_unused_rings(dev_priv);
4697

4698
	BUG_ON(!dev_priv->kernel_context);
4699

4700 4701 4702 4703 4704 4705 4706
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4707
	for_each_engine(engine, dev_priv, id) {
4708
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4709
		if (ret)
4710
			goto out;
D
Daniel Vetter 已提交
4711
	}
4712

4713 4714
	intel_mocs_init_l3cc_table(dev);

4715
	/* We can't enable contexts until all firmware is loaded */
4716 4717 4718
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4719

4720 4721
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4722
	return ret;
4723 4724
}

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4746 4747
int i915_gem_init(struct drm_device *dev)
{
4748
	struct drm_i915_private *dev_priv = to_i915(dev);
4749 4750 4751
	int ret;

	mutex_lock(&dev->struct_mutex);
4752

4753
	if (!i915.enable_execlists) {
4754
		dev_priv->gt.resume = intel_legacy_submission_resume;
4755
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4756
	} else {
4757
		dev_priv->gt.resume = intel_lr_context_resume;
4758
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4759 4760
	}

4761 4762 4763 4764 4765 4766 4767 4768
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4769
	i915_gem_init_userptr(dev_priv);
4770 4771 4772 4773

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4774

4775
	ret = i915_gem_context_init(dev);
4776 4777
	if (ret)
		goto out_unlock;
4778

4779
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4780
	if (ret)
4781
		goto out_unlock;
4782

4783
	ret = i915_gem_init_hw(dev);
4784
	if (ret == -EIO) {
4785
		/* Allow engine initialisation to fail by marking the GPU as
4786 4787 4788 4789
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4790
		i915_gem_set_wedged(dev_priv);
4791
		ret = 0;
4792
	}
4793 4794

out_unlock:
4795
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4796
	mutex_unlock(&dev->struct_mutex);
4797

4798
	return ret;
4799 4800
}

4801
void
4802
i915_gem_cleanup_engines(struct drm_device *dev)
4803
{
4804
	struct drm_i915_private *dev_priv = to_i915(dev);
4805
	struct intel_engine_cs *engine;
4806
	enum intel_engine_id id;
4807

4808
	for_each_engine(engine, dev_priv, id)
4809
		dev_priv->gt.cleanup_engine(engine);
4810 4811
}

4812 4813 4814
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4815
	struct drm_device *dev = &dev_priv->drm;
4816
	int i;
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4827
	if (intel_vgpu_active(dev_priv))
4828 4829 4830 4831
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4832 4833 4834 4835 4836 4837 4838
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4839 4840 4841 4842 4843
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4844
void
4845
i915_gem_load_init(struct drm_device *dev)
4846
{
4847
	struct drm_i915_private *dev_priv = to_i915(dev);
4848

4849
	dev_priv->objects =
4850 4851 4852 4853
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4854 4855 4856 4857 4858
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4859 4860 4861
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4862 4863 4864
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4865
				  NULL);
4866

4867
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4868 4869
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4870
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4871
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4872
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4873
			  i915_gem_retire_work_handler);
4874
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4875
			  i915_gem_idle_work_handler);
4876
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4877
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4878

4879 4880
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4881
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4882

4883 4884
	dev_priv->mm.interruptible = true;

4885 4886
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4887
	spin_lock_init(&dev_priv->fb_tracking.lock);
4888
}
4889

4890 4891 4892 4893 4894 4895 4896
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4897 4898 4899

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4900 4901
}

4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4915 4916 4917
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4918 4919 4920 4921 4922
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4933 4934 4935
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4936 4937
	 */

4938 4939
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4940

4941 4942 4943 4944 4945
	for (p = phases; *p; p++) {
		list_for_each_entry(obj, *p, global_list) {
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4946
	}
4947
	mutex_unlock(&dev_priv->drm.struct_mutex);
4948 4949 4950 4951

	return 0;
}

4952
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4953
{
4954
	struct drm_i915_file_private *file_priv = file->driver_priv;
4955
	struct drm_i915_gem_request *request;
4956 4957 4958 4959 4960

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4961
	spin_lock(&file_priv->mm.lock);
4962
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4963
		request->file_priv = NULL;
4964
	spin_unlock(&file_priv->mm.lock);
4965

4966
	if (!list_empty(&file_priv->rps.link)) {
4967
		spin_lock(&to_i915(dev)->rps.client_lock);
4968
		list_del(&file_priv->rps.link);
4969
		spin_unlock(&to_i915(dev)->rps.client_lock);
4970
	}
4971 4972 4973 4974 4975
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4976
	int ret;
4977 4978 4979 4980 4981 4982 4983 4984

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4985
	file_priv->dev_priv = to_i915(dev);
4986
	file_priv->file = file;
4987
	INIT_LIST_HEAD(&file_priv->rps.link);
4988 4989 4990 4991

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4992
	file_priv->bsd_engine = -1;
4993

4994 4995 4996
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4997

4998
	return ret;
4999 5000
}

5001 5002
/**
 * i915_gem_track_fb - update frontbuffer tracking
5003 5004 5005
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5006 5007 5008 5009
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5010 5011 5012 5013
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5014 5015 5016 5017 5018 5019 5020 5021 5022
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5023
	if (old) {
5024 5025
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5026 5027 5028
	}

	if (new) {
5029 5030
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5031 5032 5033
	}
}

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5044
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5045
	if (IS_ERR(obj))
5046 5047 5048 5049 5050 5051
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
5052
	ret = i915_gem_object_pin_pages(obj);
5053 5054 5055
	if (ret)
		goto fail;

C
Chris Wilson 已提交
5056
	sg = obj->mm.pages;
5057
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
5058
	obj->mm.dirty = true; /* Backing store is now out of date */
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
5070
	i915_gem_object_put(obj);
5071 5072
	return ERR_PTR(ret);
}
5073 5074 5075 5076 5077 5078

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5079
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5080 5081 5082 5083 5084
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5085
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5210
	if (!obj->mm.dirty)
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}