i915_gem.c 163.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

242 243
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244
			    struct drm_file *file)
245
{
246
	struct drm_i915_private *dev_priv = to_i915(dev);
247
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248
	struct drm_i915_gem_get_aperture *args = data;
249
	struct i915_vma *vma;
250
	u64 pinned;
251

252
	pinned = ggtt->vm.reserved;
253
	mutex_lock(&dev->struct_mutex);
254
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255
		if (i915_vma_is_pinned(vma))
256
			pinned += vma->node.size;
257
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258
		if (i915_vma_is_pinned(vma))
259
			pinned += vma->node.size;
260
	mutex_unlock(&dev->struct_mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443 444 445 446 447 448 449 450 451 452
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

453 454 455 456
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
457
			   struct intel_rps_client *rps_client)
458
{
459
	struct i915_request *rq;
460

461
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462

463 464 465 466 467 468 469 470 471
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
472
	if (i915_request_completed(rq))
473 474
		goto out;

475 476
	/*
	 * This client is about to stall waiting for the GPU. In many cases
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
491
	if (rps_client && !i915_request_started(rq)) {
492
		if (INTEL_GEN(rq->i915) >= 6)
493
			gen6_rps_boost(rq, rps_client);
494 495
	}

496
	timeout = i915_request_wait(rq, flags, timeout);
497 498

out:
499 500
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
501 502 503 504 505 506 507 508

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
509
				 struct intel_rps_client *rps_client)
510
{
511
	unsigned int seq = __read_seqcount_begin(&resv->seq);
512
	struct dma_fence *excl;
513
	bool prune_fences = false;
514 515 516 517

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
518 519
		int ret;

520 521
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
522 523 524
		if (ret)
			return ret;

525 526 527
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
528
							     rps_client);
529
			if (timeout < 0)
530
				break;
531

532 533 534 535 536 537
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
538

539 540 541 542 543 544 545 546 547
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
548
		prune_fences = count && timeout >= 0;
549 550
	} else {
		excl = reservation_object_get_excl_rcu(resv);
551 552
	}

553
	if (excl && timeout >= 0)
554 555
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
556 557 558

	dma_fence_put(excl);

559 560
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
561 562 563
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
564
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 566 567 568 569
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
570 571
	}

572
	return timeout;
573 574
}

575 576
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
577
{
578
	struct i915_request *rq;
579 580
	struct intel_engine_cs *engine;

581
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 583 584 585 586
		return;

	rq = to_request(fence);
	engine = rq->engine;

587 588
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589
	if (engine->schedule)
590
		engine->schedule(rq, attr);
591
	rcu_read_unlock();
592
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 594
}

595 596
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
597 598 599 600 601 602 603
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
604
			__fence_set_priority(array->fences[i], attr);
605
	} else {
606
		__fence_set_priority(fence, attr);
607 608 609 610 611 612
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
613
			      const struct i915_sched_attr *attr)
614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
628
			fence_set_priority(shared[i], attr);
629 630 631 632 633 634 635 636 637
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
638
		fence_set_priority(excl, attr);
639 640 641 642 643
		dma_fence_put(excl);
	}
	return 0;
}

644 645 646 647 648
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
649
 * @rps_client: client (user process) to charge for any waitboosting
650
 */
651 652 653 654
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
655
		     struct intel_rps_client *rps_client)
656
{
657 658 659 660 661 662 663
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
664

665 666
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
667
						   rps_client);
668
	return timeout < 0 ? timeout : 0;
669 670 671 672 673 674
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

675
	return &fpriv->rps_client;
676 677
}

678 679 680
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
681
		     struct drm_file *file)
682 683
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
684
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 686 687 688

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
689
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 691
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
692

693
	drm_clflush_virt_range(vaddr, args->size);
694
	i915_gem_chipset_flush(to_i915(obj->base.dev));
695

696
	intel_fb_obj_flush(obj, ORIGIN_CPU);
697
	return 0;
698 699
}

700
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701
{
702
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 704 705 706
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
707
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708
	kmem_cache_free(dev_priv->objects, obj);
709 710
}

711 712
static int
i915_gem_create(struct drm_file *file,
713
		struct drm_i915_private *dev_priv,
714 715
		uint64_t size,
		uint32_t *handle_p)
716
{
717
	struct drm_i915_gem_object *obj;
718 719
	int ret;
	u32 handle;
720

721
	size = roundup(size, PAGE_SIZE);
722 723
	if (size == 0)
		return -EINVAL;
724 725

	/* Allocate the new object */
726
	obj = i915_gem_object_create(dev_priv, size);
727 728
	if (IS_ERR(obj))
		return PTR_ERR(obj);
729

730
	ret = drm_gem_handle_create(file, &obj->base, &handle);
731
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
732
	i915_gem_object_put(obj);
733 734
	if (ret)
		return ret;
735

736
	*handle_p = handle;
737 738 739
	return 0;
}

740 741 742 743 744 745
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
746
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747
	args->size = args->pitch * args->height;
748
	return i915_gem_create(file, to_i915(dev),
749
			       args->size, &args->handle);
750 751
}

752 753 754 755 756 757
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

758 759
/**
 * Creates a new mm object and returns a handle to it.
760 761 762
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
763 764 765 766 767
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
768
	struct drm_i915_private *dev_priv = to_i915(dev);
769
	struct drm_i915_gem_create *args = data;
770

771
	i915_gem_flush_free_objects(dev_priv);
772

773
	return i915_gem_create(file, dev_priv,
774
			       args->size, &args->handle);
775 776
}

777 778 779 780 781 782 783
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

784
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785
{
786 787 788 789 790
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
791 792 793 794 795 796 797 798 799 800
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 802
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
803
	 */
804

805 806
	wmb();

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

822
	if (!(obj->write_domain & flush_domains))
823 824
		return;

825
	switch (obj->write_domain) {
826
	case I915_GEM_DOMAIN_GTT:
827
		i915_gem_flush_ggtt_writes(dev_priv);
828 829 830

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
831

832
		for_each_ggtt_vma(vma, obj) {
833 834 835 836 837
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
838 839 840 841 842
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
843 844 845 846 847

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
848 849
	}

850
	obj->write_domain = 0;
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

879
static inline int
880 881
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

905 906 907 908 909 910
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
911
				    unsigned int *needs_clflush)
912 913 914
{
	int ret;

915
	lockdep_assert_held(&obj->base.dev->struct_mutex);
916

917
	*needs_clflush = 0;
918 919
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
920

921 922 923 924 925
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
926 927 928
	if (ret)
		return ret;

C
Chris Wilson 已提交
929
	ret = i915_gem_object_pin_pages(obj);
930 931 932
	if (ret)
		return ret;

933 934
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
935 936 937 938 939 940 941
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

942
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
943

944 945 946 947 948
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
949
	if (!obj->cache_dirty &&
950
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
951
		*needs_clflush = CLFLUSH_BEFORE;
952

953
out:
954
	/* return with the pages pinned */
955
	return 0;
956 957 958 959

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
960 961 962 963 964 965 966
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

967 968
	lockdep_assert_held(&obj->base.dev->struct_mutex);

969 970 971 972
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

973 974 975 976 977 978
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
979 980 981
	if (ret)
		return ret;

C
Chris Wilson 已提交
982
	ret = i915_gem_object_pin_pages(obj);
983 984 985
	if (ret)
		return ret;

986 987
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
988 989 990 991 992 993 994
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

995
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
996

997 998 999 1000 1001
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1002
	if (!obj->cache_dirty) {
1003
		*needs_clflush |= CLFLUSH_AFTER;
1004

1005 1006 1007 1008
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1009
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1010 1011
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1012

1013
out:
1014
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1015
	obj->mm.dirty = true;
1016
	/* return with the pages pinned */
1017
	return 0;
1018 1019 1020 1021

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1022 1023
}

1024 1025 1026 1027
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1028
	if (unlikely(swizzled)) {
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1046 1047 1048
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1049
shmem_pread_slow(struct page *page, int offset, int length,
1050 1051 1052 1053 1054 1055 1056 1057
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1058
		shmem_clflush_swizzled_range(vaddr + offset, length,
1059
					     page_do_bit17_swizzling);
1060 1061

	if (page_do_bit17_swizzling)
1062
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1063
	else
1064
		ret = __copy_to_user(user_data, vaddr + offset, length);
1065 1066
	kunmap(page);

1067
	return ret ? - EFAULT : 0;
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1146
{
1147
	void __iomem *vaddr;
1148
	unsigned long unwritten;
1149 1150

	/* We can use the cpu mem copy function because this is X86. */
1151 1152 1153 1154
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1155 1156
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1157 1158 1159 1160
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1161 1162
		io_mapping_unmap(vaddr);
	}
1163 1164 1165 1166
	return unwritten;
}

static int
1167 1168
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1169
{
1170 1171
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1172
	struct drm_mm_node node;
1173 1174 1175
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1176 1177
	int ret;

1178 1179 1180 1181 1182 1183
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1184 1185 1186
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1187 1188 1189
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1190
		ret = i915_vma_put_fence(vma);
1191 1192 1193 1194 1195
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1196
	if (IS_ERR(vma)) {
1197
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1198
		if (ret)
1199 1200
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1201 1202 1203 1204 1205 1206
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1207
	mutex_unlock(&i915->drm.struct_mutex);
1208

1209 1210 1211
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1226 1227 1228
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1229 1230 1231 1232
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1233

1234
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1235
				  user_data, page_length)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1245
	mutex_lock(&i915->drm.struct_mutex);
1246 1247 1248
out_unpin:
	if (node.allocated) {
		wmb();
1249
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1250 1251
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1252
		i915_vma_unpin(vma);
1253
	}
1254 1255 1256
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1257

1258 1259 1260
	return ret;
}

1261 1262
/**
 * Reads data from the object referenced by handle.
1263 1264 1265
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1266 1267 1268 1269 1270
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1271
		     struct drm_file *file)
1272 1273
{
	struct drm_i915_gem_pread *args = data;
1274
	struct drm_i915_gem_object *obj;
1275
	int ret;
1276

1277 1278 1279 1280
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1281
		       u64_to_user_ptr(args->data_ptr),
1282 1283 1284
		       args->size))
		return -EFAULT;

1285
	obj = i915_gem_object_lookup(file, args->handle);
1286 1287
	if (!obj)
		return -ENOENT;
1288

1289
	/* Bounds check source.  */
1290
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1291
		ret = -EINVAL;
1292
		goto out;
C
Chris Wilson 已提交
1293 1294
	}

C
Chris Wilson 已提交
1295 1296
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1297 1298 1299 1300
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1301
	if (ret)
1302
		goto out;
1303

1304
	ret = i915_gem_object_pin_pages(obj);
1305
	if (ret)
1306
		goto out;
1307

1308
	ret = i915_gem_shmem_pread(obj, args);
1309
	if (ret == -EFAULT || ret == -ENODEV)
1310
		ret = i915_gem_gtt_pread(obj, args);
1311

1312 1313
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1314
	i915_gem_object_put(obj);
1315
	return ret;
1316 1317
}

1318 1319
/* This is the fast write path which cannot handle
 * page faults in the source data
1320
 */
1321

1322 1323 1324 1325
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1326
{
1327
	void __iomem *vaddr;
1328
	unsigned long unwritten;
1329

1330
	/* We can use the cpu mem copy function because this is X86. */
1331 1332
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1333
						      user_data, length);
1334 1335
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1336 1337 1338
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1339 1340
		io_mapping_unmap(vaddr);
	}
1341 1342 1343 1344

	return unwritten;
}

1345 1346 1347
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1348
 * @obj: i915 GEM object
1349
 * @args: pwrite arguments structure
1350
 */
1351
static int
1352 1353
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1354
{
1355
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1356 1357
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1358 1359 1360
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1361
	int ret;
1362

1363 1364 1365
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1384
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1385 1386 1387
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1388 1389 1390
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1391
		ret = i915_vma_put_fence(vma);
1392 1393 1394 1395 1396
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1397
	if (IS_ERR(vma)) {
1398
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1399
		if (ret)
1400
			goto out_rpm;
1401
		GEM_BUG_ON(!node.allocated);
1402
	}
D
Daniel Vetter 已提交
1403 1404 1405 1406 1407

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1408 1409
	mutex_unlock(&i915->drm.struct_mutex);

1410
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1411

1412 1413 1414 1415
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1416 1417
		/* Operation in this page
		 *
1418 1419 1420
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1421
		 */
1422
		u32 page_base = node.start;
1423 1424
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1425 1426 1427
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1428 1429 1430
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1431 1432 1433 1434
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1435
		/* If we get a fault while copying data, then (presumably) our
1436 1437
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1438 1439
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1440
		 */
1441
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1442 1443 1444
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1445
		}
1446

1447 1448 1449
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1450
	}
1451
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1452 1453

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1454
out_unpin:
1455 1456
	if (node.allocated) {
		wmb();
1457
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1458 1459
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1460
		i915_vma_unpin(vma);
1461
	}
1462
out_rpm:
1463
	intel_runtime_pm_put(i915);
1464
out_unlock:
1465
	mutex_unlock(&i915->drm.struct_mutex);
1466
	return ret;
1467 1468
}

1469
static int
1470
shmem_pwrite_slow(struct page *page, int offset, int length,
1471 1472 1473 1474
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1475
{
1476 1477
	char *vaddr;
	int ret;
1478

1479
	vaddr = kmap(page);
1480
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1481
		shmem_clflush_swizzled_range(vaddr + offset, length,
1482
					     page_do_bit17_swizzling);
1483
	if (page_do_bit17_swizzling)
1484 1485
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1486
	else
1487
		ret = __copy_from_user(vaddr + offset, user_data, length);
1488
	if (needs_clflush_after)
1489
		shmem_clflush_swizzled_range(vaddr + offset, length,
1490
					     page_do_bit17_swizzling);
1491
	kunmap(page);
1492

1493
	return ret ? -EFAULT : 0;
1494 1495
}

1496 1497 1498 1499 1500
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1501
static int
1502 1503 1504 1505
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1506
{
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1539
	unsigned int needs_clflush;
1540 1541
	unsigned int offset, idx;
	int ret;
1542

1543
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1544 1545 1546
	if (ret)
		return ret;

1547 1548 1549 1550
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1551

1552 1553 1554
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1555

1556 1557 1558 1559 1560 1561 1562
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1563

1564 1565 1566 1567 1568 1569
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1570

1571 1572 1573
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1574

1575 1576 1577 1578
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1579
		if (ret)
1580
			break;
1581

1582 1583 1584
		remain -= length;
		user_data += length;
		offset = 0;
1585
	}
1586

1587
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1588
	i915_gem_obj_finish_shmem_access(obj);
1589
	return ret;
1590 1591 1592 1593
}

/**
 * Writes data to the object referenced by handle.
1594 1595 1596
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1597 1598 1599 1600 1601
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1602
		      struct drm_file *file)
1603 1604
{
	struct drm_i915_gem_pwrite *args = data;
1605
	struct drm_i915_gem_object *obj;
1606 1607 1608 1609 1610 1611
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1612
		       u64_to_user_ptr(args->data_ptr),
1613 1614 1615
		       args->size))
		return -EFAULT;

1616
	obj = i915_gem_object_lookup(file, args->handle);
1617 1618
	if (!obj)
		return -ENOENT;
1619

1620
	/* Bounds check destination. */
1621
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1622
		ret = -EINVAL;
1623
		goto err;
C
Chris Wilson 已提交
1624 1625
	}

C
Chris Wilson 已提交
1626 1627
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1628 1629 1630 1631 1632 1633
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1634 1635 1636 1637 1638
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1639 1640 1641
	if (ret)
		goto err;

1642
	ret = i915_gem_object_pin_pages(obj);
1643
	if (ret)
1644
		goto err;
1645

D
Daniel Vetter 已提交
1646
	ret = -EFAULT;
1647 1648 1649 1650 1651 1652
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1653
	if (!i915_gem_object_has_struct_page(obj) ||
1654
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1655 1656
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1657 1658
		 * textures). Fallback to the shmem path in that case.
		 */
1659
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1660

1661
	if (ret == -EFAULT || ret == -ENOSPC) {
1662 1663
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1664
		else
1665
			ret = i915_gem_shmem_pwrite(obj, args);
1666
	}
1667

1668
	i915_gem_object_unpin_pages(obj);
1669
err:
C
Chris Wilson 已提交
1670
	i915_gem_object_put(obj);
1671
	return ret;
1672 1673
}

1674 1675 1676 1677 1678 1679
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1680 1681
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1682
	for_each_ggtt_vma(vma, obj) {
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1693
	spin_lock(&i915->mm.obj_lock);
1694
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1695 1696
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1697 1698
}

1699
/**
1700 1701
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1702 1703 1704
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1705 1706 1707
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1708
			  struct drm_file *file)
1709 1710
{
	struct drm_i915_gem_set_domain *args = data;
1711
	struct drm_i915_gem_object *obj;
1712 1713
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1714
	int err;
1715

1716
	/* Only handle setting domains to types used by the CPU. */
1717
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1718 1719 1720 1721 1722 1723 1724 1725
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1726
	obj = i915_gem_object_lookup(file, args->handle);
1727 1728
	if (!obj)
		return -ENOENT;
1729

1730 1731 1732 1733
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1734
	err = i915_gem_object_wait(obj,
1735 1736 1737 1738
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1739
	if (err)
C
Chris Wilson 已提交
1740
		goto out;
1741

T
Tina Zhang 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1755 1756 1757 1758 1759 1760 1761 1762 1763
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1764
		goto out;
1765 1766 1767

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1768
		goto out_unpin;
1769

1770 1771 1772 1773
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1774
	else
1775
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1776

1777 1778
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1779

1780
	mutex_unlock(&dev->struct_mutex);
1781

1782
	if (write_domain != 0)
1783 1784
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1785

C
Chris Wilson 已提交
1786
out_unpin:
1787
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1788 1789
out:
	i915_gem_object_put(obj);
1790
	return err;
1791 1792 1793 1794
}

/**
 * Called when user space has done writes to this buffer
1795 1796 1797
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1798 1799 1800
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1801
			 struct drm_file *file)
1802 1803
{
	struct drm_i915_gem_sw_finish *args = data;
1804
	struct drm_i915_gem_object *obj;
1805

1806
	obj = i915_gem_object_lookup(file, args->handle);
1807 1808
	if (!obj)
		return -ENOENT;
1809

T
Tina Zhang 已提交
1810 1811 1812 1813 1814
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1815
	/* Pinned buffers may be scanout, so flush the cache */
1816
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1817
	i915_gem_object_put(obj);
1818 1819

	return 0;
1820 1821 1822
}

/**
1823 1824 1825 1826 1827
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1828 1829 1830
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1841 1842 1843
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1844
		    struct drm_file *file)
1845 1846
{
	struct drm_i915_gem_mmap *args = data;
1847
	struct drm_i915_gem_object *obj;
1848 1849
	unsigned long addr;

1850 1851 1852
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1853
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1854 1855
		return -ENODEV;

1856 1857
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1858
		return -ENOENT;
1859

1860 1861 1862
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1863
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1864
		i915_gem_object_put(obj);
1865
		return -ENXIO;
1866 1867
	}

1868
	addr = vm_mmap(obj->base.filp, 0, args->size,
1869 1870
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1871 1872 1873 1874
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1875
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1876
			i915_gem_object_put(obj);
1877 1878
			return -EINTR;
		}
1879 1880 1881 1882 1883 1884 1885
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1886 1887

		/* This may race, but that's ok, it only gets set */
1888
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1889
	}
C
Chris Wilson 已提交
1890
	i915_gem_object_put(obj);
1891 1892 1893 1894 1895 1896 1897 1898
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1899 1900
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1901
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1924 1925 1926
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1954
	return 2;
1955 1956
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1968 1969
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1970
		min_t(unsigned int, chunk,
1971
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1972 1973 1974 1975 1976 1977 1978 1979

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1980 1981
/**
 * i915_gem_fault - fault a page into the GTT
1982
 * @vmf: fault info
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1994 1995 1996
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1997
 */
1998
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1999
{
2000
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2001
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2002
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2003
	struct drm_device *dev = obj->base.dev;
2004 2005
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2006
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2007
	struct i915_vma *vma;
2008
	pgoff_t page_offset;
2009
	unsigned int flags;
2010
	int ret;
2011

2012
	/* We don't use vmf->pgoff since that has the fake offset */
2013
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2014

C
Chris Wilson 已提交
2015 2016
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2017
	/* Try to flush the object off the GPU first without holding the lock.
2018
	 * Upon acquiring the lock, we will perform our sanity checks and then
2019 2020 2021
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2022 2023 2024 2025
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2026
	if (ret)
2027 2028
		goto err;

2029 2030 2031 2032
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2033 2034 2035 2036 2037
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2038

2039
	/* Access to snoopable pages through the GTT is incoherent. */
2040
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2041
		ret = -EFAULT;
2042
		goto err_unlock;
2043 2044
	}

2045 2046 2047 2048 2049 2050 2051 2052
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

2053
	/* Now pin it into the GTT as needed */
2054
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2055 2056
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2057
		struct i915_ggtt_view view =
2058
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2059

2060 2061 2062 2063 2064
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2065 2066
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
2067 2068
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2069
		goto err_unlock;
C
Chris Wilson 已提交
2070
	}
2071

2072 2073
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2074
		goto err_unpin;
2075

2076
	ret = i915_vma_pin_fence(vma);
2077
	if (ret)
2078
		goto err_unpin;
2079

2080
	/* Finally, remap it using the new GTT offset */
2081
	ret = remap_io_mapping(area,
2082
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2083
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2084
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2085
			       &ggtt->iomap);
2086 2087
	if (ret)
		goto err_fence;
2088

2089 2090 2091 2092 2093 2094
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2095 2096
	i915_vma_set_ggtt_write(vma);

2097
err_fence:
2098
	i915_vma_unpin_fence(vma);
2099
err_unpin:
C
Chris Wilson 已提交
2100
	__i915_vma_unpin(vma);
2101
err_unlock:
2102
	mutex_unlock(&dev->struct_mutex);
2103 2104
err_rpm:
	intel_runtime_pm_put(dev_priv);
2105
	i915_gem_object_unpin_pages(obj);
2106
err:
2107
	switch (ret) {
2108
	case -EIO:
2109 2110 2111 2112 2113 2114
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2115 2116
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2117
	case -EAGAIN:
D
Daniel Vetter 已提交
2118 2119 2120 2121
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2122
		 */
2123 2124
	case 0:
	case -ERESTARTSYS:
2125
	case -EINTR:
2126 2127 2128 2129 2130
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2131
		return VM_FAULT_NOPAGE;
2132
	case -ENOMEM:
2133
		return VM_FAULT_OOM;
2134
	case -ENOSPC:
2135
	case -EFAULT:
2136
		return VM_FAULT_SIGBUS;
2137
	default:
2138
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2139
		return VM_FAULT_SIGBUS;
2140 2141 2142
	}
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2154
	for_each_ggtt_vma(vma, obj)
2155 2156 2157
		i915_vma_unset_userfault(vma);
}

2158 2159 2160 2161
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2162
 * Preserve the reservation of the mmapping with the DRM core code, but
2163 2164 2165 2166 2167 2168 2169 2170 2171
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2172
void
2173
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2174
{
2175 2176
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2177 2178 2179
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2180 2181 2182 2183
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2184
	 */
2185
	lockdep_assert_held(&i915->drm.struct_mutex);
2186
	intel_runtime_pm_get(i915);
2187

2188
	if (!obj->userfault_count)
2189
		goto out;
2190

2191
	__i915_gem_object_release_mmap(obj);
2192 2193 2194 2195 2196 2197 2198 2199 2200

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2201 2202 2203

out:
	intel_runtime_pm_put(i915);
2204 2205
}

2206
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2207
{
2208
	struct drm_i915_gem_object *obj, *on;
2209
	int i;
2210

2211 2212 2213 2214 2215 2216
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2217

2218
	list_for_each_entry_safe(obj, on,
2219 2220
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2221 2222 2223 2224 2225 2226 2227 2228

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2239 2240 2241 2242

		if (!reg->vma)
			continue;

2243
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2244 2245
		reg->dirty = true;
	}
2246 2247
}

2248 2249
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2250
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2251
	int err;
2252

2253
	err = drm_gem_create_mmap_offset(&obj->base);
2254
	if (likely(!err))
2255
		return 0;
2256

2257 2258 2259 2260 2261
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2262

2263
		i915_gem_drain_freed_objects(dev_priv);
2264
		err = drm_gem_create_mmap_offset(&obj->base);
2265 2266 2267 2268
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2269

2270
	return err;
2271 2272 2273 2274 2275 2276 2277
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2278
int
2279 2280
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2281
		  uint32_t handle,
2282
		  uint64_t *offset)
2283
{
2284
	struct drm_i915_gem_object *obj;
2285 2286
	int ret;

2287
	obj = i915_gem_object_lookup(file, handle);
2288 2289
	if (!obj)
		return -ENOENT;
2290

2291
	ret = i915_gem_object_create_mmap_offset(obj);
2292 2293
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2294

C
Chris Wilson 已提交
2295
	i915_gem_object_put(obj);
2296
	return ret;
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2320
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2321 2322
}

D
Daniel Vetter 已提交
2323 2324 2325
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2326
{
2327
	i915_gem_object_free_mmap_offset(obj);
2328

2329 2330
	if (obj->base.filp == NULL)
		return;
2331

D
Daniel Vetter 已提交
2332 2333 2334 2335 2336
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2337
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2338
	obj->mm.madv = __I915_MADV_PURGED;
2339
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2340
}
2341

2342
/* Try to discard unwanted pages */
2343
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2344
{
2345 2346
	struct address_space *mapping;

2347
	lockdep_assert_held(&obj->mm.lock);
2348
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2349

C
Chris Wilson 已提交
2350
	switch (obj->mm.madv) {
2351 2352 2353 2354 2355 2356 2357 2358 2359
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2360
	mapping = obj->base.filp->f_mapping,
2361
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2362 2363
}

2364
static void
2365 2366
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2367
{
2368 2369
	struct sgt_iter sgt_iter;
	struct page *page;
2370

2371
	__i915_gem_object_release_shmem(obj, pages, true);
2372

2373
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2374

2375
	if (i915_gem_object_needs_bit17_swizzle(obj))
2376
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2377

2378
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2379
		if (obj->mm.dirty)
2380
			set_page_dirty(page);
2381

C
Chris Wilson 已提交
2382
		if (obj->mm.madv == I915_MADV_WILLNEED)
2383
			mark_page_accessed(page);
2384

2385
		put_page(page);
2386
	}
C
Chris Wilson 已提交
2387
	obj->mm.dirty = false;
2388

2389 2390
	sg_free_table(pages);
	kfree(pages);
2391
}
C
Chris Wilson 已提交
2392

2393 2394 2395
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2396
	void __rcu **slot;
2397

2398
	rcu_read_lock();
C
Chris Wilson 已提交
2399 2400
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2401
	rcu_read_unlock();
2402 2403
}

2404 2405
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2406
{
2407
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2408
	struct sg_table *pages;
2409

C
Chris Wilson 已提交
2410
	if (i915_gem_object_has_pinned_pages(obj))
2411
		return;
2412

2413
	GEM_BUG_ON(obj->bind_count);
2414
	if (!i915_gem_object_has_pages(obj))
2415 2416 2417
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2418
	mutex_lock_nested(&obj->mm.lock, subclass);
2419 2420
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2421

2422 2423 2424
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2425 2426
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2427

2428 2429 2430 2431
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2432
	if (obj->mm.mapping) {
2433 2434
		void *ptr;

2435
		ptr = page_mask_bits(obj->mm.mapping);
2436 2437
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2438
		else
2439 2440
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2441
		obj->mm.mapping = NULL;
2442 2443
	}

2444 2445
	__i915_gem_object_reset_page_iter(obj);

2446 2447 2448
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2449 2450
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2451 2452
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2453 2454
}

2455
static bool i915_sg_trim(struct sg_table *orig_st)
2456 2457 2458 2459 2460 2461
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2462
		return false;
2463

2464
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2465
		return false;
2466 2467 2468 2469 2470 2471 2472

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2473
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2474 2475 2476 2477

	sg_free_table(orig_st);

	*orig_st = new_st;
2478
	return true;
2479 2480
}

2481
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2482
{
2483
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2484 2485
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2486
	struct address_space *mapping;
2487 2488
	struct sg_table *st;
	struct scatterlist *sg;
2489
	struct sgt_iter sgt_iter;
2490
	struct page *page;
2491
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2492
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2493
	unsigned int sg_page_sizes;
2494
	gfp_t noreclaim;
I
Imre Deak 已提交
2495
	int ret;
2496

C
Chris Wilson 已提交
2497 2498 2499 2500
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2501 2502
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2503

2504 2505
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2506
		return -ENOMEM;
2507

2508
rebuild_st:
2509 2510
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2511
		return -ENOMEM;
2512
	}
2513

2514 2515 2516 2517 2518
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2519
	mapping = obj->base.filp->f_mapping;
2520
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2521 2522
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2523 2524
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2525
	sg_page_sizes = 0;
2526
	for (i = 0; i < page_count; i++) {
2527 2528 2529 2530 2531 2532 2533
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2534
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2535 2536 2537 2538 2539 2540 2541 2542
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2543
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2544
			cond_resched();
2545

C
Chris Wilson 已提交
2546 2547 2548
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2549 2550 2551 2552
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2553
			 */
2554 2555 2556
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2569
				 * this we want __GFP_RETRY_MAYFAIL.
2570
				 */
M
Michal Hocko 已提交
2571
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2572
			}
2573 2574
		} while (1);

2575 2576 2577
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2578
			if (i) {
M
Matthew Auld 已提交
2579
				sg_page_sizes |= sg->length;
2580
				sg = sg_next(sg);
2581
			}
2582 2583 2584 2585 2586 2587
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2588 2589 2590

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2591
	}
2592
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2593
		sg_page_sizes |= sg->length;
2594
		sg_mark_end(sg);
2595
	}
2596

2597 2598 2599
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2600
	ret = i915_gem_gtt_prepare_pages(obj, st);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2620

2621
	if (i915_gem_object_needs_bit17_swizzle(obj))
2622
		i915_gem_object_do_bit_17_swizzle(obj, st);
2623

M
Matthew Auld 已提交
2624
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2625 2626

	return 0;
2627

2628
err_sg:
2629
	sg_mark_end(sg);
2630
err_pages:
2631 2632
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2633 2634
	sg_free_table(st);
	kfree(st);
2635 2636 2637 2638 2639 2640 2641 2642 2643

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2644 2645 2646
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2647
	return ret;
2648 2649 2650
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2651
				 struct sg_table *pages,
M
Matthew Auld 已提交
2652
				 unsigned int sg_page_sizes)
2653
{
2654 2655 2656 2657
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2658
	lockdep_assert_held(&obj->mm.lock);
2659 2660 2661 2662 2663

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2664 2665

	if (i915_gem_object_is_tiled(obj) &&
2666
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2667 2668 2669 2670
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2671

M
Matthew Auld 已提交
2672 2673
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2674 2675

	/*
M
Matthew Auld 已提交
2676 2677 2678 2679 2680 2681
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2682 2683 2684 2685 2686 2687 2688
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2689 2690 2691 2692

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2693 2694 2695 2696
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2697
	int err;
2698 2699 2700 2701 2702 2703

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2704
	err = obj->ops->get_pages(obj);
2705
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2706

2707
	return err;
2708 2709
}

2710
/* Ensure that the associated pages are gathered from the backing storage
2711
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2712
 * multiple times before they are released by a single call to
2713
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2714 2715 2716
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2717
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2718
{
2719
	int err;
2720

2721 2722 2723
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2724

2725
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2726 2727
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2728 2729 2730
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2731

2732 2733 2734
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2735

2736 2737
unlock:
	mutex_unlock(&obj->mm.lock);
2738
	return err;
2739 2740
}

2741
/* The 'mapping' part of i915_gem_object_pin_map() below */
2742 2743
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2744 2745
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2746
	struct sg_table *sgt = obj->mm.pages;
2747 2748
	struct sgt_iter sgt_iter;
	struct page *page;
2749 2750
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2751
	unsigned long i = 0;
2752
	pgprot_t pgprot;
2753 2754 2755
	void *addr;

	/* A single page can always be kmapped */
2756
	if (n_pages == 1 && type == I915_MAP_WB)
2757 2758
		return kmap(sg_page(sgt->sgl));

2759 2760
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2761
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2762 2763 2764
		if (!pages)
			return NULL;
	}
2765

2766 2767
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2768 2769 2770 2771

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2772
	switch (type) {
2773 2774 2775
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2776 2777 2778 2779 2780 2781 2782 2783
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2784

2785
	if (pages != stack_pages)
M
Michal Hocko 已提交
2786
		kvfree(pages);
2787 2788 2789 2790 2791

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2792 2793
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2794
{
2795 2796 2797
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2798 2799
	int ret;

T
Tina Zhang 已提交
2800 2801
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2802

2803
	ret = mutex_lock_interruptible(&obj->mm.lock);
2804 2805 2806
	if (ret)
		return ERR_PTR(ret);

2807 2808 2809
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2810
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2811
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2812 2813
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2814 2815 2816
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2817

2818 2819 2820
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2821 2822
		pinned = false;
	}
2823
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2824

2825
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2826 2827 2828
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2829
			goto err_unpin;
2830
		}
2831 2832 2833 2834 2835 2836

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2837
		ptr = obj->mm.mapping = NULL;
2838 2839
	}

2840 2841 2842 2843
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2844
			goto err_unpin;
2845 2846
		}

2847
		obj->mm.mapping = page_pack_bits(ptr, type);
2848 2849
	}

2850 2851
out_unlock:
	mutex_unlock(&obj->mm.lock);
2852 2853
	return ptr;

2854 2855 2856 2857 2858
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2859 2860
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2878
	if (i915_gem_object_has_pages(obj))
2879 2880
		return -ENODEV;

2881 2882 2883
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2933
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2934
{
2935
	bool banned;
2936

2937
	atomic_inc(&ctx->guilty_count);
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2950
	if (!banned)
2951 2952
		return;

2953 2954 2955 2956 2957 2958
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2959 2960 2961 2962
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2963
	atomic_inc(&ctx->active_count);
2964 2965
}

2966
struct i915_request *
2967
i915_gem_find_active_request(struct intel_engine_cs *engine)
2968
{
2969
	struct i915_request *request, *active = NULL;
2970
	unsigned long flags;
2971

2972 2973 2974 2975 2976 2977
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
2978 2979
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2980 2981
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
2982
	 */
2983 2984
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2985
		if (__i915_request_completed(request, request->global_seqno))
2986
			continue;
2987

2988 2989
		active = request;
		break;
2990
	}
2991
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2992

2993
	return active;
2994 2995
}

2996 2997 2998 2999
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3000
struct i915_request *
3001 3002
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3003
	struct i915_request *request;
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3014
	request = engine->reset.prepare(engine);
3015 3016
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3017 3018 3019 3020

	return request;
}

3021
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3022 3023
{
	struct intel_engine_cs *engine;
3024
	struct i915_request *request;
3025
	enum intel_engine_id id;
3026
	int err = 0;
3027

3028
	for_each_engine(engine, dev_priv, id) {
3029 3030 3031 3032
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3033
		}
3034 3035

		engine->hangcheck.active_request = request;
3036 3037
	}

3038
	i915_gem_revoke_fences(dev_priv);
3039
	intel_uc_sanitize(dev_priv);
3040 3041

	return err;
3042 3043
}

3044
static void skip_request(struct i915_request *request)
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3059 3060

	dma_fence_set_error(&request->fence, -EIO);
3061 3062
}

3063
static void engine_skip_context(struct i915_request *request)
3064 3065
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3066
	struct i915_gem_context *hung_ctx = request->gem_context;
3067
	struct i915_timeline *timeline = request->timeline;
3068 3069
	unsigned long flags;

3070
	GEM_BUG_ON(timeline == &engine->timeline);
3071

3072
	spin_lock_irqsave(&engine->timeline.lock, flags);
3073
	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING);
3074

3075
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3076
		if (request->gem_context == hung_ctx)
3077 3078 3079 3080 3081 3082
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
3083
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3084 3085
}

3086
/* Returns the request if it was guilty of the hang */
3087
static struct i915_request *
3088
i915_gem_reset_request(struct intel_engine_cs *engine,
3089 3090
		       struct i915_request *request,
		       bool stalled)
3091
{
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3113 3114 3115 3116 3117 3118 3119 3120 3121
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3122
		i915_gem_context_mark_guilty(request->gem_context);
3123
		skip_request(request);
3124 3125

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3126
		if (i915_gem_context_is_banned(request->gem_context))
3127
			engine_skip_context(request);
3128
	} else {
3129 3130 3131 3132 3133 3134 3135
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3136
			i915_gem_context_mark_innocent(request->gem_context);
3137 3138 3139
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
3140
			spin_lock_irq(&engine->timeline.lock);
3141
			request = list_prev_entry(request, link);
3142
			if (&request->link == &engine->timeline.requests)
3143
				request = NULL;
3144
			spin_unlock_irq(&engine->timeline.lock);
3145
		}
3146 3147
	}

3148
	return request;
3149 3150
}

3151
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3152 3153
			   struct i915_request *request,
			   bool stalled)
3154
{
3155 3156 3157 3158 3159 3160
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3161

3162
	if (request)
3163
		request = i915_gem_reset_request(engine, request, stalled);
3164

3165
	/* Setup the CS to resume from the breadcrumb of the hung request */
3166
	engine->reset.reset(engine, request);
3167
}
3168

3169 3170
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3171
{
3172
	struct intel_engine_cs *engine;
3173
	enum intel_engine_id id;
3174

3175 3176
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3177
	i915_retire_requests(dev_priv);
3178

3179
	for_each_engine(engine, dev_priv, id) {
3180
		struct intel_context *ce;
3181

3182 3183
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3184
				      stalled_mask & ENGINE_MASK(id));
3185 3186 3187
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3199
		if (intel_engine_is_idle(engine)) {
3200
			struct i915_request *rq;
3201

3202 3203
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3204
			if (!IS_ERR(rq))
3205
				__i915_request_add(rq, false);
3206
		}
3207
	}
3208

3209
	i915_gem_restore_fences(dev_priv);
3210 3211
}

3212 3213
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3214 3215
	engine->reset.finish(engine);

3216
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3217 3218
}

3219 3220
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3221 3222 3223
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3224
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3225

3226
	for_each_engine(engine, dev_priv, id) {
3227
		engine->hangcheck.active_request = NULL;
3228
		i915_gem_reset_finish_engine(engine);
3229
	}
3230 3231
}

3232
static void nop_submit_request(struct i915_request *request)
3233
{
3234 3235 3236
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3237 3238
	dma_fence_set_error(&request->fence, -EIO);

3239
	i915_request_submit(request);
3240 3241
}

3242
static void nop_complete_submit_request(struct i915_request *request)
3243
{
3244 3245
	unsigned long flags;

3246 3247 3248
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3249
	dma_fence_set_error(&request->fence, -EIO);
3250

3251
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3252
	__i915_request_submit(request);
3253
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3254
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3255 3256
}

3257
void i915_gem_set_wedged(struct drm_i915_private *i915)
3258
{
3259 3260 3261
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3262 3263
	GEM_TRACE("start\n");

3264
	if (GEM_SHOW_DEBUG()) {
3265 3266 3267 3268 3269 3270
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3271 3272 3273
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3274 3275 3276 3277 3278
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3279 3280
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3281

3282
		engine->submit_request = nop_submit_request;
3283
		engine->schedule = NULL;
3284
	}
3285
	i915->caps.scheduler = 0;
3286

3287 3288 3289
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3290 3291 3292 3293
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3294
	 */
3295
	synchronize_rcu();
3296

3297 3298 3299
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3300

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3312
	 */
3313
	synchronize_rcu();
3314

3315 3316
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3317

3318 3319
		/*
		 * Mark all pending requests as complete so that any concurrent
3320 3321 3322
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3323
		spin_lock_irqsave(&engine->timeline.lock, flags);
3324 3325
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3326
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3327 3328

		i915_gem_reset_finish_engine(engine);
3329
	}
3330

3331 3332
	GEM_TRACE("end\n");

3333
	wake_up_all(&i915->gpu_error.reset_queue);
3334 3335
}

3336 3337
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3338
	struct i915_timeline *tl;
3339 3340 3341 3342 3343

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3344 3345
	GEM_TRACE("start\n");

3346 3347
	/*
	 * Before unwedging, make sure that all pending operations
3348 3349 3350 3351 3352 3353 3354 3355 3356
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3357
		struct i915_request *rq;
3358

3359 3360 3361 3362
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3363

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3378
	}
3379 3380
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3381

3382 3383
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3384 3385 3386 3387 3388 3389 3390 3391
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3392
	i915_gem_contexts_lost(i915);
3393

3394 3395
	GEM_TRACE("end\n");

3396 3397 3398 3399 3400 3401
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3402
static void
3403 3404
i915_gem_retire_work_handler(struct work_struct *work)
{
3405
	struct drm_i915_private *dev_priv =
3406
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3407
	struct drm_device *dev = &dev_priv->drm;
3408

3409
	/* Come back later if the device is busy... */
3410
	if (mutex_trylock(&dev->struct_mutex)) {
3411
		i915_retire_requests(dev_priv);
3412
		mutex_unlock(&dev->struct_mutex);
3413
	}
3414

3415 3416
	/*
	 * Keep the retire handler running until we are finally idle.
3417 3418 3419
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3420
	if (READ_ONCE(dev_priv->gt.awake))
3421 3422
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3423
				   round_jiffies_up_relative(HZ));
3424
}
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3485 3486 3487 3488 3489 3490 3491
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3508 3509 3510 3511
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3512
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3513
	unsigned int epoch = I915_EPOCH_INVALID;
3514 3515 3516 3517 3518
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3537 3538
	/*
	 * Wait for last execlists context complete, but bail out in case a
3539 3540 3541 3542 3543
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3544
	 */
3545 3546 3547 3548
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3549 3550 3551 3552

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3553
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3554 3555 3556 3557 3558 3559 3560
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3561 3562 3563 3564
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3565
	if (new_requests_since_last_retire(dev_priv))
3566
		goto out_unlock;
3567

3568
	epoch = __i915_gem_park(dev_priv);
3569

3570 3571
	assert_kernel_context_is_current(dev_priv);

3572 3573
	rearm_hangcheck = false;
out_unlock:
3574
	mutex_unlock(&dev_priv->drm.struct_mutex);
3575

3576 3577 3578 3579
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3580
	}
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3598 3599
}

3600 3601
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3602
	struct drm_i915_private *i915 = to_i915(gem->dev);
3603 3604
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3605
	struct i915_lut_handle *lut, *ln;
3606

3607 3608 3609 3610 3611 3612
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3613
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3614 3615 3616 3617
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3618 3619 3620 3621 3622 3623 3624
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3625
			i915_vma_close(vma);
3626

3627 3628
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3629

3630 3631
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3632
	}
3633 3634

	mutex_unlock(&i915->drm.struct_mutex);
3635 3636
}

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3648 3649
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3650 3651 3652
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3653 3654 3655 3656 3657 3658 3659
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3660
 *  -EAGAIN: incomplete, restart syscall
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3677 3678
	ktime_t start;
	long ret;
3679

3680 3681 3682
	if (args->flags != 0)
		return -EINVAL;

3683
	obj = i915_gem_object_lookup(file, args->bo_handle);
3684
	if (!obj)
3685 3686
		return -ENOENT;

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3708 3709 3710 3711

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3712 3713
	}

C
Chris Wilson 已提交
3714
	i915_gem_object_put(obj);
3715
	return ret;
3716 3717
}

3718
static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3719
{
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	struct i915_request *rq;
	long ret;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
		return 0;

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

	ret = i915_request_wait(rq, flags, MAX_SCHEDULE_TIMEOUT);
	i915_request_put(rq);

	return ret < 0 ? ret : 0;
3743 3744
}

3745 3746
static int wait_for_engines(struct drm_i915_private *i915)
{
3747
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3748 3749
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3750
		GEM_TRACE_DUMP();
3751 3752
		i915_gem_set_wedged(i915);
		return -EIO;
3753 3754 3755 3756 3757
	}

	return 0;
}

3758 3759
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
3760 3761 3762
	GEM_TRACE("flags=%x (%s)\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked");

3763 3764 3765 3766
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3767
	if (flags & I915_WAIT_LOCKED) {
3768 3769
		struct i915_timeline *tl;
		int err;
3770 3771 3772 3773

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3774 3775 3776
			err = wait_for_timeline(tl, flags);
			if (err)
				return err;
3777
		}
3778
		i915_retire_requests(i915);
3779
		GEM_BUG_ON(i915->gt.active_requests);
3780

3781
		return wait_for_engines(i915);
3782
	} else {
3783 3784 3785
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
		int err;
3786

3787 3788 3789 3790 3791 3792 3793 3794
		for_each_engine(engine, i915, id) {
			err = wait_for_timeline(&engine->timeline, flags);
			if (err)
				return err;
		}

		return 0;
	}
3795 3796
}

3797 3798
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3799 3800 3801 3802 3803 3804 3805
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3806
	obj->write_domain = 0;
3807 3808 3809 3810
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3811
	if (!READ_ONCE(obj->pin_global))
3812 3813 3814 3815 3816 3817 3818
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3843
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3864
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3865 3866 3867 3868 3869
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3870 3871
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3872
	if (write) {
3873 3874
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3875 3876 3877 3878 3879 3880 3881
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3882 3883
/**
 * Moves a single object to the GTT read, and possibly write domain.
3884 3885
 * @obj: object to act on
 * @write: ask for write access or read only
3886 3887 3888 3889
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3890
int
3891
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3892
{
3893
	int ret;
3894

3895
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3896

3897 3898 3899 3900 3901 3902
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3903 3904 3905
	if (ret)
		return ret;

3906
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3907 3908
		return 0;

3909 3910 3911 3912 3913 3914 3915 3916
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3917
	ret = i915_gem_object_pin_pages(obj);
3918 3919 3920
	if (ret)
		return ret;

3921
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3922

3923 3924 3925 3926
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3927
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3928 3929
		mb();

3930 3931 3932
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3933 3934
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3935
	if (write) {
3936 3937
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3938
		obj->mm.dirty = true;
3939 3940
	}

C
Chris Wilson 已提交
3941
	i915_gem_object_unpin_pages(obj);
3942 3943 3944
	return 0;
}

3945 3946
/**
 * Changes the cache-level of an object across all VMA.
3947 3948
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3960 3961 3962
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3963
	struct i915_vma *vma;
3964
	int ret;
3965

3966 3967
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3968
	if (obj->cache_level == cache_level)
3969
		return 0;
3970

3971 3972 3973 3974 3975
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3976 3977
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3978 3979 3980
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3981
		if (i915_vma_is_pinned(vma)) {
3982 3983 3984 3985
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3986 3987
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3999 4000
	}

4001 4002 4003 4004 4005 4006 4007
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4008
	if (obj->bind_count) {
4009 4010 4011 4012
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4013 4014 4015 4016 4017 4018
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4019 4020 4021
		if (ret)
			return ret;

4022 4023
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4040
			for_each_ggtt_vma(vma, obj) {
4041 4042 4043 4044
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4045 4046 4047 4048 4049 4050 4051 4052
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4053 4054
		}

4055
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4056 4057 4058 4059 4060 4061 4062
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4063 4064
	}

4065
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4066
		vma->node.color = cache_level;
4067
	i915_gem_object_set_cache_coherency(obj, cache_level);
4068
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4069

4070 4071 4072
	return 0;
}

B
Ben Widawsky 已提交
4073 4074
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4075
{
B
Ben Widawsky 已提交
4076
	struct drm_i915_gem_caching *args = data;
4077
	struct drm_i915_gem_object *obj;
4078
	int err = 0;
4079

4080 4081 4082 4083 4084 4085
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4086

4087 4088 4089 4090 4091 4092
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4093 4094 4095 4096
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4097 4098 4099 4100
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4101 4102 4103
out:
	rcu_read_unlock();
	return err;
4104 4105
}

B
Ben Widawsky 已提交
4106 4107
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4108
{
4109
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4110
	struct drm_i915_gem_caching *args = data;
4111 4112
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4113
	int ret = 0;
4114

B
Ben Widawsky 已提交
4115 4116
	switch (args->caching) {
	case I915_CACHING_NONE:
4117 4118
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4119
	case I915_CACHING_CACHED:
4120 4121 4122 4123 4124 4125
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4126
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4127 4128
			return -ENODEV;

4129 4130
		level = I915_CACHE_LLC;
		break;
4131
	case I915_CACHING_DISPLAY:
4132
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4133
		break;
4134 4135 4136 4137
	default:
		return -EINVAL;
	}

4138 4139 4140 4141
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4151 4152 4153 4154 4155 4156 4157
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4158
	if (ret)
4159
		goto out;
B
Ben Widawsky 已提交
4160

4161 4162 4163
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4164 4165 4166

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4167 4168 4169

out:
	i915_gem_object_put(obj);
4170 4171 4172
	return ret;
}

4173
/*
4174 4175 4176 4177
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4178
 */
C
Chris Wilson 已提交
4179
struct i915_vma *
4180 4181
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4182 4183
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4184
{
C
Chris Wilson 已提交
4185
	struct i915_vma *vma;
4186 4187
	int ret;

4188 4189
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4190
	/* Mark the global pin early so that we account for the
4191 4192
	 * display coherency whilst setting up the cache domains.
	 */
4193
	obj->pin_global++;
4194

4195 4196 4197 4198 4199 4200 4201 4202 4203
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4204
	ret = i915_gem_object_set_cache_level(obj,
4205 4206
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4207 4208
	if (ret) {
		vma = ERR_PTR(ret);
4209
		goto err_unpin_global;
C
Chris Wilson 已提交
4210
	}
4211

4212 4213
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4214 4215 4216 4217
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4218
	 */
4219
	vma = ERR_PTR(-ENOSPC);
4220 4221
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4222
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4223 4224 4225 4226
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4227
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4228
	if (IS_ERR(vma))
4229
		goto err_unpin_global;
4230

4231 4232
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4233
	__i915_gem_object_flush_for_display(obj);
4234

4235 4236 4237
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4238
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4239

C
Chris Wilson 已提交
4240
	return vma;
4241

4242 4243
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4244
	return vma;
4245 4246 4247
}

void
C
Chris Wilson 已提交
4248
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4249
{
4250
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4251

4252
	if (WARN_ON(vma->obj->pin_global == 0))
4253 4254
		return;

4255
	if (--vma->obj->pin_global == 0)
4256
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4257

4258
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4259
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4260

C
Chris Wilson 已提交
4261
	i915_vma_unpin(vma);
4262 4263
}

4264 4265
/**
 * Moves a single object to the CPU read, and possibly write domain.
4266 4267
 * @obj: object to act on
 * @write: requesting write or read-only access
4268 4269 4270 4271
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4272
int
4273
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4274 4275 4276
{
	int ret;

4277
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4278

4279 4280 4281 4282 4283 4284
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4285 4286 4287
	if (ret)
		return ret;

4288
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4289

4290
	/* Flush the CPU cache if it's still invalid. */
4291
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4292
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4293
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4294 4295 4296 4297 4298
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4299
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4300 4301 4302 4303

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4304 4305
	if (write)
		__start_cpu_write(obj);
4306 4307 4308 4309

	return 0;
}

4310 4311 4312
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4313 4314 4315 4316
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4317 4318 4319
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4320
static int
4321
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4322
{
4323
	struct drm_i915_private *dev_priv = to_i915(dev);
4324
	struct drm_i915_file_private *file_priv = file->driver_priv;
4325
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4326
	struct i915_request *request, *target = NULL;
4327
	long ret;
4328

4329 4330 4331
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4332

4333
	spin_lock(&file_priv->mm.lock);
4334
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4335 4336
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4337

4338 4339 4340 4341
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4342

4343
		target = request;
4344
	}
4345
	if (target)
4346
		i915_request_get(target);
4347
	spin_unlock(&file_priv->mm.lock);
4348

4349
	if (target == NULL)
4350
		return 0;
4351

4352
	ret = i915_request_wait(target,
4353 4354
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4355
	i915_request_put(target);
4356

4357
	return ret < 0 ? ret : 0;
4358 4359
}

C
Chris Wilson 已提交
4360
struct i915_vma *
4361 4362
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4363
			 u64 size,
4364 4365
			 u64 alignment,
			 u64 flags)
4366
{
4367
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4368
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4369 4370
	struct i915_vma *vma;
	int ret;
4371

4372 4373
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4374 4375
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4406
	vma = i915_vma_instance(obj, vm, view);
4407
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4408
		return vma;
4409 4410

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4411 4412 4413
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4414

4415
			if (flags & PIN_MAPPABLE &&
4416
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4417 4418 4419
				return ERR_PTR(-ENOSPC);
		}

4420 4421
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4422 4423 4424
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4425
		     !!(flags & PIN_MAPPABLE),
4426
		     i915_vma_is_map_and_fenceable(vma));
4427 4428
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4429
			return ERR_PTR(ret);
4430 4431
	}

C
Chris Wilson 已提交
4432 4433 4434
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4435

C
Chris Wilson 已提交
4436
	return vma;
4437 4438
}

4439
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4454 4455 4456 4457 4458 4459 4460 4461 4462
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4463 4464
}

4465
static __always_inline unsigned int
4466
__busy_set_if_active(const struct dma_fence *fence,
4467 4468
		     unsigned int (*flag)(unsigned int id))
{
4469
	struct i915_request *rq;
4470

4471 4472 4473 4474
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4475
	 *
4476
	 * Note we only report on the status of native fences.
4477
	 */
4478 4479 4480 4481
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4482 4483
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4484 4485
		return 0;

4486
	return flag(rq->engine->uabi_id);
4487 4488
}

4489
static __always_inline unsigned int
4490
busy_check_reader(const struct dma_fence *fence)
4491
{
4492
	return __busy_set_if_active(fence, __busy_read_flag);
4493 4494
}

4495
static __always_inline unsigned int
4496
busy_check_writer(const struct dma_fence *fence)
4497
{
4498 4499 4500 4501
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4502 4503
}

4504 4505
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4506
		    struct drm_file *file)
4507 4508
{
	struct drm_i915_gem_busy *args = data;
4509
	struct drm_i915_gem_object *obj;
4510 4511
	struct reservation_object_list *list;
	unsigned int seq;
4512
	int err;
4513

4514
	err = -ENOENT;
4515 4516
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4517
	if (!obj)
4518
		goto out;
4519

4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4538

4539 4540
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4541

4542 4543 4544 4545
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4546

4547 4548 4549 4550 4551 4552
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4553
	}
4554

4555 4556 4557 4558
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4559 4560 4561
out:
	rcu_read_unlock();
	return err;
4562 4563 4564 4565 4566 4567
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4568
	return i915_gem_ring_throttle(dev, file_priv);
4569 4570
}

4571 4572 4573 4574
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4575
	struct drm_i915_private *dev_priv = to_i915(dev);
4576
	struct drm_i915_gem_madvise *args = data;
4577
	struct drm_i915_gem_object *obj;
4578
	int err;
4579 4580 4581 4582 4583 4584 4585 4586 4587

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4588
	obj = i915_gem_object_lookup(file_priv, args->handle);
4589 4590 4591 4592 4593 4594
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4595

4596
	if (i915_gem_object_has_pages(obj) &&
4597
	    i915_gem_object_is_tiled(obj) &&
4598
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4599 4600
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4601
			__i915_gem_object_unpin_pages(obj);
4602 4603 4604
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4605
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4606
			__i915_gem_object_pin_pages(obj);
4607 4608
			obj->mm.quirked = true;
		}
4609 4610
	}

C
Chris Wilson 已提交
4611 4612
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4613

C
Chris Wilson 已提交
4614
	/* if the object is no longer attached, discard its backing storage */
4615 4616
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4617 4618
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4619
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4620
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4621

4622
out:
4623
	i915_gem_object_put(obj);
4624
	return err;
4625 4626
}

4627
static void
4628
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4629 4630 4631 4632
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4633
	intel_fb_obj_flush(obj, ORIGIN_CS);
4634 4635
}

4636 4637
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4638
{
4639 4640
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4641
	INIT_LIST_HEAD(&obj->vma_list);
4642
	INIT_LIST_HEAD(&obj->lut_list);
4643
	INIT_LIST_HEAD(&obj->batch_pool_link);
4644

4645 4646
	obj->ops = ops;

4647 4648 4649
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4650
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4651
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4652 4653 4654 4655

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4656

4657
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4658 4659
}

4660
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4661 4662
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4663

4664 4665
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4666 4667

	.pwrite = i915_gem_object_pwrite_gtt,
4668 4669
};

M
Matthew Auld 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4694
struct drm_i915_gem_object *
4695
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4696
{
4697
	struct drm_i915_gem_object *obj;
4698
	struct address_space *mapping;
4699
	unsigned int cache_level;
D
Daniel Vetter 已提交
4700
	gfp_t mask;
4701
	int ret;
4702

4703 4704 4705 4706 4707
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4708
	if (size >> PAGE_SHIFT > INT_MAX)
4709 4710 4711 4712 4713
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4714
	obj = i915_gem_object_alloc(dev_priv);
4715
	if (obj == NULL)
4716
		return ERR_PTR(-ENOMEM);
4717

M
Matthew Auld 已提交
4718
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4719 4720
	if (ret)
		goto fail;
4721

4722
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4723
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4724 4725 4726 4727 4728
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4729
	mapping = obj->base.filp->f_mapping;
4730
	mapping_set_gfp_mask(mapping, mask);
4731
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4732

4733
	i915_gem_object_init(obj, &i915_gem_object_ops);
4734

4735 4736
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4737

4738
	if (HAS_LLC(dev_priv))
4739
		/* On some devices, we can have the GPU use the LLC (the CPU
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4751 4752 4753
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4754

4755
	i915_gem_object_set_cache_coherency(obj, cache_level);
4756

4757 4758
	trace_i915_gem_object_create(obj);

4759
	return obj;
4760 4761 4762 4763

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4764 4765
}

4766 4767 4768 4769 4770 4771 4772 4773
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4774
	if (obj->mm.madv != I915_MADV_WILLNEED)
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4790 4791
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4792
{
4793
	struct drm_i915_gem_object *obj, *on;
4794

4795
	intel_runtime_pm_get(i915);
4796
	llist_for_each_entry_safe(obj, on, freed, freed) {
4797 4798 4799 4800
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4801 4802
		mutex_lock(&i915->drm.struct_mutex);

4803 4804 4805 4806 4807
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4808
			i915_vma_destroy(vma);
4809
		}
4810 4811
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4812

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4825
		mutex_unlock(&i915->drm.struct_mutex);
4826 4827

		GEM_BUG_ON(obj->bind_count);
4828
		GEM_BUG_ON(obj->userfault_count);
4829
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4830
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4831 4832 4833

		if (obj->ops->release)
			obj->ops->release(obj);
4834

4835 4836
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4837
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4838
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4839 4840 4841 4842

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4843
		reservation_object_fini(&obj->__builtin_resv);
4844 4845 4846 4847 4848
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4849

4850 4851 4852
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4853 4854
		if (on)
			cond_resched();
4855
	}
4856
	intel_runtime_pm_put(i915);
4857 4858 4859 4860 4861 4862
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4873
		__i915_gem_free_objects(i915, freed);
4874
	}
4875 4876 4877 4878 4879 4880 4881
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4882

4883 4884
	/*
	 * All file-owned VMA should have been released by this point through
4885 4886 4887 4888 4889 4890
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4891

4892
	spin_lock(&i915->mm.free_lock);
4893
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4894 4895
		spin_unlock(&i915->mm.free_lock);

4896
		__i915_gem_free_objects(i915, freed);
4897
		if (need_resched())
4898 4899 4900
			return;

		spin_lock(&i915->mm.free_lock);
4901
	}
4902
	spin_unlock(&i915->mm.free_lock);
4903
}
4904

4905 4906 4907 4908 4909 4910
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4911 4912 4913 4914 4915 4916 4917 4918 4919
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4920 4921
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4922
		queue_work(i915->wq, &i915->mm.free_work);
4923
}
4924

4925 4926 4927
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4928

4929 4930 4931
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4932
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4933
		obj->mm.madv = I915_MADV_DONTNEED;
4934

4935 4936
	/*
	 * Before we free the object, make sure any pure RCU-only
4937 4938 4939 4940
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4941
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4942
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4943 4944
}

4945 4946 4947 4948
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4949 4950
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4951 4952 4953 4954 4955
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4956 4957
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4958 4959 4960 4961 4962
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	GEM_TRACE("\n");

4963
	mutex_lock(&i915->drm.struct_mutex);
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4974
	if (i915_terminally_wedged(&i915->gpu_error))
4975 4976
		i915_gem_unset_wedged(i915);

4977 4978 4979 4980 4981 4982
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4983
	 * of the reset, so this could be applied to even earlier gen.
4984
	 */
4985 4986
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4987

4988 4989 4990 4991 4992 4993 4994 4995 4996
	/* Reset the submission backend after resume as well as the GPU reset */
	for_each_engine(engine, i915, id) {
		if (engine->reset.reset)
			engine->reset.reset(engine, NULL);
	}

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

4997 4998
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4999 5000
}

5001
int i915_gem_suspend(struct drm_i915_private *dev_priv)
5002
{
5003
	struct drm_device *dev = &dev_priv->drm;
5004
	int ret;
5005

5006 5007
	GEM_TRACE("\n");

5008
	intel_runtime_pm_get(dev_priv);
5009 5010
	intel_suspend_gt_powersave(dev_priv);

5011
	mutex_lock(&dev->struct_mutex);
5012 5013 5014 5015 5016 5017 5018 5019 5020

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
5021 5022 5023 5024
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
5025

5026 5027
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
5028 5029
					     I915_WAIT_LOCKED |
					     I915_WAIT_FOR_IDLE_BOOST);
5030 5031
		if (ret && ret != -EIO)
			goto err_unlock;
5032

5033 5034
		assert_kernel_context_is_current(dev_priv);
	}
5035 5036
	mutex_unlock(&dev->struct_mutex);

5037
	intel_uc_suspend(dev_priv);
5038

5039
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
5040
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
5041 5042 5043 5044

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
5045
	drain_delayed_work(&dev_priv->gt.idle_work);
5046

5047 5048 5049
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
5050
	WARN_ON(dev_priv->gt.awake);
5051 5052
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
5053

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	intel_runtime_pm_put(dev_priv);
	return 0;

err_unlock:
	mutex_unlock(&dev->struct_mutex);
	intel_runtime_pm_put(dev_priv);
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5065 5066 5067 5068 5069 5070 5071
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5092 5093 5094 5095 5096 5097 5098
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5099 5100
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5101 5102
}

5103
void i915_gem_resume(struct drm_i915_private *i915)
5104
{
5105 5106
	GEM_TRACE("\n");

5107
	WARN_ON(i915->gt.awake);
5108

5109 5110
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5111

5112 5113
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5114

5115 5116
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5117 5118 5119
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5120
	i915->gt.resume(i915);
5121

5122 5123 5124
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5125
	intel_uc_resume(i915);
5126

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5137 5138 5139 5140
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5141
	goto out_unlock;
5142 5143
}

5144
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5145
{
5146
	if (INTEL_GEN(dev_priv) < 5 ||
5147 5148 5149 5150 5151 5152
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5153
	if (IS_GEN5(dev_priv))
5154 5155
		return;

5156
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5157
	if (IS_GEN6(dev_priv))
5158
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5159
	else if (IS_GEN7(dev_priv))
5160
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5161
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5162
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5163 5164
	else
		BUG();
5165
}
D
Daniel Vetter 已提交
5166

5167
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5168 5169 5170 5171 5172 5173 5174
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5175
static void init_unused_rings(struct drm_i915_private *dev_priv)
5176
{
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5189 5190 5191
	}
}

5192
static int __i915_gem_restart_engines(void *data)
5193
{
5194
	struct drm_i915_private *i915 = data;
5195
	struct intel_engine_cs *engine;
5196
	enum intel_engine_id id;
5197 5198 5199 5200
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5201 5202 5203
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5204
			return err;
5205
		}
5206 5207 5208 5209 5210 5211 5212
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5213
	int ret;
5214

5215 5216
	dev_priv->gt.last_init_time = ktime_get();

5217 5218 5219
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5220
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5221
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5222

5223
	if (IS_HASWELL(dev_priv))
5224
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5225
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5226

5227
	if (HAS_PCH_NOP(dev_priv)) {
5228
		if (IS_IVYBRIDGE(dev_priv)) {
5229 5230 5231
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5232
		} else if (INTEL_GEN(dev_priv) >= 7) {
5233 5234 5235 5236
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5237 5238
	}

5239 5240
	intel_gt_workarounds_apply(dev_priv);

5241
	i915_gem_init_swizzling(dev_priv);
5242

5243 5244 5245 5246 5247 5248
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5249
	init_unused_rings(dev_priv);
5250

5251
	BUG_ON(!dev_priv->kernel_context);
5252 5253 5254 5255
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5256

5257
	ret = i915_ppgtt_init_hw(dev_priv);
5258
	if (ret) {
5259
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5260 5261 5262
		goto out;
	}

5263 5264 5265 5266 5267 5268
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5269 5270
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5271 5272
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5273
		goto out;
5274
	}
5275

5276
	intel_mocs_init_l3cc_table(dev_priv);
5277

5278 5279
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5280 5281
	if (ret)
		goto cleanup_uc;
5282 5283
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5284
	return ret;
5285 5286 5287 5288

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
	goto out;
5289 5290
}

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5312
		struct i915_request *rq;
5313

5314
		rq = i915_request_alloc(engine, ctx);
5315 5316 5317 5318 5319
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5320
		err = 0;
5321 5322 5323
		if (engine->init_context)
			err = engine->init_context(rq);

5324
		__i915_request_add(rq, true);
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5342
		state = to_intel_context(ctx, engine)->state;
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5405
int i915_gem_init(struct drm_i915_private *dev_priv)
5406 5407 5408
{
	int ret;

5409 5410
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5411 5412 5413
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5414
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5415

5416
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5417
		dev_priv->gt.resume = intel_lr_context_resume;
5418
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5419 5420 5421
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5422 5423
	}

5424 5425 5426 5427
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5428 5429 5430 5431
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5432
	ret = intel_uc_init_misc(dev_priv);
5433 5434 5435
	if (ret)
		return ret;

5436 5437 5438 5439 5440 5441
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5442
	mutex_lock(&dev_priv->drm.struct_mutex);
5443 5444
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5445
	ret = i915_gem_init_ggtt(dev_priv);
5446 5447 5448 5449
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5450

5451
	ret = i915_gem_contexts_init(dev_priv);
5452 5453 5454 5455
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5456

5457
	ret = intel_engines_init(dev_priv);
5458 5459 5460 5461
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5462

5463 5464
	intel_init_gt_powersave(dev_priv);

5465
	ret = intel_uc_init(dev_priv);
5466
	if (ret)
5467
		goto err_pm;
5468

5469 5470 5471 5472
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5484
	ret = __intel_engines_record_defaults(dev_priv);
5485 5486 5487 5488 5489 5490 5491 5492 5493
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
5494 5495
		DRM_DEBUG_DRIVER("Marking the driver as wedged\n");
		i915_gem_set_wedged(dev_priv);  /* Fail silently! */
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5512 5513 5514 5515 5516 5517
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
5518
	intel_uc_fini_hw(dev_priv);
5519 5520
err_uc_init:
	intel_uc_fini(dev_priv);
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5534
	intel_uc_fini_misc(dev_priv);
5535

5536 5537 5538
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5539
	if (ret == -EIO) {
5540 5541
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5542 5543 5544
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5545 5546 5547 5548
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5549
		ret = 0;
5550 5551
	}

5552
	i915_gem_drain_freed_objects(dev_priv);
5553
	return ret;
5554 5555
}

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5578 5579 5580 5581 5582
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5583
void
5584
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5585
{
5586
	struct intel_engine_cs *engine;
5587
	enum intel_engine_id id;
5588

5589
	for_each_engine(engine, dev_priv, id)
5590
		dev_priv->gt.cleanup_engine(engine);
5591 5592
}

5593 5594 5595
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5596
	int i;
5597

5598
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5599 5600
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5601
	else if (INTEL_GEN(dev_priv) >= 4 ||
5602 5603
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5604 5605 5606 5607
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5608
	if (intel_vgpu_active(dev_priv))
5609 5610 5611 5612
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5613 5614 5615 5616 5617 5618 5619
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5620
	i915_gem_restore_fences(dev_priv);
5621

5622
	i915_gem_detect_bit_6_swizzle(dev_priv);
5623 5624
}

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5641
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5642
{
5643
	int err = -ENOMEM;
5644

5645 5646
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5647 5648
		goto err_out;

5649 5650
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5651 5652
		goto err_objects;

5653 5654 5655 5656
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5657
	dev_priv->requests = KMEM_CACHE(i915_request,
5658 5659
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5660
					SLAB_TYPESAFE_BY_RCU);
5661
	if (!dev_priv->requests)
5662
		goto err_luts;
5663

5664 5665 5666 5667 5668 5669
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5670 5671 5672 5673
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5674
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5675
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5676
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5677

5678
	i915_gem_init__mm(dev_priv);
5679

5680
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5681
			  i915_gem_retire_work_handler);
5682
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5683
			  i915_gem_idle_work_handler);
5684
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5685
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5686

5687 5688
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5689
	spin_lock_init(&dev_priv->fb_tracking.lock);
5690

M
Matthew Auld 已提交
5691 5692 5693 5694
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5695 5696
	return 0;

5697 5698
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5699 5700
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5701 5702
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5703 5704 5705 5706 5707 5708
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5709
}
5710

5711
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5712
{
5713
	i915_gem_drain_freed_objects(dev_priv);
5714 5715
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5716
	WARN_ON(dev_priv->mm.object_count);
5717 5718
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5719
	kmem_cache_destroy(dev_priv->priorities);
5720
	kmem_cache_destroy(dev_priv->dependencies);
5721
	kmem_cache_destroy(dev_priv->requests);
5722
	kmem_cache_destroy(dev_priv->luts);
5723 5724
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5725 5726 5727

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5728 5729

	i915_gemfs_fini(dev_priv);
5730 5731
}

5732 5733
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5734 5735 5736
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5737 5738 5739 5740 5741
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5742
int i915_gem_freeze_late(struct drm_i915_private *i915)
5743 5744
{
	struct drm_i915_gem_object *obj;
5745
	struct list_head *phases[] = {
5746 5747
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5748
		NULL
5749
	}, **phase;
5750

5751 5752
	/*
	 * Called just before we write the hibernation image.
5753 5754 5755 5756 5757 5758 5759 5760
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5761 5762
	 *
	 * To try and reduce the hibernation image, we manually shrink
5763
	 * the objects as well, see i915_gem_freeze()
5764 5765
	 */

5766 5767
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5768

5769 5770 5771 5772
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5773
	}
5774
	mutex_unlock(&i915->drm.struct_mutex);
5775 5776 5777 5778

	return 0;
}

5779
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5780
{
5781
	struct drm_i915_file_private *file_priv = file->driver_priv;
5782
	struct i915_request *request;
5783 5784 5785 5786 5787

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5788
	spin_lock(&file_priv->mm.lock);
5789
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5790
		request->file_priv = NULL;
5791
	spin_unlock(&file_priv->mm.lock);
5792 5793
}

5794
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5795 5796
{
	struct drm_i915_file_private *file_priv;
5797
	int ret;
5798

5799
	DRM_DEBUG("\n");
5800 5801 5802 5803 5804 5805

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5806
	file_priv->dev_priv = i915;
5807
	file_priv->file = file;
5808 5809 5810 5811

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5812
	file_priv->bsd_engine = -1;
5813

5814
	ret = i915_gem_context_open(i915, file);
5815 5816
	if (ret)
		kfree(file_priv);
5817

5818
	return ret;
5819 5820
}

5821 5822
/**
 * i915_gem_track_fb - update frontbuffer tracking
5823 5824 5825
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5826 5827 5828 5829
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5830 5831 5832 5833
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5834 5835 5836 5837 5838 5839 5840 5841 5842
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5843
	if (old) {
5844 5845
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5846 5847 5848
	}

	if (new) {
5849 5850
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5851 5852 5853
	}
}

5854 5855
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5856
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5857 5858 5859
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5860 5861 5862
	struct file *file;
	size_t offset;
	int err;
5863

5864
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5865
	if (IS_ERR(obj))
5866 5867
		return obj;

5868
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5869

5870 5871 5872 5873 5874 5875
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5876

5877 5878 5879 5880 5881
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5882

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5897 5898 5899 5900

	return obj;

fail:
5901
	i915_gem_object_put(obj);
5902
	return ERR_PTR(err);
5903
}
5904 5905 5906 5907 5908 5909

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5910
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5911 5912 5913 5914 5915
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5916
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6041
	if (!obj->mm.dirty)
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6057

6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

6104 6105
	obj->ops = &i915_gem_phys_ops;

6106
	err = ____i915_gem_object_get_pages(obj);
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6126 6127
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6128
#include "selftests/mock_gem_device.c"
6129
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6130
#include "selftests/huge_pages.c"
6131
#include "selftests/i915_gem_object.c"
6132
#include "selftests/i915_gem_coherency.c"
6133
#endif