i915_gem.c 143.3 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/drm_pci.h>
30
#include <drm/i915_drm.h>
31
#include <linux/dma-fence-array.h>
32
#include <linux/kthread.h>
33
#include <linux/reservation.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/stop_machine.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40
#include <linux/mman.h>
41

42 43 44
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
45
#include "i915_globals.h"
46 47 48 49 50 51 52 53 54
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"

55
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
56

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59
	if (obj->cache_dirty)
60 61
		return false;

62
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
63 64
		return true;

65
	return obj->pin_global; /* currently in use by HW, keep flushed */
66 67
}

68
static int
69
insert_mappable_node(struct i915_ggtt *ggtt,
70 71 72
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
73
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 75 76
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
77 78 79 80 81 82 83 84
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87
				  u64 size)
88
{
89
	spin_lock(&dev_priv->mm.object_stat_lock);
90 91
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
92
	spin_unlock(&dev_priv->mm.object_stat_lock);
93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96
				     u64 size)
97
{
98
	spin_lock(&dev_priv->mm.object_stat_lock);
99 100
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
101
	spin_unlock(&dev_priv->mm.object_stat_lock);
102 103
}

104
static void __i915_gem_park(struct drm_i915_private *i915)
105
{
C
Chris Wilson 已提交
106 107
	intel_wakeref_t wakeref;

108 109
	GEM_TRACE("\n");

110 111
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
112
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
113 114

	if (!i915->gt.awake)
115
		return;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
131
	i915_timelines_park(i915);
132 133

	i915_pmu_gt_parked(i915);
134
	i915_vma_parked(i915);
135

C
Chris Wilson 已提交
136 137
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
138 139 140 141

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

142
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
143

144
	i915_globals_park();
145 146 147 148
}

void i915_gem_park(struct drm_i915_private *i915)
{
149 150
	GEM_TRACE("\n");

151 152 153 154 155 156 157 158 159 160 161 162
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
163 164
	GEM_TRACE("\n");

165 166
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
167
	assert_rpm_wakelock_held(i915);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
183 184
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
185

186 187
	i915_globals_unpark();

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

203 204
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
205
			    struct drm_file *file)
206
{
207
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
208
	struct drm_i915_gem_get_aperture *args = data;
209
	struct i915_vma *vma;
210
	u64 pinned;
211

212 213
	mutex_lock(&ggtt->vm.mutex);

214
	pinned = ggtt->vm.reserved;
215
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
216
		if (i915_vma_is_pinned(vma))
217
			pinned += vma->node.size;
218 219

	mutex_unlock(&ggtt->vm.mutex);
220

221
	args->aper_size = ggtt->vm.total;
222
	args->aper_available_size = args->aper_size - pinned;
223

224 225 226
	return 0;
}

227
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
228
{
229
	struct address_space *mapping = obj->base.filp->f_mapping;
230
	drm_dma_handle_t *phys;
231 232
	struct sg_table *st;
	struct scatterlist *sg;
233
	char *vaddr;
234
	int i;
235
	int err;
236

237
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
238
		return -EINVAL;
239

240 241 242 243 244
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
245
			     roundup_pow_of_two(obj->base.size),
246 247
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
248
		return -ENOMEM;
249 250

	vaddr = phys->vaddr;
251 252 253 254 255
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
256
		if (IS_ERR(page)) {
257
			err = PTR_ERR(page);
258 259
			goto err_phys;
		}
260 261 262 263 264 265

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

266
		put_page(page);
267 268 269
		vaddr += PAGE_SIZE;
	}

270
	i915_gem_chipset_flush(to_i915(obj->base.dev));
271 272

	st = kmalloc(sizeof(*st), GFP_KERNEL);
273
	if (!st) {
274
		err = -ENOMEM;
275 276
		goto err_phys;
	}
277 278 279

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
280
		err = -ENOMEM;
281
		goto err_phys;
282 283 284 285 286
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
287

288
	sg_dma_address(sg) = phys->busaddr;
289 290
	sg_dma_len(sg) = obj->base.size;

291
	obj->phys_handle = phys;
292

293
	__i915_gem_object_set_pages(obj, st, sg->length);
294 295

	return 0;
296 297 298

err_phys:
	drm_pci_free(obj->base.dev, phys);
299 300

	return err;
301 302
}

303 304
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
305 306
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
307 308 309 310
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

311
static void
312
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
313 314
				struct sg_table *pages,
				bool needs_clflush)
315
{
C
Chris Wilson 已提交
316
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
317

C
Chris Wilson 已提交
318 319
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
320

321
	if (needs_clflush &&
322
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
323
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
324
		drm_clflush_sg(pages);
325

326
	__start_cpu_write(obj);
327 328 329 330 331 332
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
333
	__i915_gem_object_release_shmem(obj, pages, false);
334

C
Chris Wilson 已提交
335
	if (obj->mm.dirty) {
336
		struct address_space *mapping = obj->base.filp->f_mapping;
337
		char *vaddr = obj->phys_handle->vaddr;
338 339 340
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
341 342 343 344 345 346 347 348 349 350 351 352 353
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
354
			if (obj->mm.madv == I915_MADV_WILLNEED)
355
				mark_page_accessed(page);
356
			put_page(page);
357 358
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
359
		obj->mm.dirty = false;
360 361
	}

362 363
	sg_free_table(pages);
	kfree(pages);
364 365

	drm_pci_free(obj->base.dev, obj->phys_handle);
366 367 368 369 370
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
371
	i915_gem_object_unpin_pages(obj);
372 373 374 375 376 377 378 379
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

380 381
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

382
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
383 384 385
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
386 387 388
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
389

390 391 392 393
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
394
	 */
395
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
396 397 398
	if (ret)
		return ret;

399 400 401 402
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
403
		list_move_tail(&vma->obj_link, &still_in_list);
404 405
		spin_unlock(&obj->vma.lock);

406
		ret = i915_vma_unbind(vma);
407 408

		spin_lock(&obj->vma.lock);
409
	}
410 411
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
412 413 414 415

	return ret;
}

416 417 418
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
419
			   long timeout)
420
{
421
	struct i915_request *rq;
422

423
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
424

425 426 427 428 429 430 431 432 433
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
434
	if (i915_request_completed(rq))
435 436
		goto out;

437
	timeout = i915_request_wait(rq, flags, timeout);
438 439

out:
440 441
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
442 443 444 445 446 447 448

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
449
				 long timeout)
450
{
451
	unsigned int seq = __read_seqcount_begin(&resv->seq);
452
	struct dma_fence *excl;
453
	bool prune_fences = false;
454 455 456 457

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
458 459
		int ret;

460 461
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
462 463 464
		if (ret)
			return ret;

465 466
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
467
							     flags, timeout);
468
			if (timeout < 0)
469
				break;
470

471 472 473 474 475 476
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
477

478 479 480 481 482 483 484 485 486
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
487
		prune_fences = count && timeout >= 0;
488 489
	} else {
		excl = reservation_object_get_excl_rcu(resv);
490 491
	}

492
	if (excl && timeout >= 0)
493
		timeout = i915_gem_object_wait_fence(excl, flags, timeout);
494 495 496

	dma_fence_put(excl);

497 498
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
499 500 501
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
502
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
503 504 505 506 507
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
508 509
	}

510
	return timeout;
511 512
}

513 514
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
515
{
516
	struct i915_request *rq;
517 518
	struct intel_engine_cs *engine;

519
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
520 521 522 523 524
		return;

	rq = to_request(fence);
	engine = rq->engine;

525 526
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
527
	if (engine->schedule)
528
		engine->schedule(rq, attr);
529
	rcu_read_unlock();
530
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
531 532
}

533 534
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
535 536 537 538 539 540 541
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
542
			__fence_set_priority(array->fences[i], attr);
543
	} else {
544
		__fence_set_priority(fence, attr);
545 546 547 548 549 550
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
551
			      const struct i915_sched_attr *attr)
552 553 554 555 556 557 558 559 560 561 562 563 564 565
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
566
			fence_set_priority(shared[i], attr);
567 568 569 570 571 572 573 574 575
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
576
		fence_set_priority(excl, attr);
577 578 579 580 581
		dma_fence_put(excl);
	}
	return 0;
}

582 583 584 585 586
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
587
 */
588 589 590
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
591
		     long timeout)
592
{
593 594
	might_sleep();
	GEM_BUG_ON(timeout < 0);
595

596
	timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
597
	return timeout < 0 ? timeout : 0;
598 599
}

600 601 602
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
603
		     struct drm_file *file)
604 605
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
606
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
607 608 609 610

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
611
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
612 613
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
614

615
	drm_clflush_virt_range(vaddr, args->size);
616
	i915_gem_chipset_flush(to_i915(obj->base.dev));
617

618
	intel_fb_obj_flush(obj, ORIGIN_CPU);
619
	return 0;
620 621
}

622 623
static int
i915_gem_create(struct drm_file *file,
624
		struct drm_i915_private *dev_priv,
625 626
		u64 size,
		u32 *handle_p)
627
{
628
	struct drm_i915_gem_object *obj;
629 630
	int ret;
	u32 handle;
631

632
	size = roundup(size, PAGE_SIZE);
633 634
	if (size == 0)
		return -EINVAL;
635 636

	/* Allocate the new object */
637
	obj = i915_gem_object_create(dev_priv, size);
638 639
	if (IS_ERR(obj))
		return PTR_ERR(obj);
640

641
	ret = drm_gem_handle_create(file, &obj->base, &handle);
642
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
643
	i915_gem_object_put(obj);
644 645
	if (ret)
		return ret;
646

647
	*handle_p = handle;
648 649 650
	return 0;
}

651 652 653 654 655 656
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
657
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
658
	args->size = args->pitch * args->height;
659
	return i915_gem_create(file, to_i915(dev),
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

669 670
/**
 * Creates a new mm object and returns a handle to it.
671 672 673
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
674 675 676 677 678
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
679
	struct drm_i915_private *dev_priv = to_i915(dev);
680
	struct drm_i915_gem_create *args = data;
681

682
	i915_gem_flush_free_objects(dev_priv);
683

684
	return i915_gem_create(file, dev_priv,
685
			       args->size, &args->handle);
686 687
}

688 689 690 691 692 693 694
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

695
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
696
{
697 698
	intel_wakeref_t wakeref;

699 700 701 702 703
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
704 705 706 707 708 709 710 711 712 713
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
714 715
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
716
	 */
717

718 719 720 721 722
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

723
	i915_gem_chipset_flush(dev_priv);
724

725 726
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
727

728
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
729

730 731
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
732 733 734 735 736 737 738 739
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

740
	if (!(obj->write_domain & flush_domains))
741 742
		return;

743
	switch (obj->write_domain) {
744
	case I915_GEM_DOMAIN_GTT:
745
		i915_gem_flush_ggtt_writes(dev_priv);
746 747 748

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
749

750
		for_each_ggtt_vma(vma, obj) {
751 752 753 754 755
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
756 757
		break;

758 759 760 761
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

762 763 764
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
765 766 767 768 769

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
770 771
	}

772
	obj->write_domain = 0;
773 774
}

775 776 777 778 779 780
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781
				    unsigned int *needs_clflush)
782 783 784
{
	int ret;

785
	lockdep_assert_held(&obj->base.dev->struct_mutex);
786

787
	*needs_clflush = 0;
788 789
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
790

791 792 793
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
794
				   MAX_SCHEDULE_TIMEOUT);
795 796 797
	if (ret)
		return ret;

C
Chris Wilson 已提交
798
	ret = i915_gem_object_pin_pages(obj);
799 800 801
	if (ret)
		return ret;

802 803
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 805 806 807 808 809 810
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

811
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812

813 814 815 816 817
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
818
	if (!obj->cache_dirty &&
819
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
820
		*needs_clflush = CLFLUSH_BEFORE;
821

822
out:
823
	/* return with the pages pinned */
824
	return 0;
825 826 827 828

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
829 830 831 832 833 834 835
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

836 837
	lockdep_assert_held(&obj->base.dev->struct_mutex);

838 839 840 841
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

842 843 844 845
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
846
				   MAX_SCHEDULE_TIMEOUT);
847 848 849
	if (ret)
		return ret;

C
Chris Wilson 已提交
850
	ret = i915_gem_object_pin_pages(obj);
851 852 853
	if (ret)
		return ret;

854 855
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
856 857 858 859 860 861 862
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

863
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
864

865 866 867 868 869
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
870
	if (!obj->cache_dirty) {
871
		*needs_clflush |= CLFLUSH_AFTER;
872

873 874 875 876
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
877
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
878 879
			*needs_clflush |= CLFLUSH_BEFORE;
	}
880

881
out:
882
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
883
	obj->mm.dirty = true;
884
	/* return with the pages pinned */
885
	return 0;
886 887 888 889

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
890 891
}

892
static int
893 894
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
895 896 897 898 899 900
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

901 902
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
903

904
	ret = __copy_to_user(user_data, vaddr + offset, len);
905

906
	kunmap(page);
907

908
	return ret ? -EFAULT : 0;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
935
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
955
{
956
	void __iomem *vaddr;
957
	unsigned long unwritten;
958 959

	/* We can use the cpu mem copy function because this is X86. */
960 961 962 963
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
964 965
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
966 967 968 969
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
970 971
		io_mapping_unmap(vaddr);
	}
972 973 974 975
	return unwritten;
}

static int
976 977
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
978
{
979 980
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
981
	intel_wakeref_t wakeref;
982
	struct drm_mm_node node;
983 984 985
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
986 987
	int ret;

988 989 990 991
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

992
	wakeref = intel_runtime_pm_get(i915);
993
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
994 995 996
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
997 998 999
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1000
		ret = i915_vma_put_fence(vma);
1001 1002 1003 1004 1005
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1006
	if (IS_ERR(vma)) {
1007
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1008
		if (ret)
1009 1010
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1011 1012 1013 1014 1015 1016
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1017
	mutex_unlock(&i915->drm.struct_mutex);
1018

1019 1020 1021
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1036 1037 1038
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1039 1040 1041 1042
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1043

1044
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1045
				  user_data, page_length)) {
1046 1047 1048 1049 1050 1051 1052 1053 1054
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1055
	mutex_lock(&i915->drm.struct_mutex);
1056 1057 1058
out_unpin:
	if (node.allocated) {
		wmb();
1059
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1060 1061
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1062
		i915_vma_unpin(vma);
1063
	}
1064
out_unlock:
1065
	intel_runtime_pm_put(i915, wakeref);
1066
	mutex_unlock(&i915->drm.struct_mutex);
1067

1068 1069 1070
	return ret;
}

1071 1072
/**
 * Reads data from the object referenced by handle.
1073 1074 1075
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1076 1077 1078 1079 1080
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1081
		     struct drm_file *file)
1082 1083
{
	struct drm_i915_gem_pread *args = data;
1084
	struct drm_i915_gem_object *obj;
1085
	int ret;
1086

1087 1088 1089
	if (args->size == 0)
		return 0;

1090
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1091 1092 1093
		       args->size))
		return -EFAULT;

1094
	obj = i915_gem_object_lookup(file, args->handle);
1095 1096
	if (!obj)
		return -ENOENT;
1097

1098
	/* Bounds check source.  */
1099
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1100
		ret = -EINVAL;
1101
		goto out;
C
Chris Wilson 已提交
1102 1103
	}

C
Chris Wilson 已提交
1104 1105
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1106 1107
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1108
				   MAX_SCHEDULE_TIMEOUT);
1109
	if (ret)
1110
		goto out;
1111

1112
	ret = i915_gem_object_pin_pages(obj);
1113
	if (ret)
1114
		goto out;
1115

1116
	ret = i915_gem_shmem_pread(obj, args);
1117
	if (ret == -EFAULT || ret == -ENODEV)
1118
		ret = i915_gem_gtt_pread(obj, args);
1119

1120 1121
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1122
	i915_gem_object_put(obj);
1123
	return ret;
1124 1125
}

1126 1127
/* This is the fast write path which cannot handle
 * page faults in the source data
1128
 */
1129

1130 1131 1132 1133
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1134
{
1135
	void __iomem *vaddr;
1136
	unsigned long unwritten;
1137

1138
	/* We can use the cpu mem copy function because this is X86. */
1139 1140
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1141
						      user_data, length);
1142 1143
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1144 1145 1146
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1147 1148
		io_mapping_unmap(vaddr);
	}
1149 1150 1151 1152

	return unwritten;
}

1153 1154 1155
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1156
 * @obj: i915 GEM object
1157
 * @args: pwrite arguments structure
1158
 */
1159
static int
1160 1161
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1162
{
1163
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1164
	struct i915_ggtt *ggtt = &i915->ggtt;
1165
	intel_wakeref_t wakeref;
1166
	struct drm_mm_node node;
1167 1168 1169
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1170
	int ret;
1171

1172 1173 1174
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1184 1185
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1186 1187 1188 1189 1190
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1191
		wakeref = intel_runtime_pm_get(i915);
1192 1193
	}

C
Chris Wilson 已提交
1194
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1195 1196 1197
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1198 1199 1200
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1201
		ret = i915_vma_put_fence(vma);
1202 1203 1204 1205 1206
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1207
	if (IS_ERR(vma)) {
1208
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209
		if (ret)
1210
			goto out_rpm;
1211
		GEM_BUG_ON(!node.allocated);
1212
	}
D
Daniel Vetter 已提交
1213 1214 1215 1216 1217

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1218 1219
	mutex_unlock(&i915->drm.struct_mutex);

1220
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221

1222 1223 1224 1225
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1226 1227
		/* Operation in this page
		 *
1228 1229 1230
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1231
		 */
1232
		u32 page_base = node.start;
1233 1234
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1235 1236 1237
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1238 1239 1240
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1241 1242 1243 1244
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1245
		/* If we get a fault while copying data, then (presumably) our
1246 1247
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1248 1249
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1250
		 */
1251
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1252 1253 1254
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1255
		}
1256

1257 1258 1259
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1260
	}
1261
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1262 1263

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1264
out_unpin:
1265 1266
	if (node.allocated) {
		wmb();
1267
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1268 1269
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1270
		i915_vma_unpin(vma);
1271
	}
1272
out_rpm:
1273
	intel_runtime_pm_put(i915, wakeref);
1274
out_unlock:
1275
	mutex_unlock(&i915->drm.struct_mutex);
1276
	return ret;
1277 1278
}

1279 1280 1281 1282 1283
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1284
static int
1285 1286 1287
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1288
{
1289
	char *vaddr;
1290 1291
	int ret;

1292
	vaddr = kmap(page);
1293

1294 1295
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1296

1297 1298 1299
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1300

1301 1302 1303
	kunmap(page);

	return ret ? -EFAULT : 0;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1314
	unsigned int needs_clflush;
1315 1316
	unsigned int offset, idx;
	int ret;
1317

1318
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1319 1320 1321
	if (ret)
		return ret;

1322 1323 1324 1325
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1326

1327 1328 1329 1330 1331 1332 1333
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1334

1335 1336 1337 1338 1339
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1340
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1341

1342 1343 1344
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1345
		if (ret)
1346
			break;
1347

1348 1349 1350
		remain -= length;
		user_data += length;
		offset = 0;
1351
	}
1352

1353
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1354
	i915_gem_obj_finish_shmem_access(obj);
1355
	return ret;
1356 1357 1358 1359
}

/**
 * Writes data to the object referenced by handle.
1360 1361 1362
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1363 1364 1365 1366 1367
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1368
		      struct drm_file *file)
1369 1370
{
	struct drm_i915_gem_pwrite *args = data;
1371
	struct drm_i915_gem_object *obj;
1372 1373 1374 1375 1376
	int ret;

	if (args->size == 0)
		return 0;

1377
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1378 1379
		return -EFAULT;

1380
	obj = i915_gem_object_lookup(file, args->handle);
1381 1382
	if (!obj)
		return -ENOENT;
1383

1384
	/* Bounds check destination. */
1385
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1386
		ret = -EINVAL;
1387
		goto err;
C
Chris Wilson 已提交
1388 1389
	}

1390 1391 1392 1393 1394 1395
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1396 1397
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1398 1399 1400 1401 1402 1403
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1404 1405 1406
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
1407
				   MAX_SCHEDULE_TIMEOUT);
1408 1409 1410
	if (ret)
		goto err;

1411
	ret = i915_gem_object_pin_pages(obj);
1412
	if (ret)
1413
		goto err;
1414

D
Daniel Vetter 已提交
1415
	ret = -EFAULT;
1416 1417 1418 1419 1420 1421
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1422
	if (!i915_gem_object_has_struct_page(obj) ||
1423
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1424 1425
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1426 1427
		 * textures). Fallback to the shmem path in that case.
		 */
1428
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1429

1430
	if (ret == -EFAULT || ret == -ENOSPC) {
1431 1432
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1433
		else
1434
			ret = i915_gem_shmem_pwrite(obj, args);
1435
	}
1436

1437
	i915_gem_object_unpin_pages(obj);
1438
err:
C
Chris Wilson 已提交
1439
	i915_gem_object_put(obj);
1440
	return ret;
1441 1442
}

1443 1444
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1445
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1446 1447 1448
	struct list_head *list;
	struct i915_vma *vma;

1449 1450
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1451
	mutex_lock(&i915->ggtt.vm.mutex);
1452
	for_each_ggtt_vma(vma, obj) {
1453 1454 1455
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1456
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1457
	}
1458
	mutex_unlock(&i915->ggtt.vm.mutex);
1459

1460
	spin_lock(&i915->mm.obj_lock);
1461
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1462 1463
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1464 1465
}

1466
/**
1467 1468
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1469 1470 1471
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1472 1473 1474
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1475
			  struct drm_file *file)
1476 1477
{
	struct drm_i915_gem_set_domain *args = data;
1478
	struct drm_i915_gem_object *obj;
1479 1480
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1481
	int err;
1482

1483
	/* Only handle setting domains to types used by the CPU. */
1484
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1485 1486
		return -EINVAL;

1487 1488
	/*
	 * Having something in the write domain implies it's in the read
1489 1490
	 * domain, and only that read domain.  Enforce that in the request.
	 */
1491
	if (write_domain && read_domains != write_domain)
1492 1493
		return -EINVAL;

1494 1495 1496
	if (!read_domains)
		return 0;

1497
	obj = i915_gem_object_lookup(file, args->handle);
1498 1499
	if (!obj)
		return -ENOENT;
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	/*
	 * Already in the desired write domain? Nothing for us to do!
	 *
	 * We apply a little bit of cunning here to catch a broader set of
	 * no-ops. If obj->write_domain is set, we must be in the same
	 * obj->read_domains, and only that domain. Therefore, if that
	 * obj->write_domain matches the request read_domains, we are
	 * already in the same read/write domain and can skip the operation,
	 * without having to further check the requested write_domain.
	 */
	if (READ_ONCE(obj->write_domain) == read_domains) {
		err = 0;
		goto out;
	}

	/*
	 * Try to flush the object off the GPU without holding the lock.
1518 1519 1520
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1521
	err = i915_gem_object_wait(obj,
1522
				   I915_WAIT_INTERRUPTIBLE |
1523
				   I915_WAIT_PRIORITY |
1524
				   (write_domain ? I915_WAIT_ALL : 0),
1525
				   MAX_SCHEDULE_TIMEOUT);
1526
	if (err)
C
Chris Wilson 已提交
1527
		goto out;
1528

T
Tina Zhang 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1542 1543 1544 1545 1546 1547 1548 1549 1550
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1551
		goto out;
1552 1553 1554

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1555
		goto out_unpin;
1556

1557 1558 1559 1560
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1561
	else
1562
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1563

1564 1565
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1566

1567
	mutex_unlock(&dev->struct_mutex);
1568

1569
	if (write_domain != 0)
1570 1571
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1572

C
Chris Wilson 已提交
1573
out_unpin:
1574
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1575 1576
out:
	i915_gem_object_put(obj);
1577
	return err;
1578 1579 1580 1581
}

/**
 * Called when user space has done writes to this buffer
1582 1583 1584
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1585 1586 1587
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1588
			 struct drm_file *file)
1589 1590
{
	struct drm_i915_gem_sw_finish *args = data;
1591
	struct drm_i915_gem_object *obj;
1592

1593
	obj = i915_gem_object_lookup(file, args->handle);
1594 1595
	if (!obj)
		return -ENOENT;
1596

T
Tina Zhang 已提交
1597 1598 1599 1600 1601
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1602
	/* Pinned buffers may be scanout, so flush the cache */
1603
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1604
	i915_gem_object_put(obj);
1605 1606

	return 0;
1607 1608
}

1609 1610 1611 1612 1613 1614 1615
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1616 1617
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1618 1619
}

1620
/**
1621 1622 1623 1624 1625
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1626 1627 1628
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1639 1640 1641
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642
		    struct drm_file *file)
1643 1644
{
	struct drm_i915_gem_mmap *args = data;
1645
	struct drm_i915_gem_object *obj;
1646 1647
	unsigned long addr;

1648 1649 1650
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1651
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 1653
		return -ENODEV;

1654 1655
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1656
		return -ENOENT;
1657

1658 1659 1660
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1661
	if (!obj->base.filp) {
1662 1663 1664 1665 1666 1667 1668
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
1669 1670
	}

1671
	addr = vm_mmap(obj->base.filp, 0, args->size,
1672 1673
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1674 1675 1676
	if (IS_ERR_VALUE(addr))
		goto err;

1677 1678 1679 1680
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1681
		if (down_write_killable(&mm->mmap_sem)) {
1682 1683
			addr = -EINTR;
			goto err;
1684
		}
1685
		vma = find_vma(mm, addr);
1686
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1687 1688 1689 1690 1691
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1692 1693
		if (IS_ERR_VALUE(addr))
			goto err;
1694 1695

		/* This may race, but that's ok, it only gets set */
1696
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1697
	}
C
Chris Wilson 已提交
1698
	i915_gem_object_put(obj);
1699

1700
	args->addr_ptr = (u64)addr;
1701
	return 0;
1702 1703 1704 1705

err:
	i915_gem_object_put(obj);
	return addr;
1706 1707
}

1708
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1709
{
1710
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1711 1712
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1733 1734 1735
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1736 1737 1738
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1766
	return 3;
1767 1768
}

1769
static inline struct i915_ggtt_view
1770
compute_partial_view(const struct drm_i915_gem_object *obj,
1771 1772 1773 1774 1775 1776 1777 1778 1779
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1780 1781
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1782
		min_t(unsigned int, chunk,
1783
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1784 1785 1786 1787 1788 1789 1790 1791

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1792 1793
/**
 * i915_gem_fault - fault a page into the GTT
1794
 * @vmf: fault info
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1806 1807 1808
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1809
 */
1810
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1811
{
1812
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1813
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1814
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1815
	struct drm_device *dev = obj->base.dev;
1816 1817
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1818
	bool write = area->vm_flags & VM_WRITE;
1819
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1820
	struct i915_vma *vma;
1821
	pgoff_t page_offset;
1822
	int srcu;
1823
	int ret;
1824

1825 1826 1827 1828
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1829
	/* We don't use vmf->pgoff since that has the fake offset */
1830
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1831

C
Chris Wilson 已提交
1832 1833
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1834 1835 1836 1837
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1838
	wakeref = intel_runtime_pm_get(dev_priv);
1839

1840 1841 1842 1843 1844 1845
	srcu = i915_reset_trylock(dev_priv);
	if (srcu < 0) {
		ret = srcu;
		goto err_rpm;
	}

1846 1847
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
1848
		goto err_reset;
1849

1850
	/* Access to snoopable pages through the GTT is incoherent. */
1851
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1852
		ret = -EFAULT;
1853
		goto err_unlock;
1854 1855
	}

1856
	/* Now pin it into the GTT as needed */
1857 1858 1859 1860
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1861 1862
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1863
		struct i915_ggtt_view view =
1864
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1865
		unsigned int flags;
1866

1867 1868 1869 1870 1871 1872
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1873 1874 1875 1876
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1877 1878 1879 1880 1881 1882
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1883
	}
C
Chris Wilson 已提交
1884 1885
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1886
		goto err_unlock;
C
Chris Wilson 已提交
1887
	}
1888

1889 1890 1891 1892
	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

1893
	/* Finally, remap it using the new GTT offset */
1894
	ret = remap_io_mapping(area,
1895
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1896
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1897
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1898
			       &ggtt->iomap);
1899
	if (ret)
1900
		goto err_fence;
1901

1902 1903 1904 1905 1906 1907
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1908 1909
	i915_vma_set_ggtt_write(vma);

1910 1911
err_fence:
	i915_vma_unpin_fence(vma);
1912
err_unpin:
C
Chris Wilson 已提交
1913
	__i915_vma_unpin(vma);
1914
err_unlock:
1915
	mutex_unlock(&dev->struct_mutex);
1916 1917
err_reset:
	i915_reset_unlock(dev_priv, srcu);
1918
err_rpm:
1919
	intel_runtime_pm_put(dev_priv, wakeref);
1920
	i915_gem_object_unpin_pages(obj);
1921
err:
1922
	switch (ret) {
1923
	case -EIO:
1924 1925 1926 1927 1928 1929
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1930
		if (!i915_terminally_wedged(dev_priv))
1931
			return VM_FAULT_SIGBUS;
1932
		/* else: fall through */
1933
	case -EAGAIN:
D
Daniel Vetter 已提交
1934 1935 1936 1937
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1938
		 */
1939 1940
	case 0:
	case -ERESTARTSYS:
1941
	case -EINTR:
1942 1943 1944 1945 1946
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1947
		return VM_FAULT_NOPAGE;
1948
	case -ENOMEM:
1949
		return VM_FAULT_OOM;
1950
	case -ENOSPC:
1951
	case -EFAULT:
1952
		return VM_FAULT_SIGBUS;
1953
	default:
1954
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1955
		return VM_FAULT_SIGBUS;
1956 1957 1958
	}
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

1970
	for_each_ggtt_vma(vma, obj)
1971 1972 1973
		i915_vma_unset_userfault(vma);
}

1974 1975 1976 1977
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1978
 * Preserve the reservation of the mmapping with the DRM core code, but
1979 1980 1981 1982 1983 1984 1985 1986 1987
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1988
void
1989
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1990
{
1991
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1992
	intel_wakeref_t wakeref;
1993

1994 1995 1996
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1997 1998 1999 2000
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2001
	 */
2002
	lockdep_assert_held(&i915->drm.struct_mutex);
2003
	wakeref = intel_runtime_pm_get(i915);
2004

2005
	if (!obj->userfault_count)
2006
		goto out;
2007

2008
	__i915_gem_object_release_mmap(obj);
2009 2010 2011 2012 2013 2014 2015 2016 2017

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2018 2019

out:
2020
	intel_runtime_pm_put(i915, wakeref);
2021 2022
}

2023
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2024
{
2025
	struct drm_i915_gem_object *obj, *on;
2026
	int i;
2027

2028 2029 2030 2031 2032 2033
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2034

2035
	list_for_each_entry_safe(obj, on,
2036 2037
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2038 2039 2040 2041 2042 2043 2044 2045

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2056 2057 2058 2059

		if (!reg->vma)
			continue;

2060
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2061 2062
		reg->dirty = true;
	}
2063 2064
}

2065 2066
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2067
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2068
	int err;
2069

2070
	err = drm_gem_create_mmap_offset(&obj->base);
2071
	if (likely(!err))
2072
		return 0;
2073

2074 2075
	/* Attempt to reap some mmap space from dead objects */
	do {
2076 2077 2078
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2079 2080
		if (err)
			break;
2081

2082
		i915_gem_drain_freed_objects(dev_priv);
2083
		err = drm_gem_create_mmap_offset(&obj->base);
2084 2085 2086 2087
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2088

2089
	return err;
2090 2091 2092 2093 2094 2095 2096
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2097
int
2098 2099
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2100 2101
		  u32 handle,
		  u64 *offset)
2102
{
2103
	struct drm_i915_gem_object *obj;
2104 2105
	int ret;

2106
	obj = i915_gem_object_lookup(file, handle);
2107 2108
	if (!obj)
		return -ENOENT;
2109

2110
	ret = i915_gem_object_create_mmap_offset(obj);
2111 2112
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113

C
Chris Wilson 已提交
2114
	i915_gem_object_put(obj);
2115
	return ret;
2116 2117
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2139
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 2141
}

D
Daniel Vetter 已提交
2142 2143 2144
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145
{
2146
	i915_gem_object_free_mmap_offset(obj);
2147

2148 2149
	if (obj->base.filp == NULL)
		return;
2150

D
Daniel Vetter 已提交
2151 2152 2153 2154 2155
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2156
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2157
	obj->mm.madv = __I915_MADV_PURGED;
2158
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2159
}
2160

2161
/* Try to discard unwanted pages */
2162
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2163
{
2164 2165
	struct address_space *mapping;

2166
	lockdep_assert_held(&obj->mm.lock);
2167
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2168

C
Chris Wilson 已提交
2169
	switch (obj->mm.madv) {
2170 2171 2172 2173 2174 2175 2176 2177 2178
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2179
	mapping = obj->base.filp->f_mapping,
2180
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2194
static void
2195 2196
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2197
{
2198
	struct sgt_iter sgt_iter;
2199
	struct pagevec pvec;
2200
	struct page *page;
2201

2202
	__i915_gem_object_release_shmem(obj, pages, true);
2203

2204
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2205

2206
	if (i915_gem_object_needs_bit17_swizzle(obj))
2207
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2208

2209 2210 2211
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2212
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2213
		if (obj->mm.dirty)
2214
			set_page_dirty(page);
2215

C
Chris Wilson 已提交
2216
		if (obj->mm.madv == I915_MADV_WILLNEED)
2217
			mark_page_accessed(page);
2218

2219 2220
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2221
	}
2222 2223
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2224
	obj->mm.dirty = false;
2225

2226 2227
	sg_free_table(pages);
	kfree(pages);
2228
}
C
Chris Wilson 已提交
2229

2230 2231 2232
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2233
	void __rcu **slot;
2234

2235
	rcu_read_lock();
C
Chris Wilson 已提交
2236 2237
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2238
	rcu_read_unlock();
2239 2240
}

2241 2242
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2243
{
2244
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2245
	struct sg_table *pages;
2246

2247
	pages = fetch_and_zero(&obj->mm.pages);
2248 2249
	if (IS_ERR_OR_NULL(pages))
		return pages;
2250

2251 2252 2253 2254
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2255
	if (obj->mm.mapping) {
2256 2257
		void *ptr;

2258
		ptr = page_mask_bits(obj->mm.mapping);
2259 2260
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2261
		else
2262 2263
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2264
		obj->mm.mapping = NULL;
2265 2266
	}

2267
	__i915_gem_object_reset_page_iter(obj);
2268 2269 2270 2271
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2272

2273 2274
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2275 2276
{
	struct sg_table *pages;
2277
	int ret;
2278 2279

	if (i915_gem_object_has_pinned_pages(obj))
2280
		return -EBUSY;
2281 2282 2283 2284 2285

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2286 2287
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2288
		goto unlock;
2289
	}
2290 2291 2292 2293 2294 2295 2296

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2307 2308 2309
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2310
	ret = 0;
2311 2312
unlock:
	mutex_unlock(&obj->mm.lock);
2313 2314

	return ret;
C
Chris Wilson 已提交
2315 2316
}

2317
bool i915_sg_trim(struct sg_table *orig_st)
2318 2319 2320 2321 2322 2323
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2324
		return false;
2325

2326
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2327
		return false;
2328 2329 2330 2331

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2332 2333 2334
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2335 2336
		new_sg = sg_next(new_sg);
	}
2337
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2338 2339 2340 2341

	sg_free_table(orig_st);

	*orig_st = new_st;
2342
	return true;
2343 2344
}

2345
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2346
{
2347
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2348 2349
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2350
	struct address_space *mapping;
2351 2352
	struct sg_table *st;
	struct scatterlist *sg;
2353
	struct sgt_iter sgt_iter;
2354
	struct page *page;
2355
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2356
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2357
	unsigned int sg_page_sizes;
2358
	struct pagevec pvec;
2359
	gfp_t noreclaim;
I
Imre Deak 已提交
2360
	int ret;
2361

2362 2363
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2364 2365 2366
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2367 2368
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2369

2370 2371 2372 2373
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2374
	if (page_count > totalram_pages())
2375 2376
		return -ENOMEM;

2377 2378
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2379
		return -ENOMEM;
2380

2381
rebuild_st:
2382 2383
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2384
		return -ENOMEM;
2385
	}
2386

2387 2388
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2389 2390 2391 2392
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2393
	mapping = obj->base.filp->f_mapping;
2394
	mapping_set_unevictable(mapping);
2395
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2396 2397
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2398 2399
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2400
	sg_page_sizes = 0;
2401
	for (i = 0; i < page_count; i++) {
2402 2403 2404 2405 2406 2407 2408
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2409
			cond_resched();
C
Chris Wilson 已提交
2410
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2411
			if (!IS_ERR(page))
2412 2413 2414 2415 2416 2417 2418
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2419
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2420

2421 2422
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2423 2424
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2425 2426 2427 2428
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2429
			 */
2430 2431 2432
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2433

2434 2435
				/*
				 * Our bo are always dirty and so we require
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2446
				 * this we want __GFP_RETRY_MAYFAIL.
2447
				 */
M
Michal Hocko 已提交
2448
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2449
			}
2450 2451
		} while (1);

2452 2453 2454
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2455
			if (i) {
M
Matthew Auld 已提交
2456
				sg_page_sizes |= sg->length;
2457
				sg = sg_next(sg);
2458
			}
2459 2460 2461 2462 2463 2464
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2465 2466 2467

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2468
	}
2469
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2470
		sg_page_sizes |= sg->length;
2471
		sg_mark_end(sg);
2472
	}
2473

2474 2475 2476
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2477
	ret = i915_gem_gtt_prepare_pages(obj, st);
2478
	if (ret) {
2479 2480
		/*
		 * DMA remapping failed? One possible cause is that
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2498

2499
	if (i915_gem_object_needs_bit17_swizzle(obj))
2500
		i915_gem_object_do_bit_17_swizzle(obj, st);
2501

M
Matthew Auld 已提交
2502
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2503 2504

	return 0;
2505

2506
err_sg:
2507
	sg_mark_end(sg);
2508
err_pages:
2509 2510 2511 2512 2513 2514 2515 2516
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2517 2518
	sg_free_table(st);
	kfree(st);
2519

2520 2521
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2522 2523 2524 2525 2526 2527 2528
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2529 2530 2531
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2532
	return ret;
2533 2534 2535
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2536
				 struct sg_table *pages,
M
Matthew Auld 已提交
2537
				 unsigned int sg_page_sizes)
2538
{
2539 2540 2541 2542
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2543
	lockdep_assert_held(&obj->mm.lock);
2544

2545 2546 2547 2548 2549 2550 2551 2552
	/* Make the pages coherent with the GPU (flushing any swapin). */
	if (obj->cache_dirty) {
		obj->write_domain = 0;
		if (i915_gem_object_has_struct_page(obj))
			drm_clflush_sg(pages);
		obj->cache_dirty = false;
	}

2553 2554 2555 2556
	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2557 2558

	if (i915_gem_object_is_tiled(obj) &&
2559
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2560 2561 2562 2563
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2564

M
Matthew Auld 已提交
2565 2566
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2567 2568

	/*
M
Matthew Auld 已提交
2569 2570 2571 2572 2573 2574
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2575 2576 2577 2578 2579 2580 2581
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2582 2583 2584 2585

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2586 2587 2588 2589
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2590
	int err;
2591 2592 2593 2594 2595 2596

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2597
	err = obj->ops->get_pages(obj);
2598
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2599

2600
	return err;
2601 2602
}

2603
/* Ensure that the associated pages are gathered from the backing storage
2604
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2605
 * multiple times before they are released by a single call to
2606
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2607 2608 2609
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2610
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2611
{
2612
	int err;
2613

2614 2615 2616
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2617

2618
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2619 2620
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2621 2622 2623
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2624

2625 2626 2627
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2628

2629 2630
unlock:
	mutex_unlock(&obj->mm.lock);
2631
	return err;
2632 2633
}

2634
/* The 'mapping' part of i915_gem_object_pin_map() below */
2635 2636
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2637 2638
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2639
	struct sg_table *sgt = obj->mm.pages;
2640 2641
	struct sgt_iter sgt_iter;
	struct page *page;
2642 2643
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2644
	unsigned long i = 0;
2645
	pgprot_t pgprot;
2646 2647 2648
	void *addr;

	/* A single page can always be kmapped */
2649
	if (n_pages == 1 && type == I915_MAP_WB)
2650 2651
		return kmap(sg_page(sgt->sgl));

2652 2653
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2654
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2655 2656 2657
		if (!pages)
			return NULL;
	}
2658

2659 2660
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2661 2662 2663 2664

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2665
	switch (type) {
2666 2667 2668
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2669 2670 2671 2672 2673 2674 2675 2676
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2677

2678
	if (pages != stack_pages)
M
Michal Hocko 已提交
2679
		kvfree(pages);
2680 2681 2682 2683 2684

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2685 2686
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2687
{
2688 2689 2690
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2691 2692
	int ret;

T
Tina Zhang 已提交
2693 2694
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2695

2696
	ret = mutex_lock_interruptible(&obj->mm.lock);
2697 2698 2699
	if (ret)
		return ERR_PTR(ret);

2700 2701 2702
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2703
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2704
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2705 2706
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2707 2708 2709
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2710

2711 2712 2713
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2714 2715
		pinned = false;
	}
2716
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2717

2718
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2719 2720 2721
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2722
			goto err_unpin;
2723
		}
2724 2725 2726 2727 2728 2729

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2730
		ptr = obj->mm.mapping = NULL;
2731 2732
	}

2733 2734 2735 2736
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2737
			goto err_unpin;
2738 2739
		}

2740
		obj->mm.mapping = page_pack_bits(ptr, type);
2741 2742
	}

2743 2744
out_unlock:
	mutex_unlock(&obj->mm.lock);
2745 2746
	return ptr;

2747 2748 2749 2750 2751
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2752 2753
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
				 unsigned long offset,
				 unsigned long size)
{
	enum i915_map_type has_type;
	void *ptr;

	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
				     offset, size, obj->base.size));

	obj->mm.dirty = true;

	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
		return;

	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
	if (has_type == I915_MAP_WC)
		return;

	drm_clflush_virt_range(ptr + offset, size);
	if (size == obj->base.size) {
		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
		obj->cache_dirty = false;
	}
}

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2798
	if (i915_gem_object_has_pages(obj))
2799 2800
		return -ENODEV;

2801 2802 2803
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2853
static void
2854 2855
i915_gem_retire_work_handler(struct work_struct *work)
{
2856
	struct drm_i915_private *dev_priv =
2857
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2858
	struct drm_device *dev = &dev_priv->drm;
2859

2860
	/* Come back later if the device is busy... */
2861
	if (mutex_trylock(&dev->struct_mutex)) {
2862
		i915_retire_requests(dev_priv);
2863
		mutex_unlock(&dev->struct_mutex);
2864
	}
2865

2866 2867
	/*
	 * Keep the retire handler running until we are finally idle.
2868 2869 2870
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2871
	if (READ_ONCE(dev_priv->gt.awake))
2872 2873
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2874
				   round_jiffies_up_relative(HZ));
2875
}
2876

2877 2878
static bool switch_to_kernel_context_sync(struct drm_i915_private *i915,
					  unsigned long mask)
2879 2880 2881 2882 2883 2884 2885 2886
{
	bool result = true;

	/*
	 * Even if we fail to switch, give whatever is running a small chance
	 * to save itself before we report the failure. Yes, this may be a
	 * false positive due to e.g. ENOMEM, caveat emptor!
	 */
2887
	if (i915_gem_switch_to_kernel_context(i915, mask))
2888 2889 2890 2891 2892 2893 2894 2895
		result = false;

	if (i915_gem_wait_for_idle(i915,
				   I915_WAIT_LOCKED |
				   I915_WAIT_FOR_IDLE_BOOST,
				   I915_GEM_IDLE_TIMEOUT))
		result = false;

2896
	if (!result) {
2897 2898 2899 2900 2901 2902
		if (i915_modparams.reset) { /* XXX hide warning from gem_eio */
			dev_err(i915->drm.dev,
				"Failed to idle engines, declaring wedged!\n");
			GEM_TRACE_DUMP();
		}

2903 2904 2905 2906 2907 2908 2909 2910
		/* Forcibly cancel outstanding work and leave the gpu quiet. */
		i915_gem_set_wedged(i915);
	}

	i915_retire_requests(i915); /* ensure we flush after wedging */
	return result;
}

2911 2912
static bool load_power_context(struct drm_i915_private *i915)
{
2913 2914
	/* Force loading the kernel context on all engines */
	if (!switch_to_kernel_context_sync(i915, ALL_ENGINES))
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		return false;

	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

	return true;
}

2928 2929 2930
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
2931 2932
	struct drm_i915_private *i915 =
		container_of(work, typeof(*i915), gt.idle_work.work);
2933 2934
	bool rearm_hangcheck;

2935
	if (!READ_ONCE(i915->gt.awake))
2936 2937
		return;

2938
	if (READ_ONCE(i915->gt.active_requests))
2939 2940
		return;

2941
	rearm_hangcheck =
2942
		cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
2943

2944
	if (!mutex_trylock(&i915->drm.struct_mutex)) {
2945
		/* Currently busy, come back later */
2946 2947
		mod_delayed_work(i915->wq,
				 &i915->gt.idle_work,
2948 2949 2950 2951
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2952
	/*
2953 2954 2955 2956
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. Should anything unfortunate happen
	 * while we are idle (such as the GPU being power cycled), no users
	 * will be harmed.
2957
	 */
2958 2959 2960
	if (!work_pending(&i915->gt.idle_work.work) &&
	    !i915->gt.active_requests) {
		++i915->gt.active_requests; /* don't requeue idle */
2961

2962
		switch_to_kernel_context_sync(i915, i915->gt.active_engines);
2963

2964 2965 2966 2967 2968
		if (!--i915->gt.active_requests) {
			__i915_gem_park(i915);
			rearm_hangcheck = false;
		}
	}
2969

2970
	mutex_unlock(&i915->drm.struct_mutex);
2971

2972 2973
out_rearm:
	if (rearm_hangcheck) {
2974 2975
		GEM_BUG_ON(!i915->gt.awake);
		i915_queue_hangcheck(i915);
2976
	}
2977 2978
}

2979 2980
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
2981
	struct drm_i915_private *i915 = to_i915(gem->dev);
2982 2983
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
2984
	struct i915_lut_handle *lut, *ln;
2985

2986 2987 2988 2989 2990 2991
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

2992
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
2993 2994 2995 2996
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
2997 2998 2999 3000 3001 3002 3003
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3004
			i915_vma_close(vma);
3005

3006 3007
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3008

3009
		i915_lut_handle_free(lut);
3010
		__i915_gem_object_release_unless_active(obj);
3011
	}
3012 3013

	mutex_unlock(&i915->drm.struct_mutex);
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3027 3028
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3029 3030 3031
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3032 3033 3034 3035 3036 3037 3038
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3039
 *  -EAGAIN: incomplete, restart syscall
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3056 3057
	ktime_t start;
	long ret;
3058

3059 3060 3061
	if (args->flags != 0)
		return -EINVAL;

3062
	obj = i915_gem_object_lookup(file, args->bo_handle);
3063
	if (!obj)
3064 3065
		return -ENOENT;

3066 3067 3068
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3069 3070 3071
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3072
				   to_wait_timeout(args->timeout_ns));
3073 3074 3075 3076 3077

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3088 3089 3090 3091

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3092 3093
	}

C
Chris Wilson 已提交
3094
	i915_gem_object_put(obj);
3095
	return ret;
3096 3097
}

3098 3099
static int wait_for_engines(struct drm_i915_private *i915)
{
3100
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3101 3102
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3103
		GEM_TRACE_DUMP();
3104 3105
		i915_gem_set_wedged(i915);
		return -EIO;
3106 3107 3108 3109 3110
	}

	return 0;
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	if (!READ_ONCE(i915->gt.active_requests))
		return timeout;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3122
	list_for_each_entry(tl, &gt->active_list, link) {
3123 3124
		struct i915_request *rq;

3125
		rq = i915_active_request_get_unlocked(&tl->last_request);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
3141
			gen6_rps_boost(rq);
3142 3143 3144 3145 3146 3147 3148 3149

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3150
		tl = list_entry(&gt->active_list, typeof(*tl), link);
3151 3152 3153 3154 3155 3156
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

3157 3158
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3159
{
3160 3161 3162
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3163

3164 3165 3166 3167
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3168 3169 3170 3171
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

3172
	if (flags & I915_WAIT_LOCKED) {
3173
		int err;
3174 3175 3176

		lockdep_assert_held(&i915->drm.struct_mutex);

3177 3178 3179 3180
		err = wait_for_engines(i915);
		if (err)
			return err;

3181
		i915_retire_requests(i915);
3182
	}
3183 3184

	return 0;
3185 3186
}

3187 3188
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3189 3190 3191 3192 3193 3194 3195
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3196
	obj->write_domain = 0;
3197 3198 3199 3200
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3201
	if (!READ_ONCE(obj->pin_global))
3202 3203 3204 3205 3206 3207 3208
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3228
				   MAX_SCHEDULE_TIMEOUT);
3229 3230 3231
	if (ret)
		return ret;

3232
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3253
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3254 3255 3256 3257 3258
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3259 3260
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3261
	if (write) {
3262 3263
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3264 3265 3266 3267 3268 3269 3270
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3271 3272
/**
 * Moves a single object to the GTT read, and possibly write domain.
3273 3274
 * @obj: object to act on
 * @write: ask for write access or read only
3275 3276 3277 3278
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3279
int
3280
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3281
{
3282
	int ret;
3283

3284
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3285

3286 3287 3288 3289
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3290
				   MAX_SCHEDULE_TIMEOUT);
3291 3292 3293
	if (ret)
		return ret;

3294
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3295 3296
		return 0;

3297 3298 3299 3300 3301 3302 3303 3304
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3305
	ret = i915_gem_object_pin_pages(obj);
3306 3307 3308
	if (ret)
		return ret;

3309
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3310

3311 3312 3313 3314
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3315
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3316 3317
		mb();

3318 3319 3320
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3321 3322
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3323
	if (write) {
3324 3325
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3326
		obj->mm.dirty = true;
3327 3328
	}

C
Chris Wilson 已提交
3329
	i915_gem_object_unpin_pages(obj);
3330 3331 3332
	return 0;
}

3333 3334
/**
 * Changes the cache-level of an object across all VMA.
3335 3336
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3348 3349 3350
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3351
	struct i915_vma *vma;
3352
	int ret;
3353

3354 3355
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3356
	if (obj->cache_level == cache_level)
3357
		return 0;
3358

3359 3360 3361 3362 3363
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3364
restart:
3365
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3366 3367 3368
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3369
		if (i915_vma_is_pinned(vma)) {
3370 3371 3372 3373
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3374 3375
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3387 3388
	}

3389 3390 3391 3392 3393 3394 3395
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3396
	if (obj->bind_count) {
3397 3398 3399 3400
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3401 3402 3403 3404
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
3405
					   MAX_SCHEDULE_TIMEOUT);
3406 3407 3408
		if (ret)
			return ret;

3409 3410
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3427
			for_each_ggtt_vma(vma, obj) {
3428 3429 3430 3431
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3432 3433 3434 3435 3436 3437 3438 3439
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3440 3441
		}

3442
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3443 3444 3445 3446 3447 3448 3449
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3450 3451
	}

3452
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3453
		vma->node.color = cache_level;
3454
	i915_gem_object_set_cache_coherency(obj, cache_level);
3455
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3456

3457 3458 3459
	return 0;
}

B
Ben Widawsky 已提交
3460 3461
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3462
{
B
Ben Widawsky 已提交
3463
	struct drm_i915_gem_caching *args = data;
3464
	struct drm_i915_gem_object *obj;
3465
	int err = 0;
3466

3467 3468 3469 3470 3471 3472
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3473

3474 3475 3476 3477 3478 3479
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3480 3481 3482 3483
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3484 3485 3486 3487
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3488 3489 3490
out:
	rcu_read_unlock();
	return err;
3491 3492
}

B
Ben Widawsky 已提交
3493 3494
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3495
{
3496
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3497
	struct drm_i915_gem_caching *args = data;
3498 3499
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3500
	int ret = 0;
3501

B
Ben Widawsky 已提交
3502 3503
	switch (args->caching) {
	case I915_CACHING_NONE:
3504 3505
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3506
	case I915_CACHING_CACHED:
3507 3508 3509 3510 3511 3512
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3513
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3514 3515
			return -ENODEV;

3516 3517
		level = I915_CACHE_LLC;
		break;
3518
	case I915_CACHING_DISPLAY:
3519
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3520
		break;
3521 3522 3523 3524
	default:
		return -EINVAL;
	}

3525 3526 3527 3528
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3538 3539 3540 3541 3542
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
3543
				   MAX_SCHEDULE_TIMEOUT);
B
Ben Widawsky 已提交
3544
	if (ret)
3545
		goto out;
B
Ben Widawsky 已提交
3546

3547 3548 3549
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3550 3551 3552

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3553 3554 3555

out:
	i915_gem_object_put(obj);
3556 3557 3558
	return ret;
}

3559
/*
3560 3561 3562 3563
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3564
 */
C
Chris Wilson 已提交
3565
struct i915_vma *
3566 3567
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3568 3569
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3570
{
C
Chris Wilson 已提交
3571
	struct i915_vma *vma;
3572 3573
	int ret;

3574 3575
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3576
	/* Mark the global pin early so that we account for the
3577 3578
	 * display coherency whilst setting up the cache domains.
	 */
3579
	obj->pin_global++;
3580

3581 3582 3583 3584 3585 3586 3587 3588 3589
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3590
	ret = i915_gem_object_set_cache_level(obj,
3591 3592
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3593 3594
	if (ret) {
		vma = ERR_PTR(ret);
3595
		goto err_unpin_global;
C
Chris Wilson 已提交
3596
	}
3597

3598 3599
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3600 3601 3602 3603
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3604
	 */
3605
	vma = ERR_PTR(-ENOSPC);
3606 3607
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3608
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3609 3610 3611 3612
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3613
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3614
	if (IS_ERR(vma))
3615
		goto err_unpin_global;
3616

3617 3618
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3619
	__i915_gem_object_flush_for_display(obj);
3620

3621 3622 3623
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3624
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3625

C
Chris Wilson 已提交
3626
	return vma;
3627

3628 3629
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3630
	return vma;
3631 3632 3633
}

void
C
Chris Wilson 已提交
3634
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3635
{
3636
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3637

3638
	if (WARN_ON(vma->obj->pin_global == 0))
3639 3640
		return;

3641
	if (--vma->obj->pin_global == 0)
3642
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3643

3644
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3645
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3646

C
Chris Wilson 已提交
3647
	i915_vma_unpin(vma);
3648 3649
}

3650 3651
/**
 * Moves a single object to the CPU read, and possibly write domain.
3652 3653
 * @obj: object to act on
 * @write: requesting write or read-only access
3654 3655 3656 3657
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3658
int
3659
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3660 3661 3662
{
	int ret;

3663
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3664

3665 3666 3667 3668
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3669
				   MAX_SCHEDULE_TIMEOUT);
3670 3671 3672
	if (ret)
		return ret;

3673
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3674

3675
	/* Flush the CPU cache if it's still invalid. */
3676
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3677
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3678
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3679 3680 3681 3682 3683
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3684
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3685 3686 3687 3688

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3689 3690
	if (write)
		__start_cpu_write(obj);
3691 3692 3693 3694

	return 0;
}

3695 3696 3697
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3698 3699 3700 3701
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3702 3703 3704
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3705
static int
3706
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3707
{
3708
	struct drm_i915_private *dev_priv = to_i915(dev);
3709
	struct drm_i915_file_private *file_priv = file->driver_priv;
3710
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3711
	struct i915_request *request, *target = NULL;
3712
	long ret;
3713

3714
	/* ABI: return -EIO if already wedged */
3715 3716 3717
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
		return ret;
3718

3719
	spin_lock(&file_priv->mm.lock);
3720
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3721 3722
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3723

3724 3725 3726 3727
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3728

3729
		target = request;
3730
	}
3731
	if (target)
3732
		i915_request_get(target);
3733
	spin_unlock(&file_priv->mm.lock);
3734

3735
	if (target == NULL)
3736
		return 0;
3737

3738
	ret = i915_request_wait(target,
3739 3740
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3741
	i915_request_put(target);
3742

3743
	return ret < 0 ? ret : 0;
3744 3745
}

C
Chris Wilson 已提交
3746
struct i915_vma *
3747 3748
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3749
			 u64 size,
3750 3751
			 u64 alignment,
			 u64 flags)
3752
{
3753
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3754
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3755 3756
	struct i915_vma *vma;
	int ret;
3757

3758 3759
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3760 3761
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3792
	vma = i915_vma_instance(obj, vm, view);
3793
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3794
		return vma;
3795 3796

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3797 3798 3799
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3800

3801
			if (flags & PIN_MAPPABLE &&
3802
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3803 3804 3805
				return ERR_PTR(-ENOSPC);
		}

3806 3807
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3808 3809 3810
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3811
		     !!(flags & PIN_MAPPABLE),
3812
		     i915_vma_is_map_and_fenceable(vma));
3813 3814
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3815
			return ERR_PTR(ret);
3816 3817
	}

C
Chris Wilson 已提交
3818 3819 3820
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3821

C
Chris Wilson 已提交
3822
	return vma;
3823 3824
}

3825
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3826
{
3827 3828 3829 3830
	if (id == I915_ENGINE_CLASS_INVALID)
		return 0xffff0000;

	GEM_BUG_ON(id >= 16);
3831 3832 3833 3834 3835
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3836 3837
	/*
	 * The uABI guarantees an active writer is also amongst the read
3838 3839 3840 3841 3842 3843 3844
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
3845 3846 3847 3848
	if (id == I915_ENGINE_CLASS_INVALID)
		return 0xffffffff;

	return (id + 1) | __busy_read_flag(id);
3849 3850
}

3851
static __always_inline unsigned int
3852
__busy_set_if_active(const struct dma_fence *fence,
3853 3854
		     unsigned int (*flag)(unsigned int id))
{
3855
	const struct i915_request *rq;
3856

3857 3858
	/*
	 * We have to check the current hw status of the fence as the uABI
3859 3860 3861
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3862
	 *
3863
	 * Note we only report on the status of native fences.
3864
	 */
3865 3866 3867 3868
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
3869
	rq = container_of(fence, const struct i915_request, fence);
3870
	if (i915_request_completed(rq))
3871 3872
		return 0;

3873
	return flag(rq->engine->uabi_class);
3874 3875
}

3876
static __always_inline unsigned int
3877
busy_check_reader(const struct dma_fence *fence)
3878
{
3879
	return __busy_set_if_active(fence, __busy_read_flag);
3880 3881
}

3882
static __always_inline unsigned int
3883
busy_check_writer(const struct dma_fence *fence)
3884
{
3885 3886 3887 3888
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3889 3890
}

3891 3892
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3893
		    struct drm_file *file)
3894 3895
{
	struct drm_i915_gem_busy *args = data;
3896
	struct drm_i915_gem_object *obj;
3897 3898
	struct reservation_object_list *list;
	unsigned int seq;
3899
	int err;
3900

3901
	err = -ENOENT;
3902 3903
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3904
	if (!obj)
3905
		goto out;
3906

3907 3908
	/*
	 * A discrepancy here is that we do not report the status of
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3926

3927 3928
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3929

3930 3931 3932 3933
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3934

3935 3936 3937 3938 3939 3940
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3941
	}
3942

3943 3944 3945 3946
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3947 3948 3949
out:
	rcu_read_unlock();
	return err;
3950 3951 3952 3953 3954 3955
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3956
	return i915_gem_ring_throttle(dev, file_priv);
3957 3958
}

3959 3960 3961 3962
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3963
	struct drm_i915_private *dev_priv = to_i915(dev);
3964
	struct drm_i915_gem_madvise *args = data;
3965
	struct drm_i915_gem_object *obj;
3966
	int err;
3967 3968 3969 3970 3971 3972 3973 3974 3975

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3976
	obj = i915_gem_object_lookup(file_priv, args->handle);
3977 3978 3979 3980 3981 3982
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3983

3984
	if (i915_gem_object_has_pages(obj) &&
3985
	    i915_gem_object_is_tiled(obj) &&
3986
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3987 3988
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3989
			__i915_gem_object_unpin_pages(obj);
3990 3991 3992
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3993
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3994
			__i915_gem_object_pin_pages(obj);
3995 3996
			obj->mm.quirked = true;
		}
3997 3998
	}

C
Chris Wilson 已提交
3999 4000
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4001

C
Chris Wilson 已提交
4002
	/* if the object is no longer attached, discard its backing storage */
4003 4004
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4005 4006
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4007
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4008
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4009

4010
out:
4011
	i915_gem_object_put(obj);
4012
	return err;
4013 4014
}

4015
static void
4016 4017
frontbuffer_retire(struct i915_active_request *active,
		   struct i915_request *request)
4018 4019 4020 4021
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4022
	intel_fb_obj_flush(obj, ORIGIN_CS);
4023 4024
}

4025 4026
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4027
{
4028 4029
	mutex_init(&obj->mm.lock);

4030 4031 4032
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

4033
	INIT_LIST_HEAD(&obj->lut_list);
4034
	INIT_LIST_HEAD(&obj->batch_pool_link);
4035

4036 4037
	init_rcu_head(&obj->rcu);

4038 4039
	obj->ops = ops;

4040 4041 4042
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4043
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4044 4045
	i915_active_request_init(&obj->frontbuffer_write,
				 NULL, frontbuffer_retire);
C
Chris Wilson 已提交
4046 4047 4048 4049

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4050

4051
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4052 4053
}

4054
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4055 4056
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4057

4058 4059
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4060 4061

	.pwrite = i915_gem_object_pwrite_gtt,
4062 4063
};

M
Matthew Auld 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4088
struct drm_i915_gem_object *
4089
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4090
{
4091
	struct drm_i915_gem_object *obj;
4092
	struct address_space *mapping;
4093
	unsigned int cache_level;
D
Daniel Vetter 已提交
4094
	gfp_t mask;
4095
	int ret;
4096

4097 4098 4099 4100 4101
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4102
	if (size >> PAGE_SHIFT > INT_MAX)
4103 4104 4105 4106 4107
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4108
	obj = i915_gem_object_alloc();
4109
	if (obj == NULL)
4110
		return ERR_PTR(-ENOMEM);
4111

M
Matthew Auld 已提交
4112
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4113 4114
	if (ret)
		goto fail;
4115

4116
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4117
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4118 4119 4120 4121 4122
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4123
	mapping = obj->base.filp->f_mapping;
4124
	mapping_set_gfp_mask(mapping, mask);
4125
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4126

4127
	i915_gem_object_init(obj, &i915_gem_object_ops);
4128

4129 4130
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4131

4132
	if (HAS_LLC(dev_priv))
4133
		/* On some devices, we can have the GPU use the LLC (the CPU
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4145 4146 4147
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4148

4149
	i915_gem_object_set_cache_coherency(obj, cache_level);
4150

4151 4152
	trace_i915_gem_object_create(obj);

4153
	return obj;
4154 4155 4156 4157

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4158 4159
}

4160 4161 4162 4163 4164 4165 4166 4167
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4168
	if (obj->mm.madv != I915_MADV_WILLNEED)
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4184 4185
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4186
{
4187
	struct drm_i915_gem_object *obj, *on;
4188
	intel_wakeref_t wakeref;
4189

4190
	wakeref = intel_runtime_pm_get(i915);
4191
	llist_for_each_entry_safe(obj, on, freed, freed) {
4192 4193 4194 4195
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4196 4197
		mutex_lock(&i915->drm.struct_mutex);

4198
		GEM_BUG_ON(i915_gem_object_is_active(obj));
4199
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4200 4201
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4202
			i915_vma_destroy(vma);
4203
		}
4204 4205
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4206

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4219
		mutex_unlock(&i915->drm.struct_mutex);
4220 4221

		GEM_BUG_ON(obj->bind_count);
4222
		GEM_BUG_ON(obj->userfault_count);
4223
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4224
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4225 4226 4227

		if (obj->ops->release)
			obj->ops->release(obj);
4228

4229 4230
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4231
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4232
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4233 4234 4235 4236

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4237
		reservation_object_fini(&obj->__builtin_resv);
4238 4239 4240
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

4241
		bitmap_free(obj->bit_17);
4242
		i915_gem_object_free(obj);
4243

4244 4245 4246
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4247 4248
		if (on)
			cond_resched();
4249
	}
4250
	intel_runtime_pm_put(i915, wakeref);
4251 4252 4253 4254 4255 4256
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4267
		__i915_gem_free_objects(i915, freed);
4268
	}
4269 4270 4271 4272 4273 4274 4275
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4276

4277 4278
	/*
	 * All file-owned VMA should have been released by this point through
4279 4280 4281 4282 4283 4284
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4285

4286
	spin_lock(&i915->mm.free_lock);
4287
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4288 4289
		spin_unlock(&i915->mm.free_lock);

4290
		__i915_gem_free_objects(i915, freed);
4291
		if (need_resched())
4292 4293 4294
			return;

		spin_lock(&i915->mm.free_lock);
4295
	}
4296
	spin_unlock(&i915->mm.free_lock);
4297
}
4298

4299 4300 4301 4302 4303
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4304 4305 4306 4307 4308 4309 4310

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4311

4312 4313 4314 4315 4316 4317 4318 4319 4320
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4321 4322
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4323
		queue_work(i915->wq, &i915->mm.free_work);
4324
}
4325

4326 4327 4328
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4329

4330 4331 4332
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4333
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4334
		obj->mm.madv = I915_MADV_DONTNEED;
4335

4336 4337
	/*
	 * Before we free the object, make sure any pure RCU-only
4338 4339 4340 4341
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4342
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4343
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4344 4345
}

4346 4347 4348 4349
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4350 4351
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4352 4353 4354 4355 4356
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4357 4358
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4359 4360
	intel_wakeref_t wakeref;

4361 4362
	GEM_TRACE("\n");

4363
	wakeref = intel_runtime_pm_get(i915);
4364
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4365 4366 4367 4368 4369 4370 4371

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4372
	if (i915_terminally_wedged(i915))
4373 4374
		i915_gem_unset_wedged(i915);

4375 4376 4377 4378 4379 4380
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4381
	 * of the reset, so this could be applied to even earlier gen.
4382
	 */
4383
	intel_engines_sanitize(i915, false);
4384

4385
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4386
	intel_runtime_pm_put(i915, wakeref);
4387

4388
	mutex_lock(&i915->drm.struct_mutex);
4389 4390
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4391 4392
}

4393
void i915_gem_suspend(struct drm_i915_private *i915)
4394
{
4395
	intel_wakeref_t wakeref;
4396

4397 4398
	GEM_TRACE("\n");

4399
	wakeref = intel_runtime_pm_get(i915);
4400

4401 4402
	flush_workqueue(i915->wq);

C
Chris Wilson 已提交
4403
	mutex_lock(&i915->drm.struct_mutex);
4404

C
Chris Wilson 已提交
4405 4406
	/*
	 * We have to flush all the executing contexts to main memory so
4407 4408
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4409
	 * leaves the i915->kernel_context still active when
4410 4411 4412 4413
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4414
	switch_to_kernel_context_sync(i915, i915->gt.active_engines);
4415

C
Chris Wilson 已提交
4416
	mutex_unlock(&i915->drm.struct_mutex);
4417
	i915_reset_flush(i915);
4418

4419
	drain_delayed_work(&i915->gt.retire_work);
4420

C
Chris Wilson 已提交
4421 4422
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4423 4424
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4425
	drain_delayed_work(&i915->gt.idle_work);
4426

C
Chris Wilson 已提交
4427 4428
	/*
	 * Assert that we successfully flushed all the work and
4429 4430
	 * reset the GPU back to its idle, low power state.
	 */
4431
	GEM_BUG_ON(i915->gt.awake);
4432

4433 4434
	intel_uc_suspend(i915);

4435
	intel_runtime_pm_put(i915, wakeref);
4436 4437 4438 4439
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4440 4441 4442 4443 4444 4445 4446
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4467 4468 4469 4470 4471 4472 4473
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4474 4475
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4476 4477
}

4478
void i915_gem_resume(struct drm_i915_private *i915)
4479
{
4480 4481
	GEM_TRACE("\n");

4482
	WARN_ON(i915->gt.awake);
4483

4484
	mutex_lock(&i915->drm.struct_mutex);
4485
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4486

4487 4488
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4489

4490 4491
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4492 4493 4494
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4495
	i915->gt.resume(i915);
4496

4497 4498 4499
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4500
	intel_uc_resume(i915);
4501

4502
	/* Always reload a context for powersaving. */
4503
	if (!load_power_context(i915))
4504 4505 4506
		goto err_wedged;

out_unlock:
4507
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4508 4509 4510 4511
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4512 4513 4514
	if (!i915_reset_failed(i915)) {
		dev_err(i915->drm.dev,
			"Failed to re-initialize GPU, declaring it wedged!\n");
4515 4516
		i915_gem_set_wedged(i915);
	}
4517
	goto out_unlock;
4518 4519
}

4520
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4521
{
4522
	if (INTEL_GEN(dev_priv) < 5 ||
4523 4524 4525 4526 4527 4528
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4529
	if (IS_GEN(dev_priv, 5))
4530 4531
		return;

4532
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4533
	if (IS_GEN(dev_priv, 6))
4534
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4535
	else if (IS_GEN(dev_priv, 7))
4536
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4537
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4538
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4539 4540
	else
		BUG();
4541
}
D
Daniel Vetter 已提交
4542

4543
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4544 4545 4546 4547 4548 4549 4550
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4551
static void init_unused_rings(struct drm_i915_private *dev_priv)
4552
{
4553 4554 4555 4556 4557 4558
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4559
	} else if (IS_GEN(dev_priv, 2)) {
4560 4561
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4562
	} else if (IS_GEN(dev_priv, 3)) {
4563 4564
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4565 4566 4567
	}
}

4568
static int __i915_gem_restart_engines(void *data)
4569
{
4570
	struct drm_i915_private *i915 = data;
4571
	struct intel_engine_cs *engine;
4572
	enum intel_engine_id id;
4573 4574 4575 4576
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4577 4578 4579
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4580
			return err;
4581
		}
4582 4583
	}

4584 4585
	intel_engines_set_scheduler_caps(i915);

4586 4587 4588 4589 4590
	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4591
	int ret;
4592

4593 4594
	dev_priv->gt.last_init_time = ktime_get();

4595
	/* Double layer security blanket, see i915_gem_init() */
4596
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4597

4598
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4599
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4600

4601
	if (IS_HASWELL(dev_priv))
4602
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4603
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4604

4605
	/* Apply the GT workarounds... */
4606
	intel_gt_apply_workarounds(dev_priv);
4607 4608
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4609

4610
	i915_gem_init_swizzling(dev_priv);
4611

4612 4613 4614 4615 4616 4617
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4618
	init_unused_rings(dev_priv);
4619

4620
	BUG_ON(!dev_priv->kernel_context);
4621 4622
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
4623
		goto out;
4624

4625
	ret = i915_ppgtt_init_hw(dev_priv);
4626
	if (ret) {
4627
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4628 4629 4630
		goto out;
	}

4631 4632 4633 4634 4635 4636
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4637 4638
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4639 4640
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4641
		goto out;
4642
	}
4643

4644
	intel_mocs_init_l3cc_table(dev_priv);
4645

4646 4647
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4648 4649
	if (ret)
		goto cleanup_uc;
4650

4651
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4652 4653

	return 0;
4654 4655 4656

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4657
out:
4658
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4659 4660

	return ret;
4661 4662
}

4663 4664 4665 4666 4667
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
4668
	int err = 0;
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4684
		struct i915_request *rq;
4685

4686
		rq = i915_request_alloc(engine, ctx);
4687 4688 4689 4690 4691
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4692
		err = 0;
4693 4694 4695
		if (engine->init_context)
			err = engine->init_context(rq);

4696
		i915_request_add(rq);
4697 4698 4699 4700
		if (err)
			goto err_active;
	}

4701 4702 4703
	/* Flush the default context image to memory, and enable powersaving. */
	if (!load_power_context(i915)) {
		err = -EIO;
4704
		goto err_active;
4705
	}
4706 4707

	for_each_engine(engine, i915, id) {
4708
		struct intel_context *ce;
4709
		struct i915_vma *state;
4710
		void *vaddr;
4711

4712 4713 4714
		ce = intel_context_lookup(ctx, engine);
		if (!ce)
			continue;
4715

4716
		state = ce->state;
4717 4718 4719
		if (!state)
			continue;

4720
		GEM_BUG_ON(intel_context_is_pinned(ce));
4721

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4739 4740
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
4741 4742 4743

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4744
						I915_MAP_FORCE_WB);
4745 4746 4747 4748 4749 4750
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
4779 4780
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
4781
	 */
4782
	i915_gem_set_wedged(i915);
4783 4784 4785
	goto out_ctx;
}

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4824
int i915_gem_init(struct drm_i915_private *dev_priv)
4825 4826 4827
{
	int ret;

4828 4829
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4830 4831 4832
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4833
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4834

4835
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
4836
		dev_priv->gt.resume = intel_lr_context_resume;
4837
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4838 4839 4840
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4841 4842
	}

4843 4844
	i915_timelines_init(dev_priv);

4845 4846 4847 4848
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

4849
	ret = intel_uc_init_misc(dev_priv);
4850 4851 4852
	if (ret)
		return ret;

4853
	ret = intel_wopcm_init(&dev_priv->wopcm);
4854
	if (ret)
4855
		goto err_uc_misc;
4856

4857 4858 4859 4860 4861 4862
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
4863
	mutex_lock(&dev_priv->drm.struct_mutex);
4864
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4865

4866
	ret = i915_gem_init_ggtt(dev_priv);
4867 4868 4869 4870
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
4871

4872
	ret = i915_gem_init_scratch(dev_priv,
4873
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
4874 4875 4876 4877
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
4878

4879 4880 4881 4882 4883 4884
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

4885
	ret = intel_engines_init(dev_priv);
4886 4887 4888 4889
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
4890

4891 4892
	intel_init_gt_powersave(dev_priv);

4893
	ret = intel_uc_init(dev_priv);
4894
	if (ret)
4895
		goto err_pm;
4896

4897 4898 4899 4900
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

4912
	ret = __intel_engines_record_defaults(dev_priv);
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

4926
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
4938 4939
	mutex_unlock(&dev_priv->drm.struct_mutex);

4940
	i915_gem_suspend(dev_priv);
4941 4942
	i915_gem_suspend_late(dev_priv);

4943 4944
	i915_gem_drain_workqueue(dev_priv);

4945
	mutex_lock(&dev_priv->drm.struct_mutex);
4946
	intel_uc_fini_hw(dev_priv);
4947 4948
err_uc_init:
	intel_uc_fini(dev_priv);
4949 4950 4951 4952 4953 4954 4955 4956
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
4957 4958
err_scratch:
	i915_gem_fini_scratch(dev_priv);
4959 4960
err_ggtt:
err_unlock:
4961
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4962 4963
	mutex_unlock(&dev_priv->drm.struct_mutex);

4964
err_uc_misc:
4965
	intel_uc_fini_misc(dev_priv);
4966

4967
	if (ret != -EIO) {
4968
		i915_gem_cleanup_userptr(dev_priv);
4969 4970
		i915_timelines_fini(dev_priv);
	}
4971

4972
	if (ret == -EIO) {
4973 4974
		mutex_lock(&dev_priv->drm.struct_mutex);

4975 4976
		/*
		 * Allow engine initialisation to fail by marking the GPU as
4977 4978 4979
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
4980
		if (!i915_reset_failed(dev_priv)) {
4981 4982
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
4983 4984
			i915_gem_set_wedged(dev_priv);
		}
4985 4986 4987 4988 4989 4990 4991 4992

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
4993 4994
	}

4995
	i915_gem_drain_freed_objects(dev_priv);
4996
	return ret;
4997 4998
}

4999 5000 5001
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5002
	intel_disable_gt_powersave(dev_priv);
5003 5004 5005 5006 5007 5008 5009 5010 5011

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5012
	i915_gem_fini_scratch(dev_priv);
5013 5014
	mutex_unlock(&dev_priv->drm.struct_mutex);

5015 5016
	intel_wa_list_free(&dev_priv->gt_wa_list);

5017 5018
	intel_cleanup_gt_powersave(dev_priv);

5019 5020
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
5021
	i915_timelines_fini(dev_priv);
5022 5023 5024 5025 5026 5027

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5028 5029 5030 5031 5032
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5033
void
5034
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5035
{
5036
	struct intel_engine_cs *engine;
5037
	enum intel_engine_id id;
5038

5039
	for_each_engine(engine, dev_priv, id)
5040
		dev_priv->gt.cleanup_engine(engine);
5041 5042
}

5043 5044 5045
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5046
	int i;
5047

5048
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5049 5050
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5051
	else if (INTEL_GEN(dev_priv) >= 4 ||
5052 5053
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5054 5055 5056 5057
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5058
	if (intel_vgpu_active(dev_priv))
5059 5060 5061 5062
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5063 5064 5065 5066 5067 5068 5069
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5070
	i915_gem_restore_fences(dev_priv);
5071

5072
	i915_gem_detect_bit_6_swizzle(dev_priv);
5073 5074
}

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5091
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5092
{
5093
	int err;
5094

5095
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5096
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5097

5098
	i915_gem_init__mm(dev_priv);
5099

5100
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5101
			  i915_gem_retire_work_handler);
5102
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5103
			  i915_gem_idle_work_handler);
5104
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5105
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5106
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5107
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
5108

5109 5110
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5111
	spin_lock_init(&dev_priv->fb_tracking.lock);
5112

M
Matthew Auld 已提交
5113 5114 5115 5116
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5117
	return 0;
5118
}
5119

5120
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5121
{
5122
	i915_gem_drain_freed_objects(dev_priv);
5123 5124
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5125
	WARN_ON(dev_priv->mm.object_count);
5126

5127 5128
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
5129
	i915_gemfs_fini(dev_priv);
5130 5131
}

5132 5133
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5134 5135 5136
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5137 5138 5139 5140 5141
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5142
int i915_gem_freeze_late(struct drm_i915_private *i915)
5143 5144
{
	struct drm_i915_gem_object *obj;
5145
	struct list_head *phases[] = {
5146 5147
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5148
		NULL
5149
	}, **phase;
5150

5151 5152
	/*
	 * Called just before we write the hibernation image.
5153 5154 5155 5156 5157 5158 5159 5160
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5161 5162
	 *
	 * To try and reduce the hibernation image, we manually shrink
5163
	 * the objects as well, see i915_gem_freeze()
5164 5165
	 */

5166 5167
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5168

5169 5170 5171 5172
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5173
	}
5174
	mutex_unlock(&i915->drm.struct_mutex);
5175 5176 5177 5178

	return 0;
}

5179
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5180
{
5181
	struct drm_i915_file_private *file_priv = file->driver_priv;
5182
	struct i915_request *request;
5183 5184 5185 5186 5187

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5188
	spin_lock(&file_priv->mm.lock);
5189
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5190
		request->file_priv = NULL;
5191
	spin_unlock(&file_priv->mm.lock);
5192 5193
}

5194
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5195 5196
{
	struct drm_i915_file_private *file_priv;
5197
	int ret;
5198

5199
	DRM_DEBUG("\n");
5200 5201 5202 5203 5204 5205

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5206
	file_priv->dev_priv = i915;
5207
	file_priv->file = file;
5208 5209 5210 5211

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5212
	file_priv->bsd_engine = -1;
5213
	file_priv->hang_timestamp = jiffies;
5214

5215
	ret = i915_gem_context_open(i915, file);
5216 5217
	if (ret)
		kfree(file_priv);
5218

5219
	return ret;
5220 5221
}

5222 5223
/**
 * i915_gem_track_fb - update frontbuffer tracking
5224 5225 5226
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5227 5228 5229 5230
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5231 5232 5233 5234
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5235 5236 5237 5238 5239 5240 5241
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5242
		     BITS_PER_TYPE(atomic_t));
5243

5244
	if (old) {
5245 5246
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5247 5248 5249
	}

	if (new) {
5250 5251
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5252 5253 5254
	}
}

5255 5256
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5257
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5258 5259 5260
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5261 5262 5263
	struct file *file;
	size_t offset;
	int err;
5264

5265
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5266
	if (IS_ERR(obj))
5267 5268
		return obj;

5269
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5270

5271 5272 5273 5274 5275 5276
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5277

5278 5279 5280 5281 5282
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5283

5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5298 5299 5300 5301

	return obj;

fail:
5302
	i915_gem_object_put(obj);
5303
	return ERR_PTR(err);
5304
}
5305 5306 5307 5308 5309 5310

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5311
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5312 5313 5314 5315 5316
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5317
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5343 5344
		void *entry;
		unsigned long i;
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5359
		entry = xa_mk_value(idx);
5360
		for (i = 1; i < count; i++) {
5361
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5399
	 * the radix tree will contain a value entry that points
5400 5401 5402 5403 5404
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5405 5406
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5439
	if (!obj->mm.dirty)
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5455

5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5491
	pages = __i915_gem_object_unset_pages(obj);
5492

5493 5494
	obj->ops = &i915_gem_phys_ops;

5495
	err = ____i915_gem_object_get_pages(obj);
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5509 5510 5511 5512 5513
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5514 5515 5516 5517 5518
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5519 5520
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5521
#include "selftests/mock_gem_device.c"
5522
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5523
#include "selftests/huge_pages.c"
5524
#include "selftests/i915_gem_object.c"
5525
#include "selftests/i915_gem_coherency.c"
5526
#include "selftests/i915_gem.c"
5527
#endif