i915_gem.c 163.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

242 243
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244
			    struct drm_file *file)
245
{
246
	struct drm_i915_private *dev_priv = to_i915(dev);
247
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248
	struct drm_i915_gem_get_aperture *args = data;
249
	struct i915_vma *vma;
250
	u64 pinned;
251

252
	pinned = ggtt->vm.reserved;
253
	mutex_lock(&dev->struct_mutex);
254
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255
		if (i915_vma_is_pinned(vma))
256
			pinned += vma->node.size;
257
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258
		if (i915_vma_is_pinned(vma))
259
			pinned += vma->node.size;
260
	mutex_unlock(&dev->struct_mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443 444 445 446 447 448 449 450 451 452
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

453 454 455 456
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
457
			   struct intel_rps_client *rps_client)
458
{
459
	struct i915_request *rq;
460

461
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462

463 464 465 466 467 468 469 470 471
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
472
	if (i915_request_completed(rq))
473 474
		goto out;

475 476
	/*
	 * This client is about to stall waiting for the GPU. In many cases
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
491
	if (rps_client && !i915_request_started(rq)) {
492
		if (INTEL_GEN(rq->i915) >= 6)
493
			gen6_rps_boost(rq, rps_client);
494 495
	}

496
	timeout = i915_request_wait(rq, flags, timeout);
497 498

out:
499 500
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
501 502 503 504 505 506 507 508

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
509
				 struct intel_rps_client *rps_client)
510
{
511
	unsigned int seq = __read_seqcount_begin(&resv->seq);
512
	struct dma_fence *excl;
513
	bool prune_fences = false;
514 515 516 517

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
518 519
		int ret;

520 521
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
522 523 524
		if (ret)
			return ret;

525 526 527
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
528
							     rps_client);
529
			if (timeout < 0)
530
				break;
531

532 533 534 535 536 537
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
538

539 540 541 542 543 544 545 546 547
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
548
		prune_fences = count && timeout >= 0;
549 550
	} else {
		excl = reservation_object_get_excl_rcu(resv);
551 552
	}

553
	if (excl && timeout >= 0)
554 555
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
556 557 558

	dma_fence_put(excl);

559 560
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
561 562 563
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
564
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 566 567 568 569
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
570 571
	}

572
	return timeout;
573 574
}

575 576
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
577
{
578
	struct i915_request *rq;
579 580
	struct intel_engine_cs *engine;

581
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 583 584 585 586
		return;

	rq = to_request(fence);
	engine = rq->engine;

587 588
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589
	if (engine->schedule)
590
		engine->schedule(rq, attr);
591
	rcu_read_unlock();
592
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 594
}

595 596
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
597 598 599 600 601 602 603
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
604
			__fence_set_priority(array->fences[i], attr);
605
	} else {
606
		__fence_set_priority(fence, attr);
607 608 609 610 611 612
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
613
			      const struct i915_sched_attr *attr)
614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
628
			fence_set_priority(shared[i], attr);
629 630 631 632 633 634 635 636 637
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
638
		fence_set_priority(excl, attr);
639 640 641 642 643
		dma_fence_put(excl);
	}
	return 0;
}

644 645 646 647 648
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
649
 * @rps_client: client (user process) to charge for any waitboosting
650
 */
651 652 653 654
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
655
		     struct intel_rps_client *rps_client)
656
{
657 658 659 660 661 662 663
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
664

665 666
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
667
						   rps_client);
668
	return timeout < 0 ? timeout : 0;
669 670 671 672 673 674
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

675
	return &fpriv->rps_client;
676 677
}

678 679 680
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
681
		     struct drm_file *file)
682 683
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
684
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 686 687 688

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
689
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 691
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
692

693
	drm_clflush_virt_range(vaddr, args->size);
694
	i915_gem_chipset_flush(to_i915(obj->base.dev));
695

696
	intel_fb_obj_flush(obj, ORIGIN_CPU);
697
	return 0;
698 699
}

700
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701
{
702
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 704 705 706
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
707
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708
	kmem_cache_free(dev_priv->objects, obj);
709 710
}

711 712
static int
i915_gem_create(struct drm_file *file,
713
		struct drm_i915_private *dev_priv,
714 715
		uint64_t size,
		uint32_t *handle_p)
716
{
717
	struct drm_i915_gem_object *obj;
718 719
	int ret;
	u32 handle;
720

721
	size = roundup(size, PAGE_SIZE);
722 723
	if (size == 0)
		return -EINVAL;
724 725

	/* Allocate the new object */
726
	obj = i915_gem_object_create(dev_priv, size);
727 728
	if (IS_ERR(obj))
		return PTR_ERR(obj);
729

730
	ret = drm_gem_handle_create(file, &obj->base, &handle);
731
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
732
	i915_gem_object_put(obj);
733 734
	if (ret)
		return ret;
735

736
	*handle_p = handle;
737 738 739
	return 0;
}

740 741 742 743 744 745
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
746
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747
	args->size = args->pitch * args->height;
748
	return i915_gem_create(file, to_i915(dev),
749
			       args->size, &args->handle);
750 751
}

752 753 754 755 756 757
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

758 759
/**
 * Creates a new mm object and returns a handle to it.
760 761 762
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
763 764 765 766 767
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
768
	struct drm_i915_private *dev_priv = to_i915(dev);
769
	struct drm_i915_gem_create *args = data;
770

771
	i915_gem_flush_free_objects(dev_priv);
772

773
	return i915_gem_create(file, dev_priv,
774
			       args->size, &args->handle);
775 776
}

777 778 779 780 781 782 783
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

784
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785
{
786 787 788 789 790
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
791 792 793 794 795 796 797 798 799 800
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 802
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
803
	 */
804

805 806
	wmb();

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

822
	if (!(obj->write_domain & flush_domains))
823 824
		return;

825
	switch (obj->write_domain) {
826
	case I915_GEM_DOMAIN_GTT:
827
		i915_gem_flush_ggtt_writes(dev_priv);
828 829 830

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
831

832
		for_each_ggtt_vma(vma, obj) {
833 834 835 836 837
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
838 839
		break;

840 841 842 843
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

844 845 846
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
847 848 849 850 851

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
852 853
	}

854
	obj->write_domain = 0;
855 856
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

883
static inline int
884 885
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

909 910 911 912 913 914
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
915
				    unsigned int *needs_clflush)
916 917 918
{
	int ret;

919
	lockdep_assert_held(&obj->base.dev->struct_mutex);
920

921
	*needs_clflush = 0;
922 923
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
924

925 926 927 928 929
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
930 931 932
	if (ret)
		return ret;

C
Chris Wilson 已提交
933
	ret = i915_gem_object_pin_pages(obj);
934 935 936
	if (ret)
		return ret;

937 938
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
939 940 941 942 943 944 945
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

946
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
947

948 949 950 951 952
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
953
	if (!obj->cache_dirty &&
954
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
955
		*needs_clflush = CLFLUSH_BEFORE;
956

957
out:
958
	/* return with the pages pinned */
959
	return 0;
960 961 962 963

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
964 965 966 967 968 969 970
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

971 972
	lockdep_assert_held(&obj->base.dev->struct_mutex);

973 974 975 976
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

977 978 979 980 981 982
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
983 984 985
	if (ret)
		return ret;

C
Chris Wilson 已提交
986
	ret = i915_gem_object_pin_pages(obj);
987 988 989
	if (ret)
		return ret;

990 991
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
992 993 994 995 996 997 998
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

999
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1000

1001 1002 1003 1004 1005
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1006
	if (!obj->cache_dirty) {
1007
		*needs_clflush |= CLFLUSH_AFTER;
1008

1009 1010 1011 1012
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1013
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1014 1015
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1016

1017
out:
1018
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1019
	obj->mm.dirty = true;
1020
	/* return with the pages pinned */
1021
	return 0;
1022 1023 1024 1025

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1026 1027
}

1028 1029 1030 1031
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1032
	if (unlikely(swizzled)) {
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1050 1051 1052
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1053
shmem_pread_slow(struct page *page, int offset, int length,
1054 1055 1056 1057 1058 1059 1060 1061
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1062
		shmem_clflush_swizzled_range(vaddr + offset, length,
1063
					     page_do_bit17_swizzling);
1064 1065

	if (page_do_bit17_swizzling)
1066
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1067
	else
1068
		ret = __copy_to_user(user_data, vaddr + offset, length);
1069 1070
	kunmap(page);

1071
	return ret ? - EFAULT : 0;
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1150
{
1151
	void __iomem *vaddr;
1152
	unsigned long unwritten;
1153 1154

	/* We can use the cpu mem copy function because this is X86. */
1155 1156 1157 1158
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1159 1160
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1161 1162 1163 1164
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1165 1166
		io_mapping_unmap(vaddr);
	}
1167 1168 1169 1170
	return unwritten;
}

static int
1171 1172
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1173
{
1174 1175
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1176
	struct drm_mm_node node;
1177 1178 1179
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1180 1181
	int ret;

1182 1183 1184 1185 1186 1187
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1188 1189 1190
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1191 1192 1193
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1194
		ret = i915_vma_put_fence(vma);
1195 1196 1197 1198 1199
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1200
	if (IS_ERR(vma)) {
1201
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1202
		if (ret)
1203 1204
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1205 1206 1207 1208 1209 1210
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1211
	mutex_unlock(&i915->drm.struct_mutex);
1212

1213 1214 1215
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1230 1231 1232
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1233 1234 1235 1236
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1237

1238
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1239
				  user_data, page_length)) {
1240 1241 1242 1243 1244 1245 1246 1247 1248
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1249
	mutex_lock(&i915->drm.struct_mutex);
1250 1251 1252
out_unpin:
	if (node.allocated) {
		wmb();
1253
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1254 1255
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1256
		i915_vma_unpin(vma);
1257
	}
1258 1259 1260
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1261

1262 1263 1264
	return ret;
}

1265 1266
/**
 * Reads data from the object referenced by handle.
1267 1268 1269
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1270 1271 1272 1273 1274
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1275
		     struct drm_file *file)
1276 1277
{
	struct drm_i915_gem_pread *args = data;
1278
	struct drm_i915_gem_object *obj;
1279
	int ret;
1280

1281 1282 1283 1284
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1285
		       u64_to_user_ptr(args->data_ptr),
1286 1287 1288
		       args->size))
		return -EFAULT;

1289
	obj = i915_gem_object_lookup(file, args->handle);
1290 1291
	if (!obj)
		return -ENOENT;
1292

1293
	/* Bounds check source.  */
1294
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1295
		ret = -EINVAL;
1296
		goto out;
C
Chris Wilson 已提交
1297 1298
	}

C
Chris Wilson 已提交
1299 1300
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1301 1302 1303 1304
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1305
	if (ret)
1306
		goto out;
1307

1308
	ret = i915_gem_object_pin_pages(obj);
1309
	if (ret)
1310
		goto out;
1311

1312
	ret = i915_gem_shmem_pread(obj, args);
1313
	if (ret == -EFAULT || ret == -ENODEV)
1314
		ret = i915_gem_gtt_pread(obj, args);
1315

1316 1317
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1318
	i915_gem_object_put(obj);
1319
	return ret;
1320 1321
}

1322 1323
/* This is the fast write path which cannot handle
 * page faults in the source data
1324
 */
1325

1326 1327 1328 1329
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1330
{
1331
	void __iomem *vaddr;
1332
	unsigned long unwritten;
1333

1334
	/* We can use the cpu mem copy function because this is X86. */
1335 1336
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1337
						      user_data, length);
1338 1339
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1340 1341 1342
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1343 1344
		io_mapping_unmap(vaddr);
	}
1345 1346 1347 1348

	return unwritten;
}

1349 1350 1351
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1352
 * @obj: i915 GEM object
1353
 * @args: pwrite arguments structure
1354
 */
1355
static int
1356 1357
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1358
{
1359
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1360 1361
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1362 1363 1364
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1365
	int ret;
1366

1367 1368 1369
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1388
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1389 1390 1391
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1392 1393 1394
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1395
		ret = i915_vma_put_fence(vma);
1396 1397 1398 1399 1400
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1401
	if (IS_ERR(vma)) {
1402
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1403
		if (ret)
1404
			goto out_rpm;
1405
		GEM_BUG_ON(!node.allocated);
1406
	}
D
Daniel Vetter 已提交
1407 1408 1409 1410 1411

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1412 1413
	mutex_unlock(&i915->drm.struct_mutex);

1414
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1415

1416 1417 1418 1419
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1420 1421
		/* Operation in this page
		 *
1422 1423 1424
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1425
		 */
1426
		u32 page_base = node.start;
1427 1428
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1429 1430 1431
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1432 1433 1434
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1435 1436 1437 1438
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1439
		/* If we get a fault while copying data, then (presumably) our
1440 1441
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1442 1443
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1444
		 */
1445
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1446 1447 1448
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1449
		}
1450

1451 1452 1453
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1454
	}
1455
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1456 1457

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1458
out_unpin:
1459 1460
	if (node.allocated) {
		wmb();
1461
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1462 1463
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1464
		i915_vma_unpin(vma);
1465
	}
1466
out_rpm:
1467
	intel_runtime_pm_put(i915);
1468
out_unlock:
1469
	mutex_unlock(&i915->drm.struct_mutex);
1470
	return ret;
1471 1472
}

1473
static int
1474
shmem_pwrite_slow(struct page *page, int offset, int length,
1475 1476 1477 1478
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1479
{
1480 1481
	char *vaddr;
	int ret;
1482

1483
	vaddr = kmap(page);
1484
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1485
		shmem_clflush_swizzled_range(vaddr + offset, length,
1486
					     page_do_bit17_swizzling);
1487
	if (page_do_bit17_swizzling)
1488 1489
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1490
	else
1491
		ret = __copy_from_user(vaddr + offset, user_data, length);
1492
	if (needs_clflush_after)
1493
		shmem_clflush_swizzled_range(vaddr + offset, length,
1494
					     page_do_bit17_swizzling);
1495
	kunmap(page);
1496

1497
	return ret ? -EFAULT : 0;
1498 1499
}

1500 1501 1502 1503 1504
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1505
static int
1506 1507 1508 1509
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1510
{
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1543
	unsigned int needs_clflush;
1544 1545
	unsigned int offset, idx;
	int ret;
1546

1547
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1548 1549 1550
	if (ret)
		return ret;

1551 1552 1553 1554
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1555

1556 1557 1558
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1559

1560 1561 1562 1563 1564 1565 1566
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1567

1568 1569 1570 1571 1572 1573
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1574

1575 1576 1577
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1578

1579 1580 1581 1582
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1583
		if (ret)
1584
			break;
1585

1586 1587 1588
		remain -= length;
		user_data += length;
		offset = 0;
1589
	}
1590

1591
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1592
	i915_gem_obj_finish_shmem_access(obj);
1593
	return ret;
1594 1595 1596 1597
}

/**
 * Writes data to the object referenced by handle.
1598 1599 1600
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1601 1602 1603 1604 1605
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1606
		      struct drm_file *file)
1607 1608
{
	struct drm_i915_gem_pwrite *args = data;
1609
	struct drm_i915_gem_object *obj;
1610 1611 1612 1613 1614 1615
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1616
		       u64_to_user_ptr(args->data_ptr),
1617 1618 1619
		       args->size))
		return -EFAULT;

1620
	obj = i915_gem_object_lookup(file, args->handle);
1621 1622
	if (!obj)
		return -ENOENT;
1623

1624
	/* Bounds check destination. */
1625
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1626
		ret = -EINVAL;
1627
		goto err;
C
Chris Wilson 已提交
1628 1629
	}

C
Chris Wilson 已提交
1630 1631
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1632 1633 1634 1635 1636 1637
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1638 1639 1640 1641 1642
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1643 1644 1645
	if (ret)
		goto err;

1646
	ret = i915_gem_object_pin_pages(obj);
1647
	if (ret)
1648
		goto err;
1649

D
Daniel Vetter 已提交
1650
	ret = -EFAULT;
1651 1652 1653 1654 1655 1656
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1657
	if (!i915_gem_object_has_struct_page(obj) ||
1658
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1659 1660
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1661 1662
		 * textures). Fallback to the shmem path in that case.
		 */
1663
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1664

1665
	if (ret == -EFAULT || ret == -ENOSPC) {
1666 1667
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1668
		else
1669
			ret = i915_gem_shmem_pwrite(obj, args);
1670
	}
1671

1672
	i915_gem_object_unpin_pages(obj);
1673
err:
C
Chris Wilson 已提交
1674
	i915_gem_object_put(obj);
1675
	return ret;
1676 1677
}

1678 1679 1680 1681 1682 1683
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1684 1685
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1686
	for_each_ggtt_vma(vma, obj) {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1697
	spin_lock(&i915->mm.obj_lock);
1698
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1699 1700
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1701 1702
}

1703
/**
1704 1705
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1706 1707 1708
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1709 1710 1711
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1712
			  struct drm_file *file)
1713 1714
{
	struct drm_i915_gem_set_domain *args = data;
1715
	struct drm_i915_gem_object *obj;
1716 1717
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1718
	int err;
1719

1720
	/* Only handle setting domains to types used by the CPU. */
1721
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1722 1723 1724 1725 1726 1727 1728 1729
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1730
	obj = i915_gem_object_lookup(file, args->handle);
1731 1732
	if (!obj)
		return -ENOENT;
1733

1734 1735 1736 1737
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1738
	err = i915_gem_object_wait(obj,
1739 1740 1741 1742
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1743
	if (err)
C
Chris Wilson 已提交
1744
		goto out;
1745

T
Tina Zhang 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1759 1760 1761 1762 1763 1764 1765 1766 1767
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1768
		goto out;
1769 1770 1771

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1772
		goto out_unpin;
1773

1774 1775 1776 1777
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1778
	else
1779
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1780

1781 1782
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1783

1784
	mutex_unlock(&dev->struct_mutex);
1785

1786
	if (write_domain != 0)
1787 1788
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1789

C
Chris Wilson 已提交
1790
out_unpin:
1791
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1792 1793
out:
	i915_gem_object_put(obj);
1794
	return err;
1795 1796 1797 1798
}

/**
 * Called when user space has done writes to this buffer
1799 1800 1801
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1802 1803 1804
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1805
			 struct drm_file *file)
1806 1807
{
	struct drm_i915_gem_sw_finish *args = data;
1808
	struct drm_i915_gem_object *obj;
1809

1810
	obj = i915_gem_object_lookup(file, args->handle);
1811 1812
	if (!obj)
		return -ENOENT;
1813

T
Tina Zhang 已提交
1814 1815 1816 1817 1818
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1819
	/* Pinned buffers may be scanout, so flush the cache */
1820
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1821
	i915_gem_object_put(obj);
1822 1823

	return 0;
1824 1825 1826
}

/**
1827 1828 1829 1830 1831
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1832 1833 1834
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1845 1846 1847
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1848
		    struct drm_file *file)
1849 1850
{
	struct drm_i915_gem_mmap *args = data;
1851
	struct drm_i915_gem_object *obj;
1852 1853
	unsigned long addr;

1854 1855 1856
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1857
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1858 1859
		return -ENODEV;

1860 1861
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1862
		return -ENOENT;
1863

1864 1865 1866
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1867
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1868
		i915_gem_object_put(obj);
1869
		return -ENXIO;
1870 1871
	}

1872
	addr = vm_mmap(obj->base.filp, 0, args->size,
1873 1874
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1875 1876 1877 1878
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1879
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1880
			i915_gem_object_put(obj);
1881 1882
			return -EINTR;
		}
1883 1884 1885 1886 1887 1888 1889
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1890 1891

		/* This may race, but that's ok, it only gets set */
1892
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1893
	}
C
Chris Wilson 已提交
1894
	i915_gem_object_put(obj);
1895 1896 1897 1898 1899 1900 1901 1902
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1903 1904
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1905
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1906 1907
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1928 1929 1930
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1958
	return 2;
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1972 1973
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1974
		min_t(unsigned int, chunk,
1975
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1976 1977 1978 1979 1980 1981 1982 1983

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1984 1985
/**
 * i915_gem_fault - fault a page into the GTT
1986
 * @vmf: fault info
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1998 1999 2000
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2001
 */
2002
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2003
{
2004
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2005
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2006
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2007
	struct drm_device *dev = obj->base.dev;
2008 2009
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2010
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2011
	struct i915_vma *vma;
2012
	pgoff_t page_offset;
2013
	int ret;
2014

2015
	/* We don't use vmf->pgoff since that has the fake offset */
2016
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2017

C
Chris Wilson 已提交
2018 2019
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2020
	/* Try to flush the object off the GPU first without holding the lock.
2021
	 * Upon acquiring the lock, we will perform our sanity checks and then
2022 2023 2024
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2025 2026 2027 2028
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2029
	if (ret)
2030 2031
		goto err;

2032 2033 2034 2035
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2036 2037 2038 2039 2040
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2041

2042
	/* Access to snoopable pages through the GTT is incoherent. */
2043
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2044
		ret = -EFAULT;
2045
		goto err_unlock;
2046 2047
	}

2048

2049
	/* Now pin it into the GTT as needed */
2050 2051 2052 2053
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
2054 2055
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2056
		struct i915_ggtt_view view =
2057
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2058
		unsigned int flags;
2059

2060 2061 2062 2063 2064 2065
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
2066 2067 2068 2069
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2070 2071 2072 2073 2074 2075
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
2076
	}
C
Chris Wilson 已提交
2077 2078
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2079
		goto err_unlock;
C
Chris Wilson 已提交
2080
	}
2081

2082 2083
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2084
		goto err_unpin;
2085

2086
	ret = i915_vma_pin_fence(vma);
2087
	if (ret)
2088
		goto err_unpin;
2089

2090
	/* Finally, remap it using the new GTT offset */
2091
	ret = remap_io_mapping(area,
2092
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2093
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2094
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2095
			       &ggtt->iomap);
2096 2097
	if (ret)
		goto err_fence;
2098

2099 2100 2101 2102 2103 2104
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2105 2106
	i915_vma_set_ggtt_write(vma);

2107
err_fence:
2108
	i915_vma_unpin_fence(vma);
2109
err_unpin:
C
Chris Wilson 已提交
2110
	__i915_vma_unpin(vma);
2111
err_unlock:
2112
	mutex_unlock(&dev->struct_mutex);
2113 2114
err_rpm:
	intel_runtime_pm_put(dev_priv);
2115
	i915_gem_object_unpin_pages(obj);
2116
err:
2117
	switch (ret) {
2118
	case -EIO:
2119 2120 2121 2122 2123 2124
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2125 2126
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2127
		/* else: fall through */
2128
	case -EAGAIN:
D
Daniel Vetter 已提交
2129 2130 2131 2132
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2133
		 */
2134 2135
	case 0:
	case -ERESTARTSYS:
2136
	case -EINTR:
2137 2138 2139 2140 2141
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2142
		return VM_FAULT_NOPAGE;
2143
	case -ENOMEM:
2144
		return VM_FAULT_OOM;
2145
	case -ENOSPC:
2146
	case -EFAULT:
2147
		return VM_FAULT_SIGBUS;
2148
	default:
2149
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2150
		return VM_FAULT_SIGBUS;
2151 2152 2153
	}
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2165
	for_each_ggtt_vma(vma, obj)
2166 2167 2168
		i915_vma_unset_userfault(vma);
}

2169 2170 2171 2172
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2173
 * Preserve the reservation of the mmapping with the DRM core code, but
2174 2175 2176 2177 2178 2179 2180 2181 2182
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2183
void
2184
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2185
{
2186 2187
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2188 2189 2190
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2191 2192 2193 2194
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2195
	 */
2196
	lockdep_assert_held(&i915->drm.struct_mutex);
2197
	intel_runtime_pm_get(i915);
2198

2199
	if (!obj->userfault_count)
2200
		goto out;
2201

2202
	__i915_gem_object_release_mmap(obj);
2203 2204 2205 2206 2207 2208 2209 2210 2211

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2212 2213 2214

out:
	intel_runtime_pm_put(i915);
2215 2216
}

2217
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2218
{
2219
	struct drm_i915_gem_object *obj, *on;
2220
	int i;
2221

2222 2223 2224 2225 2226 2227
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2228

2229
	list_for_each_entry_safe(obj, on,
2230 2231
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2232 2233 2234 2235 2236 2237 2238 2239

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2250 2251 2252 2253

		if (!reg->vma)
			continue;

2254
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2255 2256
		reg->dirty = true;
	}
2257 2258
}

2259 2260
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2261
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2262
	int err;
2263

2264
	err = drm_gem_create_mmap_offset(&obj->base);
2265
	if (likely(!err))
2266
		return 0;
2267

2268 2269
	/* Attempt to reap some mmap space from dead objects */
	do {
2270 2271 2272
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2273 2274
		if (err)
			break;
2275

2276
		i915_gem_drain_freed_objects(dev_priv);
2277
		err = drm_gem_create_mmap_offset(&obj->base);
2278 2279 2280 2281
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2282

2283
	return err;
2284 2285 2286 2287 2288 2289 2290
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2291
int
2292 2293
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2294
		  uint32_t handle,
2295
		  uint64_t *offset)
2296
{
2297
	struct drm_i915_gem_object *obj;
2298 2299
	int ret;

2300
	obj = i915_gem_object_lookup(file, handle);
2301 2302
	if (!obj)
		return -ENOENT;
2303

2304
	ret = i915_gem_object_create_mmap_offset(obj);
2305 2306
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2307

C
Chris Wilson 已提交
2308
	i915_gem_object_put(obj);
2309
	return ret;
2310 2311
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2333
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2334 2335
}

D
Daniel Vetter 已提交
2336 2337 2338
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2339
{
2340
	i915_gem_object_free_mmap_offset(obj);
2341

2342 2343
	if (obj->base.filp == NULL)
		return;
2344

D
Daniel Vetter 已提交
2345 2346 2347 2348 2349
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2350
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2351
	obj->mm.madv = __I915_MADV_PURGED;
2352
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2353
}
2354

2355
/* Try to discard unwanted pages */
2356
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2357
{
2358 2359
	struct address_space *mapping;

2360
	lockdep_assert_held(&obj->mm.lock);
2361
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2362

C
Chris Wilson 已提交
2363
	switch (obj->mm.madv) {
2364 2365 2366 2367 2368 2369 2370 2371 2372
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2373
	mapping = obj->base.filp->f_mapping,
2374
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2375 2376
}

2377
static void
2378 2379
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2380
{
2381 2382
	struct sgt_iter sgt_iter;
	struct page *page;
2383

2384
	__i915_gem_object_release_shmem(obj, pages, true);
2385

2386
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2387

2388
	if (i915_gem_object_needs_bit17_swizzle(obj))
2389
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2390

2391
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2392
		if (obj->mm.dirty)
2393
			set_page_dirty(page);
2394

C
Chris Wilson 已提交
2395
		if (obj->mm.madv == I915_MADV_WILLNEED)
2396
			mark_page_accessed(page);
2397

2398
		put_page(page);
2399
	}
C
Chris Wilson 已提交
2400
	obj->mm.dirty = false;
2401

2402 2403
	sg_free_table(pages);
	kfree(pages);
2404
}
C
Chris Wilson 已提交
2405

2406 2407 2408
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2409
	void __rcu **slot;
2410

2411
	rcu_read_lock();
C
Chris Wilson 已提交
2412 2413
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2414
	rcu_read_unlock();
2415 2416
}

2417 2418
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2419
{
2420
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2421
	struct sg_table *pages;
2422

2423
	pages = fetch_and_zero(&obj->mm.pages);
2424 2425
	if (!pages)
		return NULL;
2426

2427 2428 2429 2430
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2431
	if (obj->mm.mapping) {
2432 2433
		void *ptr;

2434
		ptr = page_mask_bits(obj->mm.mapping);
2435 2436
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2437
		else
2438 2439
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2440
		obj->mm.mapping = NULL;
2441 2442
	}

2443
	__i915_gem_object_reset_page_iter(obj);
2444 2445 2446 2447
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2448

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2472 2473 2474
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2475 2476
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2477 2478
}

2479
static bool i915_sg_trim(struct sg_table *orig_st)
2480 2481 2482 2483 2484 2485
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2486
		return false;
2487

2488
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2489
		return false;
2490 2491 2492 2493 2494 2495 2496

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2497
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2498 2499 2500 2501

	sg_free_table(orig_st);

	*orig_st = new_st;
2502
	return true;
2503 2504
}

2505
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2506
{
2507
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2508 2509
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2510
	struct address_space *mapping;
2511 2512
	struct sg_table *st;
	struct scatterlist *sg;
2513
	struct sgt_iter sgt_iter;
2514
	struct page *page;
2515
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2516
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2517
	unsigned int sg_page_sizes;
2518
	gfp_t noreclaim;
I
Imre Deak 已提交
2519
	int ret;
2520

C
Chris Wilson 已提交
2521 2522 2523 2524
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2525 2526
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2527

2528 2529
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2530
		return -ENOMEM;
2531

2532
rebuild_st:
2533 2534
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2535
		return -ENOMEM;
2536
	}
2537

2538 2539 2540 2541 2542
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2543
	mapping = obj->base.filp->f_mapping;
2544
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2545 2546
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2547 2548
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2549
	sg_page_sizes = 0;
2550
	for (i = 0; i < page_count; i++) {
2551 2552 2553 2554 2555 2556 2557
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2558
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2559 2560 2561 2562 2563 2564 2565 2566
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2567
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2568
			cond_resched();
2569

C
Chris Wilson 已提交
2570 2571 2572
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2573 2574 2575 2576
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2577
			 */
2578 2579 2580
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2593
				 * this we want __GFP_RETRY_MAYFAIL.
2594
				 */
M
Michal Hocko 已提交
2595
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2596
			}
2597 2598
		} while (1);

2599 2600 2601
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2602
			if (i) {
M
Matthew Auld 已提交
2603
				sg_page_sizes |= sg->length;
2604
				sg = sg_next(sg);
2605
			}
2606 2607 2608 2609 2610 2611
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2612 2613 2614

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2615
	}
2616
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2617
		sg_page_sizes |= sg->length;
2618
		sg_mark_end(sg);
2619
	}
2620

2621 2622 2623
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2624
	ret = i915_gem_gtt_prepare_pages(obj, st);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2644

2645
	if (i915_gem_object_needs_bit17_swizzle(obj))
2646
		i915_gem_object_do_bit_17_swizzle(obj, st);
2647

M
Matthew Auld 已提交
2648
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2649 2650

	return 0;
2651

2652
err_sg:
2653
	sg_mark_end(sg);
2654
err_pages:
2655 2656
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2657 2658
	sg_free_table(st);
	kfree(st);
2659 2660 2661 2662 2663 2664 2665 2666 2667

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2668 2669 2670
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2671
	return ret;
2672 2673 2674
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2675
				 struct sg_table *pages,
M
Matthew Auld 已提交
2676
				 unsigned int sg_page_sizes)
2677
{
2678 2679 2680 2681
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2682
	lockdep_assert_held(&obj->mm.lock);
2683 2684 2685 2686 2687

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2688 2689

	if (i915_gem_object_is_tiled(obj) &&
2690
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2691 2692 2693 2694
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2695

M
Matthew Auld 已提交
2696 2697
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2698 2699

	/*
M
Matthew Auld 已提交
2700 2701 2702 2703 2704 2705
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2706 2707 2708 2709 2710 2711 2712
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2713 2714 2715 2716

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2717 2718 2719 2720
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2721
	int err;
2722 2723 2724 2725 2726 2727

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2728
	err = obj->ops->get_pages(obj);
2729
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2730

2731
	return err;
2732 2733
}

2734
/* Ensure that the associated pages are gathered from the backing storage
2735
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2736
 * multiple times before they are released by a single call to
2737
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2738 2739 2740
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2741
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2742
{
2743
	int err;
2744

2745 2746 2747
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2748

2749
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2750 2751
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2752 2753 2754
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2755

2756 2757 2758
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2759

2760 2761
unlock:
	mutex_unlock(&obj->mm.lock);
2762
	return err;
2763 2764
}

2765
/* The 'mapping' part of i915_gem_object_pin_map() below */
2766 2767
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2768 2769
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2770
	struct sg_table *sgt = obj->mm.pages;
2771 2772
	struct sgt_iter sgt_iter;
	struct page *page;
2773 2774
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2775
	unsigned long i = 0;
2776
	pgprot_t pgprot;
2777 2778 2779
	void *addr;

	/* A single page can always be kmapped */
2780
	if (n_pages == 1 && type == I915_MAP_WB)
2781 2782
		return kmap(sg_page(sgt->sgl));

2783 2784
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2785
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2786 2787 2788
		if (!pages)
			return NULL;
	}
2789

2790 2791
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2792 2793 2794 2795

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2796
	switch (type) {
2797 2798 2799
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2800 2801 2802 2803 2804 2805 2806 2807
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2808

2809
	if (pages != stack_pages)
M
Michal Hocko 已提交
2810
		kvfree(pages);
2811 2812 2813 2814 2815

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2816 2817
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2818
{
2819 2820 2821
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2822 2823
	int ret;

T
Tina Zhang 已提交
2824 2825
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2826

2827
	ret = mutex_lock_interruptible(&obj->mm.lock);
2828 2829 2830
	if (ret)
		return ERR_PTR(ret);

2831 2832 2833
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2834
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2835
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2836 2837
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2838 2839 2840
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2841

2842 2843 2844
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2845 2846
		pinned = false;
	}
2847
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2848

2849
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2850 2851 2852
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2853
			goto err_unpin;
2854
		}
2855 2856 2857 2858 2859 2860

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2861
		ptr = obj->mm.mapping = NULL;
2862 2863
	}

2864 2865 2866 2867
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2868
			goto err_unpin;
2869 2870
		}

2871
		obj->mm.mapping = page_pack_bits(ptr, type);
2872 2873
	}

2874 2875
out_unlock:
	mutex_unlock(&obj->mm.lock);
2876 2877
	return ptr;

2878 2879 2880 2881 2882
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2883 2884
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2902
	if (i915_gem_object_has_pages(obj))
2903 2904
		return -ENODEV;

2905 2906 2907
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

2981
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2982
{
2983 2984
	unsigned int score;
	bool banned, bannable;
2985

2986
	atomic_inc(&ctx->guilty_count);
2987

2988 2989 2990
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2991

2992 2993
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
2994 2995
		return;

2996 2997 2998 2999
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
3000
		i915_gem_context_set_banned(ctx);
3001
	}
3002 3003 3004

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3005 3006 3007 3008
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
3009
	atomic_inc(&ctx->active_count);
3010 3011
}

3012
struct i915_request *
3013
i915_gem_find_active_request(struct intel_engine_cs *engine)
3014
{
3015
	struct i915_request *request, *active = NULL;
3016
	unsigned long flags;
3017

3018 3019 3020 3021 3022 3023
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
3024 3025
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3026 3027
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
3028
	 */
3029 3030
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
3031
		if (__i915_request_completed(request, request->global_seqno))
3032
			continue;
3033

3034 3035
		active = request;
		break;
3036
	}
3037
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3038

3039
	return active;
3040 3041
}

3042 3043 3044 3045
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3046
struct i915_request *
3047 3048
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3049
	struct i915_request *request;
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3060
	request = engine->reset.prepare(engine);
3061 3062
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3063 3064 3065 3066

	return request;
}

3067
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3068 3069
{
	struct intel_engine_cs *engine;
3070
	struct i915_request *request;
3071
	enum intel_engine_id id;
3072
	int err = 0;
3073

3074
	for_each_engine(engine, dev_priv, id) {
3075 3076 3077 3078
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3079
		}
3080 3081

		engine->hangcheck.active_request = request;
3082 3083
	}

3084
	i915_gem_revoke_fences(dev_priv);
3085
	intel_uc_sanitize(dev_priv);
3086 3087

	return err;
3088 3089
}

3090
static void engine_skip_context(struct i915_request *request)
3091 3092
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3093
	struct i915_gem_context *hung_ctx = request->gem_context;
3094
	struct i915_timeline *timeline = request->timeline;
3095 3096
	unsigned long flags;

3097
	GEM_BUG_ON(timeline == &engine->timeline);
3098

3099
	spin_lock_irqsave(&engine->timeline.lock, flags);
3100
	spin_lock(&timeline->lock);
3101

3102
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3103
		if (request->gem_context == hung_ctx)
3104
			i915_request_skip(request, -EIO);
3105 3106

	list_for_each_entry(request, &timeline->requests, link)
3107
		i915_request_skip(request, -EIO);
3108 3109

	spin_unlock(&timeline->lock);
3110
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3111 3112
}

3113
/* Returns the request if it was guilty of the hang */
3114
static struct i915_request *
3115
i915_gem_reset_request(struct intel_engine_cs *engine,
3116 3117
		       struct i915_request *request,
		       bool stalled)
3118
{
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3140 3141 3142 3143 3144 3145 3146 3147 3148
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3149
		i915_gem_context_mark_guilty(request->gem_context);
3150
		i915_request_skip(request, -EIO);
3151 3152

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3153
		if (i915_gem_context_is_banned(request->gem_context))
3154
			engine_skip_context(request);
3155
	} else {
3156 3157 3158 3159 3160 3161 3162
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3163 3164
			unsigned long flags;

C
Chris Wilson 已提交
3165
			i915_gem_context_mark_innocent(request->gem_context);
3166 3167 3168
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3169
			spin_lock_irqsave(&engine->timeline.lock, flags);
3170
			request = list_prev_entry(request, link);
3171
			if (&request->link == &engine->timeline.requests)
3172
				request = NULL;
C
Chris Wilson 已提交
3173
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3174
		}
3175 3176
	}

3177
	return request;
3178 3179
}

3180
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3181 3182
			   struct i915_request *request,
			   bool stalled)
3183
{
3184 3185 3186 3187 3188 3189
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3190

3191
	if (request)
3192
		request = i915_gem_reset_request(engine, request, stalled);
3193

3194
	/* Setup the CS to resume from the breadcrumb of the hung request */
3195
	engine->reset.reset(engine, request);
3196
}
3197

3198 3199
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3200
{
3201
	struct intel_engine_cs *engine;
3202
	enum intel_engine_id id;
3203

3204 3205
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3206
	i915_retire_requests(dev_priv);
3207

3208
	for_each_engine(engine, dev_priv, id) {
3209
		struct intel_context *ce;
3210

3211 3212
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3213
				      stalled_mask & ENGINE_MASK(id));
3214 3215 3216
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3228
		if (intel_engine_is_idle(engine)) {
3229
			struct i915_request *rq;
3230

3231 3232
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3233
			if (!IS_ERR(rq))
3234
				i915_request_add(rq);
3235
		}
3236
	}
3237

3238
	i915_gem_restore_fences(dev_priv);
3239 3240
}

3241 3242
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3243 3244
	engine->reset.finish(engine);

3245
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3246 3247
}

3248 3249
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3250 3251 3252
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3253
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3254

3255
	for_each_engine(engine, dev_priv, id) {
3256
		engine->hangcheck.active_request = NULL;
3257
		i915_gem_reset_finish_engine(engine);
3258
	}
3259 3260
}

3261
static void nop_submit_request(struct i915_request *request)
3262
{
3263 3264 3265
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3266 3267
	dma_fence_set_error(&request->fence, -EIO);

3268
	i915_request_submit(request);
3269 3270
}

3271
static void nop_complete_submit_request(struct i915_request *request)
3272
{
3273 3274
	unsigned long flags;

3275 3276 3277
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3278
	dma_fence_set_error(&request->fence, -EIO);
3279

3280
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3281
	__i915_request_submit(request);
3282
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3283
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3284 3285
}

3286
void i915_gem_set_wedged(struct drm_i915_private *i915)
3287
{
3288 3289 3290
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3291 3292
	GEM_TRACE("start\n");

3293
	if (GEM_SHOW_DEBUG()) {
3294 3295 3296 3297 3298 3299
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3300 3301 3302
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3303 3304 3305 3306 3307
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3308 3309
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3310

3311
		engine->submit_request = nop_submit_request;
3312
		engine->schedule = NULL;
3313
	}
3314
	i915->caps.scheduler = 0;
3315

3316 3317 3318
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3319 3320 3321 3322
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3323
	 */
3324
	synchronize_rcu();
3325

3326 3327 3328
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3329

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3341
	 */
3342
	synchronize_rcu();
3343

3344 3345
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3346

3347 3348
		/*
		 * Mark all pending requests as complete so that any concurrent
3349 3350 3351
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3352
		spin_lock_irqsave(&engine->timeline.lock, flags);
3353 3354
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3355
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3356 3357

		i915_gem_reset_finish_engine(engine);
3358
	}
3359

3360 3361
	GEM_TRACE("end\n");

3362
	wake_up_all(&i915->gpu_error.reset_queue);
3363 3364
}

3365 3366
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3367
	struct i915_timeline *tl;
3368 3369 3370 3371 3372

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3373 3374
	GEM_TRACE("start\n");

3375 3376
	/*
	 * Before unwedging, make sure that all pending operations
3377 3378 3379 3380 3381 3382 3383 3384 3385
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3386
		struct i915_request *rq;
3387

3388 3389 3390 3391
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3392

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3407
	}
3408 3409
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3410

3411 3412
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3413 3414 3415 3416 3417 3418 3419 3420
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3421
	i915_gem_contexts_lost(i915);
3422

3423 3424
	GEM_TRACE("end\n");

3425 3426 3427 3428 3429 3430
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3431
static void
3432 3433
i915_gem_retire_work_handler(struct work_struct *work)
{
3434
	struct drm_i915_private *dev_priv =
3435
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3436
	struct drm_device *dev = &dev_priv->drm;
3437

3438
	/* Come back later if the device is busy... */
3439
	if (mutex_trylock(&dev->struct_mutex)) {
3440
		i915_retire_requests(dev_priv);
3441
		mutex_unlock(&dev->struct_mutex);
3442
	}
3443

3444 3445
	/*
	 * Keep the retire handler running until we are finally idle.
3446 3447 3448
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3449
	if (READ_ONCE(dev_priv->gt.awake))
3450 3451
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3452
				   round_jiffies_up_relative(HZ));
3453
}
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3514 3515 3516 3517 3518 3519 3520
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3537 3538 3539 3540
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3541
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3542
	unsigned int epoch = I915_EPOCH_INVALID;
3543 3544 3545 3546 3547
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3566 3567
	/*
	 * Wait for last execlists context complete, but bail out in case a
3568 3569 3570 3571 3572
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3573
	 */
3574 3575 3576 3577
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3578 3579 3580 3581

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3582
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3583 3584 3585 3586 3587 3588 3589
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3590 3591 3592 3593
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3594
	if (new_requests_since_last_retire(dev_priv))
3595
		goto out_unlock;
3596

3597
	epoch = __i915_gem_park(dev_priv);
3598

3599 3600
	assert_kernel_context_is_current(dev_priv);

3601 3602
	rearm_hangcheck = false;
out_unlock:
3603
	mutex_unlock(&dev_priv->drm.struct_mutex);
3604

3605 3606 3607 3608
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3609
	}
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3627 3628
}

3629 3630
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3631
	struct drm_i915_private *i915 = to_i915(gem->dev);
3632 3633
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3634
	struct i915_lut_handle *lut, *ln;
3635

3636 3637 3638 3639 3640 3641
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3642
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3643 3644 3645 3646
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3647 3648 3649 3650 3651 3652 3653
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3654
			i915_vma_close(vma);
3655

3656 3657
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3658

3659 3660
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3661
	}
3662 3663

	mutex_unlock(&i915->drm.struct_mutex);
3664 3665
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3677 3678
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3679 3680 3681
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3682 3683 3684 3685 3686 3687 3688
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3689
 *  -EAGAIN: incomplete, restart syscall
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3706 3707
	ktime_t start;
	long ret;
3708

3709 3710 3711
	if (args->flags != 0)
		return -EINVAL;

3712
	obj = i915_gem_object_lookup(file, args->bo_handle);
3713
	if (!obj)
3714 3715
		return -ENOENT;

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3737 3738 3739 3740

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3741 3742
	}

C
Chris Wilson 已提交
3743
	i915_gem_object_put(obj);
3744
	return ret;
3745 3746
}

3747 3748
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3749
{
3750 3751 3752 3753
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3754
		return timeout;
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3768
	timeout = i915_request_wait(rq, flags, timeout);
3769 3770
	i915_request_put(rq);

3771
	return timeout;
3772 3773
}

3774 3775
static int wait_for_engines(struct drm_i915_private *i915)
{
3776
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3777 3778
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3779
		GEM_TRACE_DUMP();
3780 3781
		i915_gem_set_wedged(i915);
		return -EIO;
3782 3783 3784 3785 3786
	}

	return 0;
}

3787 3788
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3789
{
3790 3791 3792
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3793

3794 3795 3796 3797
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3798
	if (flags & I915_WAIT_LOCKED) {
3799 3800
		struct i915_timeline *tl;
		int err;
3801 3802 3803 3804

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3805 3806 3807
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3808
		}
3809 3810 3811 3812 3813

		err = wait_for_engines(i915);
		if (err)
			return err;

3814
		i915_retire_requests(i915);
3815
		GEM_BUG_ON(i915->gt.active_requests);
3816
	} else {
3817 3818
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3819

3820
		for_each_engine(engine, i915, id) {
3821 3822 3823 3824 3825
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3826 3827
		}
	}
3828 3829

	return 0;
3830 3831
}

3832 3833
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3834 3835 3836 3837 3838 3839 3840
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3841
	obj->write_domain = 0;
3842 3843 3844 3845
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3846
	if (!READ_ONCE(obj->pin_global))
3847 3848 3849 3850 3851 3852 3853
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3878
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3899
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3900 3901 3902 3903 3904
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3905 3906
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3907
	if (write) {
3908 3909
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3910 3911 3912 3913 3914 3915 3916
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3917 3918
/**
 * Moves a single object to the GTT read, and possibly write domain.
3919 3920
 * @obj: object to act on
 * @write: ask for write access or read only
3921 3922 3923 3924
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3925
int
3926
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3927
{
3928
	int ret;
3929

3930
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3931

3932 3933 3934 3935 3936 3937
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3938 3939 3940
	if (ret)
		return ret;

3941
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3942 3943
		return 0;

3944 3945 3946 3947 3948 3949 3950 3951
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3952
	ret = i915_gem_object_pin_pages(obj);
3953 3954 3955
	if (ret)
		return ret;

3956
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3957

3958 3959 3960 3961
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3962
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3963 3964
		mb();

3965 3966 3967
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3968 3969
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3970
	if (write) {
3971 3972
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3973
		obj->mm.dirty = true;
3974 3975
	}

C
Chris Wilson 已提交
3976
	i915_gem_object_unpin_pages(obj);
3977 3978 3979
	return 0;
}

3980 3981
/**
 * Changes the cache-level of an object across all VMA.
3982 3983
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3995 3996 3997
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3998
	struct i915_vma *vma;
3999
	int ret;
4000

4001 4002
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4003
	if (obj->cache_level == cache_level)
4004
		return 0;
4005

4006 4007 4008 4009 4010
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4011 4012
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4013 4014 4015
		if (!drm_mm_node_allocated(&vma->node))
			continue;

4016
		if (i915_vma_is_pinned(vma)) {
4017 4018 4019 4020
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4021 4022
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
4034 4035
	}

4036 4037 4038 4039 4040 4041 4042
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4043
	if (obj->bind_count) {
4044 4045 4046 4047
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4048 4049 4050 4051 4052 4053
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4054 4055 4056
		if (ret)
			return ret;

4057 4058
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4075
			for_each_ggtt_vma(vma, obj) {
4076 4077 4078 4079
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4080 4081 4082 4083 4084 4085 4086 4087
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4088 4089
		}

4090
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4091 4092 4093 4094 4095 4096 4097
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4098 4099
	}

4100
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4101
		vma->node.color = cache_level;
4102
	i915_gem_object_set_cache_coherency(obj, cache_level);
4103
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4104

4105 4106 4107
	return 0;
}

B
Ben Widawsky 已提交
4108 4109
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4110
{
B
Ben Widawsky 已提交
4111
	struct drm_i915_gem_caching *args = data;
4112
	struct drm_i915_gem_object *obj;
4113
	int err = 0;
4114

4115 4116 4117 4118 4119 4120
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4121

4122 4123 4124 4125 4126 4127
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4128 4129 4130 4131
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4132 4133 4134 4135
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4136 4137 4138
out:
	rcu_read_unlock();
	return err;
4139 4140
}

B
Ben Widawsky 已提交
4141 4142
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4143
{
4144
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4145
	struct drm_i915_gem_caching *args = data;
4146 4147
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4148
	int ret = 0;
4149

B
Ben Widawsky 已提交
4150 4151
	switch (args->caching) {
	case I915_CACHING_NONE:
4152 4153
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4154
	case I915_CACHING_CACHED:
4155 4156 4157 4158 4159 4160
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4161
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4162 4163
			return -ENODEV;

4164 4165
		level = I915_CACHE_LLC;
		break;
4166
	case I915_CACHING_DISPLAY:
4167
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4168
		break;
4169 4170 4171 4172
	default:
		return -EINVAL;
	}

4173 4174 4175 4176
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4186 4187 4188 4189 4190 4191 4192
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4193
	if (ret)
4194
		goto out;
B
Ben Widawsky 已提交
4195

4196 4197 4198
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4199 4200 4201

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4202 4203 4204

out:
	i915_gem_object_put(obj);
4205 4206 4207
	return ret;
}

4208
/*
4209 4210 4211 4212
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4213
 */
C
Chris Wilson 已提交
4214
struct i915_vma *
4215 4216
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4217 4218
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4219
{
C
Chris Wilson 已提交
4220
	struct i915_vma *vma;
4221 4222
	int ret;

4223 4224
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4225
	/* Mark the global pin early so that we account for the
4226 4227
	 * display coherency whilst setting up the cache domains.
	 */
4228
	obj->pin_global++;
4229

4230 4231 4232 4233 4234 4235 4236 4237 4238
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4239
	ret = i915_gem_object_set_cache_level(obj,
4240 4241
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4242 4243
	if (ret) {
		vma = ERR_PTR(ret);
4244
		goto err_unpin_global;
C
Chris Wilson 已提交
4245
	}
4246

4247 4248
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4249 4250 4251 4252
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4253
	 */
4254
	vma = ERR_PTR(-ENOSPC);
4255 4256
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4257
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4258 4259 4260 4261
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4262
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4263
	if (IS_ERR(vma))
4264
		goto err_unpin_global;
4265

4266 4267
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4268
	__i915_gem_object_flush_for_display(obj);
4269

4270 4271 4272
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4273
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4274

C
Chris Wilson 已提交
4275
	return vma;
4276

4277 4278
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4279
	return vma;
4280 4281 4282
}

void
C
Chris Wilson 已提交
4283
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4284
{
4285
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4286

4287
	if (WARN_ON(vma->obj->pin_global == 0))
4288 4289
		return;

4290
	if (--vma->obj->pin_global == 0)
4291
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4292

4293
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4294
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4295

C
Chris Wilson 已提交
4296
	i915_vma_unpin(vma);
4297 4298
}

4299 4300
/**
 * Moves a single object to the CPU read, and possibly write domain.
4301 4302
 * @obj: object to act on
 * @write: requesting write or read-only access
4303 4304 4305 4306
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4307
int
4308
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4309 4310 4311
{
	int ret;

4312
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4313

4314 4315 4316 4317 4318 4319
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4320 4321 4322
	if (ret)
		return ret;

4323
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4324

4325
	/* Flush the CPU cache if it's still invalid. */
4326
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4327
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4328
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4329 4330 4331 4332 4333
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4334
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4335 4336 4337 4338

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4339 4340
	if (write)
		__start_cpu_write(obj);
4341 4342 4343 4344

	return 0;
}

4345 4346 4347
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4348 4349 4350 4351
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4352 4353 4354
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4355
static int
4356
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4357
{
4358
	struct drm_i915_private *dev_priv = to_i915(dev);
4359
	struct drm_i915_file_private *file_priv = file->driver_priv;
4360
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4361
	struct i915_request *request, *target = NULL;
4362
	long ret;
4363

4364 4365 4366
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4367

4368
	spin_lock(&file_priv->mm.lock);
4369
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4370 4371
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4372

4373 4374 4375 4376
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4377

4378
		target = request;
4379
	}
4380
	if (target)
4381
		i915_request_get(target);
4382
	spin_unlock(&file_priv->mm.lock);
4383

4384
	if (target == NULL)
4385
		return 0;
4386

4387
	ret = i915_request_wait(target,
4388 4389
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4390
	i915_request_put(target);
4391

4392
	return ret < 0 ? ret : 0;
4393 4394
}

C
Chris Wilson 已提交
4395
struct i915_vma *
4396 4397
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4398
			 u64 size,
4399 4400
			 u64 alignment,
			 u64 flags)
4401
{
4402
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4403
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4404 4405
	struct i915_vma *vma;
	int ret;
4406

4407 4408
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4409 4410
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4441
	vma = i915_vma_instance(obj, vm, view);
4442
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4443
		return vma;
4444 4445

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4446 4447 4448
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4449

4450
			if (flags & PIN_MAPPABLE &&
4451
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4452 4453 4454
				return ERR_PTR(-ENOSPC);
		}

4455 4456
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4457 4458 4459
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4460
		     !!(flags & PIN_MAPPABLE),
4461
		     i915_vma_is_map_and_fenceable(vma));
4462 4463
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4464
			return ERR_PTR(ret);
4465 4466
	}

C
Chris Wilson 已提交
4467 4468 4469
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4470

C
Chris Wilson 已提交
4471
	return vma;
4472 4473
}

4474
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4489 4490 4491 4492 4493 4494 4495 4496 4497
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4498 4499
}

4500
static __always_inline unsigned int
4501
__busy_set_if_active(const struct dma_fence *fence,
4502 4503
		     unsigned int (*flag)(unsigned int id))
{
4504
	struct i915_request *rq;
4505

4506 4507 4508 4509
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4510
	 *
4511
	 * Note we only report on the status of native fences.
4512
	 */
4513 4514 4515 4516
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4517 4518
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4519 4520
		return 0;

4521
	return flag(rq->engine->uabi_id);
4522 4523
}

4524
static __always_inline unsigned int
4525
busy_check_reader(const struct dma_fence *fence)
4526
{
4527
	return __busy_set_if_active(fence, __busy_read_flag);
4528 4529
}

4530
static __always_inline unsigned int
4531
busy_check_writer(const struct dma_fence *fence)
4532
{
4533 4534 4535 4536
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4537 4538
}

4539 4540
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4541
		    struct drm_file *file)
4542 4543
{
	struct drm_i915_gem_busy *args = data;
4544
	struct drm_i915_gem_object *obj;
4545 4546
	struct reservation_object_list *list;
	unsigned int seq;
4547
	int err;
4548

4549
	err = -ENOENT;
4550 4551
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4552
	if (!obj)
4553
		goto out;
4554

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4573

4574 4575
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4576

4577 4578 4579 4580
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4581

4582 4583 4584 4585 4586 4587
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4588
	}
4589

4590 4591 4592 4593
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4594 4595 4596
out:
	rcu_read_unlock();
	return err;
4597 4598 4599 4600 4601 4602
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4603
	return i915_gem_ring_throttle(dev, file_priv);
4604 4605
}

4606 4607 4608 4609
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4610
	struct drm_i915_private *dev_priv = to_i915(dev);
4611
	struct drm_i915_gem_madvise *args = data;
4612
	struct drm_i915_gem_object *obj;
4613
	int err;
4614 4615 4616 4617 4618 4619 4620 4621 4622

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4623
	obj = i915_gem_object_lookup(file_priv, args->handle);
4624 4625 4626 4627 4628 4629
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4630

4631
	if (i915_gem_object_has_pages(obj) &&
4632
	    i915_gem_object_is_tiled(obj) &&
4633
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4634 4635
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4636
			__i915_gem_object_unpin_pages(obj);
4637 4638 4639
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4640
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4641
			__i915_gem_object_pin_pages(obj);
4642 4643
			obj->mm.quirked = true;
		}
4644 4645
	}

C
Chris Wilson 已提交
4646 4647
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4648

C
Chris Wilson 已提交
4649
	/* if the object is no longer attached, discard its backing storage */
4650 4651
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4652 4653
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4654
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4655
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4656

4657
out:
4658
	i915_gem_object_put(obj);
4659
	return err;
4660 4661
}

4662
static void
4663
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4664 4665 4666 4667
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4668
	intel_fb_obj_flush(obj, ORIGIN_CS);
4669 4670
}

4671 4672
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4673
{
4674 4675
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4676
	INIT_LIST_HEAD(&obj->vma_list);
4677
	INIT_LIST_HEAD(&obj->lut_list);
4678
	INIT_LIST_HEAD(&obj->batch_pool_link);
4679

4680 4681
	obj->ops = ops;

4682 4683 4684
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4685
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4686
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4687 4688 4689 4690

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4691

4692
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4693 4694
}

4695
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4696 4697
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4698

4699 4700
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4701 4702

	.pwrite = i915_gem_object_pwrite_gtt,
4703 4704
};

M
Matthew Auld 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4729
struct drm_i915_gem_object *
4730
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4731
{
4732
	struct drm_i915_gem_object *obj;
4733
	struct address_space *mapping;
4734
	unsigned int cache_level;
D
Daniel Vetter 已提交
4735
	gfp_t mask;
4736
	int ret;
4737

4738 4739 4740 4741 4742
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4743
	if (size >> PAGE_SHIFT > INT_MAX)
4744 4745 4746 4747 4748
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4749
	obj = i915_gem_object_alloc(dev_priv);
4750
	if (obj == NULL)
4751
		return ERR_PTR(-ENOMEM);
4752

M
Matthew Auld 已提交
4753
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4754 4755
	if (ret)
		goto fail;
4756

4757
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4758
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4759 4760 4761 4762 4763
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4764
	mapping = obj->base.filp->f_mapping;
4765
	mapping_set_gfp_mask(mapping, mask);
4766
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4767

4768
	i915_gem_object_init(obj, &i915_gem_object_ops);
4769

4770 4771
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4772

4773
	if (HAS_LLC(dev_priv))
4774
		/* On some devices, we can have the GPU use the LLC (the CPU
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4786 4787 4788
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4789

4790
	i915_gem_object_set_cache_coherency(obj, cache_level);
4791

4792 4793
	trace_i915_gem_object_create(obj);

4794
	return obj;
4795 4796 4797 4798

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4799 4800
}

4801 4802 4803 4804 4805 4806 4807 4808
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4809
	if (obj->mm.madv != I915_MADV_WILLNEED)
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4825 4826
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4827
{
4828
	struct drm_i915_gem_object *obj, *on;
4829

4830
	intel_runtime_pm_get(i915);
4831
	llist_for_each_entry_safe(obj, on, freed, freed) {
4832 4833 4834 4835
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4836 4837
		mutex_lock(&i915->drm.struct_mutex);

4838 4839 4840 4841 4842
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4843
			i915_vma_destroy(vma);
4844
		}
4845 4846
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4847

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4860
		mutex_unlock(&i915->drm.struct_mutex);
4861 4862

		GEM_BUG_ON(obj->bind_count);
4863
		GEM_BUG_ON(obj->userfault_count);
4864
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4865
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4866 4867 4868

		if (obj->ops->release)
			obj->ops->release(obj);
4869

4870 4871
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4872
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4873
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4874 4875 4876 4877

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4878
		reservation_object_fini(&obj->__builtin_resv);
4879 4880 4881 4882 4883
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4884

4885 4886 4887
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4888 4889
		if (on)
			cond_resched();
4890
	}
4891
	intel_runtime_pm_put(i915);
4892 4893 4894 4895 4896 4897
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4908
		__i915_gem_free_objects(i915, freed);
4909
	}
4910 4911 4912 4913 4914 4915 4916
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4917

4918 4919
	/*
	 * All file-owned VMA should have been released by this point through
4920 4921 4922 4923 4924 4925
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4926

4927
	spin_lock(&i915->mm.free_lock);
4928
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4929 4930
		spin_unlock(&i915->mm.free_lock);

4931
		__i915_gem_free_objects(i915, freed);
4932
		if (need_resched())
4933 4934 4935
			return;

		spin_lock(&i915->mm.free_lock);
4936
	}
4937
	spin_unlock(&i915->mm.free_lock);
4938
}
4939

4940 4941 4942 4943 4944 4945
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4946 4947 4948 4949 4950 4951 4952 4953 4954
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4955 4956
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4957
		queue_work(i915->wq, &i915->mm.free_work);
4958
}
4959

4960 4961 4962
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4963

4964 4965 4966
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4967
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4968
		obj->mm.madv = I915_MADV_DONTNEED;
4969

4970 4971
	/*
	 * Before we free the object, make sure any pure RCU-only
4972 4973 4974 4975
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4976
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4977
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4978 4979
}

4980 4981 4982 4983
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4984 4985
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4986 4987 4988 4989 4990
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4991 4992
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4993
	int err;
4994 4995 4996

	GEM_TRACE("\n");

4997
	mutex_lock(&i915->drm.struct_mutex);
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
5008
	if (i915_terminally_wedged(&i915->gpu_error))
5009 5010
		i915_gem_unset_wedged(i915);

5011 5012 5013 5014 5015 5016
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
5017
	 * of the reset, so this could be applied to even earlier gen.
5018
	 */
5019
	err = -ENODEV;
5020
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5021 5022 5023
		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
	if (!err)
		intel_engines_sanitize(i915);
5024 5025 5026 5027

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

5028 5029
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
5030 5031
}

C
Chris Wilson 已提交
5032
int i915_gem_suspend(struct drm_i915_private *i915)
5033
{
5034
	int ret;
5035

5036 5037
	GEM_TRACE("\n");

C
Chris Wilson 已提交
5038 5039
	intel_runtime_pm_get(i915);
	intel_suspend_gt_powersave(i915);
5040

C
Chris Wilson 已提交
5041
	mutex_lock(&i915->drm.struct_mutex);
5042

C
Chris Wilson 已提交
5043 5044
	/*
	 * We have to flush all the executing contexts to main memory so
5045 5046
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
5047
	 * leaves the i915->kernel_context still active when
5048 5049 5050 5051
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
5052 5053
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
5054 5055
		if (ret)
			goto err_unlock;
5056

C
Chris Wilson 已提交
5057
		ret = i915_gem_wait_for_idle(i915,
5058
					     I915_WAIT_INTERRUPTIBLE |
5059
					     I915_WAIT_LOCKED |
5060 5061
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
5062 5063
		if (ret && ret != -EIO)
			goto err_unlock;
5064

C
Chris Wilson 已提交
5065
		assert_kernel_context_is_current(i915);
5066
	}
C
Chris Wilson 已提交
5067
	mutex_unlock(&i915->drm.struct_mutex);
5068

C
Chris Wilson 已提交
5069
	intel_uc_suspend(i915);
5070

C
Chris Wilson 已提交
5071 5072
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
5073

C
Chris Wilson 已提交
5074 5075
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
5076 5077
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
5078
	drain_delayed_work(&i915->gt.idle_work);
5079

C
Chris Wilson 已提交
5080 5081
	/*
	 * Assert that we successfully flushed all the work and
5082 5083
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
5084 5085 5086
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
5087

C
Chris Wilson 已提交
5088
	intel_runtime_pm_put(i915);
5089 5090 5091
	return 0;

err_unlock:
C
Chris Wilson 已提交
5092 5093
	mutex_unlock(&i915->drm.struct_mutex);
	intel_runtime_pm_put(i915);
5094 5095 5096 5097 5098
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5099 5100 5101 5102 5103 5104 5105
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5126 5127 5128 5129 5130 5131 5132
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5133 5134
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5135 5136
}

5137
void i915_gem_resume(struct drm_i915_private *i915)
5138
{
5139 5140
	GEM_TRACE("\n");

5141
	WARN_ON(i915->gt.awake);
5142

5143 5144
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5145

5146 5147
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5148

5149 5150
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5151 5152 5153
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5154
	i915->gt.resume(i915);
5155

5156 5157 5158
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5159
	intel_uc_resume(i915);
5160

5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5171 5172 5173 5174
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5175
	goto out_unlock;
5176 5177
}

5178
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5179
{
5180
	if (INTEL_GEN(dev_priv) < 5 ||
5181 5182 5183 5184 5185 5186
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5187
	if (IS_GEN5(dev_priv))
5188 5189
		return;

5190
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5191
	if (IS_GEN6(dev_priv))
5192
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5193
	else if (IS_GEN7(dev_priv))
5194
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5195
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5196
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5197 5198
	else
		BUG();
5199
}
D
Daniel Vetter 已提交
5200

5201
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5202 5203 5204 5205 5206 5207 5208
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5209
static void init_unused_rings(struct drm_i915_private *dev_priv)
5210
{
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5223 5224 5225
	}
}

5226
static int __i915_gem_restart_engines(void *data)
5227
{
5228
	struct drm_i915_private *i915 = data;
5229
	struct intel_engine_cs *engine;
5230
	enum intel_engine_id id;
5231 5232 5233 5234
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5235 5236 5237
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5238
			return err;
5239
		}
5240 5241 5242 5243 5244 5245 5246
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5247
	int ret;
5248

5249 5250
	dev_priv->gt.last_init_time = ktime_get();

5251 5252 5253
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5254
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5255
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5256

5257
	if (IS_HASWELL(dev_priv))
5258
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5259
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5260

5261
	if (HAS_PCH_NOP(dev_priv)) {
5262
		if (IS_IVYBRIDGE(dev_priv)) {
5263 5264 5265
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5266
		} else if (INTEL_GEN(dev_priv) >= 7) {
5267 5268 5269 5270
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5271 5272
	}

5273 5274
	intel_gt_workarounds_apply(dev_priv);

5275
	i915_gem_init_swizzling(dev_priv);
5276

5277 5278 5279 5280 5281 5282
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5283
	init_unused_rings(dev_priv);
5284

5285
	BUG_ON(!dev_priv->kernel_context);
5286 5287 5288 5289
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5290

5291
	ret = i915_ppgtt_init_hw(dev_priv);
5292
	if (ret) {
5293
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5294 5295 5296
		goto out;
	}

5297 5298 5299 5300 5301 5302
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5303 5304
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5305 5306
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5307
		goto out;
5308
	}
5309

5310
	intel_mocs_init_l3cc_table(dev_priv);
5311

5312 5313
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5314 5315
	if (ret)
		goto cleanup_uc;
5316 5317
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5318
	return ret;
5319 5320 5321 5322

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
	goto out;
5323 5324
}

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5346
		struct i915_request *rq;
5347

5348
		rq = i915_request_alloc(engine, ctx);
5349 5350 5351 5352 5353
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5354
		err = 0;
5355 5356 5357
		if (engine->init_context)
			err = engine->init_context(rq);

5358
		i915_request_add(rq);
5359 5360 5361 5362 5363 5364 5365 5366
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5367 5368 5369
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5370
		goto err_active;
5371
	}
5372 5373 5374 5375 5376 5377

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5378
		state = to_intel_context(ctx, engine)->state;
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5434 5435 5436
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5437 5438 5439 5440 5441 5442
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5443
int i915_gem_init(struct drm_i915_private *dev_priv)
5444 5445 5446
{
	int ret;

5447 5448
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5449 5450 5451
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5452
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5453

5454
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5455
		dev_priv->gt.resume = intel_lr_context_resume;
5456
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5457 5458 5459
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5460 5461
	}

5462 5463 5464 5465
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5466
	ret = intel_uc_init_misc(dev_priv);
5467 5468 5469
	if (ret)
		return ret;

5470
	ret = intel_wopcm_init(&dev_priv->wopcm);
5471
	if (ret)
5472
		goto err_uc_misc;
5473

5474 5475 5476 5477 5478 5479
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5480
	mutex_lock(&dev_priv->drm.struct_mutex);
5481 5482
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5483
	ret = i915_gem_init_ggtt(dev_priv);
5484 5485 5486 5487
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5488

5489
	ret = i915_gem_contexts_init(dev_priv);
5490 5491 5492 5493
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5494

5495
	ret = intel_engines_init(dev_priv);
5496 5497 5498 5499
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5500

5501 5502
	intel_init_gt_powersave(dev_priv);

5503
	ret = intel_uc_init(dev_priv);
5504
	if (ret)
5505
		goto err_pm;
5506

5507 5508 5509 5510
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5522
	ret = __intel_engines_record_defaults(dev_priv);
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5548 5549 5550 5551 5552
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5553 5554
	i915_gem_drain_workqueue(dev_priv);

5555
	mutex_lock(&dev_priv->drm.struct_mutex);
5556
	intel_uc_fini_hw(dev_priv);
5557 5558
err_uc_init:
	intel_uc_fini(dev_priv);
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5572
err_uc_misc:
5573
	intel_uc_fini_misc(dev_priv);
5574

5575 5576 5577
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5578
	if (ret == -EIO) {
5579 5580
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5581 5582 5583
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5584
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5585 5586
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5587 5588
			i915_gem_set_wedged(dev_priv);
		}
5589
		ret = 0;
5590 5591
	}

5592
	i915_gem_drain_freed_objects(dev_priv);
5593
	return ret;
5594 5595
}

5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5618 5619 5620 5621 5622
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5623
void
5624
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5625
{
5626
	struct intel_engine_cs *engine;
5627
	enum intel_engine_id id;
5628

5629
	for_each_engine(engine, dev_priv, id)
5630
		dev_priv->gt.cleanup_engine(engine);
5631 5632
}

5633 5634 5635
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5636
	int i;
5637

5638
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5639 5640
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5641
	else if (INTEL_GEN(dev_priv) >= 4 ||
5642 5643
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5644 5645 5646 5647
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5648
	if (intel_vgpu_active(dev_priv))
5649 5650 5651 5652
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5653 5654 5655 5656 5657 5658 5659
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5660
	i915_gem_restore_fences(dev_priv);
5661

5662
	i915_gem_detect_bit_6_swizzle(dev_priv);
5663 5664
}

5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5681
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5682
{
5683
	int err = -ENOMEM;
5684

5685 5686
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5687 5688
		goto err_out;

5689 5690
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5691 5692
		goto err_objects;

5693 5694 5695 5696
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5697
	dev_priv->requests = KMEM_CACHE(i915_request,
5698 5699
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5700
					SLAB_TYPESAFE_BY_RCU);
5701
	if (!dev_priv->requests)
5702
		goto err_luts;
5703

5704 5705 5706 5707 5708 5709
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5710 5711 5712 5713
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5714
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5715
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5716
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5717

5718
	i915_gem_init__mm(dev_priv);
5719

5720
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5721
			  i915_gem_retire_work_handler);
5722
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5723
			  i915_gem_idle_work_handler);
5724
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5725
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5726

5727 5728
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5729
	spin_lock_init(&dev_priv->fb_tracking.lock);
5730

M
Matthew Auld 已提交
5731 5732 5733 5734
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5735 5736
	return 0;

5737 5738
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5739 5740
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5741 5742
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5743 5744 5745 5746 5747 5748
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5749
}
5750

5751
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5752
{
5753
	i915_gem_drain_freed_objects(dev_priv);
5754 5755
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5756
	WARN_ON(dev_priv->mm.object_count);
5757 5758
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5759
	kmem_cache_destroy(dev_priv->priorities);
5760
	kmem_cache_destroy(dev_priv->dependencies);
5761
	kmem_cache_destroy(dev_priv->requests);
5762
	kmem_cache_destroy(dev_priv->luts);
5763 5764
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5765 5766 5767

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5768 5769

	i915_gemfs_fini(dev_priv);
5770 5771
}

5772 5773
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5774 5775 5776
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5777 5778 5779 5780 5781
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5782
int i915_gem_freeze_late(struct drm_i915_private *i915)
5783 5784
{
	struct drm_i915_gem_object *obj;
5785
	struct list_head *phases[] = {
5786 5787
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5788
		NULL
5789
	}, **phase;
5790

5791 5792
	/*
	 * Called just before we write the hibernation image.
5793 5794 5795 5796 5797 5798 5799 5800
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5801 5802
	 *
	 * To try and reduce the hibernation image, we manually shrink
5803
	 * the objects as well, see i915_gem_freeze()
5804 5805
	 */

5806 5807
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5808

5809 5810 5811 5812
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5813
	}
5814
	mutex_unlock(&i915->drm.struct_mutex);
5815 5816 5817 5818

	return 0;
}

5819
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5820
{
5821
	struct drm_i915_file_private *file_priv = file->driver_priv;
5822
	struct i915_request *request;
5823 5824 5825 5826 5827

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5828
	spin_lock(&file_priv->mm.lock);
5829
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5830
		request->file_priv = NULL;
5831
	spin_unlock(&file_priv->mm.lock);
5832 5833
}

5834
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5835 5836
{
	struct drm_i915_file_private *file_priv;
5837
	int ret;
5838

5839
	DRM_DEBUG("\n");
5840 5841 5842 5843 5844 5845

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5846
	file_priv->dev_priv = i915;
5847
	file_priv->file = file;
5848 5849 5850 5851

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5852
	file_priv->bsd_engine = -1;
5853
	file_priv->hang_timestamp = jiffies;
5854

5855
	ret = i915_gem_context_open(i915, file);
5856 5857
	if (ret)
		kfree(file_priv);
5858

5859
	return ret;
5860 5861
}

5862 5863
/**
 * i915_gem_track_fb - update frontbuffer tracking
5864 5865 5866
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5867 5868 5869 5870
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5871 5872 5873 5874
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5875 5876 5877 5878 5879 5880 5881 5882 5883
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5884
	if (old) {
5885 5886
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5887 5888 5889
	}

	if (new) {
5890 5891
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5892 5893 5894
	}
}

5895 5896
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5897
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5898 5899 5900
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5901 5902 5903
	struct file *file;
	size_t offset;
	int err;
5904

5905
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5906
	if (IS_ERR(obj))
5907 5908
		return obj;

5909
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5910

5911 5912 5913 5914 5915 5916
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5917

5918 5919 5920 5921 5922
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5923

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5938 5939 5940 5941

	return obj;

fail:
5942
	i915_gem_object_put(obj);
5943
	return ERR_PTR(err);
5944
}
5945 5946 5947 5948 5949 5950

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5951
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5952 5953 5954 5955 5956
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5957
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6082
	if (!obj->mm.dirty)
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6098

6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6134
	pages = __i915_gem_object_unset_pages(obj);
6135

6136 6137
	obj->ops = &i915_gem_phys_ops;

6138
	err = ____i915_gem_object_get_pages(obj);
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6152 6153 6154 6155 6156
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6157 6158 6159 6160 6161
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6162 6163
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6164
#include "selftests/mock_gem_device.c"
6165
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6166
#include "selftests/huge_pages.c"
6167
#include "selftests/i915_gem_object.c"
6168
#include "selftests/i915_gem_coherency.c"
6169
#endif