i915_gem.c 133.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54 55 56
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

57
	if (!i915_gem_object_is_coherent(obj))
58 59 60 61 62
		return true;

	return obj->pin_display;
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106
	if (!i915_reset_in_progress(error))
107 108
		return 0;

109 110 111 112 113
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
114
	ret = wait_event_interruptible_timeout(error->reset_queue,
115
					       !i915_reset_in_progress(error),
116
					       I915_RESET_TIMEOUT);
117 118 119 120
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
121
		return ret;
122 123
	} else {
		return 0;
124
	}
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128
{
129
	struct drm_i915_private *dev_priv = to_i915(dev);
130 131
	int ret;

132
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133 134 135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
142

143 144
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145
			    struct drm_file *file)
146
{
147
	struct drm_i915_private *dev_priv = to_i915(dev);
148
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
149
	struct drm_i915_gem_get_aperture *args = data;
150
	struct i915_vma *vma;
151
	size_t pinned;
152

153
	pinned = 0;
154
	mutex_lock(&dev->struct_mutex);
155
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156
		if (i915_vma_is_pinned(vma))
157
			pinned += vma->node.size;
158
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	mutex_unlock(&dev->struct_mutex);
162

163
	args->aper_size = ggtt->base.total;
164
	args->aper_available_size = args->aper_size - pinned;
165

166 167 168
	return 0;
}

169
static struct sg_table *
170
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171
{
172
	struct address_space *mapping = obj->base.filp->f_mapping;
173
	drm_dma_handle_t *phys;
174 175
	struct sg_table *st;
	struct scatterlist *sg;
176
	char *vaddr;
177
	int i;
178

179
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180
		return ERR_PTR(-EINVAL);
181

182 183 184 185 186 187 188 189 190 191 192
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
193 194 195 196 197
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
198 199 200 201
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
202 203 204 205 206 207

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

208
		put_page(page);
209 210 211
		vaddr += PAGE_SIZE;
	}

212
	i915_gem_chipset_flush(to_i915(obj->base.dev));
213 214

	st = kmalloc(sizeof(*st), GFP_KERNEL);
215 216 217 218
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
219 220 221

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
222 223
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
224 225 226 227 228
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
229

230
	sg_dma_address(sg) = phys->busaddr;
231 232
	sg_dma_len(sg) = obj->base.size;

233 234 235 236 237
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
238
	return st;
239 240 241
}

static void
242
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
243 244
				struct sg_table *pages,
				bool needs_clflush)
245
{
C
Chris Wilson 已提交
246
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
247

C
Chris Wilson 已提交
248 249
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
250

251 252
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
253
	    !i915_gem_object_is_coherent(obj))
254
		drm_clflush_sg(pages);
255 256 257 258 259 260 261 262 263

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
264
	__i915_gem_object_release_shmem(obj, pages, false);
265

C
Chris Wilson 已提交
266
	if (obj->mm.dirty) {
267
		struct address_space *mapping = obj->base.filp->f_mapping;
268
		char *vaddr = obj->phys_handle->vaddr;
269 270 271
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
272 273 274 275 276 277 278 279 280 281 282 283 284
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
285
			if (obj->mm.madv == I915_MADV_WILLNEED)
286
				mark_page_accessed(page);
287
			put_page(page);
288 289
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
290
		obj->mm.dirty = false;
291 292
	}

293 294
	sg_free_table(pages);
	kfree(pages);
295 296

	drm_pci_free(obj->base.dev, obj->phys_handle);
297 298 299 300 301
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
302
	i915_gem_object_unpin_pages(obj);
303 304 305 306 307 308 309 310
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

311 312
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

313
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
314 315 316
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
317 318 319
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
320

321 322 323 324
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
325
	 */
326 327 328 329 330 331
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
332 333 334 335 336
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

337 338 339 340 341 342 343 344 345 346 347 348 349
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

350 351 352 353 354
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
355
{
356
	struct drm_i915_gem_request *rq;
357

358
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
392 393
	}

394 395 396 397 398 399
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

400
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
425
	unsigned int seq = __read_seqcount_begin(&resv->seq);
426
	struct dma_fence *excl;
427
	bool prune_fences = false;
428 429 430 431

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
432 433
		int ret;

434 435
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
436 437 438
		if (ret)
			return ret;

439 440 441 442
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
443
			if (timeout < 0)
444
				break;
445

446 447 448 449 450 451
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
452 453

		prune_fences = count && timeout >= 0;
454 455
	} else {
		excl = reservation_object_get_excl_rcu(resv);
456 457
	}

458
	if (excl && timeout >= 0) {
459
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460 461
		prune_fences = timeout >= 0;
	}
462 463 464

	dma_fence_put(excl);

465 466 467 468 469 470 471
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
		reservation_object_lock(resv, NULL);
		if (!__read_seqcount_retry(&resv->seq, seq))
			reservation_object_add_excl_fence(resv, NULL);
		reservation_object_unlock(resv);
	}

472
	return timeout;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

539 540 541 542 543 544
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
545
 */
546 547 548 549 550
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
551
{
552 553 554 555 556 557 558
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
559

560 561 562
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
563
	return timeout < 0 ? timeout : 0;
564 565 566 567 568 569 570 571 572
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

573 574 575 576
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
577
	int ret;
578

579 580
	if (align > obj->base.size)
		return -EINVAL;
581

582
	if (obj->ops == &i915_gem_phys_ops)
583 584
		return 0;

C
Chris Wilson 已提交
585
	if (obj->mm.madv != I915_MADV_WILLNEED)
586 587 588 589 590
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
591 592 593 594
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

595
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596 597
	if (obj->mm.pages)
		return -EBUSY;
598

599
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600 601
	obj->ops = &i915_gem_phys_ops;

602 603 604 605 606 607 608 609 610
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
611 612 613 614 615
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
616
		     struct drm_file *file)
617 618
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
619
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
620 621 622 623

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
624
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625 626
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
627

628
	drm_clflush_virt_range(vaddr, args->size);
629
	i915_gem_chipset_flush(to_i915(obj->base.dev));
630

631
	intel_fb_obj_flush(obj, ORIGIN_CPU);
632
	return 0;
633 634
}

635
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636
{
637
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 639 640 641
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
642
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643
	kmem_cache_free(dev_priv->objects, obj);
644 645
}

646 647
static int
i915_gem_create(struct drm_file *file,
648
		struct drm_i915_private *dev_priv,
649 650
		uint64_t size,
		uint32_t *handle_p)
651
{
652
	struct drm_i915_gem_object *obj;
653 654
	int ret;
	u32 handle;
655

656
	size = roundup(size, PAGE_SIZE);
657 658
	if (size == 0)
		return -EINVAL;
659 660

	/* Allocate the new object */
661
	obj = i915_gem_object_create(dev_priv, size);
662 663
	if (IS_ERR(obj))
		return PTR_ERR(obj);
664

665
	ret = drm_gem_handle_create(file, &obj->base, &handle);
666
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
667
	i915_gem_object_put(obj);
668 669
	if (ret)
		return ret;
670

671
	*handle_p = handle;
672 673 674
	return 0;
}

675 676 677 678 679 680
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
681
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682
	args->size = args->pitch * args->height;
683
	return i915_gem_create(file, to_i915(dev),
684
			       args->size, &args->handle);
685 686 687 688
}

/**
 * Creates a new mm object and returns a handle to it.
689 690 691
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
692 693 694 695 696
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
697
	struct drm_i915_private *dev_priv = to_i915(dev);
698
	struct drm_i915_gem_create *args = data;
699

700
	i915_gem_flush_free_objects(dev_priv);
701

702
	return i915_gem_create(file, dev_priv,
703
			       args->size, &args->handle);
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

732
static inline int
733 734
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

758 759 760 761 762 763
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
764
				    unsigned int *needs_clflush)
765 766 767
{
	int ret;

768
	lockdep_assert_held(&obj->base.dev->struct_mutex);
769

770
	*needs_clflush = 0;
771 772
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
773

774 775 776 777 778
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
779 780 781
	if (ret)
		return ret;

C
Chris Wilson 已提交
782
	ret = i915_gem_object_pin_pages(obj);
783 784 785
	if (ret)
		return ret;

786 787
	i915_gem_object_flush_gtt_write_domain(obj);

788 789 790 791 792 793
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
794
		*needs_clflush = !i915_gem_object_is_coherent(obj);
795 796 797

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
798 799 800
		if (ret)
			goto err_unpin;

801
		*needs_clflush = 0;
802 803
	}

804
	/* return with the pages pinned */
805
	return 0;
806 807 808 809

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
810 811 812 813 814 815 816
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

817 818
	lockdep_assert_held(&obj->base.dev->struct_mutex);

819 820 821 822
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

823 824 825 826 827 828
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
829 830 831
	if (ret)
		return ret;

C
Chris Wilson 已提交
832
	ret = i915_gem_object_pin_pages(obj);
833 834 835
	if (ret)
		return ret;

836 837
	i915_gem_object_flush_gtt_write_domain(obj);

838 839 840 841 842 843 844 845 846 847 848 849
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
850
		*needs_clflush |= !i915_gem_object_is_coherent(obj);
851 852 853

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
854 855 856
		if (ret)
			goto err_unpin;

857 858 859 860 861 862 863
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
864
	obj->mm.dirty = true;
865
	/* return with the pages pinned */
866
	return 0;
867 868 869 870

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
871 872
}

873 874 875 876
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
877
	if (unlikely(swizzled)) {
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

895 896 897
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
898
shmem_pread_slow(struct page *page, int offset, int length,
899 900 901 902 903 904 905 906
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
907
		shmem_clflush_swizzled_range(vaddr + offset, length,
908
					     page_do_bit17_swizzling);
909 910

	if (page_do_bit17_swizzling)
911
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
912
	else
913
		ret = __copy_to_user(user_data, vaddr + offset, length);
914 915
	kunmap(page);

916
	return ret ? - EFAULT : 0;
917 918
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
995 996
{
	void *vaddr;
997
	unsigned long unwritten;
998 999

	/* We can use the cpu mem copy function because this is X86. */
1000 1001 1002 1003 1004 1005 1006 1007 1008
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1009 1010 1011 1012
	return unwritten;
}

static int
1013 1014
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1015
{
1016 1017
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1018
	struct drm_mm_node node;
1019 1020 1021
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1022 1023
	int ret;

1024 1025 1026 1027 1028 1029 1030
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1031 1032 1033
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1034
		ret = i915_vma_put_fence(vma);
1035 1036 1037 1038 1039
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1040
	if (IS_ERR(vma)) {
1041
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1042
		if (ret)
1043 1044
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1045 1046 1047 1048 1049 1050
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1051
	mutex_unlock(&i915->drm.struct_mutex);
1052

1053 1054 1055
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1072
					       node.start, I915_CACHE_NONE, 0);
1073 1074 1075 1076
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1077 1078 1079

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1080 1081 1082 1083 1084 1085 1086 1087 1088
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1089
	mutex_lock(&i915->drm.struct_mutex);
1090 1091 1092 1093
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1094
				       node.start, node.size);
1095 1096
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1097
		i915_vma_unpin(vma);
1098
	}
1099 1100 1101
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1102

1103 1104 1105
	return ret;
}

1106 1107
/**
 * Reads data from the object referenced by handle.
1108 1109 1110
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1111 1112 1113 1114 1115
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1116
		     struct drm_file *file)
1117 1118
{
	struct drm_i915_gem_pread *args = data;
1119
	struct drm_i915_gem_object *obj;
1120
	int ret;
1121

1122 1123 1124 1125
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1126
		       u64_to_user_ptr(args->data_ptr),
1127 1128 1129
		       args->size))
		return -EFAULT;

1130
	obj = i915_gem_object_lookup(file, args->handle);
1131 1132
	if (!obj)
		return -ENOENT;
1133

1134
	/* Bounds check source.  */
1135
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1136
		ret = -EINVAL;
1137
		goto out;
C
Chris Wilson 已提交
1138 1139
	}

C
Chris Wilson 已提交
1140 1141
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1142 1143 1144 1145
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1146
	if (ret)
1147
		goto out;
1148

1149
	ret = i915_gem_object_pin_pages(obj);
1150
	if (ret)
1151
		goto out;
1152

1153
	ret = i915_gem_shmem_pread(obj, args);
1154
	if (ret == -EFAULT || ret == -ENODEV)
1155
		ret = i915_gem_gtt_pread(obj, args);
1156

1157 1158
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1159
	i915_gem_object_put(obj);
1160
	return ret;
1161 1162
}

1163 1164
/* This is the fast write path which cannot handle
 * page faults in the source data
1165
 */
1166

1167 1168 1169 1170
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1171
{
1172
	void *vaddr;
1173
	unsigned long unwritten;
1174

1175
	/* We can use the cpu mem copy function because this is X86. */
1176 1177
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1178
						      user_data, length);
1179 1180 1181 1182 1183 1184 1185
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1186 1187 1188 1189

	return unwritten;
}

1190 1191 1192
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1193
 * @obj: i915 GEM object
1194
 * @args: pwrite arguments structure
1195
 */
1196
static int
1197 1198
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1199
{
1200
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1201 1202
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1203 1204 1205
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1206
	int ret;
1207

1208 1209 1210
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1211

1212
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1213
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1214
				       PIN_MAPPABLE | PIN_NONBLOCK);
1215 1216 1217
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1218
		ret = i915_vma_put_fence(vma);
1219 1220 1221 1222 1223
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1224
	if (IS_ERR(vma)) {
1225
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1226
		if (ret)
1227 1228
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1229
	}
D
Daniel Vetter 已提交
1230 1231 1232 1233 1234

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1235 1236
	mutex_unlock(&i915->drm.struct_mutex);

1237
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1238

1239 1240 1241 1242
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1243 1244
		/* Operation in this page
		 *
1245 1246 1247
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1248
		 */
1249
		u32 page_base = node.start;
1250 1251
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1262
		/* If we get a fault while copying data, then (presumably) our
1263 1264
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1265 1266
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1267
		 */
1268 1269 1270 1271
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1272
		}
1273

1274 1275 1276
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1277
	}
1278
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1279 1280

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1281
out_unpin:
1282 1283 1284
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1285
				       node.start, node.size);
1286 1287
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1288
		i915_vma_unpin(vma);
1289
	}
1290
out_unlock:
1291
	intel_runtime_pm_put(i915);
1292
	mutex_unlock(&i915->drm.struct_mutex);
1293
	return ret;
1294 1295
}

1296
static int
1297
shmem_pwrite_slow(struct page *page, int offset, int length,
1298 1299 1300 1301
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1302
{
1303 1304
	char *vaddr;
	int ret;
1305

1306
	vaddr = kmap(page);
1307
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1308
		shmem_clflush_swizzled_range(vaddr + offset, length,
1309
					     page_do_bit17_swizzling);
1310
	if (page_do_bit17_swizzling)
1311 1312
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1313
	else
1314
		ret = __copy_from_user(vaddr + offset, user_data, length);
1315
	if (needs_clflush_after)
1316
		shmem_clflush_swizzled_range(vaddr + offset, length,
1317
					     page_do_bit17_swizzling);
1318
	kunmap(page);
1319

1320
	return ret ? -EFAULT : 0;
1321 1322
}

1323 1324 1325 1326 1327
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1328
static int
1329 1330 1331 1332
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1333
{
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1366
	unsigned int needs_clflush;
1367 1368
	unsigned int offset, idx;
	int ret;
1369

1370
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1371 1372 1373
	if (ret)
		return ret;

1374 1375 1376 1377
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1378

1379 1380 1381
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1382

1383 1384 1385 1386 1387 1388 1389
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1390

1391 1392 1393 1394 1395 1396
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1397

1398 1399 1400
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1401

1402 1403 1404 1405
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1406
		if (ret)
1407
			break;
1408

1409 1410 1411
		remain -= length;
		user_data += length;
		offset = 0;
1412
	}
1413

1414
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1415
	i915_gem_obj_finish_shmem_access(obj);
1416
	return ret;
1417 1418 1419 1420
}

/**
 * Writes data to the object referenced by handle.
1421 1422 1423
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1424 1425 1426 1427 1428
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1429
		      struct drm_file *file)
1430 1431
{
	struct drm_i915_gem_pwrite *args = data;
1432
	struct drm_i915_gem_object *obj;
1433 1434 1435 1436 1437 1438
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1439
		       u64_to_user_ptr(args->data_ptr),
1440 1441 1442
		       args->size))
		return -EFAULT;

1443
	obj = i915_gem_object_lookup(file, args->handle);
1444 1445
	if (!obj)
		return -ENOENT;
1446

1447
	/* Bounds check destination. */
1448
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1449
		ret = -EINVAL;
1450
		goto err;
C
Chris Wilson 已提交
1451 1452
	}

C
Chris Wilson 已提交
1453 1454
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1455 1456 1457 1458 1459
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1460 1461 1462
	if (ret)
		goto err;

1463
	ret = i915_gem_object_pin_pages(obj);
1464
	if (ret)
1465
		goto err;
1466

D
Daniel Vetter 已提交
1467
	ret = -EFAULT;
1468 1469 1470 1471 1472 1473
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1474
	if (!i915_gem_object_has_struct_page(obj) ||
1475
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1476 1477
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1478 1479
		 * textures). Fallback to the shmem path in that case.
		 */
1480
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1481

1482
	if (ret == -EFAULT || ret == -ENOSPC) {
1483 1484
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1485
		else
1486
			ret = i915_gem_shmem_pwrite(obj, args);
1487
	}
1488

1489
	i915_gem_object_unpin_pages(obj);
1490
err:
C
Chris Wilson 已提交
1491
	i915_gem_object_put(obj);
1492
	return ret;
1493 1494
}

1495
static inline enum fb_op_origin
1496 1497
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1498 1499
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1510
			break;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1523
	list_move_tail(&obj->global_link, list);
1524 1525
}

1526
/**
1527 1528
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1529 1530 1531
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1532 1533 1534
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1535
			  struct drm_file *file)
1536 1537
{
	struct drm_i915_gem_set_domain *args = data;
1538
	struct drm_i915_gem_object *obj;
1539 1540
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1541
	int err;
1542

1543
	/* Only handle setting domains to types used by the CPU. */
1544
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1545 1546 1547 1548 1549 1550 1551 1552
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1553
	obj = i915_gem_object_lookup(file, args->handle);
1554 1555
	if (!obj)
		return -ENOENT;
1556

1557 1558 1559 1560
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1561
	err = i915_gem_object_wait(obj,
1562 1563 1564 1565
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1566
	if (err)
C
Chris Wilson 已提交
1567
		goto out;
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1579
		goto out;
1580 1581 1582

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1583
		goto out_unpin;
1584

1585
	if (read_domains & I915_GEM_DOMAIN_GTT)
1586
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1587
	else
1588
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1589

1590 1591
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1592

1593
	mutex_unlock(&dev->struct_mutex);
1594

1595 1596 1597
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1598
out_unpin:
1599
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1600 1601
out:
	i915_gem_object_put(obj);
1602
	return err;
1603 1604 1605 1606
}

/**
 * Called when user space has done writes to this buffer
1607 1608 1609
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1610 1611 1612
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1613
			 struct drm_file *file)
1614 1615
{
	struct drm_i915_gem_sw_finish *args = data;
1616
	struct drm_i915_gem_object *obj;
1617

1618
	obj = i915_gem_object_lookup(file, args->handle);
1619 1620
	if (!obj)
		return -ENOENT;
1621 1622

	/* Pinned buffers may be scanout, so flush the cache */
1623
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1624
	i915_gem_object_put(obj);
1625 1626

	return 0;
1627 1628 1629
}

/**
1630 1631 1632 1633 1634
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1635 1636 1637
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1648 1649 1650
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1651
		    struct drm_file *file)
1652 1653
{
	struct drm_i915_gem_mmap *args = data;
1654
	struct drm_i915_gem_object *obj;
1655 1656
	unsigned long addr;

1657 1658 1659
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1660
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1661 1662
		return -ENODEV;

1663 1664
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1665
		return -ENOENT;
1666

1667 1668 1669
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1670
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1671
		i915_gem_object_put(obj);
1672 1673 1674
		return -EINVAL;
	}

1675
	addr = vm_mmap(obj->base.filp, 0, args->size,
1676 1677
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1678 1679 1680 1681
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1682
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1683
			i915_gem_object_put(obj);
1684 1685
			return -EINTR;
		}
1686 1687 1688 1689 1690 1691 1692
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1693 1694

		/* This may race, but that's ok, it only gets set */
1695
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1696
	}
C
Chris Wilson 已提交
1697
	i915_gem_object_put(obj);
1698 1699 1700 1701 1702 1703 1704 1705
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1706 1707
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1708
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1709 1710
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1772 1773
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1774
		min_t(unsigned int, chunk,
1775
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1776 1777 1778 1779 1780 1781 1782 1783

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1784 1785
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1786
 * @area: CPU VMA in question
1787
 * @vmf: fault info
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1799 1800 1801
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1802
 */
C
Chris Wilson 已提交
1803
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1804
{
1805
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1806
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1807
	struct drm_device *dev = obj->base.dev;
1808 1809
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1810
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1811
	struct i915_vma *vma;
1812
	pgoff_t page_offset;
1813
	unsigned int flags;
1814
	int ret;
1815

1816
	/* We don't use vmf->pgoff since that has the fake offset */
1817
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1818

C
Chris Wilson 已提交
1819 1820
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1821
	/* Try to flush the object off the GPU first without holding the lock.
1822
	 * Upon acquiring the lock, we will perform our sanity checks and then
1823 1824 1825
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1826 1827 1828 1829
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1830
	if (ret)
1831 1832
		goto err;

1833 1834 1835 1836
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1837 1838 1839 1840 1841
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1842

1843
	/* Access to snoopable pages through the GTT is incoherent. */
1844
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1845
		ret = -EFAULT;
1846
		goto err_unlock;
1847 1848
	}

1849 1850 1851 1852 1853 1854 1855 1856
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1857
	/* Now pin it into the GTT as needed */
1858
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1859 1860
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1861
		struct i915_ggtt_view view =
1862
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1863

1864 1865 1866 1867 1868
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1869 1870
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1871 1872
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1873
		goto err_unlock;
C
Chris Wilson 已提交
1874
	}
1875

1876 1877
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1878
		goto err_unpin;
1879

1880
	ret = i915_vma_get_fence(vma);
1881
	if (ret)
1882
		goto err_unpin;
1883

1884
	/* Mark as being mmapped into userspace for later revocation */
1885
	assert_rpm_wakelock_held(dev_priv);
1886 1887 1888
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1889
	/* Finally, remap it using the new GTT offset */
1890
	ret = remap_io_mapping(area,
1891
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1892 1893 1894
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1895

1896
err_unpin:
C
Chris Wilson 已提交
1897
	__i915_vma_unpin(vma);
1898
err_unlock:
1899
	mutex_unlock(&dev->struct_mutex);
1900 1901
err_rpm:
	intel_runtime_pm_put(dev_priv);
1902
	i915_gem_object_unpin_pages(obj);
1903
err:
1904
	switch (ret) {
1905
	case -EIO:
1906 1907 1908 1909 1910 1911 1912
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1913 1914 1915
			ret = VM_FAULT_SIGBUS;
			break;
		}
1916
	case -EAGAIN:
D
Daniel Vetter 已提交
1917 1918 1919 1920
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1921
		 */
1922 1923
	case 0:
	case -ERESTARTSYS:
1924
	case -EINTR:
1925 1926 1927 1928 1929
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1930 1931
		ret = VM_FAULT_NOPAGE;
		break;
1932
	case -ENOMEM:
1933 1934
		ret = VM_FAULT_OOM;
		break;
1935
	case -ENOSPC:
1936
	case -EFAULT:
1937 1938
		ret = VM_FAULT_SIGBUS;
		break;
1939
	default:
1940
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1941 1942
		ret = VM_FAULT_SIGBUS;
		break;
1943
	}
1944
	return ret;
1945 1946
}

1947 1948 1949 1950
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1951
 * Preserve the reservation of the mmapping with the DRM core code, but
1952 1953 1954 1955 1956 1957 1958 1959 1960
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1961
void
1962
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1963
{
1964 1965
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1966 1967 1968
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1969 1970 1971 1972
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1973
	 */
1974
	lockdep_assert_held(&i915->drm.struct_mutex);
1975
	intel_runtime_pm_get(i915);
1976

1977
	if (list_empty(&obj->userfault_link))
1978
		goto out;
1979

1980
	list_del_init(&obj->userfault_link);
1981 1982
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1983 1984 1985 1986 1987 1988 1989 1990 1991

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1992 1993 1994

out:
	intel_runtime_pm_put(i915);
1995 1996
}

1997
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1998
{
1999
	struct drm_i915_gem_object *obj, *on;
2000
	int i;
2001

2002 2003 2004 2005 2006 2007
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2008

2009 2010 2011
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2012 2013 2014
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2015 2016 2017 2018 2019 2020 2021 2022

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2033 2034 2035 2036 2037 2038 2039

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2040 2041
}

2042 2043
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2044
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2045
	int err;
2046

2047
	err = drm_gem_create_mmap_offset(&obj->base);
2048
	if (likely(!err))
2049
		return 0;
2050

2051 2052 2053 2054 2055
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2056

2057
		i915_gem_drain_freed_objects(dev_priv);
2058
		err = drm_gem_create_mmap_offset(&obj->base);
2059 2060 2061 2062
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2063

2064
	return err;
2065 2066 2067 2068 2069 2070 2071
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2072
int
2073 2074
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2075
		  uint32_t handle,
2076
		  uint64_t *offset)
2077
{
2078
	struct drm_i915_gem_object *obj;
2079 2080
	int ret;

2081
	obj = i915_gem_object_lookup(file, handle);
2082 2083
	if (!obj)
		return -ENOENT;
2084

2085
	ret = i915_gem_object_create_mmap_offset(obj);
2086 2087
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2088

C
Chris Wilson 已提交
2089
	i915_gem_object_put(obj);
2090
	return ret;
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2114
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2115 2116
}

D
Daniel Vetter 已提交
2117 2118 2119
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2120
{
2121
	i915_gem_object_free_mmap_offset(obj);
2122

2123 2124
	if (obj->base.filp == NULL)
		return;
2125

D
Daniel Vetter 已提交
2126 2127 2128 2129 2130
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2131
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2132
	obj->mm.madv = __I915_MADV_PURGED;
2133
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2134
}
2135

2136
/* Try to discard unwanted pages */
2137
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2138
{
2139 2140
	struct address_space *mapping;

2141 2142 2143
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2144
	switch (obj->mm.madv) {
2145 2146 2147 2148 2149 2150 2151 2152 2153
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2154
	mapping = obj->base.filp->f_mapping,
2155
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2156 2157
}

2158
static void
2159 2160
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2161
{
2162 2163
	struct sgt_iter sgt_iter;
	struct page *page;
2164

2165
	__i915_gem_object_release_shmem(obj, pages, true);
2166

2167
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2168

2169
	if (i915_gem_object_needs_bit17_swizzle(obj))
2170
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2171

2172
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2173
		if (obj->mm.dirty)
2174
			set_page_dirty(page);
2175

C
Chris Wilson 已提交
2176
		if (obj->mm.madv == I915_MADV_WILLNEED)
2177
			mark_page_accessed(page);
2178

2179
		put_page(page);
2180
	}
C
Chris Wilson 已提交
2181
	obj->mm.dirty = false;
2182

2183 2184
	sg_free_table(pages);
	kfree(pages);
2185
}
C
Chris Wilson 已提交
2186

2187 2188 2189 2190 2191
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2192 2193
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2194 2195
}

2196 2197
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2198
{
2199
	struct sg_table *pages;
2200

C
Chris Wilson 已提交
2201
	if (i915_gem_object_has_pinned_pages(obj))
2202
		return;
2203

2204
	GEM_BUG_ON(obj->bind_count);
2205 2206 2207 2208
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2209
	mutex_lock_nested(&obj->mm.lock, subclass);
2210 2211
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2212

2213 2214 2215
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2216 2217
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2218

C
Chris Wilson 已提交
2219
	if (obj->mm.mapping) {
2220 2221
		void *ptr;

C
Chris Wilson 已提交
2222
		ptr = ptr_mask_bits(obj->mm.mapping);
2223 2224
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2225
		else
2226 2227
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2228
		obj->mm.mapping = NULL;
2229 2230
	}

2231 2232
	__i915_gem_object_reset_page_iter(obj);

2233 2234 2235
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2236 2237
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2238 2239
}

2240
static bool i915_sg_trim(struct sg_table *orig_st)
2241 2242 2243 2244 2245 2246
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2247
		return false;
2248

2249
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2250
		return false;
2251 2252 2253 2254 2255 2256 2257

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2258
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2259 2260 2261 2262

	sg_free_table(orig_st);

	*orig_st = new_st;
2263
	return true;
2264 2265
}

2266
static struct sg_table *
C
Chris Wilson 已提交
2267
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2268
{
2269
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2270 2271
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2272
	struct address_space *mapping;
2273 2274
	struct sg_table *st;
	struct scatterlist *sg;
2275
	struct sgt_iter sgt_iter;
2276
	struct page *page;
2277
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2278
	unsigned int max_segment;
I
Imre Deak 已提交
2279
	int ret;
C
Chris Wilson 已提交
2280
	gfp_t gfp;
2281

C
Chris Wilson 已提交
2282 2283 2284 2285
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2286 2287
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2288

2289
	max_segment = swiotlb_max_segment();
2290
	if (!max_segment)
2291
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2292

2293 2294
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2295
		return ERR_PTR(-ENOMEM);
2296

2297
rebuild_st:
2298 2299
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2300
		return ERR_PTR(-ENOMEM);
2301
	}
2302

2303 2304 2305 2306 2307
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2308
	mapping = obj->base.filp->f_mapping;
2309
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2310
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2311 2312 2313
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2314 2315
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2316 2317 2318 2319 2320
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2321 2322 2323 2324 2325 2326 2327
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2328
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2329 2330
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2331
				goto err_sg;
I
Imre Deak 已提交
2332
			}
C
Chris Wilson 已提交
2333
		}
2334 2335 2336
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2337 2338 2339 2340 2341 2342 2343 2344
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2345 2346 2347

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2348
	}
2349
	if (sg) /* loop terminated early; short sg table */
2350
		sg_mark_end(sg);
2351

2352 2353 2354
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2355
	ret = i915_gem_gtt_prepare_pages(obj, st);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2375

2376
	if (i915_gem_object_needs_bit17_swizzle(obj))
2377
		i915_gem_object_do_bit_17_swizzle(obj, st);
2378

2379
	return st;
2380

2381
err_sg:
2382
	sg_mark_end(sg);
2383
err_pages:
2384 2385
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2386 2387
	sg_free_table(st);
	kfree(st);
2388 2389 2390 2391 2392 2393 2394 2395 2396

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2397 2398 2399
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2400 2401 2402 2403 2404 2405
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2406
	lockdep_assert_held(&obj->mm.lock);
2407 2408 2409 2410 2411

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2412 2413 2414 2415 2416 2417 2418

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2419 2420 2421 2422 2423 2424
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2425 2426
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2438 2439
}

2440
/* Ensure that the associated pages are gathered from the backing storage
2441
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2442
 * multiple times before they are released by a single call to
2443
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2444 2445 2446
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2447
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2448
{
2449
	int err;
2450

2451 2452 2453
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2454

2455
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2456 2457 2458
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2459

2460 2461 2462
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2463

2464 2465
unlock:
	mutex_unlock(&obj->mm.lock);
2466
	return err;
2467 2468
}

2469
/* The 'mapping' part of i915_gem_object_pin_map() below */
2470 2471
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2472 2473
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2474
	struct sg_table *sgt = obj->mm.pages;
2475 2476
	struct sgt_iter sgt_iter;
	struct page *page;
2477 2478
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2479
	unsigned long i = 0;
2480
	pgprot_t pgprot;
2481 2482 2483
	void *addr;

	/* A single page can always be kmapped */
2484
	if (n_pages == 1 && type == I915_MAP_WB)
2485 2486
		return kmap(sg_page(sgt->sgl));

2487 2488 2489 2490 2491 2492
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2493

2494 2495
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2496 2497 2498 2499

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2500 2501 2502 2503 2504 2505 2506 2507 2508
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2509

2510 2511
	if (pages != stack_pages)
		drm_free_large(pages);
2512 2513 2514 2515 2516

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2517 2518
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2519
{
2520 2521 2522
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2523 2524
	int ret;

2525
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2526

2527
	ret = mutex_lock_interruptible(&obj->mm.lock);
2528 2529 2530
	if (ret)
		return ERR_PTR(ret);

2531 2532
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2533
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2534 2535 2536
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2537

2538 2539 2540
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2541 2542 2543
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2544

C
Chris Wilson 已提交
2545
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2546 2547 2548
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2549
			goto err_unpin;
2550
		}
2551 2552 2553 2554 2555 2556

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2557
		ptr = obj->mm.mapping = NULL;
2558 2559
	}

2560 2561 2562 2563
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2564
			goto err_unpin;
2565 2566
		}

C
Chris Wilson 已提交
2567
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2568 2569
	}

2570 2571
out_unlock:
	mutex_unlock(&obj->mm.lock);
2572 2573
	return ptr;

2574 2575 2576 2577 2578
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2579 2580
}

2581
static bool ban_context(const struct i915_gem_context *ctx)
2582
{
2583 2584
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2585 2586
}

2587
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2588
{
2589
	ctx->guilty_count++;
2590 2591 2592
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2593 2594

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2595
			 ctx->name, ctx->ban_score,
2596
			 yesno(i915_gem_context_is_banned(ctx)));
2597

2598
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2599 2600
		return;

2601 2602 2603
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2604 2605 2606 2607
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2608
	ctx->active_count++;
2609 2610
}

2611
struct drm_i915_gem_request *
2612
i915_gem_find_active_request(struct intel_engine_cs *engine)
2613
{
2614 2615
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2616

2617 2618 2619 2620 2621 2622 2623 2624
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2625
	spin_lock_irqsave(&engine->timeline->lock, flags);
2626
	list_for_each_entry(request, &engine->timeline->requests, link) {
2627 2628
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2629
			continue;
2630

2631
		GEM_BUG_ON(request->engine != engine);
2632 2633
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2634 2635 2636

		active = request;
		break;
2637
	}
2638
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2639

2640
	return active;
2641 2642
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2657
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2658 2659 2660
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2661
	int err = 0;
2662 2663

	/* Ensure irq handler finishes, and not run again. */
2664 2665 2666
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2678 2679 2680 2681 2682 2683 2684 2685
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2686
		tasklet_kill(&engine->irq_tasklet);
2687
		tasklet_disable(&engine->irq_tasklet);
2688

2689 2690 2691
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2692 2693 2694 2695 2696 2697 2698
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2699
	i915_gem_revoke_fences(dev_priv);
2700 2701

	return err;
2702 2703
}

2704
static void skip_request(struct drm_i915_gem_request *request)
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2719 2720

	dma_fence_set_error(&request->fence, -EIO);
2721 2722
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2746 2747 2748 2749 2750 2751
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2784
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2785 2786 2787
{
	struct drm_i915_gem_request *request;

2788
	request = i915_gem_find_active_request(engine);
2789 2790 2791
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2792

2793 2794 2795 2796
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2797 2798 2799

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2800
}
2801

2802
void i915_gem_reset(struct drm_i915_private *dev_priv)
2803
{
2804
	struct intel_engine_cs *engine;
2805
	enum intel_engine_id id;
2806

2807 2808
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2809 2810
	i915_gem_retire_requests(dev_priv);

2811 2812 2813
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2814
		i915_gem_reset_engine(engine);
2815 2816 2817 2818
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2819

2820
	i915_gem_restore_fences(dev_priv);
2821 2822 2823 2824 2825 2826 2827

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2828 2829
}

2830 2831
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2832 2833 2834
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2835
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2836

2837
	for_each_engine(engine, dev_priv, id) {
2838
		tasklet_enable(&engine->irq_tasklet);
2839 2840
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2841 2842
}

2843 2844
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2845
	dma_fence_set_error(&request->fence, -EIO);
2846 2847
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2848 2849
}

2850
static void engine_set_wedged(struct intel_engine_cs *engine)
2851
{
2852 2853 2854
	struct drm_i915_gem_request *request;
	unsigned long flags;

2855 2856 2857 2858 2859 2860
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2861
	engine->submit_request = nop_submit_request;
2862

2863 2864 2865 2866 2867 2868
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2869 2870 2871 2872
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2873
	intel_engine_init_global_seqno(engine,
2874
				       intel_engine_last_submit(engine));
2875

2876 2877 2878 2879 2880 2881
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2882
	if (i915.enable_execlists) {
2883 2884 2885 2886
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2887 2888 2889
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2890 2891
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2892 2893

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2894
	}
2895 2896
}

2897
static int __i915_gem_set_wedged_BKL(void *data)
2898
{
2899
	struct drm_i915_private *i915 = data;
2900
	struct intel_engine_cs *engine;
2901
	enum intel_engine_id id;
2902

2903
	for_each_engine(engine, i915, id)
2904
		engine_set_wedged(engine);
2905 2906 2907 2908 2909 2910

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2911 2912
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2913

2914
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2915

2916
	i915_gem_context_lost(dev_priv);
2917
	i915_gem_retire_requests(dev_priv);
2918 2919

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2920 2921
}

2922
static void
2923 2924
i915_gem_retire_work_handler(struct work_struct *work)
{
2925
	struct drm_i915_private *dev_priv =
2926
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2927
	struct drm_device *dev = &dev_priv->drm;
2928

2929
	/* Come back later if the device is busy... */
2930
	if (mutex_trylock(&dev->struct_mutex)) {
2931
		i915_gem_retire_requests(dev_priv);
2932
		mutex_unlock(&dev->struct_mutex);
2933
	}
2934 2935 2936 2937 2938

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2939 2940
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2941 2942
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2943
				   round_jiffies_up_relative(HZ));
2944
	}
2945
}
2946

2947 2948 2949 2950
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2951
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2952
	struct drm_device *dev = &dev_priv->drm;
2953
	struct intel_engine_cs *engine;
2954
	enum intel_engine_id id;
2955 2956 2957 2958 2959
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2960 2961 2962 2963 2964
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2965 2966
		 intel_engines_are_idle(dev_priv),
		 10);
2967
	if (READ_ONCE(dev_priv->gt.active_requests))
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2981 2982 2983 2984 2985 2986 2987
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2988
	if (dev_priv->gt.active_requests)
2989
		goto out_unlock;
2990

2991
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
2992 2993
		DRM_ERROR("Timeout waiting for engines to idle\n");

2994 2995
	for_each_engine(engine, dev_priv, id) {
		intel_engine_disarm_breadcrumbs(engine);
2996
		i915_gem_batch_pool_fini(&engine->batch_pool);
2997
	}
2998

2999 3000 3001
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3002

3003 3004 3005 3006 3007
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3008

3009 3010 3011 3012
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3013
	}
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3026 3027 3028 3029 3030 3031

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3032 3033 3034
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3046 3047
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3048 3049 3050
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3075 3076
	ktime_t start;
	long ret;
3077

3078 3079 3080
	if (args->flags != 0)
		return -EINVAL;

3081
	obj = i915_gem_object_lookup(file, args->bo_handle);
3082
	if (!obj)
3083 3084
		return -ENOENT;

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3106 3107
	}

C
Chris Wilson 已提交
3108
	i915_gem_object_put(obj);
3109
	return ret;
3110 3111
}

3112
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3113
{
3114
	int ret, i;
3115

3116 3117 3118 3119 3120
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3121

3122 3123 3124 3125 3126 3127 3128
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3141 3142 3143
		if (ret)
			return ret;
	}
3144

3145
	return 0;
3146 3147
}

3148 3149
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3150
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3151
{
3152
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3153

3154
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3155 3156
		return;

3157
	/* No actual flushing is required for the GTT write domain.  Writes
3158
	 * to it "immediately" go to main memory as far as we know, so there's
3159
	 * no chipset flush.  It also doesn't land in render cache.
3160 3161 3162 3163
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3164 3165 3166 3167 3168 3169 3170
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3171
	 */
3172
	wmb();
3173
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3174
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3175

3176
	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3177

3178
	obj->base.write_domain = 0;
3179 3180 3181 3182
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3183
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3184
{
3185
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3186 3187
		return;

3188
	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3189
	obj->base.write_domain = 0;
3190 3191
}

3192 3193 3194 3195 3196
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
		return;

3197
	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3211 3212
/**
 * Moves a single object to the GTT read, and possibly write domain.
3213 3214
 * @obj: object to act on
 * @write: ask for write access or read only
3215 3216 3217 3218
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3219
int
3220
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3221
{
3222
	int ret;
3223

3224
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3225

3226 3227 3228 3229 3230 3231
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3232 3233 3234
	if (ret)
		return ret;

3235 3236 3237
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3238 3239 3240 3241 3242 3243 3244 3245
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3246
	ret = i915_gem_object_pin_pages(obj);
3247 3248 3249
	if (ret)
		return ret;

3250
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3251

3252 3253 3254 3255 3256 3257 3258
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3259 3260 3261
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3262
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3263
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3264
	if (write) {
3265 3266
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3267
		obj->mm.dirty = true;
3268 3269
	}

C
Chris Wilson 已提交
3270
	i915_gem_object_unpin_pages(obj);
3271 3272 3273
	return 0;
}

3274 3275
/**
 * Changes the cache-level of an object across all VMA.
3276 3277
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3289 3290 3291
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3292
	struct i915_vma *vma;
3293
	int ret;
3294

3295 3296
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3297
	if (obj->cache_level == cache_level)
3298
		return 0;
3299

3300 3301 3302 3303 3304
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3305 3306
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3307 3308 3309
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3310
		if (i915_vma_is_pinned(vma)) {
3311 3312 3313 3314
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3327 3328
	}

3329 3330 3331 3332 3333 3334 3335
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3336
	if (obj->bind_count) {
3337 3338 3339 3340
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3341 3342 3343 3344 3345 3346
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3347 3348 3349
		if (ret)
			return ret;

3350 3351
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3368 3369 3370 3371 3372
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3373 3374 3375 3376 3377 3378 3379 3380
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3381 3382
		}

3383
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3384 3385 3386 3387 3388 3389 3390
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3391 3392
	}

3393
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3394
	    i915_gem_object_is_coherent(obj))
3395 3396
		obj->cache_dirty = true;

3397
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3398 3399 3400
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3401 3402 3403
	return 0;
}

B
Ben Widawsky 已提交
3404 3405
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3406
{
B
Ben Widawsky 已提交
3407
	struct drm_i915_gem_caching *args = data;
3408
	struct drm_i915_gem_object *obj;
3409
	int err = 0;
3410

3411 3412 3413 3414 3415 3416
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3417

3418 3419 3420 3421 3422 3423
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3424 3425 3426 3427
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3428 3429 3430 3431
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3432 3433 3434
out:
	rcu_read_unlock();
	return err;
3435 3436
}

B
Ben Widawsky 已提交
3437 3438
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3439
{
3440
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3441
	struct drm_i915_gem_caching *args = data;
3442 3443
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3444
	int ret = 0;
3445

B
Ben Widawsky 已提交
3446 3447
	switch (args->caching) {
	case I915_CACHING_NONE:
3448 3449
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3450
	case I915_CACHING_CACHED:
3451 3452 3453 3454 3455 3456
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3457
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3458 3459
			return -ENODEV;

3460 3461
		level = I915_CACHE_LLC;
		break;
3462
	case I915_CACHING_DISPLAY:
3463
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3464
		break;
3465 3466 3467 3468
	default:
		return -EINVAL;
	}

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3480
	if (ret)
3481
		goto out;
B
Ben Widawsky 已提交
3482

3483 3484 3485
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3486 3487 3488

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3489 3490 3491

out:
	i915_gem_object_put(obj);
3492 3493 3494
	return ret;
}

3495
/*
3496 3497 3498
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3499
 */
C
Chris Wilson 已提交
3500
struct i915_vma *
3501 3502
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3503
				     const struct i915_ggtt_view *view)
3504
{
C
Chris Wilson 已提交
3505
	struct i915_vma *vma;
3506 3507
	int ret;

3508 3509
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3510 3511 3512
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3513
	obj->pin_display++;
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3524
	ret = i915_gem_object_set_cache_level(obj,
3525 3526
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3527 3528
	if (ret) {
		vma = ERR_PTR(ret);
3529
		goto err_unpin_display;
C
Chris Wilson 已提交
3530
	}
3531

3532 3533
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3534 3535 3536 3537
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3538
	 */
3539
	vma = ERR_PTR(-ENOSPC);
3540
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3541 3542
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3559
	if (IS_ERR(vma))
3560
		goto err_unpin_display;
3561

3562 3563
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3564
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3565
	__i915_gem_object_flush_for_display(obj);
3566
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3567

3568 3569 3570
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3571
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3572

C
Chris Wilson 已提交
3573
	return vma;
3574 3575

err_unpin_display:
3576
	obj->pin_display--;
C
Chris Wilson 已提交
3577
	return vma;
3578 3579 3580
}

void
C
Chris Wilson 已提交
3581
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3582
{
3583
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3584

C
Chris Wilson 已提交
3585
	if (WARN_ON(vma->obj->pin_display == 0))
3586 3587
		return;

3588
	if (--vma->obj->pin_display == 0)
3589
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3590

3591
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3592
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3593

C
Chris Wilson 已提交
3594
	i915_vma_unpin(vma);
3595 3596
}

3597 3598
/**
 * Moves a single object to the CPU read, and possibly write domain.
3599 3600
 * @obj: object to act on
 * @write: requesting write or read-only access
3601 3602 3603 3604
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3605
int
3606
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3607 3608 3609
{
	int ret;

3610
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3611

3612 3613 3614 3615 3616 3617
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3618 3619 3620
	if (ret)
		return ret;

3621 3622 3623
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3624
	i915_gem_object_flush_gtt_write_domain(obj);
3625

3626
	/* Flush the CPU cache if it's still invalid. */
3627
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3628
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3629
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3630 3631 3632 3633 3634
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3635
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3636 3637 3638 3639 3640

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3641 3642
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3643
	}
3644 3645 3646 3647

	return 0;
}

3648 3649 3650
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3651 3652 3653 3654
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3655 3656 3657
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3658
static int
3659
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3660
{
3661
	struct drm_i915_private *dev_priv = to_i915(dev);
3662
	struct drm_i915_file_private *file_priv = file->driver_priv;
3663
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3664
	struct drm_i915_gem_request *request, *target = NULL;
3665
	long ret;
3666

3667 3668 3669
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3670

3671
	spin_lock(&file_priv->mm.lock);
3672
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3673 3674
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3675

3676 3677 3678 3679
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3680

3681
		target = request;
3682
	}
3683
	if (target)
3684
		i915_gem_request_get(target);
3685
	spin_unlock(&file_priv->mm.lock);
3686

3687
	if (target == NULL)
3688
		return 0;
3689

3690 3691 3692
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3693
	i915_gem_request_put(target);
3694

3695
	return ret < 0 ? ret : 0;
3696 3697
}

C
Chris Wilson 已提交
3698
struct i915_vma *
3699 3700
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3701
			 u64 size,
3702 3703
			 u64 alignment,
			 u64 flags)
3704
{
3705 3706
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3707 3708
	struct i915_vma *vma;
	int ret;
3709

3710 3711
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3712
	vma = i915_vma_instance(obj, vm, view);
3713
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3714
		return vma;
3715 3716 3717 3718

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3719
			return ERR_PTR(-ENOSPC);
3720

3721 3722 3723 3724 3725 3726 3727 3728
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3729
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3748
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3749 3750 3751
				return ERR_PTR(-ENOSPC);
		}

3752 3753
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3754 3755 3756
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3757
		     !!(flags & PIN_MAPPABLE),
3758
		     i915_vma_is_map_and_fenceable(vma));
3759 3760
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3761
			return ERR_PTR(ret);
3762 3763
	}

C
Chris Wilson 已提交
3764 3765 3766
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3767

C
Chris Wilson 已提交
3768
	return vma;
3769 3770
}

3771
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3786 3787 3788 3789 3790 3791 3792 3793 3794
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3795 3796
}

3797
static __always_inline unsigned int
3798
__busy_set_if_active(const struct dma_fence *fence,
3799 3800
		     unsigned int (*flag)(unsigned int id))
{
3801
	struct drm_i915_gem_request *rq;
3802

3803 3804 3805 3806
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3807
	 *
3808
	 * Note we only report on the status of native fences.
3809
	 */
3810 3811 3812 3813 3814 3815 3816 3817 3818
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3819 3820
}

3821
static __always_inline unsigned int
3822
busy_check_reader(const struct dma_fence *fence)
3823
{
3824
	return __busy_set_if_active(fence, __busy_read_flag);
3825 3826
}

3827
static __always_inline unsigned int
3828
busy_check_writer(const struct dma_fence *fence)
3829
{
3830 3831 3832 3833
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3834 3835
}

3836 3837
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3838
		    struct drm_file *file)
3839 3840
{
	struct drm_i915_gem_busy *args = data;
3841
	struct drm_i915_gem_object *obj;
3842 3843
	struct reservation_object_list *list;
	unsigned int seq;
3844
	int err;
3845

3846
	err = -ENOENT;
3847 3848
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3849
	if (!obj)
3850
		goto out;
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3870

3871 3872
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3873

3874 3875 3876 3877
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3878

3879 3880 3881 3882 3883 3884
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3885
	}
3886

3887 3888 3889 3890
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3891 3892 3893
out:
	rcu_read_unlock();
	return err;
3894 3895 3896 3897 3898 3899
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3900
	return i915_gem_ring_throttle(dev, file_priv);
3901 3902
}

3903 3904 3905 3906
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3907
	struct drm_i915_private *dev_priv = to_i915(dev);
3908
	struct drm_i915_gem_madvise *args = data;
3909
	struct drm_i915_gem_object *obj;
3910
	int err;
3911 3912 3913 3914 3915 3916 3917 3918 3919

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3920
	obj = i915_gem_object_lookup(file_priv, args->handle);
3921 3922 3923 3924 3925 3926
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3927

C
Chris Wilson 已提交
3928
	if (obj->mm.pages &&
3929
	    i915_gem_object_is_tiled(obj) &&
3930
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3931 3932
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3933
			__i915_gem_object_unpin_pages(obj);
3934 3935 3936
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3937
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3938
			__i915_gem_object_pin_pages(obj);
3939 3940
			obj->mm.quirked = true;
		}
3941 3942
	}

C
Chris Wilson 已提交
3943 3944
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3945

C
Chris Wilson 已提交
3946
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3947
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3948 3949
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3950
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3951
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3952

3953
out:
3954
	i915_gem_object_put(obj);
3955
	return err;
3956 3957
}

3958 3959 3960 3961 3962 3963 3964
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

3965
	intel_fb_obj_flush(obj, ORIGIN_CS);
3966 3967
}

3968 3969
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3970
{
3971 3972
	mutex_init(&obj->mm.lock);

3973
	INIT_LIST_HEAD(&obj->global_link);
3974
	INIT_LIST_HEAD(&obj->userfault_link);
3975
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3976
	INIT_LIST_HEAD(&obj->vma_list);
3977
	INIT_LIST_HEAD(&obj->batch_pool_link);
3978

3979 3980
	obj->ops = ops;

3981 3982 3983
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3984
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3985
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
3986 3987 3988 3989

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3990

3991
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3992 3993
}

3994
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3995 3996
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3997 3998 3999 4000
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4001
struct drm_i915_gem_object *
4002
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4003
{
4004
	struct drm_i915_gem_object *obj;
4005
	struct address_space *mapping;
D
Daniel Vetter 已提交
4006
	gfp_t mask;
4007
	int ret;
4008

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4020
	obj = i915_gem_object_alloc(dev_priv);
4021
	if (obj == NULL)
4022
		return ERR_PTR(-ENOMEM);
4023

4024
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4025 4026
	if (ret)
		goto fail;
4027

4028
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4029
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4030 4031 4032 4033 4034
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4035
	mapping = obj->base.filp->f_mapping;
4036
	mapping_set_gfp_mask(mapping, mask);
4037

4038
	i915_gem_object_init(obj, &i915_gem_object_ops);
4039

4040 4041
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4042

4043
	if (HAS_LLC(dev_priv)) {
4044
		/* On some devices, we can have the GPU use the LLC (the CPU
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4060 4061
	trace_i915_gem_object_create(obj);

4062
	return obj;
4063 4064 4065 4066

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4067 4068
}

4069 4070 4071 4072 4073 4074 4075 4076
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4077
	if (obj->mm.madv != I915_MADV_WILLNEED)
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4093 4094
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4095
{
4096
	struct drm_i915_gem_object *obj, *on;
4097

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4113 4114
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4115

4116
		list_del(&obj->global_link);
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4127

4128 4129
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4130
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4131 4132 4133 4134 4135
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4136
		reservation_object_fini(&obj->__builtin_resv);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4159

4160 4161 4162 4163 4164 4165 4166
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4167

4168 4169 4170
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4171

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4186

4187 4188 4189
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4190

4191 4192 4193
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4194
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4195
		obj->mm.madv = I915_MADV_DONTNEED;
4196

4197 4198 4199 4200 4201 4202
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4203 4204
}

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4216 4217 4218 4219 4220 4221
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4222 4223
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4224 4225
}

4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4243
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4244
{
4245
	struct drm_device *dev = &dev_priv->drm;
4246
	int ret;
4247

4248
	intel_runtime_pm_get(dev_priv);
4249 4250
	intel_suspend_gt_powersave(dev_priv);

4251
	mutex_lock(&dev->struct_mutex);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4263
		goto err_unlock;
4264

4265 4266 4267
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4268
	if (ret)
4269
		goto err_unlock;
4270

4271
	i915_gem_retire_requests(dev_priv);
4272
	GEM_BUG_ON(dev_priv->gt.active_requests);
4273

4274
	assert_kernel_context_is_current(dev_priv);
4275
	i915_gem_context_lost(dev_priv);
4276 4277
	mutex_unlock(&dev->struct_mutex);

4278
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4279
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4280 4281 4282 4283 4284 4285 4286 4287

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4288

4289 4290 4291
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4292
	WARN_ON(dev_priv->gt.awake);
4293
	WARN_ON(!intel_engines_are_idle(dev_priv));
4294

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4314
	i915_gem_sanitize(dev_priv);
4315
	goto out_rpm_put;
4316

4317
err_unlock:
4318
	mutex_unlock(&dev->struct_mutex);
4319 4320
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4321
	return ret;
4322 4323
}

4324
void i915_gem_resume(struct drm_i915_private *dev_priv)
4325
{
4326
	struct drm_device *dev = &dev_priv->drm;
4327

4328 4329
	WARN_ON(dev_priv->gt.awake);

4330
	mutex_lock(&dev->struct_mutex);
4331
	i915_gem_restore_gtt_mappings(dev_priv);
4332 4333 4334 4335 4336

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4337
	dev_priv->gt.resume(dev_priv);
4338 4339 4340 4341

	mutex_unlock(&dev->struct_mutex);
}

4342
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4343
{
4344
	if (INTEL_GEN(dev_priv) < 5 ||
4345 4346 4347 4348 4349 4350
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4351
	if (IS_GEN5(dev_priv))
4352 4353
		return;

4354
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4355
	if (IS_GEN6(dev_priv))
4356
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4357
	else if (IS_GEN7(dev_priv))
4358
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4359
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4360
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4361 4362
	else
		BUG();
4363
}
D
Daniel Vetter 已提交
4364

4365
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4366 4367 4368 4369 4370 4371 4372
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4373
static void init_unused_rings(struct drm_i915_private *dev_priv)
4374
{
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4387 4388 4389
	}
}

4390
static int __i915_gem_restart_engines(void *data)
4391
{
4392
	struct drm_i915_private *i915 = data;
4393
	struct intel_engine_cs *engine;
4394
	enum intel_engine_id id;
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4408
	int ret;
4409

4410 4411
	dev_priv->gt.last_init_time = ktime_get();

4412 4413 4414
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4415
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4416
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4417

4418
	if (IS_HASWELL(dev_priv))
4419
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4420
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4421

4422
	if (HAS_PCH_NOP(dev_priv)) {
4423
		if (IS_IVYBRIDGE(dev_priv)) {
4424 4425 4426
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4427
		} else if (INTEL_GEN(dev_priv) >= 7) {
4428 4429 4430 4431
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4432 4433
	}

4434
	i915_gem_init_swizzling(dev_priv);
4435

4436 4437 4438 4439 4440 4441
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4442
	init_unused_rings(dev_priv);
4443

4444
	BUG_ON(!dev_priv->kernel_context);
4445

4446
	ret = i915_ppgtt_init_hw(dev_priv);
4447 4448 4449 4450 4451 4452
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4453 4454 4455
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4456

4457
	intel_mocs_init_l3cc_table(dev_priv);
4458

4459
	/* We can't enable contexts until all firmware is loaded */
4460
	ret = intel_guc_setup(dev_priv);
4461 4462
	if (ret)
		goto out;
4463

4464 4465
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4466
	return ret;
4467 4468
}

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4490
int i915_gem_init(struct drm_i915_private *dev_priv)
4491 4492 4493
{
	int ret;

4494
	mutex_lock(&dev_priv->drm.struct_mutex);
4495

4496 4497
	i915_gem_clflush_init(dev_priv);

4498
	if (!i915.enable_execlists) {
4499
		dev_priv->gt.resume = intel_legacy_submission_resume;
4500
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4501
	} else {
4502
		dev_priv->gt.resume = intel_lr_context_resume;
4503
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4504 4505
	}

4506 4507 4508 4509 4510 4511 4512 4513
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4514
	i915_gem_init_userptr(dev_priv);
4515 4516 4517 4518

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4519

4520
	ret = i915_gem_context_init(dev_priv);
4521 4522
	if (ret)
		goto out_unlock;
4523

4524
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4525
	if (ret)
4526
		goto out_unlock;
4527

4528
	ret = i915_gem_init_hw(dev_priv);
4529
	if (ret == -EIO) {
4530
		/* Allow engine initialisation to fail by marking the GPU as
4531 4532 4533 4534
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4535
		i915_gem_set_wedged(dev_priv);
4536
		ret = 0;
4537
	}
4538 4539

out_unlock:
4540
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4541
	mutex_unlock(&dev_priv->drm.struct_mutex);
4542

4543
	return ret;
4544 4545
}

4546 4547 4548 4549 4550
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4551
void
4552
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4553
{
4554
	struct intel_engine_cs *engine;
4555
	enum intel_engine_id id;
4556

4557
	for_each_engine(engine, dev_priv, id)
4558
		dev_priv->gt.cleanup_engine(engine);
4559 4560
}

4561 4562 4563
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4564
	int i;
4565 4566 4567 4568

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4569 4570 4571
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4572 4573 4574 4575
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4576
	if (intel_vgpu_active(dev_priv))
4577 4578 4579 4580
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4581 4582 4583 4584 4585 4586 4587
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4588
	i915_gem_restore_fences(dev_priv);
4589

4590
	i915_gem_detect_bit_6_swizzle(dev_priv);
4591 4592
}

4593
int
4594
i915_gem_load_init(struct drm_i915_private *dev_priv)
4595
{
4596
	int err = -ENOMEM;
4597

4598 4599
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4600 4601
		goto err_out;

4602 4603
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4604 4605
		goto err_objects;

4606 4607 4608 4609 4610
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4611 4612
		goto err_vmas;

4613 4614 4615 4616 4617 4618
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4619 4620
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4621
	err = i915_gem_timeline_init__global(dev_priv);
4622 4623
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4624
		goto err_dependencies;
4625

4626
	INIT_LIST_HEAD(&dev_priv->context_list);
4627 4628
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4629 4630
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4631
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4632
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4633
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4634
			  i915_gem_retire_work_handler);
4635
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4636
			  i915_gem_idle_work_handler);
4637
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4638
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4639

4640
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4641

4642 4643
	dev_priv->mm.interruptible = true;

4644 4645
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4646
	spin_lock_init(&dev_priv->fb_tracking.lock);
4647 4648 4649

	return 0;

4650 4651
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4652 4653 4654 4655 4656 4657 4658 4659
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4660
}
4661

4662
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4663
{
4664
	i915_gem_drain_freed_objects(dev_priv);
4665
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4666
	WARN_ON(dev_priv->mm.object_count);
4667

4668 4669 4670 4671 4672
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4673
	kmem_cache_destroy(dev_priv->dependencies);
4674 4675 4676
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4677 4678 4679

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4680 4681
}

4682 4683 4684 4685 4686 4687 4688 4689 4690
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4691 4692 4693
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4694 4695 4696 4697 4698
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4709 4710 4711
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4712 4713
	 */

4714 4715
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4716

4717
	for (p = phases; *p; p++) {
4718
		list_for_each_entry(obj, *p, global_link) {
4719 4720 4721
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4722
	}
4723
	mutex_unlock(&dev_priv->drm.struct_mutex);
4724 4725 4726 4727

	return 0;
}

4728
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4729
{
4730
	struct drm_i915_file_private *file_priv = file->driver_priv;
4731
	struct drm_i915_gem_request *request;
4732 4733 4734 4735 4736

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4737
	spin_lock(&file_priv->mm.lock);
4738
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4739
		request->file_priv = NULL;
4740
	spin_unlock(&file_priv->mm.lock);
4741

4742
	if (!list_empty(&file_priv->rps.link)) {
4743
		spin_lock(&to_i915(dev)->rps.client_lock);
4744
		list_del(&file_priv->rps.link);
4745
		spin_unlock(&to_i915(dev)->rps.client_lock);
4746
	}
4747 4748 4749 4750 4751
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4752
	int ret;
4753

4754
	DRM_DEBUG("\n");
4755 4756 4757 4758 4759 4760

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4761
	file_priv->dev_priv = to_i915(dev);
4762
	file_priv->file = file;
4763
	INIT_LIST_HEAD(&file_priv->rps.link);
4764 4765 4766 4767

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4768
	file_priv->bsd_engine = -1;
4769

4770 4771 4772
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4773

4774
	return ret;
4775 4776
}

4777 4778
/**
 * i915_gem_track_fb - update frontbuffer tracking
4779 4780 4781
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4782 4783 4784 4785
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4786 4787 4788 4789
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4790 4791 4792 4793 4794 4795 4796 4797 4798
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4799
	if (old) {
4800 4801
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4802 4803 4804
	}

	if (new) {
4805 4806
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4807 4808 4809
	}
}

4810 4811
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4812
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4813 4814 4815 4816 4817 4818 4819
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4820
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4821
	if (IS_ERR(obj))
4822 4823 4824 4825 4826 4827
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4828
	ret = i915_gem_object_pin_pages(obj);
4829 4830 4831
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4832
	sg = obj->mm.pages;
4833
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4834
	obj->mm.dirty = true; /* Backing store is now out of date */
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4846
	i915_gem_object_put(obj);
4847 4848
	return ERR_PTR(ret);
}
4849 4850 4851 4852 4853 4854

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4855
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4856 4857 4858 4859 4860
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4861
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4986
	if (!obj->mm.dirty)
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5002 5003 5004

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5005
#include "selftests/mock_gem_device.c"
5006
#include "selftests/huge_gem_object.c"
5007
#include "selftests/i915_gem_object.c"
5008
#include "selftests/i915_gem_coherency.c"
5009
#endif