i915_gem.c 137.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49

50 51 52 53 54 55
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

56 57 58 59 60 61 62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

64 65 66 67
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
68
	spin_lock(&dev_priv->mm.object_stat_lock);
69 70
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
71
	spin_unlock(&dev_priv->mm.object_stat_lock);
72 73 74 75 76
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
77
	spin_lock(&dev_priv->mm.object_stat_lock);
78 79
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
80
	spin_unlock(&dev_priv->mm.object_stat_lock);
81 82
}

83
static int
84
i915_gem_wait_for_error(struct i915_gpu_error *error)
85 86 87
{
	int ret;

88 89
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
90
	if (EXIT_COND)
91 92
		return 0;

93 94 95 96 97
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
98 99 100
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
101 102 103 104
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
105
		return ret;
106
	}
107
#undef EXIT_COND
108

109
	return 0;
110 111
}

112
int i915_mutex_lock_interruptible(struct drm_device *dev)
113
{
114
	struct drm_i915_private *dev_priv = dev->dev_private;
115 116
	int ret;

117
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 119 120 121 122 123 124
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

125
	WARN_ON(i915_verify_lists(dev));
126 127
	return 0;
}
128

129 130
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131
			    struct drm_file *file)
132
{
133
	struct drm_i915_private *dev_priv = to_i915(dev);
134
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
135
	struct drm_i915_gem_get_aperture *args = data;
136
	struct i915_vma *vma;
137
	size_t pinned;
138

139
	pinned = 0;
140
	mutex_lock(&dev->struct_mutex);
141
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 143
		if (vma->pin_count)
			pinned += vma->node.size;
144
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 146
		if (vma->pin_count)
			pinned += vma->node.size;
147
	mutex_unlock(&dev->struct_mutex);
148

149
	args->aper_size = ggtt->base.total;
150
	args->aper_available_size = args->aper_size - pinned;
151

152 153 154
	return 0;
}

155 156
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157
{
158 159 160 161 162
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
198

199 200 201 202 203 204 205 206 207 208 209 210 211
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
226
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227
		char *vaddr = obj->phys_handle->vaddr;
228 229 230
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 232 233 234 235 236 237 238 239 240 241 242 243 244
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
245
				mark_page_accessed(page);
246
			page_cache_release(page);
247 248
			vaddr += PAGE_SIZE;
		}
249
		obj->dirty = 0;
250 251
	}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
275
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 277 278 279 280 281 282
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
283 284 285 286 287 288 289
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
290
	int ret;
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

305 306 307 308
	ret = drop_pages(obj);
	if (ret)
		return ret;

309 310 311 312 313 314
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
315 316 317
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
318 319 320 321 322 323 324 325 326 327
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
328
	int ret = 0;
329 330 331 332 333 334 335

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
336

337
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 339 340 341 342 343 344 345 346 347
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
348 349 350 351
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
352 353
	}

354
	drm_clflush_virt_range(vaddr, args->size);
355
	i915_gem_chipset_flush(dev);
356 357

out:
358
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359
	return ret;
360 361
}

362 363 364
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
365
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 367 368 369 370
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371
	kmem_cache_free(dev_priv->objects, obj);
372 373
}

374 375 376 377 378
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
379
{
380
	struct drm_i915_gem_object *obj;
381 382
	int ret;
	u32 handle;
383

384
	size = roundup(size, PAGE_SIZE);
385 386
	if (size == 0)
		return -EINVAL;
387 388

	/* Allocate the new object */
389
	obj = i915_gem_alloc_object(dev, size);
390 391 392
	if (obj == NULL)
		return -ENOMEM;

393
	ret = drm_gem_handle_create(file, &obj->base, &handle);
394
	/* drop reference from allocate - handle holds it now */
395 396 397
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
398

399
	*handle_p = handle;
400 401 402
	return 0;
}

403 404 405 406 407 408
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
409
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 411
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
412
			       args->size, &args->handle);
413 414 415 416 417 418 419 420 421 422
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
423

424
	return i915_gem_create(file, dev,
425
			       args->size, &args->handle);
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

454
static inline int
455 456
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

492
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

516 517 518
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
519
static int
520 521 522 523 524 525 526
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

527
	if (unlikely(page_do_bit17_swizzling))
528 529 530 531 532 533 534 535 536 537 538
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

539
	return ret ? -EFAULT : 0;
540 541
}

542 543 544 545
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
546
	if (unlikely(swizzled)) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

564 565 566 567 568 569 570 571 572 573 574 575
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
576 577 578
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
579 580 581 582 583 584 585 586 587 588 589

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

590
	return ret ? - EFAULT : 0;
591 592
}

593
static int
594 595 596 597
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
598
{
599
	char __user *user_data;
600
	ssize_t remain;
601
	loff_t offset;
602
	int shmem_page_offset, page_length, ret = 0;
603
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604
	int prefaulted = 0;
605
	int needs_clflush = 0;
606
	struct sg_page_iter sg_iter;
607

V
Ville Syrjälä 已提交
608
	user_data = to_user_ptr(args->data_ptr);
609 610
	remain = args->size;

611
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612

613
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 615 616
	if (ret)
		return ret;

617
	offset = args->offset;
618

619 620
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
621
		struct page *page = sg_page_iter_page(&sg_iter);
622 623 624 625

		if (remain <= 0)
			break;

626 627 628 629 630
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
631
		shmem_page_offset = offset_in_page(offset);
632 633 634 635
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

636 637 638
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

639 640 641 642 643
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
644 645 646

		mutex_unlock(&dev->struct_mutex);

647
		if (likely(!i915.prefault_disable) && !prefaulted) {
648
			ret = fault_in_multipages_writeable(user_data, remain);
649 650 651 652 653 654 655
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
656

657 658 659
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
660

661
		mutex_lock(&dev->struct_mutex);
662 663

		if (ret)
664 665
			goto out;

666
next_page:
667
		remain -= page_length;
668
		user_data += page_length;
669 670 671
		offset += page_length;
	}

672
out:
673 674
	i915_gem_object_unpin_pages(obj);

675 676 677
	return ret;
}

678 679 680 681 682 683 684
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685
		     struct drm_file *file)
686 687
{
	struct drm_i915_gem_pread *args = data;
688
	struct drm_i915_gem_object *obj;
689
	int ret = 0;
690

691 692 693 694
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
695
		       to_user_ptr(args->data_ptr),
696 697 698
		       args->size))
		return -EFAULT;

699
	ret = i915_mutex_lock_interruptible(dev);
700
	if (ret)
701
		return ret;
702

703
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704
	if (&obj->base == NULL) {
705 706
		ret = -ENOENT;
		goto unlock;
707
	}
708

709
	/* Bounds check source.  */
710 711
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
712
		ret = -EINVAL;
713
		goto out;
C
Chris Wilson 已提交
714 715
	}

716 717 718 719 720 721 722 723
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
724 725
	trace_i915_gem_object_pread(obj, args->offset, args->size);

726
	ret = i915_gem_shmem_pread(dev, obj, args, file);
727

728
out:
729
	drm_gem_object_unreference(&obj->base);
730
unlock:
731
	mutex_unlock(&dev->struct_mutex);
732
	return ret;
733 734
}

735 736
/* This is the fast write path which cannot handle
 * page faults in the source data
737
 */
738 739 740 741 742 743

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
744
{
745 746
	void __iomem *vaddr_atomic;
	void *vaddr;
747
	unsigned long unwritten;
748

P
Peter Zijlstra 已提交
749
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 751 752
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753
						      user_data, length);
P
Peter Zijlstra 已提交
754
	io_mapping_unmap_atomic(vaddr_atomic);
755
	return unwritten;
756 757
}

758 759 760 761
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
762
static int
763 764
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
765
			 struct drm_i915_gem_pwrite *args,
766
			 struct drm_file *file)
767
{
768 769
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
770
	ssize_t remain;
771
	loff_t offset, page_base;
772
	char __user *user_data;
D
Daniel Vetter 已提交
773 774
	int page_offset, page_length, ret;

775
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
776 777 778 779 780 781 782 783 784 785
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
786

V
Ville Syrjälä 已提交
787
	user_data = to_user_ptr(args->data_ptr);
788 789
	remain = args->size;

790
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
791

792
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
793

794 795 796
	while (remain > 0) {
		/* Operation in this page
		 *
797 798 799
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
800
		 */
801 802
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
803 804 805 806 807
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
808 809
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
810
		 */
811
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
812 813
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
814
			goto out_flush;
D
Daniel Vetter 已提交
815
		}
816

817 818 819
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
820 821
	}

822
out_flush:
823
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
824
out_unpin:
B
Ben Widawsky 已提交
825
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
826
out:
827
	return ret;
828 829
}

830 831 832 833
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
834
static int
835 836 837 838 839
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
840
{
841
	char *vaddr;
842
	int ret;
843

844
	if (unlikely(page_do_bit17_swizzling))
845
		return -EINVAL;
846

847 848 849 850
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
851 852
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
853 854 855 856
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
857

858
	return ret ? -EFAULT : 0;
859 860
}

861 862
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
863
static int
864 865 866 867 868
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
869
{
870 871
	char *vaddr;
	int ret;
872

873
	vaddr = kmap(page);
874
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
875 876 877
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
878 879
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
880 881
						user_data,
						page_length);
882 883 884 885 886
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
887 888 889
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
890
	kunmap(page);
891

892
	return ret ? -EFAULT : 0;
893 894 895
}

static int
896 897 898 899
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
900 901
{
	ssize_t remain;
902 903
	loff_t offset;
	char __user *user_data;
904
	int shmem_page_offset, page_length, ret = 0;
905
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
906
	int hit_slowpath = 0;
907 908
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
909
	struct sg_page_iter sg_iter;
910

V
Ville Syrjälä 已提交
911
	user_data = to_user_ptr(args->data_ptr);
912 913
	remain = args->size;

914
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
915

916 917 918 919 920
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
921
		needs_clflush_after = cpu_write_needs_clflush(obj);
922 923 924
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
925
	}
926 927 928 929 930
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
931

932 933 934 935
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

936
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
937

938 939
	i915_gem_object_pin_pages(obj);

940
	offset = args->offset;
941
	obj->dirty = 1;
942

943 944
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
945
		struct page *page = sg_page_iter_page(&sg_iter);
946
		int partial_cacheline_write;
947

948 949 950
		if (remain <= 0)
			break;

951 952 953 954 955
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
956
		shmem_page_offset = offset_in_page(offset);
957 958 959 960 961

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

962 963 964 965 966 967 968
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

969 970 971
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

972 973 974 975 976 977
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
978 979 980

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
981 982 983 984
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
985

986
		mutex_lock(&dev->struct_mutex);
987 988

		if (ret)
989 990
			goto out;

991
next_page:
992
		remain -= page_length;
993
		user_data += page_length;
994
		offset += page_length;
995 996
	}

997
out:
998 999
	i915_gem_object_unpin_pages(obj);

1000
	if (hit_slowpath) {
1001 1002 1003 1004 1005 1006 1007
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1008
			if (i915_gem_clflush_object(obj, obj->pin_display))
1009
				needs_clflush_after = true;
1010
		}
1011
	}
1012

1013
	if (needs_clflush_after)
1014
		i915_gem_chipset_flush(dev);
1015 1016
	else
		obj->cache_dirty = true;
1017

1018
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1019
	return ret;
1020 1021 1022 1023 1024 1025 1026 1027 1028
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1029
		      struct drm_file *file)
1030
{
1031
	struct drm_i915_private *dev_priv = dev->dev_private;
1032
	struct drm_i915_gem_pwrite *args = data;
1033
	struct drm_i915_gem_object *obj;
1034 1035 1036 1037 1038 1039
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1040
		       to_user_ptr(args->data_ptr),
1041 1042 1043
		       args->size))
		return -EFAULT;

1044
	if (likely(!i915.prefault_disable)) {
1045 1046 1047 1048 1049
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1050

1051 1052
	intel_runtime_pm_get(dev_priv);

1053
	ret = i915_mutex_lock_interruptible(dev);
1054
	if (ret)
1055
		goto put_rpm;
1056

1057
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1058
	if (&obj->base == NULL) {
1059 1060
		ret = -ENOENT;
		goto unlock;
1061
	}
1062

1063
	/* Bounds check destination. */
1064 1065
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1066
		ret = -EINVAL;
1067
		goto out;
C
Chris Wilson 已提交
1068 1069
	}

1070 1071 1072 1073 1074 1075 1076 1077
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1078 1079
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1080
	ret = -EFAULT;
1081 1082 1083 1084 1085 1086
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1087 1088 1089
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1090
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1091 1092 1093
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1094
	}
1095

1096 1097 1098 1099 1100 1101
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1102

1103
out:
1104
	drm_gem_object_unreference(&obj->base);
1105
unlock:
1106
	mutex_unlock(&dev->struct_mutex);
1107 1108 1109
put_rpm:
	intel_runtime_pm_put(dev_priv);

1110 1111 1112
	return ret;
}

1113
int
1114
i915_gem_check_wedge(struct i915_gpu_error *error,
1115 1116
		     bool interruptible)
{
1117
	if (i915_reset_in_progress(error)) {
1118 1119 1120 1121 1122
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1123 1124
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1125 1126
			return -EIO;

1127 1128 1129 1130 1131 1132 1133
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1134 1135 1136 1137 1138
	}

	return 0;
}

1139 1140 1141 1142 1143 1144
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1145
		       struct intel_engine_cs *engine)
1146
{
1147
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1182
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1183
{
1184
	unsigned long timeout;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1196

1197
	if (req->engine->irq_refcount)
1198 1199
		return -EBUSY;

1200 1201 1202 1203
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1204
	timeout = local_clock_us(&cpu) + 5;
1205
	while (!need_resched()) {
D
Daniel Vetter 已提交
1206
		if (i915_gem_request_completed(req, true))
1207 1208
			return 0;

1209 1210 1211
		if (signal_pending_state(state, current))
			break;

1212
		if (busywait_stop(timeout, cpu))
1213
			break;
1214

1215 1216
		cpu_relax_lowlatency();
	}
1217

D
Daniel Vetter 已提交
1218
	if (i915_gem_request_completed(req, false))
1219 1220 1221
		return 0;

	return -EAGAIN;
1222 1223
}

1224
/**
1225 1226 1227
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1228 1229 1230
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1231 1232 1233 1234 1235 1236 1237
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1238
 * Returns 0 if the request was found within the alloted time. Else returns the
1239 1240
 * errno with remaining time filled in timeout argument.
 */
1241
int __i915_wait_request(struct drm_i915_gem_request *req,
1242
			unsigned reset_counter,
1243
			bool interruptible,
1244
			s64 *timeout,
1245
			struct intel_rps_client *rps)
1246
{
1247
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1248
	struct drm_device *dev = engine->dev;
1249
	struct drm_i915_private *dev_priv = dev->dev_private;
1250
	const bool irq_test_in_progress =
1251
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1252
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1253
	DEFINE_WAIT(wait);
1254
	unsigned long timeout_expire;
1255
	s64 before = 0; /* Only to silence a compiler warning. */
1256 1257
	int ret;

1258
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1259

1260 1261 1262
	if (list_empty(&req->list))
		return 0;

1263
	if (i915_gem_request_completed(req, true))
1264 1265
		return 0;

1266 1267 1268 1269 1270 1271 1272 1273 1274
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1275 1276 1277 1278 1279

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1280
	}
1281

1282
	if (INTEL_INFO(dev_priv)->gen >= 6)
1283
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1284

1285
	trace_i915_gem_request_wait_begin(req);
1286 1287

	/* Optimistic spin for the next jiffie before touching IRQs */
1288
	ret = __i915_spin_request(req, state);
1289 1290 1291
	if (ret == 0)
		goto out;

1292
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1293 1294 1295 1296
		ret = -ENODEV;
		goto out;
	}

1297 1298
	for (;;) {
		struct timer_list timer;
1299

1300
		prepare_to_wait(&engine->irq_queue, &wait, state);
1301

1302 1303
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1304 1305 1306 1307 1308 1309 1310 1311
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1312

1313
		if (i915_gem_request_completed(req, false)) {
1314 1315 1316
			ret = 0;
			break;
		}
1317

1318
		if (signal_pending_state(state, current)) {
1319 1320 1321 1322
			ret = -ERESTARTSYS;
			break;
		}

1323
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1324 1325 1326 1327 1328
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1329
		if (timeout || missed_irq(dev_priv, engine)) {
1330 1331
			unsigned long expire;

1332
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1333
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1334 1335 1336
			mod_timer(&timer, expire);
		}

1337
		io_schedule();
1338 1339 1340 1341 1342 1343

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1344
	if (!irq_test_in_progress)
1345
		engine->irq_put(engine);
1346

1347
	finish_wait(&engine->irq_queue, &wait);
1348

1349 1350 1351
out:
	trace_i915_gem_request_wait_end(req);

1352
	if (timeout) {
1353
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1354 1355

		*timeout = tres < 0 ? 0 : tres;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1366 1367
	}

1368
	return ret;
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1408 1409 1410

	put_pid(request->pid);
	request->pid = NULL;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1436
	struct intel_engine_cs *engine = req->engine;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1454
/**
1455
 * Waits for a request to be signaled, and cleans up the
1456 1457 1458
 * request and object lists appropriately for that event.
 */
int
1459
i915_wait_request(struct drm_i915_gem_request *req)
1460
{
1461 1462 1463
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1464 1465
	int ret;

1466 1467
	BUG_ON(req == NULL);

1468
	dev = req->engine->dev;
1469 1470 1471
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1472 1473
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1474
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1475 1476 1477
	if (ret)
		return ret;

1478 1479
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1480
				  interruptible, NULL, NULL);
1481 1482
	if (ret)
		return ret;
1483

1484
	__i915_gem_request_retire__upto(req);
1485 1486 1487
	return 0;
}

1488 1489 1490 1491
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1492
int
1493 1494 1495
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1496
	int ret, i;
1497

1498
	if (!obj->active)
1499 1500
		return 0;

1501 1502 1503 1504 1505
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1506

1507
			i = obj->last_write_req->engine->id;
1508 1509 1510 1511 1512 1513
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1514
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1534
	int ring = req->engine->id;
1535 1536 1537 1538 1539 1540 1541

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1542 1543
}

1544 1545 1546 1547 1548
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1549
					    struct intel_rps_client *rps,
1550 1551 1552 1553
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1554
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1555
	unsigned reset_counter;
1556
	int ret, i, n = 0;
1557 1558 1559 1560

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1561
	if (!obj->active)
1562 1563
		return 0;

1564
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1565 1566 1567
	if (ret)
		return ret;

1568
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1579
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1590
	mutex_unlock(&dev->struct_mutex);
1591 1592
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1593
					  NULL, rps);
1594 1595
	mutex_lock(&dev->struct_mutex);

1596 1597 1598 1599 1600 1601 1602
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1603 1604
}

1605 1606 1607 1608 1609 1610
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1611
/**
1612 1613
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1614 1615 1616
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1617
			  struct drm_file *file)
1618 1619
{
	struct drm_i915_gem_set_domain *args = data;
1620
	struct drm_i915_gem_object *obj;
1621 1622
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1623 1624
	int ret;

1625
	/* Only handle setting domains to types used by the CPU. */
1626
	if (write_domain & I915_GEM_GPU_DOMAINS)
1627 1628
		return -EINVAL;

1629
	if (read_domains & I915_GEM_GPU_DOMAINS)
1630 1631 1632 1633 1634 1635 1636 1637
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1638
	ret = i915_mutex_lock_interruptible(dev);
1639
	if (ret)
1640
		return ret;
1641

1642
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1643
	if (&obj->base == NULL) {
1644 1645
		ret = -ENOENT;
		goto unlock;
1646
	}
1647

1648 1649 1650 1651
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1652
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1653
							  to_rps_client(file),
1654
							  !write_domain);
1655 1656 1657
	if (ret)
		goto unref;

1658
	if (read_domains & I915_GEM_DOMAIN_GTT)
1659
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1660
	else
1661
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1662

1663 1664 1665 1666 1667
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1668
unref:
1669
	drm_gem_object_unreference(&obj->base);
1670
unlock:
1671 1672 1673 1674 1675 1676 1677 1678 1679
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1680
			 struct drm_file *file)
1681 1682
{
	struct drm_i915_gem_sw_finish *args = data;
1683
	struct drm_i915_gem_object *obj;
1684 1685
	int ret = 0;

1686
	ret = i915_mutex_lock_interruptible(dev);
1687
	if (ret)
1688
		return ret;
1689

1690
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1691
	if (&obj->base == NULL) {
1692 1693
		ret = -ENOENT;
		goto unlock;
1694 1695 1696
	}

	/* Pinned buffers may be scanout, so flush the cache */
1697
	if (obj->pin_display)
1698
		i915_gem_object_flush_cpu_write_domain(obj);
1699

1700
	drm_gem_object_unreference(&obj->base);
1701
unlock:
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1722 1723 1724
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1725
		    struct drm_file *file)
1726 1727 1728 1729 1730
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1731 1732 1733 1734 1735 1736
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1737
	obj = drm_gem_object_lookup(dev, file, args->handle);
1738
	if (obj == NULL)
1739
		return -ENOENT;
1740

1741 1742 1743 1744 1745 1746 1747 1748
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1749
	addr = vm_mmap(obj->filp, 0, args->size,
1750 1751
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1765
	drm_gem_object_unreference_unlocked(obj);
1766 1767 1768 1769 1770 1771 1772 1773
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1774 1775
/**
 * i915_gem_fault - fault a page into the GTT
1776 1777
 * @vma: VMA in question
 * @vmf: fault info
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1792 1793
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1794 1795
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1796
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 1798 1799
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1800
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801

1802 1803
	intel_runtime_pm_get(dev_priv);

1804 1805 1806 1807
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1808 1809 1810
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1811

C
Chris Wilson 已提交
1812 1813
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1823 1824
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825
		ret = -EFAULT;
1826 1827 1828
		goto unlock;
	}

1829
	/* Use a partial view if the object is bigger than the aperture. */
1830
	if (obj->base.size >= ggtt->mappable_end &&
1831
	    obj->tiling_mode == I915_TILING_NONE) {
1832
		static const unsigned int chunk_size = 256; // 1 MiB
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 1847
	if (ret)
		goto unlock;
1848

1849 1850 1851
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1852

1853
	ret = i915_gem_object_get_fence(obj);
1854
	if (ret)
1855
		goto unpin;
1856

1857
	/* Finally, remap it using the new GTT offset */
1858
	pfn = ggtt->mappable_base +
1859
		i915_gem_obj_ggtt_offset_view(obj, &view);
1860
	pfn >>= PAGE_SHIFT;
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1871

1872 1873
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 1875 1876 1877 1878
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1900
unpin:
1901
	i915_gem_object_ggtt_unpin_view(obj, &view);
1902
unlock:
1903
	mutex_unlock(&dev->struct_mutex);
1904
out:
1905
	switch (ret) {
1906
	case -EIO:
1907 1908 1909 1910 1911 1912 1913
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 1915 1916
			ret = VM_FAULT_SIGBUS;
			break;
		}
1917
	case -EAGAIN:
D
Daniel Vetter 已提交
1918 1919 1920 1921
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1922
		 */
1923 1924
	case 0:
	case -ERESTARTSYS:
1925
	case -EINTR:
1926 1927 1928 1929 1930
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1931 1932
		ret = VM_FAULT_NOPAGE;
		break;
1933
	case -ENOMEM:
1934 1935
		ret = VM_FAULT_OOM;
		break;
1936
	case -ENOSPC:
1937
	case -EFAULT:
1938 1939
		ret = VM_FAULT_SIGBUS;
		break;
1940
	default:
1941
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 1943
		ret = VM_FAULT_SIGBUS;
		break;
1944
	}
1945 1946 1947

	intel_runtime_pm_put(dev_priv);
	return ret;
1948 1949
}

1950 1951 1952 1953
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1954
 * Preserve the reservation of the mmapping with the DRM core code, but
1955 1956 1957 1958 1959 1960 1961 1962 1963
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1964
void
1965
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966
{
1967 1968
	if (!obj->fault_mappable)
		return;
1969

1970 1971
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1972
	obj->fault_mappable = false;
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1984
uint32_t
1985
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986
{
1987
	uint32_t gtt_size;
1988 1989

	if (INTEL_INFO(dev)->gen >= 4 ||
1990 1991
	    tiling_mode == I915_TILING_NONE)
		return size;
1992 1993 1994

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1995
		gtt_size = 1024*1024;
1996
	else
1997
		gtt_size = 512*1024;
1998

1999 2000
	while (gtt_size < size)
		gtt_size <<= 1;
2001

2002
	return gtt_size;
2003 2004
}

2005 2006 2007 2008 2009
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
2010
 * potential fence register mapping.
2011
 */
2012 2013 2014
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
2015 2016 2017 2018 2019
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2020
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021
	    tiling_mode == I915_TILING_NONE)
2022 2023
		return 4096;

2024 2025 2026 2027
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2028
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 2030
}

2031 2032 2033 2034 2035
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2036
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 2038
		return 0;

2039 2040
	dev_priv->mm.shrinker_no_lock_stealing = true;

2041 2042
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2043
		goto out;
2044 2045 2046 2047 2048 2049 2050 2051

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2052 2053 2054 2055 2056
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2057 2058
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2059
		goto out;
2060 2061

	i915_gem_shrink_all(dev_priv);
2062 2063 2064 2065 2066
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2067 2068 2069 2070 2071 2072 2073
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2074
int
2075 2076
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2077
		  uint32_t handle,
2078
		  uint64_t *offset)
2079
{
2080
	struct drm_i915_gem_object *obj;
2081 2082
	int ret;

2083
	ret = i915_mutex_lock_interruptible(dev);
2084
	if (ret)
2085
		return ret;
2086

2087
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088
	if (&obj->base == NULL) {
2089 2090 2091
		ret = -ENOENT;
		goto unlock;
	}
2092

2093
	if (obj->madv != I915_MADV_WILLNEED) {
2094
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095
		ret = -EFAULT;
2096
		goto out;
2097 2098
	}

2099 2100 2101
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2102

2103
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104

2105
out:
2106
	drm_gem_object_unreference(&obj->base);
2107
unlock:
2108
	mutex_unlock(&dev->struct_mutex);
2109
	return ret;
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2133
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 2135
}

D
Daniel Vetter 已提交
2136 2137 2138
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139
{
2140
	i915_gem_object_free_mmap_offset(obj);
2141

2142 2143
	if (obj->base.filp == NULL)
		return;
2144

D
Daniel Vetter 已提交
2145 2146 2147 2148 2149
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2150
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2151 2152
	obj->madv = __I915_MADV_PURGED;
}
2153

2154 2155 2156
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2157
{
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 2173
}

2174
static void
2175
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176
{
2177 2178
	struct sg_page_iter sg_iter;
	int ret;
2179

2180
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181

C
Chris Wilson 已提交
2182 2183 2184 2185 2186 2187
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2188
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2189 2190 2191
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2192 2193
	i915_gem_gtt_finish_object(obj);

2194
	if (i915_gem_object_needs_bit17_swizzle(obj))
2195 2196
		i915_gem_object_save_bit_17_swizzle(obj);

2197 2198
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2199

2200
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201
		struct page *page = sg_page_iter_page(&sg_iter);
2202

2203
		if (obj->dirty)
2204
			set_page_dirty(page);
2205

2206
		if (obj->madv == I915_MADV_WILLNEED)
2207
			mark_page_accessed(page);
2208

2209
		page_cache_release(page);
2210
	}
2211
	obj->dirty = 0;
2212

2213 2214
	sg_free_table(obj->pages);
	kfree(obj->pages);
2215
}
C
Chris Wilson 已提交
2216

2217
int
2218 2219 2220 2221
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2222
	if (obj->pages == NULL)
2223 2224
		return 0;

2225 2226 2227
	if (obj->pages_pin_count)
		return -EBUSY;

2228
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2229

2230 2231 2232
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2233
	list_del(&obj->global_list);
2234

2235
	ops->put_pages(obj);
2236
	obj->pages = NULL;
2237

2238
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2239 2240 2241 2242

	return 0;
}

2243
static int
C
Chris Wilson 已提交
2244
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245
{
C
Chris Wilson 已提交
2246
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 2248
	int page_count, i;
	struct address_space *mapping;
2249 2250
	struct sg_table *st;
	struct scatterlist *sg;
2251
	struct sg_page_iter sg_iter;
2252
	struct page *page;
2253
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2254
	int ret;
C
Chris Wilson 已提交
2255
	gfp_t gfp;
2256

C
Chris Wilson 已提交
2257 2258 2259 2260 2261 2262 2263
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2264 2265 2266 2267
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2268
	page_count = obj->base.size / PAGE_SIZE;
2269 2270
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2271
		return -ENOMEM;
2272
	}
2273

2274 2275 2276 2277 2278
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2279
	mapping = file_inode(obj->base.filp)->i_mapping;
2280
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 2283 2284
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2285 2286
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2287 2288 2289 2290 2291
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2292 2293 2294 2295 2296 2297 2298 2299
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2300
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2301 2302
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2303
				goto err_pages;
I
Imre Deak 已提交
2304
			}
C
Chris Wilson 已提交
2305
		}
2306 2307 2308 2309 2310 2311 2312 2313
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2314 2315 2316 2317 2318 2319 2320 2321 2322
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2323 2324 2325

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326
	}
2327 2328 2329 2330
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2331 2332
	obj->pages = st;

I
Imre Deak 已提交
2333 2334 2335 2336
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2337
	if (i915_gem_object_needs_bit17_swizzle(obj))
2338 2339
		i915_gem_object_do_bit_17_swizzle(obj);

2340 2341 2342 2343
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2344 2345 2346
	return 0;

err_pages:
2347 2348
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349
		page_cache_release(sg_page_iter_page(&sg_iter));
2350 2351
	sg_free_table(st);
	kfree(st);
2352 2353 2354 2355 2356 2357 2358 2359 2360

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2361 2362 2363 2364
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2365 2366
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2381
	if (obj->pages)
2382 2383
		return 0;

2384
	if (obj->madv != I915_MADV_WILLNEED) {
2385
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386
		return -EFAULT;
2387 2388
	}

2389 2390
	BUG_ON(obj->pages_pin_count);

2391 2392 2393 2394
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2395
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396 2397 2398 2399

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2400
	return 0;
2401 2402
}

2403
void i915_vma_move_to_active(struct i915_vma *vma,
2404
			     struct drm_i915_gem_request *req)
2405
{
2406
	struct drm_i915_gem_object *obj = vma->obj;
2407
	struct intel_engine_cs *engine;
2408

2409
	engine = i915_gem_request_get_engine(req);
2410 2411

	/* Add a reference if we're newly entering the active list. */
2412
	if (obj->active == 0)
2413
		drm_gem_object_reference(&obj->base);
2414
	obj->active |= intel_engine_flag(engine);
2415

2416
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2417
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2418

2419
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420 2421
}

2422 2423
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2424
{
2425
	RQ_BUG_ON(obj->last_write_req == NULL);
2426
	RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2427 2428

	i915_gem_request_assign(&obj->last_write_req, NULL);
2429
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2430 2431
}

2432
static void
2433
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434
{
2435
	struct i915_vma *vma;
2436

2437 2438 2439
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

2440
	list_del_init(&obj->engine_list[ring]);
2441 2442
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2443
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2444 2445 2446 2447 2448
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2449

2450 2451 2452 2453 2454 2455 2456
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2457 2458 2459
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460
	}
2461

2462
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463
	drm_gem_object_unreference(&obj->base);
2464 2465
}

2466
static int
2467
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468
{
2469
	struct drm_i915_private *dev_priv = dev->dev_private;
2470
	struct intel_engine_cs *engine;
2471
	int ret;
2472

2473
	/* Carefully retire all requests without writing to the rings */
2474
	for_each_engine(engine, dev_priv) {
2475
		ret = intel_engine_idle(engine);
2476 2477
		if (ret)
			return ret;
2478 2479
	}
	i915_gem_retire_requests(dev);
2480 2481

	/* Finally reset hw state */
2482
	for_each_engine(engine, dev_priv)
2483
		intel_ring_init_seqno(engine, seqno);
2484

2485
	return 0;
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2514 2515
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2516
{
2517 2518 2519 2520
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2521
		int ret = i915_gem_init_seqno(dev, 0);
2522 2523
		if (ret)
			return ret;
2524

2525 2526
		dev_priv->next_seqno = 1;
	}
2527

2528
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2529
	return 0;
2530 2531
}

2532 2533 2534 2535 2536
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2537
void __i915_add_request(struct drm_i915_gem_request *request,
2538 2539
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2540
{
2541
	struct intel_engine_cs *engine;
2542
	struct drm_i915_private *dev_priv;
2543
	struct intel_ringbuffer *ringbuf;
2544
	u32 request_start;
2545 2546
	int ret;

2547
	if (WARN_ON(request == NULL))
2548
		return;
2549

2550
	engine = request->engine;
2551
	dev_priv = request->i915;
2552 2553
	ringbuf = request->ringbuf;

2554 2555 2556 2557 2558 2559 2560
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2561
	request_start = intel_ring_get_tail(ringbuf);
2562 2563 2564 2565 2566 2567 2568
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2569 2570
	if (flush_caches) {
		if (i915.enable_execlists)
2571
			ret = logical_ring_flush_all_caches(request);
2572
		else
2573
			ret = intel_ring_flush_all_caches(request);
2574 2575 2576
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2577

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2600 2601 2602 2603 2604
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2605
	request->postfix = intel_ring_get_tail(ringbuf);
2606

2607
	if (i915.enable_execlists)
2608
		ret = engine->emit_request(request);
2609
	else {
2610
		ret = engine->add_request(request);
2611 2612

		request->tail = intel_ring_get_tail(ringbuf);
2613
	}
2614 2615
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2616

2617
	i915_queue_hangcheck(engine->dev);
2618

2619 2620 2621 2622
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2623

2624 2625
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2626 2627
}

2628
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2629
				   const struct intel_context *ctx)
2630
{
2631
	unsigned long elapsed;
2632

2633 2634 2635
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2636 2637
		return true;

2638 2639
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2640
		if (!i915_gem_context_is_default(ctx)) {
2641
			DRM_DEBUG("context hanging too fast, banning!\n");
2642
			return true;
2643 2644 2645
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2646
			return true;
2647
		}
2648 2649 2650 2651 2652
	}

	return false;
}

2653
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2654
				  struct intel_context *ctx,
2655
				  const bool guilty)
2656
{
2657 2658 2659 2660
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2661

2662 2663 2664
	hs = &ctx->hang_stats;

	if (guilty) {
2665
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2666 2667 2668 2669
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2670 2671 2672
	}
}

2673 2674 2675 2676 2677 2678
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2679 2680 2681
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2682
	if (ctx) {
D
Dave Gordon 已提交
2683
		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2684
			intel_lr_context_unpin(ctx, req->engine);
2685

2686 2687
		i915_gem_context_unreference(ctx);
	}
2688

2689
	kmem_cache_free(req->i915->requests, req);
2690 2691
}

2692
static inline int
2693
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2694 2695
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2696
{
2697
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
D
Daniel Vetter 已提交
2698
	struct drm_i915_gem_request *req;
2699 2700
	int ret;

2701 2702 2703
	if (!req_out)
		return -EINVAL;

2704
	*req_out = NULL;
2705

D
Daniel Vetter 已提交
2706 2707
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2708 2709
		return -ENOMEM;

2710
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2711 2712
	if (ret)
		goto err;
2713

2714 2715
	kref_init(&req->ref);
	req->i915 = dev_priv;
2716
	req->engine = engine;
2717 2718
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2719 2720

	if (i915.enable_execlists)
2721
		ret = intel_logical_ring_alloc_request_extras(req);
2722
	else
D
Daniel Vetter 已提交
2723
		ret = intel_ring_alloc_request_extras(req);
2724 2725
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2726
		goto err;
2727
	}
2728

2729 2730 2731 2732 2733 2734 2735
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2749

2750
	*req_out = req;
2751
	return 0;
2752 2753 2754 2755

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2756 2757
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2778
		ctx = to_i915(engine->dev)->kernel_context;
2779 2780 2781 2782
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2783 2784 2785 2786 2787 2788 2789
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2790
struct drm_i915_gem_request *
2791
i915_gem_find_active_request(struct intel_engine_cs *engine)
2792
{
2793 2794
	struct drm_i915_gem_request *request;

2795
	list_for_each_entry(request, &engine->request_list, list) {
2796
		if (i915_gem_request_completed(request, false))
2797
			continue;
2798

2799
		return request;
2800
	}
2801 2802 2803 2804

	return NULL;
}

2805
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2806
				       struct intel_engine_cs *engine)
2807 2808 2809 2810
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2811
	request = i915_gem_find_active_request(engine);
2812 2813 2814 2815

	if (request == NULL)
		return;

2816
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2817

2818
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2819

2820
	list_for_each_entry_continue(request, &engine->request_list, list)
2821
		i915_set_reset_status(dev_priv, request->ctx, false);
2822
}
2823

2824
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2825
					struct intel_engine_cs *engine)
2826
{
2827 2828
	struct intel_ringbuffer *buffer;

2829
	while (!list_empty(&engine->active_list)) {
2830
		struct drm_i915_gem_object *obj;
2831

2832
		obj = list_first_entry(&engine->active_list,
2833
				       struct drm_i915_gem_object,
2834
				       engine_list[engine->id]);
2835

2836
		i915_gem_object_retire__read(obj, engine->id);
2837
	}
2838

2839 2840 2841 2842 2843 2844
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2845
	if (i915.enable_execlists) {
2846 2847
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2848

2849
		spin_lock_bh(&engine->execlist_lock);
2850
		/* list_splice_tail_init checks for empty lists */
2851 2852
		list_splice_tail_init(&engine->execlist_queue,
				      &engine->execlist_retired_req_list);
2853
		spin_unlock_bh(&engine->execlist_lock);
2854

2855
		intel_execlists_retire_requests(engine);
2856 2857
	}

2858 2859 2860 2861 2862 2863 2864
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2865
	while (!list_empty(&engine->request_list)) {
2866 2867
		struct drm_i915_gem_request *request;

2868
		request = list_first_entry(&engine->request_list,
2869 2870 2871
					   struct drm_i915_gem_request,
					   list);

2872
		i915_gem_request_retire(request);
2873
	}
2874 2875 2876 2877 2878 2879 2880 2881

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2882
	list_for_each_entry(buffer, &engine->buffers, link) {
2883 2884 2885
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2886 2887

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2888 2889
}

2890
void i915_gem_reset(struct drm_device *dev)
2891
{
2892
	struct drm_i915_private *dev_priv = dev->dev_private;
2893
	struct intel_engine_cs *engine;
2894

2895 2896 2897 2898 2899
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2900
	for_each_engine(engine, dev_priv)
2901
		i915_gem_reset_engine_status(dev_priv, engine);
2902

2903
	for_each_engine(engine, dev_priv)
2904
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2905

2906 2907
	i915_gem_context_reset(dev);

2908
	i915_gem_restore_fences(dev);
2909 2910

	WARN_ON(i915_verify_lists(dev));
2911 2912 2913 2914 2915
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2916
void
2917
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2918
{
2919
	WARN_ON(i915_verify_lists(engine->dev));
2920

2921 2922 2923 2924
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2925
	 */
2926
	while (!list_empty(&engine->request_list)) {
2927 2928
		struct drm_i915_gem_request *request;

2929
		request = list_first_entry(&engine->request_list,
2930 2931 2932
					   struct drm_i915_gem_request,
					   list);

2933
		if (!i915_gem_request_completed(request, true))
2934 2935
			break;

2936
		i915_gem_request_retire(request);
2937
	}
2938

2939 2940 2941 2942
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2943
	while (!list_empty(&engine->active_list)) {
2944 2945
		struct drm_i915_gem_object *obj;

2946 2947
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2948
				       engine_list[engine->id]);
2949

2950
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2951 2952
			break;

2953
		i915_gem_object_retire__read(obj, engine->id);
2954 2955
	}

2956 2957 2958 2959
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2960
	}
2961

2962
	WARN_ON(i915_verify_lists(engine->dev));
2963 2964
}

2965
bool
2966 2967
i915_gem_retire_requests(struct drm_device *dev)
{
2968
	struct drm_i915_private *dev_priv = dev->dev_private;
2969
	struct intel_engine_cs *engine;
2970
	bool idle = true;
2971

2972
	for_each_engine(engine, dev_priv) {
2973 2974
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
2975
		if (i915.enable_execlists) {
2976
			spin_lock_bh(&engine->execlist_lock);
2977
			idle &= list_empty(&engine->execlist_queue);
2978
			spin_unlock_bh(&engine->execlist_lock);
2979

2980
			intel_execlists_retire_requests(engine);
2981
		}
2982 2983 2984 2985 2986 2987 2988 2989
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2990 2991
}

2992
static void
2993 2994
i915_gem_retire_work_handler(struct work_struct *work)
{
2995 2996 2997
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2998
	bool idle;
2999

3000
	/* Come back later if the device is busy... */
3001 3002 3003 3004
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3005
	}
3006
	if (!idle)
3007 3008
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3009
}
3010

3011 3012 3013 3014 3015
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3016
	struct drm_device *dev = dev_priv->dev;
3017
	struct intel_engine_cs *engine;
3018

3019 3020
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3021
			return;
3022

3023
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3024
	 * Also locking seems to be fubar here, engine->request_list is protected
3025 3026
	 * by dev->struct_mutex. */

3027 3028 3029
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3030
		for_each_engine(engine, dev_priv)
3031
			i915_gem_batch_pool_fini(&engine->batch_pool);
3032

3033 3034
		mutex_unlock(&dev->struct_mutex);
	}
3035 3036
}

3037 3038 3039 3040 3041 3042 3043 3044
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3045
	int i;
3046 3047 3048

	if (!obj->active)
		return 0;
3049

3050
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3051
		struct drm_i915_gem_request *req;
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3065 3066 3067 3068 3069
	}

	return 0;
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3095
	struct drm_i915_private *dev_priv = dev->dev_private;
3096 3097
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3098
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3099
	unsigned reset_counter;
3100 3101
	int i, n = 0;
	int ret;
3102

3103 3104 3105
	if (args->flags != 0)
		return -EINVAL;

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3116 3117
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3118 3119 3120
	if (ret)
		goto out;

3121
	if (!obj->active)
3122
		goto out;
3123 3124

	/* Do this after OLR check to make sure we make forward progress polling
3125
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3126
	 */
3127
	if (args->timeout_ns == 0) {
3128 3129 3130 3131 3132
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3133
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3134

3135
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3136 3137 3138 3139 3140 3141
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3142 3143
	mutex_unlock(&dev->struct_mutex);

3144 3145 3146 3147
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3148
						  to_rps_client(file));
3149 3150
		i915_gem_request_unreference__unlocked(req[i]);
	}
3151
	return ret;
3152 3153 3154 3155 3156 3157 3158

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3159 3160 3161
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3162 3163
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3164 3165 3166 3167
{
	struct intel_engine_cs *from;
	int ret;

3168
	from = i915_gem_request_get_engine(from_req);
3169 3170 3171
	if (to == from)
		return 0;

3172
	if (i915_gem_request_completed(from_req, true))
3173 3174 3175
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3176
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3177
		ret = __i915_wait_request(from_req,
3178 3179 3180 3181
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3182 3183 3184
		if (ret)
			return ret;

3185
		i915_gem_object_retire_request(obj, from_req);
3186 3187
	} else {
		int idx = intel_ring_sync_index(from, to);
3188 3189 3190
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3191 3192 3193 3194

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3195
		if (*to_req == NULL) {
3196 3197 3198 3199 3200 3201 3202
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3203 3204
		}

3205 3206
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3221 3222 3223 3224 3225
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3226 3227 3228
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3229 3230 3231
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3232
 * rather than a particular GPU ring. Conceptually we serialise writes
3233
 * between engines inside the GPU. We only allow one engine to write
3234 3235 3236 3237 3238 3239 3240 3241 3242
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3243
 *
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3254 3255
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3256 3257
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3258 3259
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3260
{
3261
	const bool readonly = obj->base.pending_write_domain == 0;
3262
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3263
	int ret, i, n;
3264

3265
	if (!obj->active)
3266 3267
		return 0;

3268 3269
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3270

3271 3272 3273 3274 3275
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3276
		for (i = 0; i < I915_NUM_ENGINES; i++)
3277 3278 3279 3280
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3281
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3282 3283 3284
		if (ret)
			return ret;
	}
3285

3286
	return 0;
3287 3288
}

3289 3290 3291 3292 3293 3294 3295
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3296 3297 3298
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3299 3300 3301
	/* Wait for any direct GTT access to complete */
	mb();

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3313
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3314
{
3315
	struct drm_i915_gem_object *obj = vma->obj;
3316
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3317
	int ret;
3318

3319
	if (list_empty(&vma->obj_link))
3320 3321
		return 0;

3322 3323 3324 3325
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3326

B
Ben Widawsky 已提交
3327
	if (vma->pin_count)
3328
		return -EBUSY;
3329

3330 3331
	BUG_ON(obj->pages == NULL);

3332 3333 3334 3335 3336
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3337

3338
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3339
		i915_gem_object_finish_gtt(obj);
3340

3341 3342 3343 3344 3345
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3346

3347
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3348

3349
	vma->vm->unbind_vma(vma);
3350
	vma->bound = 0;
3351

3352
	list_del_init(&vma->vm_link);
3353
	if (vma->is_ggtt) {
3354 3355 3356 3357 3358 3359
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3360
		vma->ggtt_view.pages = NULL;
3361
	}
3362

B
Ben Widawsky 已提交
3363 3364 3365 3366
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3367
	 * no more VMAs exist. */
I
Imre Deak 已提交
3368
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3369
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3370

3371 3372 3373 3374 3375 3376
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3377
	return 0;
3378 3379
}

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3390
int i915_gpu_idle(struct drm_device *dev)
3391
{
3392
	struct drm_i915_private *dev_priv = dev->dev_private;
3393
	struct intel_engine_cs *engine;
3394
	int ret;
3395 3396

	/* Flush everything onto the inactive list. */
3397
	for_each_engine(engine, dev_priv) {
3398
		if (!i915.enable_execlists) {
3399 3400
			struct drm_i915_gem_request *req;

3401
			req = i915_gem_request_alloc(engine, NULL);
3402 3403
			if (IS_ERR(req))
				return PTR_ERR(req);
3404

3405
			ret = i915_switch_context(req);
3406 3407 3408 3409 3410
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3411
			i915_add_request_no_flush(req);
3412
		}
3413

3414
		ret = intel_engine_idle(engine);
3415 3416 3417
		if (ret)
			return ret;
	}
3418

3419
	WARN_ON(i915_verify_lists(dev));
3420
	return 0;
3421 3422
}

3423
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3424 3425
				     unsigned long cache_level)
{
3426
	struct drm_mm_node *gtt_space = &vma->node;
3427 3428
	struct drm_mm_node *other;

3429 3430 3431 3432 3433 3434
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3435
	 */
3436
	if (vma->vm->mm.color_adjust == NULL)
3437 3438
		return true;

3439
	if (!drm_mm_node_allocated(gtt_space))
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3456
/**
3457 3458
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3459
 */
3460
static struct i915_vma *
3461 3462
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3463
			   const struct i915_ggtt_view *ggtt_view,
3464
			   unsigned alignment,
3465
			   uint64_t flags)
3466
{
3467
	struct drm_device *dev = obj->base.dev;
3468 3469
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3470
	u32 fence_alignment, unfenced_alignment;
3471 3472
	u32 search_flag, alloc_flag;
	u64 start, end;
3473
	u64 size, fence_size;
B
Ben Widawsky 已提交
3474
	struct i915_vma *vma;
3475
	int ret;
3476

3477 3478 3479 3480 3481
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3482

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3512

3513 3514 3515
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3516
		end = min_t(u64, end, ggtt->mappable_end);
3517
	if (flags & PIN_ZONE_4G)
3518
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519

3520
	if (alignment == 0)
3521
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522
						unfenced_alignment;
3523
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524 3525 3526
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3527
		return ERR_PTR(-EINVAL);
3528 3529
	}

3530 3531 3532
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3533
	 */
3534
	if (size > end) {
3535
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536 3537
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3538
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3539
			  end);
3540
		return ERR_PTR(-E2BIG);
3541 3542
	}

3543
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3544
	if (ret)
3545
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3546

3547 3548
	i915_gem_object_pin_pages(obj);

3549 3550 3551
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3552
	if (IS_ERR(vma))
3553
		goto err_unpin;
B
Ben Widawsky 已提交
3554

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3573
	} else {
3574 3575 3576 3577 3578 3579 3580
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3581

3582
search_free:
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3596

3597 3598
			goto err_free_vma;
		}
3599
	}
3600
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3601
		ret = -EINVAL;
3602
		goto err_remove_node;
3603 3604
	}

3605
	trace_i915_vma_bind(vma, flags);
3606
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3607
	if (ret)
I
Imre Deak 已提交
3608
		goto err_remove_node;
3609

3610
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3612

3613
	return vma;
B
Ben Widawsky 已提交
3614

3615
err_remove_node:
3616
	drm_mm_remove_node(&vma->node);
3617
err_free_vma:
B
Ben Widawsky 已提交
3618
	i915_gem_vma_destroy(vma);
3619
	vma = ERR_PTR(ret);
3620
err_unpin:
B
Ben Widawsky 已提交
3621
	i915_gem_object_unpin_pages(obj);
3622
	return vma;
3623 3624
}

3625
bool
3626 3627
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3628 3629 3630 3631 3632
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3633
	if (obj->pages == NULL)
3634
		return false;
3635

3636 3637 3638 3639
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3640
	if (obj->stolen || obj->phys_handle)
3641
		return false;
3642

3643 3644 3645 3646 3647 3648 3649 3650
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3651 3652
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3653
		return false;
3654
	}
3655

C
Chris Wilson 已提交
3656
	trace_i915_gem_object_clflush(obj);
3657
	drm_clflush_sg(obj->pages);
3658
	obj->cache_dirty = false;
3659 3660

	return true;
3661 3662 3663 3664
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3665
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666
{
C
Chris Wilson 已提交
3667 3668
	uint32_t old_write_domain;

3669
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670 3671
		return;

3672
	/* No actual flushing is required for the GTT write domain.  Writes
3673 3674
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3675 3676 3677 3678
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3679
	 */
3680 3681
	wmb();

3682 3683
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3684

3685
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686

C
Chris Wilson 已提交
3687
	trace_i915_gem_object_change_domain(obj,
3688
					    obj->base.read_domains,
C
Chris Wilson 已提交
3689
					    old_write_domain);
3690 3691 3692 3693
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3694
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695
{
C
Chris Wilson 已提交
3696
	uint32_t old_write_domain;
3697

3698
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699 3700
		return;

3701
	if (i915_gem_clflush_object(obj, obj->pin_display))
3702 3703
		i915_gem_chipset_flush(obj->base.dev);

3704 3705
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3706

3707
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708

C
Chris Wilson 已提交
3709
	trace_i915_gem_object_change_domain(obj,
3710
					    obj->base.read_domains,
C
Chris Wilson 已提交
3711
					    old_write_domain);
3712 3713
}

3714 3715 3716 3717 3718 3719
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3720
int
3721
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722
{
3723 3724 3725
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3726
	uint32_t old_write_domain, old_read_domains;
3727
	struct i915_vma *vma;
3728
	int ret;
3729

3730 3731 3732
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3733
	ret = i915_gem_object_wait_rendering(obj, !write);
3734 3735 3736
	if (ret)
		return ret;

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3749
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3750

3751 3752 3753 3754 3755 3756 3757
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3758 3759
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3760

3761 3762 3763
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3764 3765
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3766
	if (write) {
3767 3768 3769
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3770 3771
	}

C
Chris Wilson 已提交
3772 3773 3774 3775
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3776
	/* And bump the LRU for this access */
3777 3778
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3779
		list_move_tail(&vma->vm_link,
3780
			       &ggtt->base.inactive_list);
3781

3782 3783 3784
	return 0;
}

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3798 3799 3800
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3801
	struct drm_device *dev = obj->base.dev;
3802
	struct i915_vma *vma, *next;
3803
	bool bound = false;
3804
	int ret = 0;
3805 3806

	if (obj->cache_level == cache_level)
3807
		goto out;
3808

3809 3810 3811 3812 3813
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3814
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3815 3816 3817 3818 3819 3820 3821 3822
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3823
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3824
			ret = i915_vma_unbind(vma);
3825 3826
			if (ret)
				return ret;
3827 3828
		} else
			bound = true;
3829 3830
	}

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3843
		ret = i915_gem_object_wait_rendering(obj, false);
3844 3845 3846
		if (ret)
			return ret;

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3864 3865 3866
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3867 3868 3869 3870 3871 3872 3873 3874
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3875 3876
		}

3877
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3878 3879 3880 3881 3882 3883 3884
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3885 3886
	}

3887
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3888 3889 3890
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3891
out:
3892 3893 3894 3895
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3896 3897 3898 3899 3900
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3901 3902 3903 3904 3905
	}

	return 0;
}

B
Ben Widawsky 已提交
3906 3907
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3908
{
B
Ben Widawsky 已提交
3909
	struct drm_i915_gem_caching *args = data;
3910 3911 3912
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3913 3914
	if (&obj->base == NULL)
		return -ENOENT;
3915

3916 3917 3918 3919 3920 3921
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3922 3923 3924 3925
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3926 3927 3928 3929
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3930

3931 3932
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3933 3934
}

B
Ben Widawsky 已提交
3935 3936
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3937
{
3938
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3939
	struct drm_i915_gem_caching *args = data;
3940 3941 3942 3943
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3944 3945
	switch (args->caching) {
	case I915_CACHING_NONE:
3946 3947
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3948
	case I915_CACHING_CACHED:
3949 3950 3951 3952 3953 3954
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3955
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3956 3957
			return -ENODEV;

3958 3959
		level = I915_CACHE_LLC;
		break;
3960 3961 3962
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3963 3964 3965 3966
	default:
		return -EINVAL;
	}

3967 3968
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3969 3970
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3971
		goto rpm_put;
B
Ben Widawsky 已提交
3972

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
3984 3985 3986
rpm_put:
	intel_runtime_pm_put(dev_priv);

3987 3988 3989
	return ret;
}

3990
/*
3991 3992 3993
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3994 3995
 */
int
3996 3997
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3998
				     const struct i915_ggtt_view *view)
3999
{
4000
	u32 old_read_domains, old_write_domain;
4001 4002
	int ret;

4003 4004 4005
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4006
	obj->pin_display++;
4007

4008 4009 4010 4011 4012 4013 4014 4015 4016
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4017 4018
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4019
	if (ret)
4020
		goto err_unpin_display;
4021

4022 4023 4024 4025
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4026 4027 4028
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4029
	if (ret)
4030
		goto err_unpin_display;
4031

4032
	i915_gem_object_flush_cpu_write_domain(obj);
4033

4034
	old_write_domain = obj->base.write_domain;
4035
	old_read_domains = obj->base.read_domains;
4036 4037 4038 4039

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4040
	obj->base.write_domain = 0;
4041
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4042 4043 4044

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4045
					    old_write_domain);
4046 4047

	return 0;
4048 4049

err_unpin_display:
4050
	obj->pin_display--;
4051 4052 4053 4054
	return ret;
}

void
4055 4056
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4057
{
4058 4059 4060
	if (WARN_ON(obj->pin_display == 0))
		return;

4061 4062
	i915_gem_object_ggtt_unpin_view(obj, view);

4063
	obj->pin_display--;
4064 4065
}

4066 4067 4068 4069 4070 4071
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4072
int
4073
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4074
{
C
Chris Wilson 已提交
4075
	uint32_t old_write_domain, old_read_domains;
4076 4077
	int ret;

4078 4079 4080
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4081
	ret = i915_gem_object_wait_rendering(obj, !write);
4082 4083 4084
	if (ret)
		return ret;

4085
	i915_gem_object_flush_gtt_write_domain(obj);
4086

4087 4088
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4089

4090
	/* Flush the CPU cache if it's still invalid. */
4091
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4092
		i915_gem_clflush_object(obj, false);
4093

4094
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4095 4096 4097 4098 4099
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4100
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4101 4102 4103 4104 4105

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4106 4107
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4108
	}
4109

C
Chris Wilson 已提交
4110 4111 4112 4113
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4114 4115 4116
	return 0;
}

4117 4118 4119
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4120 4121 4122 4123
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4124 4125 4126
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4127
static int
4128
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4129
{
4130 4131
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4132
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4133
	struct drm_i915_gem_request *request, *target = NULL;
4134
	unsigned reset_counter;
4135
	int ret;
4136

4137 4138 4139 4140 4141 4142 4143
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4144

4145
	spin_lock(&file_priv->mm.lock);
4146
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4147 4148
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4149

4150 4151 4152 4153 4154 4155 4156
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4157
		target = request;
4158
	}
4159
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4160 4161
	if (target)
		i915_gem_request_reference(target);
4162
	spin_unlock(&file_priv->mm.lock);
4163

4164
	if (target == NULL)
4165
		return 0;
4166

4167
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4168 4169
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4170

4171
	i915_gem_request_unreference__unlocked(target);
4172

4173 4174 4175
	return ret;
}

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4192 4193 4194 4195
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4196 4197 4198
	return false;
}

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4217
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4218 4219 4220 4221

	obj->map_and_fenceable = mappable && fenceable;
}

4222 4223 4224 4225 4226 4227
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4228
{
4229
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4230
	struct i915_vma *vma;
4231
	unsigned bound;
4232 4233
	int ret;

4234 4235 4236
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4237
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4238
		return -EINVAL;
4239

4240 4241 4242
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4243 4244 4245 4246 4247 4248
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4249
	if (vma) {
B
Ben Widawsky 已提交
4250 4251 4252
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4253
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4254
			WARN(vma->pin_count,
4255
			     "bo is already pinned in %s with incorrect alignment:"
4256
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257
			     " obj->map_and_fenceable=%d\n",
4258
			     ggtt_view ? "ggtt" : "ppgtt",
4259 4260
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4261
			     alignment,
4262
			     !!(flags & PIN_MAPPABLE),
4263
			     obj->map_and_fenceable);
4264
			ret = i915_vma_unbind(vma);
4265 4266
			if (ret)
				return ret;
4267 4268

			vma = NULL;
4269 4270 4271
		}
	}

4272
	bound = vma ? vma->bound : 0;
4273
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274 4275
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4276 4277
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4278 4279
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4280 4281 4282
		if (ret)
			return ret;
	}
4283

4284 4285
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4286
		__i915_vma_set_map_and_fenceable(vma);
4287 4288
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4289

4290
	vma->pin_count++;
4291 4292 4293
	return 0;
}

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4311 4312 4313 4314
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4315
	BUG_ON(!view);
4316

4317
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4318
				      alignment, flags | PIN_GLOBAL);
4319 4320
}

4321
void
4322 4323
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4324
{
4325
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4326

B
Ben Widawsky 已提交
4327
	BUG_ON(!vma);
4328
	WARN_ON(vma->pin_count == 0);
4329
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4330

4331
	--vma->pin_count;
4332 4333 4334 4335
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4336
		    struct drm_file *file)
4337 4338
{
	struct drm_i915_gem_busy *args = data;
4339
	struct drm_i915_gem_object *obj;
4340 4341
	int ret;

4342
	ret = i915_mutex_lock_interruptible(dev);
4343
	if (ret)
4344
		return ret;
4345

4346
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4347
	if (&obj->base == NULL) {
4348 4349
		ret = -ENOENT;
		goto unlock;
4350
	}
4351

4352 4353 4354 4355
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4356
	 */
4357
	ret = i915_gem_object_flush_active(obj);
4358 4359
	if (ret)
		goto unref;
4360

4361 4362 4363 4364
	args->busy = 0;
	if (obj->active) {
		int i;

4365
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4366 4367 4368 4369
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4370
				args->busy |= 1 << (16 + req->engine->exec_id);
4371 4372
		}
		if (obj->last_write_req)
4373
			args->busy |= obj->last_write_req->engine->exec_id;
4374
	}
4375

4376
unref:
4377
	drm_gem_object_unreference(&obj->base);
4378
unlock:
4379
	mutex_unlock(&dev->struct_mutex);
4380
	return ret;
4381 4382 4383 4384 4385 4386
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4387
	return i915_gem_ring_throttle(dev, file_priv);
4388 4389
}

4390 4391 4392 4393
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4394
	struct drm_i915_private *dev_priv = dev->dev_private;
4395
	struct drm_i915_gem_madvise *args = data;
4396
	struct drm_i915_gem_object *obj;
4397
	int ret;
4398 4399 4400 4401 4402 4403 4404 4405 4406

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4407 4408 4409 4410
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4411
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4412
	if (&obj->base == NULL) {
4413 4414
		ret = -ENOENT;
		goto unlock;
4415 4416
	}

B
Ben Widawsky 已提交
4417
	if (i915_gem_obj_is_pinned(obj)) {
4418 4419
		ret = -EINVAL;
		goto out;
4420 4421
	}

4422 4423 4424 4425 4426 4427 4428 4429 4430
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4431 4432
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4433

C
Chris Wilson 已提交
4434
	/* if the object is no longer attached, discard its backing storage */
4435
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4436 4437
		i915_gem_object_truncate(obj);

4438
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4439

4440
out:
4441
	drm_gem_object_unreference(&obj->base);
4442
unlock:
4443
	mutex_unlock(&dev->struct_mutex);
4444
	return ret;
4445 4446
}

4447 4448
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4449
{
4450 4451
	int i;

4452
	INIT_LIST_HEAD(&obj->global_list);
4453
	for (i = 0; i < I915_NUM_ENGINES; i++)
4454
		INIT_LIST_HEAD(&obj->engine_list[i]);
4455
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4456
	INIT_LIST_HEAD(&obj->vma_list);
4457
	INIT_LIST_HEAD(&obj->batch_pool_link);
4458

4459 4460
	obj->ops = ops;

4461 4462 4463 4464 4465 4466
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4467
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4468
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4469 4470 4471 4472
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4473 4474
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4475
{
4476
	struct drm_i915_gem_object *obj;
4477
	struct address_space *mapping;
D
Daniel Vetter 已提交
4478
	gfp_t mask;
4479

4480
	obj = i915_gem_object_alloc(dev);
4481 4482
	if (obj == NULL)
		return NULL;
4483

4484
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4485
		i915_gem_object_free(obj);
4486 4487
		return NULL;
	}
4488

4489 4490 4491 4492 4493 4494 4495
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4496
	mapping = file_inode(obj->base.filp)->i_mapping;
4497
	mapping_set_gfp_mask(mapping, mask);
4498

4499
	i915_gem_object_init(obj, &i915_gem_object_ops);
4500

4501 4502
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4503

4504 4505
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4521 4522
	trace_i915_gem_object_create(obj);

4523
	return obj;
4524 4525
}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4550
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4551
{
4552
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4553
	struct drm_device *dev = obj->base.dev;
4554
	struct drm_i915_private *dev_priv = dev->dev_private;
4555
	struct i915_vma *vma, *next;
4556

4557 4558
	intel_runtime_pm_get(dev_priv);

4559 4560
	trace_i915_gem_object_destroy(obj);

4561
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4562 4563 4564 4565
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4566 4567
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4568

4569 4570
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4571

4572
			WARN_ON(i915_vma_unbind(vma));
4573

4574 4575
			dev_priv->mm.interruptible = was_interruptible;
		}
4576 4577
	}

B
Ben Widawsky 已提交
4578 4579 4580 4581 4582
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4583 4584
	WARN_ON(obj->frontbuffer_bits);

4585 4586 4587 4588 4589
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4590 4591
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4592
	if (discard_backing_storage(obj))
4593
		obj->madv = I915_MADV_DONTNEED;
4594
	i915_gem_object_put_pages(obj);
4595
	i915_gem_object_free_mmap_offset(obj);
4596

4597 4598
	BUG_ON(obj->pages);

4599 4600
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4601

4602 4603 4604
	if (obj->ops->release)
		obj->ops->release(obj);

4605 4606
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4607

4608
	kfree(obj->bit_17);
4609
	i915_gem_object_free(obj);
4610 4611

	intel_runtime_pm_put(dev_priv);
4612 4613
}

4614 4615
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4616 4617
{
	struct i915_vma *vma;
4618
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4619 4620
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4621
			return vma;
4622 4623 4624 4625 4626 4627 4628
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
4629 4630 4631
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4632
	struct i915_vma *vma;
4633

4634
	BUG_ON(!view);
4635

4636
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4637
		if (vma->vm == &ggtt->base &&
4638
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4639
			return vma;
4640 4641 4642
	return NULL;
}

B
Ben Widawsky 已提交
4643 4644 4645
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4646 4647 4648 4649 4650

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4651 4652
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4653

4654
	list_del(&vma->obj_link);
4655

4656
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4657 4658
}

4659
static void
4660
i915_gem_stop_engines(struct drm_device *dev)
4661 4662
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4663
	struct intel_engine_cs *engine;
4664

4665
	for_each_engine(engine, dev_priv)
4666
		dev_priv->gt.stop_engine(engine);
4667 4668
}

4669
int
4670
i915_gem_suspend(struct drm_device *dev)
4671
{
4672
	struct drm_i915_private *dev_priv = dev->dev_private;
4673
	int ret = 0;
4674

4675
	mutex_lock(&dev->struct_mutex);
4676
	ret = i915_gpu_idle(dev);
4677
	if (ret)
4678
		goto err;
4679

4680
	i915_gem_retire_requests(dev);
4681

4682
	i915_gem_stop_engines(dev);
4683 4684
	mutex_unlock(&dev->struct_mutex);

4685
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4686
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4687
	flush_delayed_work(&dev_priv->mm.idle_work);
4688

4689 4690 4691 4692 4693
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4694
	return 0;
4695 4696 4697 4698

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4699 4700
}

4701
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4702
{
4703
	struct intel_engine_cs *engine = req->engine;
4704
	struct drm_device *dev = engine->dev;
4705
	struct drm_i915_private *dev_priv = dev->dev_private;
4706
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4707
	int i, ret;
B
Ben Widawsky 已提交
4708

4709
	if (!HAS_L3_DPF(dev) || !remap_info)
4710
		return 0;
B
Ben Widawsky 已提交
4711

4712
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4713 4714
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4715

4716 4717 4718 4719 4720
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4721
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4722 4723 4724
		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
		intel_ring_emit(engine, remap_info[i]);
B
Ben Widawsky 已提交
4725 4726
	}

4727
	intel_ring_advance(engine);
B
Ben Widawsky 已提交
4728

4729
	return ret;
B
Ben Widawsky 已提交
4730 4731
}

4732 4733
void i915_gem_init_swizzling(struct drm_device *dev)
{
4734
	struct drm_i915_private *dev_priv = dev->dev_private;
4735

4736
	if (INTEL_INFO(dev)->gen < 5 ||
4737 4738 4739 4740 4741 4742
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4743 4744 4745
	if (IS_GEN5(dev))
		return;

4746 4747
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4748
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4749
	else if (IS_GEN7(dev))
4750
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4751 4752
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4753 4754
	else
		BUG();
4755
}
D
Daniel Vetter 已提交
4756

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4784
int i915_gem_init_engines(struct drm_device *dev)
4785
{
4786
	struct drm_i915_private *dev_priv = dev->dev_private;
4787
	int ret;
4788

4789
	ret = intel_init_render_ring_buffer(dev);
4790
	if (ret)
4791
		return ret;
4792 4793

	if (HAS_BSD(dev)) {
4794
		ret = intel_init_bsd_ring_buffer(dev);
4795 4796
		if (ret)
			goto cleanup_render_ring;
4797
	}
4798

4799
	if (HAS_BLT(dev)) {
4800 4801 4802 4803 4804
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4805 4806 4807 4808 4809 4810
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4811 4812 4813 4814 4815
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4816

4817 4818
	return 0;

B
Ben Widawsky 已提交
4819
cleanup_vebox_ring:
4820
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4821
cleanup_blt_ring:
4822
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4823
cleanup_bsd_ring:
4824
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4825
cleanup_render_ring:
4826
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4827 4828 4829 4830 4831 4832 4833

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4834
	struct drm_i915_private *dev_priv = dev->dev_private;
4835
	struct intel_engine_cs *engine;
4836
	int ret, j;
4837 4838 4839 4840

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4841 4842 4843
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4844
	if (dev_priv->ellc_size)
4845
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4846

4847 4848 4849
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4850

4851
	if (HAS_PCH_NOP(dev)) {
4852 4853 4854 4855 4856 4857 4858 4859 4860
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4861 4862
	}

4863 4864
	i915_gem_init_swizzling(dev);

4865 4866 4867 4868 4869 4870 4871 4872
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4873
	BUG_ON(!dev_priv->kernel_context);
4874

4875 4876 4877 4878 4879 4880 4881
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4882
	for_each_engine(engine, dev_priv) {
4883
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4884
		if (ret)
4885
			goto out;
D
Daniel Vetter 已提交
4886
	}
4887

4888
	/* We can't enable contexts until all firmware is loaded */
4889 4890 4891
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4892 4893 4894
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4895
		}
4896 4897
	}

4898 4899 4900 4901 4902 4903 4904 4905
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4906
	/* Now it is safe to go back round and do everything else: */
4907
	for_each_engine(engine, dev_priv) {
4908 4909
		struct drm_i915_gem_request *req;

4910
		req = i915_gem_request_alloc(engine, NULL);
4911 4912
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
4913
			i915_gem_cleanup_engines(dev);
4914 4915 4916
			goto out;
		}

4917
		if (engine->id == RCS) {
4918
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4919
				i915_gem_l3_remap(req, j);
4920
		}
4921

4922
		ret = i915_ppgtt_init_ring(req);
4923
		if (ret && ret != -EIO) {
4924 4925
			DRM_ERROR("PPGTT enable %s failed %d\n",
				  engine->name, ret);
4926
			i915_gem_request_cancel(req);
4927
			i915_gem_cleanup_engines(dev);
4928 4929
			goto out;
		}
4930

4931
		ret = i915_gem_context_enable(req);
4932
		if (ret && ret != -EIO) {
4933 4934
			DRM_ERROR("Context enable %s failed %d\n",
				  engine->name, ret);
4935
			i915_gem_request_cancel(req);
4936
			i915_gem_cleanup_engines(dev);
4937 4938
			goto out;
		}
4939

4940
		i915_add_request_no_flush(req);
4941
	}
D
Daniel Vetter 已提交
4942

4943 4944
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945
	return ret;
4946 4947
}

4948 4949 4950 4951 4952
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4953 4954 4955
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4956
	mutex_lock(&dev->struct_mutex);
4957

4958
	if (!i915.enable_execlists) {
4959
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4960 4961 4962
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4963
	} else {
4964
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4965 4966 4967
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4968 4969
	}

4970 4971 4972 4973 4974 4975 4976 4977
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4978
	ret = i915_gem_init_userptr(dev);
4979 4980
	if (ret)
		goto out_unlock;
4981

4982
	i915_gem_init_ggtt(dev);
4983

4984
	ret = i915_gem_context_init(dev);
4985 4986
	if (ret)
		goto out_unlock;
4987

4988
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
4989
	if (ret)
4990
		goto out_unlock;
4991

4992
	ret = i915_gem_init_hw(dev);
4993 4994 4995 4996 4997 4998
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4999
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5000
		ret = 0;
5001
	}
5002 5003

out_unlock:
5004
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5005
	mutex_unlock(&dev->struct_mutex);
5006

5007
	return ret;
5008 5009
}

5010
void
5011
i915_gem_cleanup_engines(struct drm_device *dev)
5012
{
5013
	struct drm_i915_private *dev_priv = dev->dev_private;
5014
	struct intel_engine_cs *engine;
5015

5016
	for_each_engine(engine, dev_priv)
5017
		dev_priv->gt.cleanup_engine(engine);
5018

5019 5020 5021 5022 5023 5024 5025
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
5026 5027
}

5028
static void
5029
init_engine_lists(struct intel_engine_cs *engine)
5030
{
5031 5032
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5033 5034
}

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5059
void
5060
i915_gem_load_init(struct drm_device *dev)
5061
{
5062
	struct drm_i915_private *dev_priv = dev->dev_private;
5063 5064
	int i;

5065
	dev_priv->objects =
5066 5067 5068 5069
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5070 5071 5072 5073 5074
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5075 5076 5077 5078 5079
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5080

B
Ben Widawsky 已提交
5081
	INIT_LIST_HEAD(&dev_priv->vm_list);
5082
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5083 5084
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5085
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5086 5087
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5088
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5089
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5090 5091
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5092 5093
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5094
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5095

5096 5097
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5098 5099 5100 5101 5102 5103 5104 5105
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5106
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5107

5108
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5109

5110 5111
	dev_priv->mm.interruptible = true;

5112
	mutex_init(&dev_priv->fb_tracking.lock);
5113
}
5114

5115 5116 5117 5118 5119 5120 5121 5122 5123
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5124
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5125
{
5126
	struct drm_i915_file_private *file_priv = file->driver_priv;
5127 5128 5129 5130 5131

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5132
	spin_lock(&file_priv->mm.lock);
5133 5134 5135 5136 5137 5138 5139 5140 5141
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5142
	spin_unlock(&file_priv->mm.lock);
5143

5144
	if (!list_empty(&file_priv->rps.link)) {
5145
		spin_lock(&to_i915(dev)->rps.client_lock);
5146
		list_del(&file_priv->rps.link);
5147
		spin_unlock(&to_i915(dev)->rps.client_lock);
5148
	}
5149 5150 5151 5152 5153
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5154
	int ret;
5155 5156 5157 5158 5159 5160 5161 5162 5163

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5164
	file_priv->file = file;
5165
	INIT_LIST_HEAD(&file_priv->rps.link);
5166 5167 5168 5169

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5170 5171
	file_priv->bsd_ring = -1;

5172 5173 5174
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5175

5176
	return ret;
5177 5178
}

5179 5180
/**
 * i915_gem_track_fb - update frontbuffer tracking
5181 5182 5183
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5184 5185 5186 5187
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5205
/* All the new VM stuff */
5206 5207
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5208 5209 5210 5211
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5212
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5213

5214
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5215
		if (vma->is_ggtt &&
5216 5217 5218
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5219 5220
			return vma->node.start;
	}
5221

5222 5223
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5224 5225 5226
	return -1;
}

5227 5228
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5229
{
5230 5231
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5232 5233
	struct i915_vma *vma;

5234
	list_for_each_entry(vma, &o->vma_list, obj_link)
5235
		if (vma->vm == &ggtt->base &&
5236
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5237 5238
			return vma->node.start;

5239
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5240 5241 5242 5243 5244 5245 5246 5247
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5248
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5249
		if (vma->is_ggtt &&
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5260
				  const struct i915_ggtt_view *view)
5261
{
5262 5263
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5264 5265
	struct i915_vma *vma;

5266
	list_for_each_entry(vma, &o->vma_list, obj_link)
5267
		if (vma->vm == &ggtt->base &&
5268
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5269
		    drm_mm_node_allocated(&vma->node))
5270 5271 5272 5273 5274 5275 5276
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5277
	struct i915_vma *vma;
5278

5279
	list_for_each_entry(vma, &o->vma_list, obj_link)
5280
		if (drm_mm_node_allocated(&vma->node))
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5292
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5293 5294 5295

	BUG_ON(list_empty(&o->vma_list));

5296
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5297
		if (vma->is_ggtt &&
5298 5299
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5300 5301
		if (vma->vm == vm)
			return vma->node.size;
5302
	}
5303 5304 5305
	return 0;
}

5306
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5307 5308
{
	struct i915_vma *vma;
5309
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5310 5311
		if (vma->pin_count > 0)
			return true;
5312

5313
	return false;
5314
}
5315

5316 5317 5318 5319 5320 5321 5322
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5323
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5324 5325 5326 5327 5328 5329 5330
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5356
	obj->dirty = 1;		/* Backing store is now out of date */
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}