i915_gem.c 159.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141 142 143
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
144
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
165
	i915_timelines_park(i915);
166 167

	i915_pmu_gt_parked(i915);
168
	i915_vma_parked(i915);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

236 237
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
238
			    struct drm_file *file)
239
{
240
	struct drm_i915_private *dev_priv = to_i915(dev);
241
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
242
	struct drm_i915_gem_get_aperture *args = data;
243
	struct i915_vma *vma;
244
	u64 pinned;
245

246
	pinned = ggtt->base.reserved;
247
	mutex_lock(&dev->struct_mutex);
248
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
249
		if (i915_vma_is_pinned(vma))
250
			pinned += vma->node.size;
251
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
252
		if (i915_vma_is_pinned(vma))
253
			pinned += vma->node.size;
254
	mutex_unlock(&dev->struct_mutex);
255

256
	args->aper_size = ggtt->base.total;
257
	args->aper_available_size = args->aper_size - pinned;
258

259 260 261
	return 0;
}

262
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
263
{
264
	struct address_space *mapping = obj->base.filp->f_mapping;
265
	drm_dma_handle_t *phys;
266 267
	struct sg_table *st;
	struct scatterlist *sg;
268
	char *vaddr;
269
	int i;
270
	int err;
271

272
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
273
		return -EINVAL;
274

275 276 277 278 279
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
280
			     roundup_pow_of_two(obj->base.size),
281 282
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
283
		return -ENOMEM;
284 285

	vaddr = phys->vaddr;
286 287 288 289 290
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
291
		if (IS_ERR(page)) {
292
			err = PTR_ERR(page);
293 294
			goto err_phys;
		}
295 296 297 298 299 300

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

301
		put_page(page);
302 303 304
		vaddr += PAGE_SIZE;
	}

305
	i915_gem_chipset_flush(to_i915(obj->base.dev));
306 307

	st = kmalloc(sizeof(*st), GFP_KERNEL);
308
	if (!st) {
309
		err = -ENOMEM;
310 311
		goto err_phys;
	}
312 313 314

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
315
		err = -ENOMEM;
316
		goto err_phys;
317 318 319 320 321
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
322

323
	sg_dma_address(sg) = phys->busaddr;
324 325
	sg_dma_len(sg) = obj->base.size;

326
	obj->phys_handle = phys;
327

328
	__i915_gem_object_set_pages(obj, st, sg->length);
329 330

	return 0;
331 332 333

err_phys:
	drm_pci_free(obj->base.dev, phys);
334 335

	return err;
336 337
}

338 339
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
340 341
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
342 343 344 345
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

346
static void
347
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
348 349
				struct sg_table *pages,
				bool needs_clflush)
350
{
C
Chris Wilson 已提交
351
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
352

C
Chris Wilson 已提交
353 354
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
355

356
	if (needs_clflush &&
357
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
358
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
359
		drm_clflush_sg(pages);
360

361
	__start_cpu_write(obj);
362 363 364 365 366 367
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
368
	__i915_gem_object_release_shmem(obj, pages, false);
369

C
Chris Wilson 已提交
370
	if (obj->mm.dirty) {
371
		struct address_space *mapping = obj->base.filp->f_mapping;
372
		char *vaddr = obj->phys_handle->vaddr;
373 374 375
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
376 377 378 379 380 381 382 383 384 385 386 387 388
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
389
			if (obj->mm.madv == I915_MADV_WILLNEED)
390
				mark_page_accessed(page);
391
			put_page(page);
392 393
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
394
		obj->mm.dirty = false;
395 396
	}

397 398
	sg_free_table(pages);
	kfree(pages);
399 400

	drm_pci_free(obj->base.dev, obj->phys_handle);
401 402 403 404 405
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
406
	i915_gem_object_unpin_pages(obj);
407 408 409 410 411 412 413 414
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

415 416
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

417
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
418 419 420
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
421 422 423
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
424

425 426 427 428
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
429
	 */
430
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
431 432 433
	if (ret)
		return ret;

434 435 436 437 438 439 440 441 442 443 444 445 446
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

447 448 449 450
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
451
			   struct intel_rps_client *rps_client)
452
{
453
	struct i915_request *rq;
454

455
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
456

457 458 459 460 461 462 463 464 465
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
466
	if (i915_request_completed(rq))
467 468
		goto out;

469 470
	/*
	 * This client is about to stall waiting for the GPU. In many cases
471 472 473 474 475 476 477 478 479 480 481 482 483 484
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
485
	if (rps_client && !i915_request_started(rq)) {
486
		if (INTEL_GEN(rq->i915) >= 6)
487
			gen6_rps_boost(rq, rps_client);
488 489
	}

490
	timeout = i915_request_wait(rq, flags, timeout);
491 492

out:
493 494
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
495 496 497 498 499 500 501 502

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
503
				 struct intel_rps_client *rps_client)
504
{
505
	unsigned int seq = __read_seqcount_begin(&resv->seq);
506
	struct dma_fence *excl;
507
	bool prune_fences = false;
508 509 510 511

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
512 513
		int ret;

514 515
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
516 517 518
		if (ret)
			return ret;

519 520 521
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
522
							     rps_client);
523
			if (timeout < 0)
524
				break;
525

526 527 528 529 530 531
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
532

533 534 535 536 537 538 539 540 541
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
542
		prune_fences = count && timeout >= 0;
543 544
	} else {
		excl = reservation_object_get_excl_rcu(resv);
545 546
	}

547
	if (excl && timeout >= 0)
548 549
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
550 551 552

	dma_fence_put(excl);

553 554
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
555 556 557
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
558
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
559 560 561 562 563
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
564 565
	}

566
	return timeout;
567 568
}

569 570
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
571
{
572
	struct i915_request *rq;
573 574
	struct intel_engine_cs *engine;

575
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
576 577 578 579 580
		return;

	rq = to_request(fence);
	engine = rq->engine;

581 582
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
583
	if (engine->schedule)
584
		engine->schedule(rq, attr);
585
	rcu_read_unlock();
586
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
587 588
}

589 590
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
591 592 593 594 595 596 597
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
598
			__fence_set_priority(array->fences[i], attr);
599
	} else {
600
		__fence_set_priority(fence, attr);
601 602 603 604 605 606
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
607
			      const struct i915_sched_attr *attr)
608 609 610 611 612 613 614 615 616 617 618 619 620 621
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
622
			fence_set_priority(shared[i], attr);
623 624 625 626 627 628 629 630 631
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
632
		fence_set_priority(excl, attr);
633 634 635 636 637
		dma_fence_put(excl);
	}
	return 0;
}

638 639 640 641 642
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
643
 * @rps_client: client (user process) to charge for any waitboosting
644
 */
645 646 647 648
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
649
		     struct intel_rps_client *rps_client)
650
{
651 652 653 654 655 656 657
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
658

659 660
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
661
						   rps_client);
662
	return timeout < 0 ? timeout : 0;
663 664 665 666 667 668
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

669
	return &fpriv->rps_client;
670 671
}

672 673 674
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
675
		     struct drm_file *file)
676 677
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
678
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
679 680 681 682

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
683
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
684 685
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
686

687
	drm_clflush_virt_range(vaddr, args->size);
688
	i915_gem_chipset_flush(to_i915(obj->base.dev));
689

690
	intel_fb_obj_flush(obj, ORIGIN_CPU);
691
	return 0;
692 693
}

694
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
695
{
696
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
697 698 699 700
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
701
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
702
	kmem_cache_free(dev_priv->objects, obj);
703 704
}

705 706
static int
i915_gem_create(struct drm_file *file,
707
		struct drm_i915_private *dev_priv,
708 709
		uint64_t size,
		uint32_t *handle_p)
710
{
711
	struct drm_i915_gem_object *obj;
712 713
	int ret;
	u32 handle;
714

715
	size = roundup(size, PAGE_SIZE);
716 717
	if (size == 0)
		return -EINVAL;
718 719

	/* Allocate the new object */
720
	obj = i915_gem_object_create(dev_priv, size);
721 722
	if (IS_ERR(obj))
		return PTR_ERR(obj);
723

724
	ret = drm_gem_handle_create(file, &obj->base, &handle);
725
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
726
	i915_gem_object_put(obj);
727 728
	if (ret)
		return ret;
729

730
	*handle_p = handle;
731 732 733
	return 0;
}

734 735 736 737 738 739
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
740
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
741
	args->size = args->pitch * args->height;
742
	return i915_gem_create(file, to_i915(dev),
743
			       args->size, &args->handle);
744 745
}

746 747 748 749 750 751
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

752 753
/**
 * Creates a new mm object and returns a handle to it.
754 755 756
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
757 758 759 760 761
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
762
	struct drm_i915_private *dev_priv = to_i915(dev);
763
	struct drm_i915_gem_create *args = data;
764

765
	i915_gem_flush_free_objects(dev_priv);
766

767
	return i915_gem_create(file, dev_priv,
768
			       args->size, &args->handle);
769 770
}

771 772 773 774 775 776 777
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

778
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
779
{
780 781 782 783 784
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
785 786 787 788 789 790 791 792 793 794
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
795 796
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
797
	 */
798

799 800
	wmb();

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

816
	if (!(obj->write_domain & flush_domains))
817 818
		return;

819
	switch (obj->write_domain) {
820
	case I915_GEM_DOMAIN_GTT:
821
		i915_gem_flush_ggtt_writes(dev_priv);
822 823 824

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
825

826
		for_each_ggtt_vma(vma, obj) {
827 828 829 830 831
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
832 833 834 835 836
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
837 838 839 840 841

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
842 843
	}

844
	obj->write_domain = 0;
845 846
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

873
static inline int
874 875
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

899 900 901 902 903 904
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
905
				    unsigned int *needs_clflush)
906 907 908
{
	int ret;

909
	lockdep_assert_held(&obj->base.dev->struct_mutex);
910

911
	*needs_clflush = 0;
912 913
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
914

915 916 917 918 919
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
920 921 922
	if (ret)
		return ret;

C
Chris Wilson 已提交
923
	ret = i915_gem_object_pin_pages(obj);
924 925 926
	if (ret)
		return ret;

927 928
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
929 930 931 932 933 934 935
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

936
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
937

938 939 940 941 942
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
943
	if (!obj->cache_dirty &&
944
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
945
		*needs_clflush = CLFLUSH_BEFORE;
946

947
out:
948
	/* return with the pages pinned */
949
	return 0;
950 951 952 953

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
954 955 956 957 958 959 960
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

961 962
	lockdep_assert_held(&obj->base.dev->struct_mutex);

963 964 965 966
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

967 968 969 970 971 972
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
973 974 975
	if (ret)
		return ret;

C
Chris Wilson 已提交
976
	ret = i915_gem_object_pin_pages(obj);
977 978 979
	if (ret)
		return ret;

980 981
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
982 983 984 985 986 987 988
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

989
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
990

991 992 993 994 995
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
996
	if (!obj->cache_dirty) {
997
		*needs_clflush |= CLFLUSH_AFTER;
998

999 1000 1001 1002
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1003
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1004 1005
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1006

1007
out:
1008
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1009
	obj->mm.dirty = true;
1010
	/* return with the pages pinned */
1011
	return 0;
1012 1013 1014 1015

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1016 1017
}

1018 1019 1020 1021
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1022
	if (unlikely(swizzled)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1040 1041 1042
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1043
shmem_pread_slow(struct page *page, int offset, int length,
1044 1045 1046 1047 1048 1049 1050 1051
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1052
		shmem_clflush_swizzled_range(vaddr + offset, length,
1053
					     page_do_bit17_swizzling);
1054 1055

	if (page_do_bit17_swizzling)
1056
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1057
	else
1058
		ret = __copy_to_user(user_data, vaddr + offset, length);
1059 1060
	kunmap(page);

1061
	return ret ? - EFAULT : 0;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1140
{
1141
	void __iomem *vaddr;
1142
	unsigned long unwritten;
1143 1144

	/* We can use the cpu mem copy function because this is X86. */
1145 1146 1147 1148
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1149 1150
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1151 1152 1153 1154
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1155 1156
		io_mapping_unmap(vaddr);
	}
1157 1158 1159 1160
	return unwritten;
}

static int
1161 1162
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1163
{
1164 1165
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1166
	struct drm_mm_node node;
1167 1168 1169
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1170 1171
	int ret;

1172 1173 1174 1175 1176 1177
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1178 1179 1180
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1181 1182 1183
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1184
		ret = i915_vma_put_fence(vma);
1185 1186 1187 1188 1189
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1190
	if (IS_ERR(vma)) {
1191
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1192
		if (ret)
1193 1194
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1195 1196 1197 1198 1199 1200
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1201
	mutex_unlock(&i915->drm.struct_mutex);
1202

1203 1204 1205
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1222
					       node.start, I915_CACHE_NONE, 0);
1223 1224 1225 1226
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1227

1228
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1229
				  user_data, page_length)) {
1230 1231 1232 1233 1234 1235 1236 1237 1238
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1239
	mutex_lock(&i915->drm.struct_mutex);
1240 1241 1242 1243
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1244
				       node.start, node.size);
1245 1246
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1247
		i915_vma_unpin(vma);
1248
	}
1249 1250 1251
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1252

1253 1254 1255
	return ret;
}

1256 1257
/**
 * Reads data from the object referenced by handle.
1258 1259 1260
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1261 1262 1263 1264 1265
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1266
		     struct drm_file *file)
1267 1268
{
	struct drm_i915_gem_pread *args = data;
1269
	struct drm_i915_gem_object *obj;
1270
	int ret;
1271

1272 1273 1274 1275
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1276
		       u64_to_user_ptr(args->data_ptr),
1277 1278 1279
		       args->size))
		return -EFAULT;

1280
	obj = i915_gem_object_lookup(file, args->handle);
1281 1282
	if (!obj)
		return -ENOENT;
1283

1284
	/* Bounds check source.  */
1285
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1286
		ret = -EINVAL;
1287
		goto out;
C
Chris Wilson 已提交
1288 1289
	}

C
Chris Wilson 已提交
1290 1291
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1292 1293 1294 1295
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1296
	if (ret)
1297
		goto out;
1298

1299
	ret = i915_gem_object_pin_pages(obj);
1300
	if (ret)
1301
		goto out;
1302

1303
	ret = i915_gem_shmem_pread(obj, args);
1304
	if (ret == -EFAULT || ret == -ENODEV)
1305
		ret = i915_gem_gtt_pread(obj, args);
1306

1307 1308
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1309
	i915_gem_object_put(obj);
1310
	return ret;
1311 1312
}

1313 1314
/* This is the fast write path which cannot handle
 * page faults in the source data
1315
 */
1316

1317 1318 1319 1320
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1321
{
1322
	void __iomem *vaddr;
1323
	unsigned long unwritten;
1324

1325
	/* We can use the cpu mem copy function because this is X86. */
1326 1327
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1328
						      user_data, length);
1329 1330
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1331 1332 1333
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1334 1335
		io_mapping_unmap(vaddr);
	}
1336 1337 1338 1339

	return unwritten;
}

1340 1341 1342
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1343
 * @obj: i915 GEM object
1344
 * @args: pwrite arguments structure
1345
 */
1346
static int
1347 1348
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1349
{
1350
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1351 1352
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1353 1354 1355
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1356
	int ret;
1357

1358 1359 1360
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1379
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1380 1381 1382
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1383 1384 1385
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1386
		ret = i915_vma_put_fence(vma);
1387 1388 1389 1390 1391
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1392
	if (IS_ERR(vma)) {
1393
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1394
		if (ret)
1395
			goto out_rpm;
1396
		GEM_BUG_ON(!node.allocated);
1397
	}
D
Daniel Vetter 已提交
1398 1399 1400 1401 1402

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1403 1404
	mutex_unlock(&i915->drm.struct_mutex);

1405
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1406

1407 1408 1409 1410
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1411 1412
		/* Operation in this page
		 *
1413 1414 1415
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1416
		 */
1417
		u32 page_base = node.start;
1418 1419
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1430
		/* If we get a fault while copying data, then (presumably) our
1431 1432
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1433 1434
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1435
		 */
1436
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1437 1438 1439
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1440
		}
1441

1442 1443 1444
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1445
	}
1446
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1447 1448

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1449
out_unpin:
1450 1451 1452
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1453
				       node.start, node.size);
1454 1455
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1456
		i915_vma_unpin(vma);
1457
	}
1458
out_rpm:
1459
	intel_runtime_pm_put(i915);
1460
out_unlock:
1461
	mutex_unlock(&i915->drm.struct_mutex);
1462
	return ret;
1463 1464
}

1465
static int
1466
shmem_pwrite_slow(struct page *page, int offset, int length,
1467 1468 1469 1470
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1471
{
1472 1473
	char *vaddr;
	int ret;
1474

1475
	vaddr = kmap(page);
1476
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1477
		shmem_clflush_swizzled_range(vaddr + offset, length,
1478
					     page_do_bit17_swizzling);
1479
	if (page_do_bit17_swizzling)
1480 1481
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1482
	else
1483
		ret = __copy_from_user(vaddr + offset, user_data, length);
1484
	if (needs_clflush_after)
1485
		shmem_clflush_swizzled_range(vaddr + offset, length,
1486
					     page_do_bit17_swizzling);
1487
	kunmap(page);
1488

1489
	return ret ? -EFAULT : 0;
1490 1491
}

1492 1493 1494 1495 1496
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1497
static int
1498 1499 1500 1501
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1502
{
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1535
	unsigned int needs_clflush;
1536 1537
	unsigned int offset, idx;
	int ret;
1538

1539
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1540 1541 1542
	if (ret)
		return ret;

1543 1544 1545 1546
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1547

1548 1549 1550
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1551

1552 1553 1554 1555 1556 1557 1558
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1559

1560 1561 1562 1563 1564 1565
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1566

1567 1568 1569
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1570

1571 1572 1573 1574
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1575
		if (ret)
1576
			break;
1577

1578 1579 1580
		remain -= length;
		user_data += length;
		offset = 0;
1581
	}
1582

1583
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1584
	i915_gem_obj_finish_shmem_access(obj);
1585
	return ret;
1586 1587 1588 1589
}

/**
 * Writes data to the object referenced by handle.
1590 1591 1592
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1593 1594 1595 1596 1597
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1598
		      struct drm_file *file)
1599 1600
{
	struct drm_i915_gem_pwrite *args = data;
1601
	struct drm_i915_gem_object *obj;
1602 1603 1604 1605 1606 1607
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1608
		       u64_to_user_ptr(args->data_ptr),
1609 1610 1611
		       args->size))
		return -EFAULT;

1612
	obj = i915_gem_object_lookup(file, args->handle);
1613 1614
	if (!obj)
		return -ENOENT;
1615

1616
	/* Bounds check destination. */
1617
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1618
		ret = -EINVAL;
1619
		goto err;
C
Chris Wilson 已提交
1620 1621
	}

C
Chris Wilson 已提交
1622 1623
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1624 1625 1626 1627 1628 1629
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1630 1631 1632 1633 1634
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1635 1636 1637
	if (ret)
		goto err;

1638
	ret = i915_gem_object_pin_pages(obj);
1639
	if (ret)
1640
		goto err;
1641

D
Daniel Vetter 已提交
1642
	ret = -EFAULT;
1643 1644 1645 1646 1647 1648
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1649
	if (!i915_gem_object_has_struct_page(obj) ||
1650
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1651 1652
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1653 1654
		 * textures). Fallback to the shmem path in that case.
		 */
1655
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1656

1657
	if (ret == -EFAULT || ret == -ENOSPC) {
1658 1659
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1660
		else
1661
			ret = i915_gem_shmem_pwrite(obj, args);
1662
	}
1663

1664
	i915_gem_object_unpin_pages(obj);
1665
err:
C
Chris Wilson 已提交
1666
	i915_gem_object_put(obj);
1667
	return ret;
1668 1669
}

1670 1671 1672 1673 1674 1675
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1676 1677
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1678
	for_each_ggtt_vma(vma, obj) {
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1689
	spin_lock(&i915->mm.obj_lock);
1690
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1691 1692
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1693 1694
}

1695
/**
1696 1697
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1698 1699 1700
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1701 1702 1703
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1704
			  struct drm_file *file)
1705 1706
{
	struct drm_i915_gem_set_domain *args = data;
1707
	struct drm_i915_gem_object *obj;
1708 1709
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1710
	int err;
1711

1712
	/* Only handle setting domains to types used by the CPU. */
1713
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1714 1715 1716 1717 1718 1719 1720 1721
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1722
	obj = i915_gem_object_lookup(file, args->handle);
1723 1724
	if (!obj)
		return -ENOENT;
1725

1726 1727 1728 1729
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1730
	err = i915_gem_object_wait(obj,
1731 1732 1733 1734
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1735
	if (err)
C
Chris Wilson 已提交
1736
		goto out;
1737

T
Tina Zhang 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1751 1752 1753 1754 1755 1756 1757 1758 1759
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1760
		goto out;
1761 1762 1763

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1764
		goto out_unpin;
1765

1766 1767 1768 1769
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1770
	else
1771
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1772

1773 1774
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1775

1776
	mutex_unlock(&dev->struct_mutex);
1777

1778
	if (write_domain != 0)
1779 1780
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1781

C
Chris Wilson 已提交
1782
out_unpin:
1783
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1784 1785
out:
	i915_gem_object_put(obj);
1786
	return err;
1787 1788 1789 1790
}

/**
 * Called when user space has done writes to this buffer
1791 1792 1793
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1794 1795 1796
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1797
			 struct drm_file *file)
1798 1799
{
	struct drm_i915_gem_sw_finish *args = data;
1800
	struct drm_i915_gem_object *obj;
1801

1802
	obj = i915_gem_object_lookup(file, args->handle);
1803 1804
	if (!obj)
		return -ENOENT;
1805

T
Tina Zhang 已提交
1806 1807 1808 1809 1810
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1811
	/* Pinned buffers may be scanout, so flush the cache */
1812
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1813
	i915_gem_object_put(obj);
1814 1815

	return 0;
1816 1817 1818
}

/**
1819 1820 1821 1822 1823
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1824 1825 1826
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1837 1838 1839
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1840
		    struct drm_file *file)
1841 1842
{
	struct drm_i915_gem_mmap *args = data;
1843
	struct drm_i915_gem_object *obj;
1844 1845
	unsigned long addr;

1846 1847 1848
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1849
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1850 1851
		return -ENODEV;

1852 1853
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1854
		return -ENOENT;
1855

1856 1857 1858
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1859
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1860
		i915_gem_object_put(obj);
1861
		return -ENXIO;
1862 1863
	}

1864
	addr = vm_mmap(obj->base.filp, 0, args->size,
1865 1866
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1867 1868 1869 1870
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1871
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1872
			i915_gem_object_put(obj);
1873 1874
			return -EINTR;
		}
1875 1876 1877 1878 1879 1880 1881
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1882 1883

		/* This may race, but that's ok, it only gets set */
1884
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1885
	}
C
Chris Wilson 已提交
1886
	i915_gem_object_put(obj);
1887 1888 1889 1890 1891 1892 1893 1894
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1895 1896
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1897
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1920 1921 1922
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1950
	return 2;
1951 1952
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1964 1965
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1966
		min_t(unsigned int, chunk,
1967
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1968 1969 1970 1971 1972 1973 1974 1975

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1976 1977
/**
 * i915_gem_fault - fault a page into the GTT
1978
 * @vmf: fault info
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1990 1991 1992
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1993
 */
1994
int i915_gem_fault(struct vm_fault *vmf)
1995
{
1996
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1997
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1998
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1999
	struct drm_device *dev = obj->base.dev;
2000 2001
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2002
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
2003
	struct i915_vma *vma;
2004
	pgoff_t page_offset;
2005
	unsigned int flags;
2006
	int ret;
2007

2008
	/* We don't use vmf->pgoff since that has the fake offset */
2009
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2010

C
Chris Wilson 已提交
2011 2012
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2013
	/* Try to flush the object off the GPU first without holding the lock.
2014
	 * Upon acquiring the lock, we will perform our sanity checks and then
2015 2016 2017
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2018 2019 2020 2021
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2022
	if (ret)
2023 2024
		goto err;

2025 2026 2027 2028
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2029 2030 2031 2032 2033
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2034

2035
	/* Access to snoopable pages through the GTT is incoherent. */
2036
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2037
		ret = -EFAULT;
2038
		goto err_unlock;
2039 2040
	}

2041 2042 2043 2044 2045 2046 2047 2048
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

2049
	/* Now pin it into the GTT as needed */
2050
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
2051 2052
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2053
		struct i915_ggtt_view view =
2054
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2055

2056 2057 2058 2059 2060
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2061 2062
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
2063 2064
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2065
		goto err_unlock;
C
Chris Wilson 已提交
2066
	}
2067

2068 2069
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2070
		goto err_unpin;
2071

2072
	ret = i915_vma_pin_fence(vma);
2073
	if (ret)
2074
		goto err_unpin;
2075

2076
	/* Finally, remap it using the new GTT offset */
2077
	ret = remap_io_mapping(area,
2078
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2079
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2080
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2081
			       &ggtt->iomap);
2082 2083
	if (ret)
		goto err_fence;
2084

2085 2086 2087 2088 2089 2090
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2091 2092
	i915_vma_set_ggtt_write(vma);

2093
err_fence:
2094
	i915_vma_unpin_fence(vma);
2095
err_unpin:
C
Chris Wilson 已提交
2096
	__i915_vma_unpin(vma);
2097
err_unlock:
2098
	mutex_unlock(&dev->struct_mutex);
2099 2100
err_rpm:
	intel_runtime_pm_put(dev_priv);
2101
	i915_gem_object_unpin_pages(obj);
2102
err:
2103
	switch (ret) {
2104
	case -EIO:
2105 2106 2107 2108 2109 2110 2111
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2112 2113 2114
			ret = VM_FAULT_SIGBUS;
			break;
		}
2115
	case -EAGAIN:
D
Daniel Vetter 已提交
2116 2117 2118 2119
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2120
		 */
2121 2122
	case 0:
	case -ERESTARTSYS:
2123
	case -EINTR:
2124 2125 2126 2127 2128
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2129 2130
		ret = VM_FAULT_NOPAGE;
		break;
2131
	case -ENOMEM:
2132 2133
		ret = VM_FAULT_OOM;
		break;
2134
	case -ENOSPC:
2135
	case -EFAULT:
2136 2137
		ret = VM_FAULT_SIGBUS;
		break;
2138
	default:
2139
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2140 2141
		ret = VM_FAULT_SIGBUS;
		break;
2142
	}
2143
	return ret;
2144 2145
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2157
	for_each_ggtt_vma(vma, obj)
2158 2159 2160
		i915_vma_unset_userfault(vma);
}

2161 2162 2163 2164
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2165
 * Preserve the reservation of the mmapping with the DRM core code, but
2166 2167 2168 2169 2170 2171 2172 2173 2174
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2175
void
2176
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2177
{
2178 2179
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2180 2181 2182
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2183 2184 2185 2186
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2187
	 */
2188
	lockdep_assert_held(&i915->drm.struct_mutex);
2189
	intel_runtime_pm_get(i915);
2190

2191
	if (!obj->userfault_count)
2192
		goto out;
2193

2194
	__i915_gem_object_release_mmap(obj);
2195 2196 2197 2198 2199 2200 2201 2202 2203

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2204 2205 2206

out:
	intel_runtime_pm_put(i915);
2207 2208
}

2209
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2210
{
2211
	struct drm_i915_gem_object *obj, *on;
2212
	int i;
2213

2214 2215 2216 2217 2218 2219
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2220

2221
	list_for_each_entry_safe(obj, on,
2222 2223
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2224 2225 2226 2227 2228 2229 2230 2231

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2242 2243 2244 2245

		if (!reg->vma)
			continue;

2246
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2247 2248
		reg->dirty = true;
	}
2249 2250
}

2251 2252
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2253
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2254
	int err;
2255

2256
	err = drm_gem_create_mmap_offset(&obj->base);
2257
	if (likely(!err))
2258
		return 0;
2259

2260 2261 2262 2263 2264
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2265

2266
		i915_gem_drain_freed_objects(dev_priv);
2267
		err = drm_gem_create_mmap_offset(&obj->base);
2268 2269 2270 2271
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2272

2273
	return err;
2274 2275 2276 2277 2278 2279 2280
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2281
int
2282 2283
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2284
		  uint32_t handle,
2285
		  uint64_t *offset)
2286
{
2287
	struct drm_i915_gem_object *obj;
2288 2289
	int ret;

2290
	obj = i915_gem_object_lookup(file, handle);
2291 2292
	if (!obj)
		return -ENOENT;
2293

2294
	ret = i915_gem_object_create_mmap_offset(obj);
2295 2296
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2297

C
Chris Wilson 已提交
2298
	i915_gem_object_put(obj);
2299
	return ret;
2300 2301
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2323
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2324 2325
}

D
Daniel Vetter 已提交
2326 2327 2328
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2329
{
2330
	i915_gem_object_free_mmap_offset(obj);
2331

2332 2333
	if (obj->base.filp == NULL)
		return;
2334

D
Daniel Vetter 已提交
2335 2336 2337 2338 2339
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2340
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2341
	obj->mm.madv = __I915_MADV_PURGED;
2342
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2343
}
2344

2345
/* Try to discard unwanted pages */
2346
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2347
{
2348 2349
	struct address_space *mapping;

2350
	lockdep_assert_held(&obj->mm.lock);
2351
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2352

C
Chris Wilson 已提交
2353
	switch (obj->mm.madv) {
2354 2355 2356 2357 2358 2359 2360 2361 2362
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2363
	mapping = obj->base.filp->f_mapping,
2364
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2365 2366
}

2367
static void
2368 2369
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2370
{
2371 2372
	struct sgt_iter sgt_iter;
	struct page *page;
2373

2374
	__i915_gem_object_release_shmem(obj, pages, true);
2375

2376
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2377

2378
	if (i915_gem_object_needs_bit17_swizzle(obj))
2379
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2380

2381
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2382
		if (obj->mm.dirty)
2383
			set_page_dirty(page);
2384

C
Chris Wilson 已提交
2385
		if (obj->mm.madv == I915_MADV_WILLNEED)
2386
			mark_page_accessed(page);
2387

2388
		put_page(page);
2389
	}
C
Chris Wilson 已提交
2390
	obj->mm.dirty = false;
2391

2392 2393
	sg_free_table(pages);
	kfree(pages);
2394
}
C
Chris Wilson 已提交
2395

2396 2397 2398
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2399
	void __rcu **slot;
2400

2401
	rcu_read_lock();
C
Chris Wilson 已提交
2402 2403
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2404
	rcu_read_unlock();
2405 2406
}

2407 2408
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2409
{
2410
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2411
	struct sg_table *pages;
2412

C
Chris Wilson 已提交
2413
	if (i915_gem_object_has_pinned_pages(obj))
2414
		return;
2415

2416
	GEM_BUG_ON(obj->bind_count);
2417
	if (!i915_gem_object_has_pages(obj))
2418 2419 2420
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2421
	mutex_lock_nested(&obj->mm.lock, subclass);
2422 2423
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2424

2425 2426 2427
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2428 2429
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2430

2431 2432 2433 2434
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2435
	if (obj->mm.mapping) {
2436 2437
		void *ptr;

2438
		ptr = page_mask_bits(obj->mm.mapping);
2439 2440
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2441
		else
2442 2443
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2444
		obj->mm.mapping = NULL;
2445 2446
	}

2447 2448
	__i915_gem_object_reset_page_iter(obj);

2449 2450 2451
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2452 2453
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

2454 2455
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2456 2457
}

2458
static bool i915_sg_trim(struct sg_table *orig_st)
2459 2460 2461 2462 2463 2464
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2465
		return false;
2466

2467
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2468
		return false;
2469 2470 2471 2472 2473 2474 2475

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2476
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2477 2478 2479 2480

	sg_free_table(orig_st);

	*orig_st = new_st;
2481
	return true;
2482 2483
}

2484
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485
{
2486
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487 2488
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2489
	struct address_space *mapping;
2490 2491
	struct sg_table *st;
	struct scatterlist *sg;
2492
	struct sgt_iter sgt_iter;
2493
	struct page *page;
2494
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2495
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2496
	unsigned int sg_page_sizes;
2497
	gfp_t noreclaim;
I
Imre Deak 已提交
2498
	int ret;
2499

C
Chris Wilson 已提交
2500 2501 2502 2503
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2504 2505
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2506

2507 2508
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2509
		return -ENOMEM;
2510

2511
rebuild_st:
2512 2513
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2514
		return -ENOMEM;
2515
	}
2516

2517 2518 2519 2520 2521
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2522
	mapping = obj->base.filp->f_mapping;
2523
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2524 2525
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2526 2527
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2528
	sg_page_sizes = 0;
2529
	for (i = 0; i < page_count; i++) {
2530 2531 2532 2533 2534 2535 2536
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2537
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2538 2539 2540 2541 2542 2543 2544 2545
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2546
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2547
			cond_resched();
2548

C
Chris Wilson 已提交
2549 2550 2551
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2552 2553 2554 2555
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2556
			 */
2557 2558 2559
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2572
				 * this we want __GFP_RETRY_MAYFAIL.
2573
				 */
M
Michal Hocko 已提交
2574
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2575
			}
2576 2577
		} while (1);

2578 2579 2580
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2581
			if (i) {
M
Matthew Auld 已提交
2582
				sg_page_sizes |= sg->length;
2583
				sg = sg_next(sg);
2584
			}
2585 2586 2587 2588 2589 2590
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2591 2592 2593

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2594
	}
2595
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2596
		sg_page_sizes |= sg->length;
2597
		sg_mark_end(sg);
2598
	}
2599

2600 2601 2602
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2603
	ret = i915_gem_gtt_prepare_pages(obj, st);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2623

2624
	if (i915_gem_object_needs_bit17_swizzle(obj))
2625
		i915_gem_object_do_bit_17_swizzle(obj, st);
2626

M
Matthew Auld 已提交
2627
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2628 2629

	return 0;
2630

2631
err_sg:
2632
	sg_mark_end(sg);
2633
err_pages:
2634 2635
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2636 2637
	sg_free_table(st);
	kfree(st);
2638 2639 2640 2641 2642 2643 2644 2645 2646

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2647 2648 2649
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2650
	return ret;
2651 2652 2653
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2654
				 struct sg_table *pages,
M
Matthew Auld 已提交
2655
				 unsigned int sg_page_sizes)
2656
{
2657 2658 2659 2660
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2661
	lockdep_assert_held(&obj->mm.lock);
2662 2663 2664 2665 2666

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2667 2668

	if (i915_gem_object_is_tiled(obj) &&
2669
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2670 2671 2672 2673
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2674

M
Matthew Auld 已提交
2675 2676
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2677 2678

	/*
M
Matthew Auld 已提交
2679 2680 2681 2682 2683 2684
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2685 2686 2687 2688 2689 2690 2691
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2692 2693 2694 2695

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2696 2697 2698 2699
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2700
	int err;
2701 2702 2703 2704 2705 2706

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2707
	err = obj->ops->get_pages(obj);
2708
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2709

2710
	return err;
2711 2712
}

2713
/* Ensure that the associated pages are gathered from the backing storage
2714
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2715
 * multiple times before they are released by a single call to
2716
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2717 2718 2719
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2720
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2721
{
2722
	int err;
2723

2724 2725 2726
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2727

2728
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2729 2730
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2731 2732 2733
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2734

2735 2736 2737
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2738

2739 2740
unlock:
	mutex_unlock(&obj->mm.lock);
2741
	return err;
2742 2743
}

2744
/* The 'mapping' part of i915_gem_object_pin_map() below */
2745 2746
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2747 2748
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2749
	struct sg_table *sgt = obj->mm.pages;
2750 2751
	struct sgt_iter sgt_iter;
	struct page *page;
2752 2753
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2754
	unsigned long i = 0;
2755
	pgprot_t pgprot;
2756 2757 2758
	void *addr;

	/* A single page can always be kmapped */
2759
	if (n_pages == 1 && type == I915_MAP_WB)
2760 2761
		return kmap(sg_page(sgt->sgl));

2762 2763
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2764
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2765 2766 2767
		if (!pages)
			return NULL;
	}
2768

2769 2770
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2771 2772 2773 2774

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2775
	switch (type) {
2776 2777 2778
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2779 2780 2781 2782 2783 2784 2785 2786
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2787

2788
	if (pages != stack_pages)
M
Michal Hocko 已提交
2789
		kvfree(pages);
2790 2791 2792 2793 2794

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2795 2796
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2797
{
2798 2799 2800
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2801 2802
	int ret;

T
Tina Zhang 已提交
2803 2804
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2805

2806
	ret = mutex_lock_interruptible(&obj->mm.lock);
2807 2808 2809
	if (ret)
		return ERR_PTR(ret);

2810 2811 2812
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2813
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2814
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2815 2816
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2817 2818 2819
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2820

2821 2822 2823
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2824 2825
		pinned = false;
	}
2826
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2827

2828
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2829 2830 2831
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2832
			goto err_unpin;
2833
		}
2834 2835 2836 2837 2838 2839

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2840
		ptr = obj->mm.mapping = NULL;
2841 2842
	}

2843 2844 2845 2846
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2847
			goto err_unpin;
2848 2849
		}

2850
		obj->mm.mapping = page_pack_bits(ptr, type);
2851 2852
	}

2853 2854
out_unlock:
	mutex_unlock(&obj->mm.lock);
2855 2856
	return ptr;

2857 2858 2859 2860 2861
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2862 2863
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2881
	if (i915_gem_object_has_pages(obj))
2882 2883
		return -ENODEV;

2884 2885 2886
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2936
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2937
{
2938
	bool banned;
2939

2940
	atomic_inc(&ctx->guilty_count);
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	banned = false;
	if (i915_gem_context_is_bannable(ctx)) {
		unsigned int score;

		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
					  &ctx->ban_score);
		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;

		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
				 ctx->name, score, yesno(banned));
	}
2953
	if (!banned)
2954 2955
		return;

2956 2957 2958 2959 2960 2961
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2962 2963 2964 2965
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2966
	atomic_inc(&ctx->active_count);
2967 2968
}

2969
struct i915_request *
2970
i915_gem_find_active_request(struct intel_engine_cs *engine)
2971
{
2972
	struct i915_request *request, *active = NULL;
2973
	unsigned long flags;
2974

2975 2976 2977 2978 2979 2980 2981 2982
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2983 2984
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
2985
		if (__i915_request_completed(request, request->global_seqno))
2986
			continue;
2987

2988
		GEM_BUG_ON(request->engine != engine);
2989 2990
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2991 2992 2993

		active = request;
		break;
2994
	}
2995
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2996

2997
	return active;
2998 2999
}

3000 3001 3002 3003
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3004
struct i915_request *
3005 3006
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3007
	struct i915_request *request;
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3018
	request = engine->reset.prepare(engine);
3019 3020
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3021 3022 3023 3024

	return request;
}

3025
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3026 3027
{
	struct intel_engine_cs *engine;
3028
	struct i915_request *request;
3029
	enum intel_engine_id id;
3030
	int err = 0;
3031

3032
	for_each_engine(engine, dev_priv, id) {
3033 3034 3035 3036
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3037
		}
3038 3039

		engine->hangcheck.active_request = request;
3040 3041
	}

3042
	i915_gem_revoke_fences(dev_priv);
3043
	intel_uc_sanitize(dev_priv);
3044 3045

	return err;
3046 3047
}

3048
static void skip_request(struct i915_request *request)
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
3063 3064

	dma_fence_set_error(&request->fence, -EIO);
3065 3066
}

3067
static void engine_skip_context(struct i915_request *request)
3068 3069
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3070
	struct i915_gem_context *hung_ctx = request->gem_context;
3071
	struct i915_timeline *timeline = request->timeline;
3072 3073
	unsigned long flags;

3074
	GEM_BUG_ON(timeline == &engine->timeline);
3075

3076
	spin_lock_irqsave(&engine->timeline.lock, flags);
3077
	spin_lock_nested(&timeline->lock, SINGLE_DEPTH_NESTING);
3078

3079
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3080
		if (request->gem_context == hung_ctx)
3081 3082 3083 3084 3085 3086
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
3087
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3088 3089
}

3090
/* Returns the request if it was guilty of the hang */
3091
static struct i915_request *
3092
i915_gem_reset_request(struct intel_engine_cs *engine,
3093 3094
		       struct i915_request *request,
		       bool stalled)
3095
{
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3117 3118 3119 3120 3121 3122 3123 3124 3125
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3126
		i915_gem_context_mark_guilty(request->gem_context);
3127
		skip_request(request);
3128 3129

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3130
		if (i915_gem_context_is_banned(request->gem_context))
3131
			engine_skip_context(request);
3132
	} else {
3133 3134 3135 3136 3137 3138 3139
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3140
			i915_gem_context_mark_innocent(request->gem_context);
3141 3142 3143
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
3144
			spin_lock_irq(&engine->timeline.lock);
3145
			request = list_prev_entry(request, link);
3146
			if (&request->link == &engine->timeline.requests)
3147
				request = NULL;
3148
			spin_unlock_irq(&engine->timeline.lock);
3149
		}
3150 3151
	}

3152
	return request;
3153 3154
}

3155
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3156 3157
			   struct i915_request *request,
			   bool stalled)
3158
{
3159 3160 3161 3162 3163 3164
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3165

3166
	if (request)
3167
		request = i915_gem_reset_request(engine, request, stalled);
3168

3169
	/* Setup the CS to resume from the breadcrumb of the hung request */
3170
	engine->reset.reset(engine, request);
3171
}
3172

3173 3174
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3175
{
3176
	struct intel_engine_cs *engine;
3177
	enum intel_engine_id id;
3178

3179 3180
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3181
	i915_retire_requests(dev_priv);
3182

3183
	for_each_engine(engine, dev_priv, id) {
3184
		struct intel_context *ce;
3185

3186 3187
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3188
				      stalled_mask & ENGINE_MASK(id));
3189 3190 3191
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3203
		if (intel_engine_is_idle(engine)) {
3204
			struct i915_request *rq;
3205

3206 3207
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3208
			if (!IS_ERR(rq))
3209
				__i915_request_add(rq, false);
3210
		}
3211
	}
3212

3213
	i915_gem_restore_fences(dev_priv);
3214 3215
}

3216 3217
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3218 3219
	engine->reset.finish(engine);

3220
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3221 3222
}

3223 3224
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3225 3226 3227
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3228
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3229

3230
	for_each_engine(engine, dev_priv, id) {
3231
		engine->hangcheck.active_request = NULL;
3232
		i915_gem_reset_finish_engine(engine);
3233
	}
3234 3235
}

3236
static void nop_submit_request(struct i915_request *request)
3237
{
3238 3239 3240
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3241 3242
	dma_fence_set_error(&request->fence, -EIO);

3243
	i915_request_submit(request);
3244 3245
}

3246
static void nop_complete_submit_request(struct i915_request *request)
3247
{
3248 3249
	unsigned long flags;

3250 3251 3252
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3253
	dma_fence_set_error(&request->fence, -EIO);
3254

3255
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3256
	__i915_request_submit(request);
3257
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3258
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3259 3260
}

3261
void i915_gem_set_wedged(struct drm_i915_private *i915)
3262
{
3263 3264 3265
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3266 3267
	GEM_TRACE("start\n");

3268
	if (GEM_SHOW_DEBUG()) {
3269 3270 3271 3272 3273 3274
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3275 3276 3277
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	smp_mb__after_atomic();

3278 3279 3280 3281 3282
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3283 3284
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3285

3286
		engine->submit_request = nop_submit_request;
3287
		engine->schedule = NULL;
3288
	}
3289
	i915->caps.scheduler = 0;
3290

3291 3292 3293
	/* Even if the GPU reset fails, it should still stop the engines */
	intel_gpu_reset(i915, ALL_ENGINES);

3294 3295 3296 3297
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3298
	 */
3299
	synchronize_rcu();
3300

3301 3302 3303
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3304

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3316
	 */
3317
	synchronize_rcu();
3318

3319 3320
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3321

3322 3323
		/*
		 * Mark all pending requests as complete so that any concurrent
3324 3325 3326
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3327
		spin_lock_irqsave(&engine->timeline.lock, flags);
3328 3329
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3330
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3331 3332

		i915_gem_reset_finish_engine(engine);
3333
	}
3334

3335 3336
	GEM_TRACE("end\n");

3337
	wake_up_all(&i915->gpu_error.reset_queue);
3338 3339
}

3340 3341
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3342
	struct i915_timeline *tl;
3343 3344 3345 3346 3347

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3348 3349
	GEM_TRACE("start\n");

3350 3351
	/*
	 * Before unwedging, make sure that all pending operations
3352 3353 3354 3355 3356 3357 3358 3359 3360
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3361
		struct i915_request *rq;
3362

3363 3364 3365 3366
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3382
	}
3383 3384
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3385

3386 3387
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3388 3389 3390 3391 3392 3393 3394 3395
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3396
	i915_gem_contexts_lost(i915);
3397

3398 3399
	GEM_TRACE("end\n");

3400 3401 3402 3403 3404 3405
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3406
static void
3407 3408
i915_gem_retire_work_handler(struct work_struct *work)
{
3409
	struct drm_i915_private *dev_priv =
3410
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3411
	struct drm_device *dev = &dev_priv->drm;
3412

3413
	/* Come back later if the device is busy... */
3414
	if (mutex_trylock(&dev->struct_mutex)) {
3415
		i915_retire_requests(dev_priv);
3416
		mutex_unlock(&dev->struct_mutex);
3417
	}
3418

3419 3420
	/*
	 * Keep the retire handler running until we are finally idle.
3421 3422 3423
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3424
	if (READ_ONCE(dev_priv->gt.awake))
3425 3426
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3427
				   round_jiffies_up_relative(HZ));
3428
}
3429

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3489 3490 3491 3492 3493 3494 3495
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3496 3497 3498 3499
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3500
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3501
	unsigned int epoch = I915_EPOCH_INVALID;
3502 3503 3504 3505 3506
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3507 3508
	/*
	 * Wait for last execlists context complete, but bail out in case a
3509 3510 3511 3512 3513
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3514
	 */
3515 3516 3517 3518
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3519 3520 3521 3522

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3523
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3524 3525 3526 3527 3528 3529 3530
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3531 3532 3533 3534
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3535
	if (new_requests_since_last_retire(dev_priv))
3536
		goto out_unlock;
3537

3538
	epoch = __i915_gem_park(dev_priv);
3539

3540 3541
	rearm_hangcheck = false;
out_unlock:
3542
	mutex_unlock(&dev_priv->drm.struct_mutex);
3543

3544 3545 3546 3547
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3548
	}
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3566 3567
}

3568 3569
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3570
	struct drm_i915_private *i915 = to_i915(gem->dev);
3571 3572
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3573
	struct i915_lut_handle *lut, *ln;
3574

3575 3576 3577 3578 3579 3580
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3581
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3582 3583 3584 3585
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3586 3587 3588 3589 3590 3591 3592
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3593
			i915_vma_close(vma);
3594

3595 3596
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3597

3598 3599
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3600
	}
3601 3602

	mutex_unlock(&i915->drm.struct_mutex);
3603 3604
}

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3616 3617
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3618 3619 3620
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3621 3622 3623 3624 3625 3626 3627
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3628
 *  -EAGAIN: incomplete, restart syscall
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3645 3646
	ktime_t start;
	long ret;
3647

3648 3649 3650
	if (args->flags != 0)
		return -EINVAL;

3651
	obj = i915_gem_object_lookup(file, args->bo_handle);
3652
	if (!obj)
3653 3654
		return -ENOENT;

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3676 3677 3678 3679

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3680 3681
	}

C
Chris Wilson 已提交
3682
	i915_gem_object_put(obj);
3683
	return ret;
3684 3685
}

3686
static int wait_for_timeline(struct i915_timeline *tl, unsigned int flags)
3687
{
3688
	return i915_gem_active_wait(&tl->last_request, flags);
3689 3690
}

3691 3692
static int wait_for_engines(struct drm_i915_private *i915)
{
3693
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3694 3695
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3696
		GEM_TRACE_DUMP();
3697 3698
		i915_gem_set_wedged(i915);
		return -EIO;
3699 3700 3701 3702 3703
	}

	return 0;
}

3704 3705
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
3706 3707 3708 3709
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3710
	if (flags & I915_WAIT_LOCKED) {
3711 3712
		struct i915_timeline *tl;
		int err;
3713 3714 3715 3716

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3717 3718 3719
			err = wait_for_timeline(tl, flags);
			if (err)
				return err;
3720
		}
3721
		i915_retire_requests(i915);
3722

3723
		return wait_for_engines(i915);
3724
	} else {
3725 3726 3727
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
		int err;
3728

3729 3730 3731 3732 3733 3734 3735 3736
		for_each_engine(engine, i915, id) {
			err = wait_for_timeline(&engine->timeline, flags);
			if (err)
				return err;
		}

		return 0;
	}
3737 3738
}

3739 3740
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3741 3742 3743 3744 3745 3746 3747
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3748
	obj->write_domain = 0;
3749 3750 3751 3752
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3753
	if (!READ_ONCE(obj->pin_global))
3754 3755 3756 3757 3758 3759 3760
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3785
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3806
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3807 3808 3809 3810 3811
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3812 3813
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3814
	if (write) {
3815 3816
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3817 3818 3819 3820 3821 3822 3823
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3824 3825
/**
 * Moves a single object to the GTT read, and possibly write domain.
3826 3827
 * @obj: object to act on
 * @write: ask for write access or read only
3828 3829 3830 3831
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3832
int
3833
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3834
{
3835
	int ret;
3836

3837
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3838

3839 3840 3841 3842 3843 3844
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3845 3846 3847
	if (ret)
		return ret;

3848
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3849 3850
		return 0;

3851 3852 3853 3854 3855 3856 3857 3858
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3859
	ret = i915_gem_object_pin_pages(obj);
3860 3861 3862
	if (ret)
		return ret;

3863
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3864

3865 3866 3867 3868
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3869
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3870 3871
		mb();

3872 3873 3874
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3875 3876
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3877
	if (write) {
3878 3879
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3880
		obj->mm.dirty = true;
3881 3882
	}

C
Chris Wilson 已提交
3883
	i915_gem_object_unpin_pages(obj);
3884 3885 3886
	return 0;
}

3887 3888
/**
 * Changes the cache-level of an object across all VMA.
3889 3890
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3902 3903 3904
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3905
	struct i915_vma *vma;
3906
	int ret;
3907

3908 3909
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3910
	if (obj->cache_level == cache_level)
3911
		return 0;
3912

3913 3914 3915 3916 3917
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3918 3919
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3920 3921 3922
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3923
		if (i915_vma_is_pinned(vma)) {
3924 3925 3926 3927
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3928 3929
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3941 3942
	}

3943 3944 3945 3946 3947 3948 3949
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3950
	if (obj->bind_count) {
3951 3952 3953 3954
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3955 3956 3957 3958 3959 3960
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3961 3962 3963
		if (ret)
			return ret;

3964 3965
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3982
			for_each_ggtt_vma(vma, obj) {
3983 3984 3985 3986
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3987 3988 3989 3990 3991 3992 3993 3994
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3995 3996
		}

3997
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3998 3999 4000 4001 4002 4003 4004
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4005 4006
	}

4007
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4008
		vma->node.color = cache_level;
4009
	i915_gem_object_set_cache_coherency(obj, cache_level);
4010
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4011

4012 4013 4014
	return 0;
}

B
Ben Widawsky 已提交
4015 4016
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4017
{
B
Ben Widawsky 已提交
4018
	struct drm_i915_gem_caching *args = data;
4019
	struct drm_i915_gem_object *obj;
4020
	int err = 0;
4021

4022 4023 4024 4025 4026 4027
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4028

4029 4030 4031 4032 4033 4034
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4035 4036 4037 4038
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4039 4040 4041 4042
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4043 4044 4045
out:
	rcu_read_unlock();
	return err;
4046 4047
}

B
Ben Widawsky 已提交
4048 4049
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4050
{
4051
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4052
	struct drm_i915_gem_caching *args = data;
4053 4054
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4055
	int ret = 0;
4056

B
Ben Widawsky 已提交
4057 4058
	switch (args->caching) {
	case I915_CACHING_NONE:
4059 4060
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4061
	case I915_CACHING_CACHED:
4062 4063 4064 4065 4066 4067
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4068
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4069 4070
			return -ENODEV;

4071 4072
		level = I915_CACHE_LLC;
		break;
4073
	case I915_CACHING_DISPLAY:
4074
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4075
		break;
4076 4077 4078 4079
	default:
		return -EINVAL;
	}

4080 4081 4082 4083
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4093 4094 4095 4096 4097 4098 4099
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4100
	if (ret)
4101
		goto out;
B
Ben Widawsky 已提交
4102

4103 4104 4105
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4106 4107 4108

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4109 4110 4111

out:
	i915_gem_object_put(obj);
4112 4113 4114
	return ret;
}

4115
/*
4116 4117 4118 4119
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4120
 */
C
Chris Wilson 已提交
4121
struct i915_vma *
4122 4123
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4124 4125
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4126
{
C
Chris Wilson 已提交
4127
	struct i915_vma *vma;
4128 4129
	int ret;

4130 4131
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4132
	/* Mark the global pin early so that we account for the
4133 4134
	 * display coherency whilst setting up the cache domains.
	 */
4135
	obj->pin_global++;
4136

4137 4138 4139 4140 4141 4142 4143 4144 4145
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4146
	ret = i915_gem_object_set_cache_level(obj,
4147 4148
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4149 4150
	if (ret) {
		vma = ERR_PTR(ret);
4151
		goto err_unpin_global;
C
Chris Wilson 已提交
4152
	}
4153

4154 4155
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4156 4157 4158 4159
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4160
	 */
4161
	vma = ERR_PTR(-ENOSPC);
4162 4163
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4164
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4165 4166 4167 4168
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4169
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4170
	if (IS_ERR(vma))
4171
		goto err_unpin_global;
4172

4173 4174
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4175
	__i915_gem_object_flush_for_display(obj);
4176

4177 4178 4179
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4180
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4181

C
Chris Wilson 已提交
4182
	return vma;
4183

4184 4185
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4186
	return vma;
4187 4188 4189
}

void
C
Chris Wilson 已提交
4190
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4191
{
4192
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4193

4194
	if (WARN_ON(vma->obj->pin_global == 0))
4195 4196
		return;

4197
	if (--vma->obj->pin_global == 0)
4198
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4199

4200
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4201
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4202

C
Chris Wilson 已提交
4203
	i915_vma_unpin(vma);
4204 4205
}

4206 4207
/**
 * Moves a single object to the CPU read, and possibly write domain.
4208 4209
 * @obj: object to act on
 * @write: requesting write or read-only access
4210 4211 4212 4213
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4214
int
4215
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4216 4217 4218
{
	int ret;

4219
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4220

4221 4222 4223 4224 4225 4226
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4227 4228 4229
	if (ret)
		return ret;

4230
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4231

4232
	/* Flush the CPU cache if it's still invalid. */
4233
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4234
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4235
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4236 4237 4238 4239 4240
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4241
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4242 4243 4244 4245

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4246 4247
	if (write)
		__start_cpu_write(obj);
4248 4249 4250 4251

	return 0;
}

4252 4253 4254
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4255 4256 4257 4258
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4259 4260 4261
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4262
static int
4263
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4264
{
4265
	struct drm_i915_private *dev_priv = to_i915(dev);
4266
	struct drm_i915_file_private *file_priv = file->driver_priv;
4267
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4268
	struct i915_request *request, *target = NULL;
4269
	long ret;
4270

4271 4272 4273
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4274

4275
	spin_lock(&file_priv->mm.lock);
4276
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4277 4278
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4279

4280 4281 4282 4283
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4284

4285
		target = request;
4286
	}
4287
	if (target)
4288
		i915_request_get(target);
4289
	spin_unlock(&file_priv->mm.lock);
4290

4291
	if (target == NULL)
4292
		return 0;
4293

4294
	ret = i915_request_wait(target,
4295 4296
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4297
	i915_request_put(target);
4298

4299
	return ret < 0 ? ret : 0;
4300 4301
}

C
Chris Wilson 已提交
4302
struct i915_vma *
4303 4304
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4305
			 u64 size,
4306 4307
			 u64 alignment,
			 u64 flags)
4308
{
4309 4310
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4311 4312
	struct i915_vma *vma;
	int ret;
4313

4314 4315
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4316 4317
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4348
	vma = i915_vma_instance(obj, vm, view);
4349
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4350
		return vma;
4351 4352

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4353 4354 4355
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4356

4357
			if (flags & PIN_MAPPABLE &&
4358
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4359 4360 4361
				return ERR_PTR(-ENOSPC);
		}

4362 4363
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4364 4365 4366
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4367
		     !!(flags & PIN_MAPPABLE),
4368
		     i915_vma_is_map_and_fenceable(vma));
4369 4370
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4371
			return ERR_PTR(ret);
4372 4373
	}

C
Chris Wilson 已提交
4374 4375 4376
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4377

C
Chris Wilson 已提交
4378
	return vma;
4379 4380
}

4381
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4396 4397 4398 4399 4400 4401 4402 4403 4404
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4405 4406
}

4407
static __always_inline unsigned int
4408
__busy_set_if_active(const struct dma_fence *fence,
4409 4410
		     unsigned int (*flag)(unsigned int id))
{
4411
	struct i915_request *rq;
4412

4413 4414 4415 4416
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4417
	 *
4418
	 * Note we only report on the status of native fences.
4419
	 */
4420 4421 4422 4423
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4424 4425
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4426 4427
		return 0;

4428
	return flag(rq->engine->uabi_id);
4429 4430
}

4431
static __always_inline unsigned int
4432
busy_check_reader(const struct dma_fence *fence)
4433
{
4434
	return __busy_set_if_active(fence, __busy_read_flag);
4435 4436
}

4437
static __always_inline unsigned int
4438
busy_check_writer(const struct dma_fence *fence)
4439
{
4440 4441 4442 4443
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4444 4445
}

4446 4447
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4448
		    struct drm_file *file)
4449 4450
{
	struct drm_i915_gem_busy *args = data;
4451
	struct drm_i915_gem_object *obj;
4452 4453
	struct reservation_object_list *list;
	unsigned int seq;
4454
	int err;
4455

4456
	err = -ENOENT;
4457 4458
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4459
	if (!obj)
4460
		goto out;
4461

4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4480

4481 4482
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4483

4484 4485 4486 4487
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4488

4489 4490 4491 4492 4493 4494
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4495
	}
4496

4497 4498 4499 4500
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4501 4502 4503
out:
	rcu_read_unlock();
	return err;
4504 4505 4506 4507 4508 4509
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4510
	return i915_gem_ring_throttle(dev, file_priv);
4511 4512
}

4513 4514 4515 4516
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4517
	struct drm_i915_private *dev_priv = to_i915(dev);
4518
	struct drm_i915_gem_madvise *args = data;
4519
	struct drm_i915_gem_object *obj;
4520
	int err;
4521 4522 4523 4524 4525 4526 4527 4528 4529

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4530
	obj = i915_gem_object_lookup(file_priv, args->handle);
4531 4532 4533 4534 4535 4536
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4537

4538
	if (i915_gem_object_has_pages(obj) &&
4539
	    i915_gem_object_is_tiled(obj) &&
4540
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4541 4542
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4543
			__i915_gem_object_unpin_pages(obj);
4544 4545 4546
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4547
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4548
			__i915_gem_object_pin_pages(obj);
4549 4550
			obj->mm.quirked = true;
		}
4551 4552
	}

C
Chris Wilson 已提交
4553 4554
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4555

C
Chris Wilson 已提交
4556
	/* if the object is no longer attached, discard its backing storage */
4557 4558
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4559 4560
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4561
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4562
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4563

4564
out:
4565
	i915_gem_object_put(obj);
4566
	return err;
4567 4568
}

4569
static void
4570
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4571 4572 4573 4574
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4575
	intel_fb_obj_flush(obj, ORIGIN_CS);
4576 4577
}

4578 4579
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4580
{
4581 4582
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4583
	INIT_LIST_HEAD(&obj->vma_list);
4584
	INIT_LIST_HEAD(&obj->lut_list);
4585
	INIT_LIST_HEAD(&obj->batch_pool_link);
4586

4587 4588
	obj->ops = ops;

4589 4590 4591
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4592
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4593
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4594 4595 4596 4597

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4598

4599
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4600 4601
}

4602
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4603 4604
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4605

4606 4607
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4608 4609

	.pwrite = i915_gem_object_pwrite_gtt,
4610 4611
};

M
Matthew Auld 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4636
struct drm_i915_gem_object *
4637
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4638
{
4639
	struct drm_i915_gem_object *obj;
4640
	struct address_space *mapping;
4641
	unsigned int cache_level;
D
Daniel Vetter 已提交
4642
	gfp_t mask;
4643
	int ret;
4644

4645 4646 4647 4648 4649
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4650
	if (size >> PAGE_SHIFT > INT_MAX)
4651 4652 4653 4654 4655
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4656
	obj = i915_gem_object_alloc(dev_priv);
4657
	if (obj == NULL)
4658
		return ERR_PTR(-ENOMEM);
4659

M
Matthew Auld 已提交
4660
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4661 4662
	if (ret)
		goto fail;
4663

4664
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4665
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4666 4667 4668 4669 4670
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4671
	mapping = obj->base.filp->f_mapping;
4672
	mapping_set_gfp_mask(mapping, mask);
4673
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4674

4675
	i915_gem_object_init(obj, &i915_gem_object_ops);
4676

4677 4678
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4679

4680
	if (HAS_LLC(dev_priv))
4681
		/* On some devices, we can have the GPU use the LLC (the CPU
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4693 4694 4695
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4696

4697
	i915_gem_object_set_cache_coherency(obj, cache_level);
4698

4699 4700
	trace_i915_gem_object_create(obj);

4701
	return obj;
4702 4703 4704 4705

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4706 4707
}

4708 4709 4710 4711 4712 4713 4714 4715
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4716
	if (obj->mm.madv != I915_MADV_WILLNEED)
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4732 4733
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4734
{
4735
	struct drm_i915_gem_object *obj, *on;
4736

4737
	intel_runtime_pm_get(i915);
4738
	llist_for_each_entry_safe(obj, on, freed, freed) {
4739 4740 4741 4742
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4743 4744
		mutex_lock(&i915->drm.struct_mutex);

4745 4746 4747 4748 4749
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4750
			i915_vma_destroy(vma);
4751
		}
4752 4753
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4754

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4767
		mutex_unlock(&i915->drm.struct_mutex);
4768 4769

		GEM_BUG_ON(obj->bind_count);
4770
		GEM_BUG_ON(obj->userfault_count);
4771
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4772
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4773 4774 4775

		if (obj->ops->release)
			obj->ops->release(obj);
4776

4777 4778
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4779
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4780
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4781 4782 4783 4784

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4785
		reservation_object_fini(&obj->__builtin_resv);
4786 4787 4788 4789 4790
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4791

4792 4793 4794
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4795 4796
		if (on)
			cond_resched();
4797
	}
4798
	intel_runtime_pm_put(i915);
4799 4800 4801 4802 4803 4804
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4815
		__i915_gem_free_objects(i915, freed);
4816
	}
4817 4818 4819 4820 4821 4822 4823
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4824

4825 4826
	/*
	 * All file-owned VMA should have been released by this point through
4827 4828 4829 4830 4831 4832
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4833

4834
	spin_lock(&i915->mm.free_lock);
4835
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4836 4837
		spin_unlock(&i915->mm.free_lock);

4838
		__i915_gem_free_objects(i915, freed);
4839
		if (need_resched())
4840 4841 4842
			return;

		spin_lock(&i915->mm.free_lock);
4843
	}
4844
	spin_unlock(&i915->mm.free_lock);
4845
}
4846

4847 4848 4849 4850 4851 4852
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4853 4854 4855 4856 4857 4858 4859 4860 4861
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4862 4863
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4864
		queue_work(i915->wq, &i915->mm.free_work);
4865
}
4866

4867 4868 4869
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4870

4871 4872 4873
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4874
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4875
		obj->mm.madv = I915_MADV_DONTNEED;
4876

4877 4878
	/*
	 * Before we free the object, make sure any pure RCU-only
4879 4880 4881 4882
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4883
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4884
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4885 4886
}

4887 4888 4889 4890
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4891 4892
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4893 4894 4895 4896 4897
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4898
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4899
{
4900
	struct i915_gem_context *kctx = i915->kernel_context;
4901 4902 4903
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

4904
	for_each_engine(engine, i915, id) {
4905
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
4906
		GEM_BUG_ON(engine->last_retired_context->gem_context != kctx);
4907
	}
4908 4909
}

4910 4911
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4912 4913 4914 4915 4916 4917
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4918 4919 4920 4921 4922 4923
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4924
	 * of the reset, so this could be applied to even earlier gen.
4925
	 */
4926 4927
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4928 4929
}

4930
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4931
{
4932
	struct drm_device *dev = &dev_priv->drm;
4933
	int ret;
4934

4935
	intel_runtime_pm_get(dev_priv);
4936 4937
	intel_suspend_gt_powersave(dev_priv);

4938
	mutex_lock(&dev->struct_mutex);
4939 4940 4941 4942 4943 4944 4945 4946 4947

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4948 4949 4950 4951
	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(dev_priv);
		if (ret)
			goto err_unlock;
4952

4953 4954 4955 4956 4957
		ret = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE |
					     I915_WAIT_LOCKED);
		if (ret && ret != -EIO)
			goto err_unlock;
4958

4959 4960
		assert_kernel_context_is_current(dev_priv);
	}
4961
	i915_gem_contexts_lost(dev_priv);
4962 4963
	mutex_unlock(&dev->struct_mutex);

4964
	intel_uc_suspend(dev_priv);
4965

4966
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4967
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4968 4969 4970 4971

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
4972
	drain_delayed_work(&dev_priv->gt.idle_work);
4973

4974 4975 4976
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4977
	WARN_ON(dev_priv->gt.awake);
4978 4979
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4980

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
5000
	intel_uc_sanitize(dev_priv);
5001
	i915_gem_sanitize(dev_priv);
5002 5003 5004

	intel_runtime_pm_put(dev_priv);
	return 0;
5005

5006
err_unlock:
5007
	mutex_unlock(&dev->struct_mutex);
5008
	intel_runtime_pm_put(dev_priv);
5009
	return ret;
5010 5011
}

5012
void i915_gem_resume(struct drm_i915_private *i915)
5013
{
5014
	WARN_ON(i915->gt.awake);
5015

5016 5017
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5018

5019 5020
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5021

5022 5023
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5024 5025 5026
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5027
	i915->gt.resume(i915);
5028

5029 5030 5031
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5032
	intel_uc_resume(i915);
5033

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5044 5045 5046 5047
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5048
	goto out_unlock;
5049 5050
}

5051
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5052
{
5053
	if (INTEL_GEN(dev_priv) < 5 ||
5054 5055 5056 5057 5058 5059
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5060
	if (IS_GEN5(dev_priv))
5061 5062
		return;

5063
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5064
	if (IS_GEN6(dev_priv))
5065
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5066
	else if (IS_GEN7(dev_priv))
5067
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5068
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5069
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5070 5071
	else
		BUG();
5072
}
D
Daniel Vetter 已提交
5073

5074
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5075 5076 5077 5078 5079 5080 5081
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5082
static void init_unused_rings(struct drm_i915_private *dev_priv)
5083
{
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5096 5097 5098
	}
}

5099
static int __i915_gem_restart_engines(void *data)
5100
{
5101
	struct drm_i915_private *i915 = data;
5102
	struct intel_engine_cs *engine;
5103
	enum intel_engine_id id;
5104 5105 5106 5107
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5108 5109 5110
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5111
			return err;
5112
		}
5113 5114 5115 5116 5117 5118 5119
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5120
	int ret;
5121

5122 5123
	dev_priv->gt.last_init_time = ktime_get();

5124 5125 5126
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5127
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5128
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5129

5130
	if (IS_HASWELL(dev_priv))
5131
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5132
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5133

5134
	if (HAS_PCH_NOP(dev_priv)) {
5135
		if (IS_IVYBRIDGE(dev_priv)) {
5136 5137 5138
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5139
		} else if (INTEL_GEN(dev_priv) >= 7) {
5140 5141 5142 5143
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5144 5145
	}

5146 5147
	intel_gt_workarounds_apply(dev_priv);

5148
	i915_gem_init_swizzling(dev_priv);
5149

5150 5151 5152 5153 5154 5155
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5156
	init_unused_rings(dev_priv);
5157

5158
	BUG_ON(!dev_priv->kernel_context);
5159 5160 5161 5162
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5163

5164
	ret = i915_ppgtt_init_hw(dev_priv);
5165
	if (ret) {
5166
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5167 5168 5169
		goto out;
	}

5170 5171 5172 5173 5174 5175
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5176 5177
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5178 5179
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5180
		goto out;
5181
	}
5182

5183
	intel_mocs_init_l3cc_table(dev_priv);
5184

5185 5186
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5187 5188
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5189
	return ret;
5190 5191
}

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5213
		struct i915_request *rq;
5214

5215
		rq = i915_request_alloc(engine, ctx);
5216 5217 5218 5219 5220
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5221
		err = 0;
5222 5223 5224
		if (engine->init_context)
			err = engine->init_context(rq);

5225
		__i915_request_add(rq, true);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
	if (err)
		goto err_active;

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;

5243
		state = to_intel_context(ctx, engine)->state;
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5306
int i915_gem_init(struct drm_i915_private *dev_priv)
5307 5308 5309
{
	int ret;

5310 5311 5312 5313 5314 5315 5316 5317 5318
	/*
	 * We need to fallback to 4K pages since gvt gtt handling doesn't
	 * support huge page entries - we will need to check either hypervisor
	 * mm can support huge guest page or just do emulation in gvt.
	 */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5319
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5320

5321
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5322
		dev_priv->gt.resume = intel_lr_context_resume;
5323
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5324 5325 5326
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5327 5328
	}

5329 5330 5331 5332
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5333 5334 5335 5336
	ret = intel_wopcm_init(&dev_priv->wopcm);
	if (ret)
		return ret;

5337
	ret = intel_uc_init_misc(dev_priv);
5338 5339 5340
	if (ret)
		return ret;

5341 5342 5343 5344 5345 5346
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5347
	mutex_lock(&dev_priv->drm.struct_mutex);
5348 5349
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5350
	ret = i915_gem_init_ggtt(dev_priv);
5351 5352 5353 5354
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5355

5356
	ret = i915_gem_contexts_init(dev_priv);
5357 5358 5359 5360
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5361

5362
	ret = intel_engines_init(dev_priv);
5363 5364 5365 5366
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5367

5368 5369
	intel_init_gt_powersave(dev_priv);

5370
	ret = intel_uc_init(dev_priv);
5371
	if (ret)
5372
		goto err_pm;
5373

5374 5375 5376 5377
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5389
	ret = __intel_engines_record_defaults(dev_priv);
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
	i915_gem_contexts_lost(dev_priv);
	intel_uc_fini_hw(dev_priv);
5418 5419
err_uc_init:
	intel_uc_fini(dev_priv);
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5433
	intel_uc_fini_misc(dev_priv);
5434

5435 5436 5437
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5438
	if (ret == -EIO) {
5439 5440
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5441 5442 5443
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5444 5445 5446 5447
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
			i915_gem_set_wedged(dev_priv);
		}
5448
		ret = 0;
5449 5450
	}

5451
	i915_gem_drain_freed_objects(dev_priv);
5452
	return ret;
5453 5454
}

5455 5456 5457 5458 5459
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5460
void
5461
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5462
{
5463
	struct intel_engine_cs *engine;
5464
	enum intel_engine_id id;
5465

5466
	for_each_engine(engine, dev_priv, id)
5467
		dev_priv->gt.cleanup_engine(engine);
5468 5469
}

5470 5471 5472
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5473
	int i;
5474

5475
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5476 5477
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5478
	else if (INTEL_GEN(dev_priv) >= 4 ||
5479 5480
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5481 5482 5483 5484
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5485
	if (intel_vgpu_active(dev_priv))
5486 5487 5488 5489
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5490 5491 5492 5493 5494 5495 5496
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5497
	i915_gem_restore_fences(dev_priv);
5498

5499
	i915_gem_detect_bit_6_swizzle(dev_priv);
5500 5501
}

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5518
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5519
{
5520
	int err = -ENOMEM;
5521

5522 5523
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5524 5525
		goto err_out;

5526 5527
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5528 5529
		goto err_objects;

5530 5531 5532 5533
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5534
	dev_priv->requests = KMEM_CACHE(i915_request,
5535 5536
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5537
					SLAB_TYPESAFE_BY_RCU);
5538
	if (!dev_priv->requests)
5539
		goto err_luts;
5540

5541 5542 5543 5544 5545 5546
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5547 5548 5549 5550
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5551
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5552
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5553
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5554

5555
	i915_gem_init__mm(dev_priv);
5556

5557
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5558
			  i915_gem_retire_work_handler);
5559
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5560
			  i915_gem_idle_work_handler);
5561
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5562
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5563

5564 5565
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5566
	spin_lock_init(&dev_priv->fb_tracking.lock);
5567

M
Matthew Auld 已提交
5568 5569 5570 5571
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5572 5573
	return 0;

5574 5575
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5576 5577
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5578 5579
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5580 5581 5582 5583 5584 5585
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5586
}
5587

5588
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5589
{
5590
	i915_gem_drain_freed_objects(dev_priv);
5591 5592
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5593
	WARN_ON(dev_priv->mm.object_count);
5594 5595
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5596
	kmem_cache_destroy(dev_priv->priorities);
5597
	kmem_cache_destroy(dev_priv->dependencies);
5598
	kmem_cache_destroy(dev_priv->requests);
5599
	kmem_cache_destroy(dev_priv->luts);
5600 5601
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5602 5603 5604

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5605 5606

	i915_gemfs_fini(dev_priv);
5607 5608
}

5609 5610
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5611 5612 5613
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5614 5615 5616 5617 5618
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5619 5620 5621
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5622 5623 5624 5625 5626
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5637 5638
	 *
	 * To try and reduce the hibernation image, we manually shrink
5639
	 * the objects as well, see i915_gem_freeze()
5640 5641
	 */

5642
	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5643
	i915_gem_drain_freed_objects(dev_priv);
5644

5645
	spin_lock(&dev_priv->mm.obj_lock);
5646
	for (p = phases; *p; p++) {
5647
		list_for_each_entry(obj, *p, mm.link)
5648
			__start_cpu_write(obj);
5649
	}
5650
	spin_unlock(&dev_priv->mm.obj_lock);
5651 5652 5653 5654

	return 0;
}

5655
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5656
{
5657
	struct drm_i915_file_private *file_priv = file->driver_priv;
5658
	struct i915_request *request;
5659 5660 5661 5662 5663

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5664
	spin_lock(&file_priv->mm.lock);
5665
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5666
		request->file_priv = NULL;
5667
	spin_unlock(&file_priv->mm.lock);
5668 5669
}

5670
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5671 5672
{
	struct drm_i915_file_private *file_priv;
5673
	int ret;
5674

5675
	DRM_DEBUG("\n");
5676 5677 5678 5679 5680 5681

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5682
	file_priv->dev_priv = i915;
5683
	file_priv->file = file;
5684 5685 5686 5687

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5688
	file_priv->bsd_engine = -1;
5689

5690
	ret = i915_gem_context_open(i915, file);
5691 5692
	if (ret)
		kfree(file_priv);
5693

5694
	return ret;
5695 5696
}

5697 5698
/**
 * i915_gem_track_fb - update frontbuffer tracking
5699 5700 5701
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5702 5703 5704 5705
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5706 5707 5708 5709
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5710 5711 5712 5713 5714 5715 5716 5717 5718
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5719
	if (old) {
5720 5721
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5722 5723 5724
	}

	if (new) {
5725 5726
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5727 5728 5729
	}
}

5730 5731
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5732
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5733 5734 5735
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5736 5737 5738
	struct file *file;
	size_t offset;
	int err;
5739

5740
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5741
	if (IS_ERR(obj))
5742 5743
		return obj;

5744
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5745

5746 5747 5748 5749 5750 5751
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5752

5753 5754 5755 5756 5757
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5758

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5773 5774 5775 5776

	return obj;

fail:
5777
	i915_gem_object_put(obj);
5778
	return ERR_PTR(err);
5779
}
5780 5781 5782 5783 5784 5785

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5786
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5787 5788 5789 5790 5791
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5792
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5917
	if (!obj->mm.dirty)
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5933

5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	pages = fetch_and_zero(&obj->mm.pages);
	if (pages) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);

		__i915_gem_object_reset_page_iter(obj);

		spin_lock(&i915->mm.obj_lock);
		list_del(&obj->mm.link);
		spin_unlock(&i915->mm.obj_lock);
	}

5980 5981
	obj->ops = &i915_gem_phys_ops;

5982
	err = ____i915_gem_object_get_pages(obj);
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6002 6003
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6004
#include "selftests/mock_gem_device.c"
6005
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6006
#include "selftests/huge_pages.c"
6007
#include "selftests/i915_gem_object.c"
6008
#include "selftests/i915_gem_coherency.c"
6009
#endif