i915_gem.c 164.9 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

242 243
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244
			    struct drm_file *file)
245
{
246
	struct drm_i915_private *dev_priv = to_i915(dev);
247
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248
	struct drm_i915_gem_get_aperture *args = data;
249
	struct i915_vma *vma;
250
	u64 pinned;
251

252
	pinned = ggtt->vm.reserved;
253
	mutex_lock(&dev->struct_mutex);
254
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255
		if (i915_vma_is_pinned(vma))
256
			pinned += vma->node.size;
257
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258
		if (i915_vma_is_pinned(vma))
259
			pinned += vma->node.size;
260
	mutex_unlock(&dev->struct_mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443 444 445 446 447 448 449 450 451 452
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

453 454 455 456
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
457
			   struct intel_rps_client *rps_client)
458
{
459
	struct i915_request *rq;
460

461
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462

463 464 465 466 467 468 469 470 471
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
472
	if (i915_request_completed(rq))
473 474
		goto out;

475 476
	/*
	 * This client is about to stall waiting for the GPU. In many cases
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
491
	if (rps_client && !i915_request_started(rq)) {
492
		if (INTEL_GEN(rq->i915) >= 6)
493
			gen6_rps_boost(rq, rps_client);
494 495
	}

496
	timeout = i915_request_wait(rq, flags, timeout);
497 498

out:
499 500
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
501 502 503 504 505 506 507 508

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
509
				 struct intel_rps_client *rps_client)
510
{
511
	unsigned int seq = __read_seqcount_begin(&resv->seq);
512
	struct dma_fence *excl;
513
	bool prune_fences = false;
514 515 516 517

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
518 519
		int ret;

520 521
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
522 523 524
		if (ret)
			return ret;

525 526 527
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
528
							     rps_client);
529
			if (timeout < 0)
530
				break;
531

532 533 534 535 536 537
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
538

539 540 541 542 543 544 545 546 547
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
548
		prune_fences = count && timeout >= 0;
549 550
	} else {
		excl = reservation_object_get_excl_rcu(resv);
551 552
	}

553
	if (excl && timeout >= 0)
554 555
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
556 557 558

	dma_fence_put(excl);

559 560
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
561 562 563
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
564
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 566 567 568 569
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
570 571
	}

572
	return timeout;
573 574
}

575 576
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
577
{
578
	struct i915_request *rq;
579 580
	struct intel_engine_cs *engine;

581
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 583 584 585 586
		return;

	rq = to_request(fence);
	engine = rq->engine;

587 588
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589
	if (engine->schedule)
590
		engine->schedule(rq, attr);
591
	rcu_read_unlock();
592
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 594
}

595 596
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
597 598 599 600 601 602 603
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
604
			__fence_set_priority(array->fences[i], attr);
605
	} else {
606
		__fence_set_priority(fence, attr);
607 608 609 610 611 612
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
613
			      const struct i915_sched_attr *attr)
614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
628
			fence_set_priority(shared[i], attr);
629 630 631 632 633 634 635 636 637
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
638
		fence_set_priority(excl, attr);
639 640 641 642 643
		dma_fence_put(excl);
	}
	return 0;
}

644 645 646 647 648
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
649
 * @rps_client: client (user process) to charge for any waitboosting
650
 */
651 652 653 654
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
655
		     struct intel_rps_client *rps_client)
656
{
657 658 659 660 661 662 663
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
664

665 666
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
667
						   rps_client);
668
	return timeout < 0 ? timeout : 0;
669 670 671 672 673 674
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

675
	return &fpriv->rps_client;
676 677
}

678 679 680
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
681
		     struct drm_file *file)
682 683
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
684
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 686 687 688

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
689
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 691
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
692

693
	drm_clflush_virt_range(vaddr, args->size);
694
	i915_gem_chipset_flush(to_i915(obj->base.dev));
695

696
	intel_fb_obj_flush(obj, ORIGIN_CPU);
697
	return 0;
698 699
}

700
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701
{
702
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 704 705 706
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
707
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708
	kmem_cache_free(dev_priv->objects, obj);
709 710
}

711 712
static int
i915_gem_create(struct drm_file *file,
713
		struct drm_i915_private *dev_priv,
714 715
		uint64_t size,
		uint32_t *handle_p)
716
{
717
	struct drm_i915_gem_object *obj;
718 719
	int ret;
	u32 handle;
720

721
	size = roundup(size, PAGE_SIZE);
722 723
	if (size == 0)
		return -EINVAL;
724 725

	/* Allocate the new object */
726
	obj = i915_gem_object_create(dev_priv, size);
727 728
	if (IS_ERR(obj))
		return PTR_ERR(obj);
729

730
	ret = drm_gem_handle_create(file, &obj->base, &handle);
731
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
732
	i915_gem_object_put(obj);
733 734
	if (ret)
		return ret;
735

736
	*handle_p = handle;
737 738 739
	return 0;
}

740 741 742 743 744 745
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
746
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747
	args->size = args->pitch * args->height;
748
	return i915_gem_create(file, to_i915(dev),
749
			       args->size, &args->handle);
750 751
}

752 753 754 755 756 757
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

758 759
/**
 * Creates a new mm object and returns a handle to it.
760 761 762
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
763 764 765 766 767
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
768
	struct drm_i915_private *dev_priv = to_i915(dev);
769
	struct drm_i915_gem_create *args = data;
770

771
	i915_gem_flush_free_objects(dev_priv);
772

773
	return i915_gem_create(file, dev_priv,
774
			       args->size, &args->handle);
775 776
}

777 778 779 780 781 782 783
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

784
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785
{
786 787 788 789 790
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
791 792 793 794 795 796 797 798 799 800
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 802
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
803
	 */
804

805 806 807 808 809
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

810
	i915_gem_chipset_flush(dev_priv);
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

827
	if (!(obj->write_domain & flush_domains))
828 829
		return;

830
	switch (obj->write_domain) {
831
	case I915_GEM_DOMAIN_GTT:
832
		i915_gem_flush_ggtt_writes(dev_priv);
833 834 835

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836

837
		for_each_ggtt_vma(vma, obj) {
838 839 840 841 842
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
843 844
		break;

845 846 847 848
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

849 850 851
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
852 853 854 855 856

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
857 858
	}

859
	obj->write_domain = 0;
860 861
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

888
static inline int
889 890
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

914 915 916 917 918 919
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920
				    unsigned int *needs_clflush)
921 922 923
{
	int ret;

924
	lockdep_assert_held(&obj->base.dev->struct_mutex);
925

926
	*needs_clflush = 0;
927 928
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
929

930 931 932 933 934
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
935 936 937
	if (ret)
		return ret;

C
Chris Wilson 已提交
938
	ret = i915_gem_object_pin_pages(obj);
939 940 941
	if (ret)
		return ret;

942 943
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 945 946 947 948 949 950
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

951
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952

953 954 955 956 957
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
958
	if (!obj->cache_dirty &&
959
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960
		*needs_clflush = CLFLUSH_BEFORE;
961

962
out:
963
	/* return with the pages pinned */
964
	return 0;
965 966 967 968

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
969 970 971 972 973 974 975
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

976 977
	lockdep_assert_held(&obj->base.dev->struct_mutex);

978 979 980 981
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

982 983 984 985 986 987
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
988 989 990
	if (ret)
		return ret;

C
Chris Wilson 已提交
991
	ret = i915_gem_object_pin_pages(obj);
992 993 994
	if (ret)
		return ret;

995 996
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 998 999 1000 1001 1002 1003
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

1004
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005

1006 1007 1008 1009 1010
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1011
	if (!obj->cache_dirty) {
1012
		*needs_clflush |= CLFLUSH_AFTER;
1013

1014 1015 1016 1017
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1018
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 1020
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1021

1022
out:
1023
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1024
	obj->mm.dirty = true;
1025
	/* return with the pages pinned */
1026
	return 0;
1027 1028 1029 1030

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1031 1032
}

1033 1034 1035 1036
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1037
	if (unlikely(swizzled)) {
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1055 1056 1057
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1058
shmem_pread_slow(struct page *page, int offset, int length,
1059 1060 1061 1062 1063 1064 1065 1066
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1067
		shmem_clflush_swizzled_range(vaddr + offset, length,
1068
					     page_do_bit17_swizzling);
1069 1070

	if (page_do_bit17_swizzling)
1071
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072
	else
1073
		ret = __copy_to_user(user_data, vaddr + offset, length);
1074 1075
	kunmap(page);

1076
	return ret ? - EFAULT : 0;
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1130
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1151
{
1152
	void __iomem *vaddr;
1153
	unsigned long unwritten;
1154 1155

	/* We can use the cpu mem copy function because this is X86. */
1156 1157 1158 1159
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1160 1161
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1162 1163 1164 1165
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1166 1167
		io_mapping_unmap(vaddr);
	}
1168 1169 1170 1171
	return unwritten;
}

static int
1172 1173
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1174
{
1175 1176
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1177
	struct drm_mm_node node;
1178 1179 1180
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1181 1182
	int ret;

1183 1184 1185 1186 1187 1188
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 1190 1191
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1192 1193 1194
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1195
		ret = i915_vma_put_fence(vma);
1196 1197 1198 1199 1200
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1201
	if (IS_ERR(vma)) {
1202
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203
		if (ret)
1204 1205
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1206 1207 1208 1209 1210 1211
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1212
	mutex_unlock(&i915->drm.struct_mutex);
1213

1214 1215 1216
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1231 1232 1233
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1234 1235 1236 1237
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1238

1239
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240
				  user_data, page_length)) {
1241 1242 1243 1244 1245 1246 1247 1248 1249
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1250
	mutex_lock(&i915->drm.struct_mutex);
1251 1252 1253
out_unpin:
	if (node.allocated) {
		wmb();
1254
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 1256
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1257
		i915_vma_unpin(vma);
1258
	}
1259 1260 1261
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1262

1263 1264 1265
	return ret;
}

1266 1267
/**
 * Reads data from the object referenced by handle.
1268 1269 1270
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1271 1272 1273 1274 1275
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276
		     struct drm_file *file)
1277 1278
{
	struct drm_i915_gem_pread *args = data;
1279
	struct drm_i915_gem_object *obj;
1280
	int ret;
1281

1282 1283 1284 1285
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1286
		       u64_to_user_ptr(args->data_ptr),
1287 1288 1289
		       args->size))
		return -EFAULT;

1290
	obj = i915_gem_object_lookup(file, args->handle);
1291 1292
	if (!obj)
		return -ENOENT;
1293

1294
	/* Bounds check source.  */
1295
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1296
		ret = -EINVAL;
1297
		goto out;
C
Chris Wilson 已提交
1298 1299
	}

C
Chris Wilson 已提交
1300 1301
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1302 1303 1304 1305
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1306
	if (ret)
1307
		goto out;
1308

1309
	ret = i915_gem_object_pin_pages(obj);
1310
	if (ret)
1311
		goto out;
1312

1313
	ret = i915_gem_shmem_pread(obj, args);
1314
	if (ret == -EFAULT || ret == -ENODEV)
1315
		ret = i915_gem_gtt_pread(obj, args);
1316

1317 1318
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1319
	i915_gem_object_put(obj);
1320
	return ret;
1321 1322
}

1323 1324
/* This is the fast write path which cannot handle
 * page faults in the source data
1325
 */
1326

1327 1328 1329 1330
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1331
{
1332
	void __iomem *vaddr;
1333
	unsigned long unwritten;
1334

1335
	/* We can use the cpu mem copy function because this is X86. */
1336 1337
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338
						      user_data, length);
1339 1340
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1341 1342 1343
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1344 1345
		io_mapping_unmap(vaddr);
	}
1346 1347 1348 1349

	return unwritten;
}

1350 1351 1352
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1353
 * @obj: i915 GEM object
1354
 * @args: pwrite arguments structure
1355
 */
1356
static int
1357 1358
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1359
{
1360
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361 1362
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1363 1364 1365
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1366
	int ret;
1367

1368 1369 1370
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1389
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390 1391 1392
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1393 1394 1395
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1396
		ret = i915_vma_put_fence(vma);
1397 1398 1399 1400 1401
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1402
	if (IS_ERR(vma)) {
1403
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404
		if (ret)
1405
			goto out_rpm;
1406
		GEM_BUG_ON(!node.allocated);
1407
	}
D
Daniel Vetter 已提交
1408 1409 1410 1411 1412

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1413 1414
	mutex_unlock(&i915->drm.struct_mutex);

1415
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416

1417 1418 1419 1420
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1421 1422
		/* Operation in this page
		 *
1423 1424 1425
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1426
		 */
1427
		u32 page_base = node.start;
1428 1429
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1430 1431 1432
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1433 1434 1435
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1436 1437 1438 1439
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1440
		/* If we get a fault while copying data, then (presumably) our
1441 1442
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1443 1444
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1445
		 */
1446
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447 1448 1449
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1450
		}
1451

1452 1453 1454
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1455
	}
1456
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1457 1458

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1459
out_unpin:
1460 1461
	if (node.allocated) {
		wmb();
1462
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463 1464
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1465
		i915_vma_unpin(vma);
1466
	}
1467
out_rpm:
1468
	intel_runtime_pm_put(i915);
1469
out_unlock:
1470
	mutex_unlock(&i915->drm.struct_mutex);
1471
	return ret;
1472 1473
}

1474
static int
1475
shmem_pwrite_slow(struct page *page, int offset, int length,
1476 1477 1478 1479
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1480
{
1481 1482
	char *vaddr;
	int ret;
1483

1484
	vaddr = kmap(page);
1485
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486
		shmem_clflush_swizzled_range(vaddr + offset, length,
1487
					     page_do_bit17_swizzling);
1488
	if (page_do_bit17_swizzling)
1489 1490
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1491
	else
1492
		ret = __copy_from_user(vaddr + offset, user_data, length);
1493
	if (needs_clflush_after)
1494
		shmem_clflush_swizzled_range(vaddr + offset, length,
1495
					     page_do_bit17_swizzling);
1496
	kunmap(page);
1497

1498
	return ret ? -EFAULT : 0;
1499 1500
}

1501 1502 1503 1504 1505
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1506
static int
1507 1508 1509 1510
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1511
{
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1544
	unsigned int needs_clflush;
1545 1546
	unsigned int offset, idx;
	int ret;
1547

1548
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549 1550 1551
	if (ret)
		return ret;

1552 1553 1554 1555
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1556

1557 1558 1559
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1560

1561 1562 1563 1564 1565 1566 1567
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568

1569 1570 1571 1572 1573
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1574
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575

1576 1577 1578 1579
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1580
		if (ret)
1581
			break;
1582

1583 1584 1585
		remain -= length;
		user_data += length;
		offset = 0;
1586
	}
1587

1588
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1589
	i915_gem_obj_finish_shmem_access(obj);
1590
	return ret;
1591 1592 1593 1594
}

/**
 * Writes data to the object referenced by handle.
1595 1596 1597
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1598 1599 1600 1601 1602
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603
		      struct drm_file *file)
1604 1605
{
	struct drm_i915_gem_pwrite *args = data;
1606
	struct drm_i915_gem_object *obj;
1607 1608 1609 1610 1611 1612
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1613
		       u64_to_user_ptr(args->data_ptr),
1614 1615 1616
		       args->size))
		return -EFAULT;

1617
	obj = i915_gem_object_lookup(file, args->handle);
1618 1619
	if (!obj)
		return -ENOENT;
1620

1621
	/* Bounds check destination. */
1622
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1623
		ret = -EINVAL;
1624
		goto err;
C
Chris Wilson 已提交
1625 1626
	}

1627 1628 1629 1630 1631 1632
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1633 1634
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1635 1636 1637 1638 1639 1640
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1641 1642 1643 1644 1645
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1646 1647 1648
	if (ret)
		goto err;

1649
	ret = i915_gem_object_pin_pages(obj);
1650
	if (ret)
1651
		goto err;
1652

D
Daniel Vetter 已提交
1653
	ret = -EFAULT;
1654 1655 1656 1657 1658 1659
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1660
	if (!i915_gem_object_has_struct_page(obj) ||
1661
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1662 1663
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1664 1665
		 * textures). Fallback to the shmem path in that case.
		 */
1666
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1667

1668
	if (ret == -EFAULT || ret == -ENOSPC) {
1669 1670
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1671
		else
1672
			ret = i915_gem_shmem_pwrite(obj, args);
1673
	}
1674

1675
	i915_gem_object_unpin_pages(obj);
1676
err:
C
Chris Wilson 已提交
1677
	i915_gem_object_put(obj);
1678
	return ret;
1679 1680
}

1681 1682 1683 1684 1685 1686
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1687 1688
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1689
	for_each_ggtt_vma(vma, obj) {
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1700
	spin_lock(&i915->mm.obj_lock);
1701
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702 1703
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1704 1705
}

1706
/**
1707 1708
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1709 1710 1711
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1712 1713 1714
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715
			  struct drm_file *file)
1716 1717
{
	struct drm_i915_gem_set_domain *args = data;
1718
	struct drm_i915_gem_object *obj;
1719 1720
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1721
	int err;
1722

1723
	/* Only handle setting domains to types used by the CPU. */
1724
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725 1726 1727 1728 1729 1730 1731 1732
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1733
	obj = i915_gem_object_lookup(file, args->handle);
1734 1735
	if (!obj)
		return -ENOENT;
1736

1737 1738 1739 1740
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1741
	err = i915_gem_object_wait(obj,
1742
				   I915_WAIT_INTERRUPTIBLE |
1743
				   I915_WAIT_PRIORITY |
1744 1745 1746
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1747
	if (err)
C
Chris Wilson 已提交
1748
		goto out;
1749

T
Tina Zhang 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1763 1764 1765 1766 1767 1768 1769 1770 1771
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1772
		goto out;
1773 1774 1775

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1776
		goto out_unpin;
1777

1778 1779 1780 1781
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1782
	else
1783
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1784

1785 1786
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1787

1788
	mutex_unlock(&dev->struct_mutex);
1789

1790
	if (write_domain != 0)
1791 1792
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1793

C
Chris Wilson 已提交
1794
out_unpin:
1795
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1796 1797
out:
	i915_gem_object_put(obj);
1798
	return err;
1799 1800 1801 1802
}

/**
 * Called when user space has done writes to this buffer
1803 1804 1805
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1806 1807 1808
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1809
			 struct drm_file *file)
1810 1811
{
	struct drm_i915_gem_sw_finish *args = data;
1812
	struct drm_i915_gem_object *obj;
1813

1814
	obj = i915_gem_object_lookup(file, args->handle);
1815 1816
	if (!obj)
		return -ENOENT;
1817

T
Tina Zhang 已提交
1818 1819 1820 1821 1822
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1823
	/* Pinned buffers may be scanout, so flush the cache */
1824
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1825
	i915_gem_object_put(obj);
1826 1827

	return 0;
1828 1829 1830
}

/**
1831 1832 1833 1834 1835
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1836 1837 1838
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1849 1850 1851
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1852
		    struct drm_file *file)
1853 1854
{
	struct drm_i915_gem_mmap *args = data;
1855
	struct drm_i915_gem_object *obj;
1856 1857
	unsigned long addr;

1858 1859 1860
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1861
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1862 1863
		return -ENODEV;

1864 1865
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1866
		return -ENOENT;
1867

1868 1869 1870
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1871
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1872
		i915_gem_object_put(obj);
1873
		return -ENXIO;
1874 1875
	}

1876
	addr = vm_mmap(obj->base.filp, 0, args->size,
1877 1878
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1879 1880 1881 1882
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1883
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1884
			i915_gem_object_put(obj);
1885 1886
			return -EINTR;
		}
1887 1888 1889 1890 1891 1892 1893
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1894 1895

		/* This may race, but that's ok, it only gets set */
1896
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1897
	}
C
Chris Wilson 已提交
1898
	i915_gem_object_put(obj);
1899 1900 1901 1902 1903 1904 1905 1906
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1907
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1908
{
1909
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1932 1933 1934
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1962
	return 2;
1963 1964
}

1965
static inline struct i915_ggtt_view
1966
compute_partial_view(const struct drm_i915_gem_object *obj,
1967 1968 1969 1970 1971 1972 1973 1974 1975
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1976 1977
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1978
		min_t(unsigned int, chunk,
1979
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1980 1981 1982 1983 1984 1985 1986 1987

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1988 1989
/**
 * i915_gem_fault - fault a page into the GTT
1990
 * @vmf: fault info
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
2002 2003 2004
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2005
 */
2006
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2007
{
2008
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2009
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2010
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2011
	struct drm_device *dev = obj->base.dev;
2012 2013
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014
	bool write = area->vm_flags & VM_WRITE;
C
Chris Wilson 已提交
2015
	struct i915_vma *vma;
2016
	pgoff_t page_offset;
2017
	int ret;
2018

2019 2020 2021 2022
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

2023
	/* We don't use vmf->pgoff since that has the fake offset */
2024
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2025

C
Chris Wilson 已提交
2026 2027
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2028
	/* Try to flush the object off the GPU first without holding the lock.
2029
	 * Upon acquiring the lock, we will perform our sanity checks and then
2030 2031 2032
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2033 2034 2035 2036
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2037
	if (ret)
2038 2039
		goto err;

2040 2041 2042 2043
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2044 2045 2046 2047 2048
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2049

2050
	/* Access to snoopable pages through the GTT is incoherent. */
2051
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2052
		ret = -EFAULT;
2053
		goto err_unlock;
2054 2055
	}

2056

2057
	/* Now pin it into the GTT as needed */
2058 2059 2060 2061
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
2062 2063
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2064
		struct i915_ggtt_view view =
2065
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2066
		unsigned int flags;
2067

2068 2069 2070 2071 2072 2073
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
2074 2075 2076 2077
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2078 2079 2080 2081 2082 2083
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
2084
	}
C
Chris Wilson 已提交
2085 2086
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2087
		goto err_unlock;
C
Chris Wilson 已提交
2088
	}
2089

2090 2091
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2092
		goto err_unpin;
2093

2094
	ret = i915_vma_pin_fence(vma);
2095
	if (ret)
2096
		goto err_unpin;
2097

2098
	/* Finally, remap it using the new GTT offset */
2099
	ret = remap_io_mapping(area,
2100
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2101
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2102
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2103
			       &ggtt->iomap);
2104 2105
	if (ret)
		goto err_fence;
2106

2107 2108 2109 2110 2111 2112
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2113 2114
	i915_vma_set_ggtt_write(vma);

2115
err_fence:
2116
	i915_vma_unpin_fence(vma);
2117
err_unpin:
C
Chris Wilson 已提交
2118
	__i915_vma_unpin(vma);
2119
err_unlock:
2120
	mutex_unlock(&dev->struct_mutex);
2121 2122
err_rpm:
	intel_runtime_pm_put(dev_priv);
2123
	i915_gem_object_unpin_pages(obj);
2124
err:
2125
	switch (ret) {
2126
	case -EIO:
2127 2128 2129 2130 2131 2132
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2133 2134
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2135
		/* else: fall through */
2136
	case -EAGAIN:
D
Daniel Vetter 已提交
2137 2138 2139 2140
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2141
		 */
2142 2143
	case 0:
	case -ERESTARTSYS:
2144
	case -EINTR:
2145 2146 2147 2148 2149
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2150
		return VM_FAULT_NOPAGE;
2151
	case -ENOMEM:
2152
		return VM_FAULT_OOM;
2153
	case -ENOSPC:
2154
	case -EFAULT:
2155
		return VM_FAULT_SIGBUS;
2156
	default:
2157
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2158
		return VM_FAULT_SIGBUS;
2159 2160 2161
	}
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2173
	for_each_ggtt_vma(vma, obj)
2174 2175 2176
		i915_vma_unset_userfault(vma);
}

2177 2178 2179 2180
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2181
 * Preserve the reservation of the mmapping with the DRM core code, but
2182 2183 2184 2185 2186 2187 2188 2189 2190
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2191
void
2192
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2193
{
2194 2195
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2196 2197 2198
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2199 2200 2201 2202
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2203
	 */
2204
	lockdep_assert_held(&i915->drm.struct_mutex);
2205
	intel_runtime_pm_get(i915);
2206

2207
	if (!obj->userfault_count)
2208
		goto out;
2209

2210
	__i915_gem_object_release_mmap(obj);
2211 2212 2213 2214 2215 2216 2217 2218 2219

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2220 2221 2222

out:
	intel_runtime_pm_put(i915);
2223 2224
}

2225
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2226
{
2227
	struct drm_i915_gem_object *obj, *on;
2228
	int i;
2229

2230 2231 2232 2233 2234 2235
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2236

2237
	list_for_each_entry_safe(obj, on,
2238 2239
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2240 2241 2242 2243 2244 2245 2246 2247

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2258 2259 2260 2261

		if (!reg->vma)
			continue;

2262
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2263 2264
		reg->dirty = true;
	}
2265 2266
}

2267 2268
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2269
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2270
	int err;
2271

2272
	err = drm_gem_create_mmap_offset(&obj->base);
2273
	if (likely(!err))
2274
		return 0;
2275

2276 2277
	/* Attempt to reap some mmap space from dead objects */
	do {
2278 2279 2280
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2281 2282
		if (err)
			break;
2283

2284
		i915_gem_drain_freed_objects(dev_priv);
2285
		err = drm_gem_create_mmap_offset(&obj->base);
2286 2287 2288 2289
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2290

2291
	return err;
2292 2293 2294 2295 2296 2297 2298
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2299
int
2300 2301
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2302
		  uint32_t handle,
2303
		  uint64_t *offset)
2304
{
2305
	struct drm_i915_gem_object *obj;
2306 2307
	int ret;

2308
	obj = i915_gem_object_lookup(file, handle);
2309 2310
	if (!obj)
		return -ENOENT;
2311

2312
	ret = i915_gem_object_create_mmap_offset(obj);
2313 2314
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2315

C
Chris Wilson 已提交
2316
	i915_gem_object_put(obj);
2317
	return ret;
2318 2319
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2341
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2342 2343
}

D
Daniel Vetter 已提交
2344 2345 2346
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2347
{
2348
	i915_gem_object_free_mmap_offset(obj);
2349

2350 2351
	if (obj->base.filp == NULL)
		return;
2352

D
Daniel Vetter 已提交
2353 2354 2355 2356 2357
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2358
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2359
	obj->mm.madv = __I915_MADV_PURGED;
2360
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2361
}
2362

2363
/* Try to discard unwanted pages */
2364
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2365
{
2366 2367
	struct address_space *mapping;

2368
	lockdep_assert_held(&obj->mm.lock);
2369
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2370

C
Chris Wilson 已提交
2371
	switch (obj->mm.madv) {
2372 2373 2374 2375 2376 2377 2378 2379 2380
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2381
	mapping = obj->base.filp->f_mapping,
2382
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2396
static void
2397 2398
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2399
{
2400
	struct sgt_iter sgt_iter;
2401
	struct pagevec pvec;
2402
	struct page *page;
2403

2404
	__i915_gem_object_release_shmem(obj, pages, true);
2405

2406
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2407

2408
	if (i915_gem_object_needs_bit17_swizzle(obj))
2409
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2410

2411 2412 2413
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2414
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2415
		if (obj->mm.dirty)
2416
			set_page_dirty(page);
2417

C
Chris Wilson 已提交
2418
		if (obj->mm.madv == I915_MADV_WILLNEED)
2419
			mark_page_accessed(page);
2420

2421 2422
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2423
	}
2424 2425
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2426
	obj->mm.dirty = false;
2427

2428 2429
	sg_free_table(pages);
	kfree(pages);
2430
}
C
Chris Wilson 已提交
2431

2432 2433 2434
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2435
	void __rcu **slot;
2436

2437
	rcu_read_lock();
C
Chris Wilson 已提交
2438 2439
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2440
	rcu_read_unlock();
2441 2442
}

2443 2444
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2445
{
2446
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2447
	struct sg_table *pages;
2448

2449
	pages = fetch_and_zero(&obj->mm.pages);
2450 2451
	if (!pages)
		return NULL;
2452

2453 2454 2455 2456
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2457
	if (obj->mm.mapping) {
2458 2459
		void *ptr;

2460
		ptr = page_mask_bits(obj->mm.mapping);
2461 2462
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2463
		else
2464 2465
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2466
		obj->mm.mapping = NULL;
2467 2468
	}

2469
	__i915_gem_object_reset_page_iter(obj);
2470 2471 2472 2473
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2498 2499 2500
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2501 2502
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2503 2504
}

2505
bool i915_sg_trim(struct sg_table *orig_st)
2506 2507 2508 2509 2510 2511
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2512
		return false;
2513

2514
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2515
		return false;
2516 2517 2518 2519

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2520 2521 2522
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2523 2524
		new_sg = sg_next(new_sg);
	}
2525
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2526 2527 2528 2529

	sg_free_table(orig_st);

	*orig_st = new_st;
2530
	return true;
2531 2532
}

2533
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2534
{
2535
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2536 2537
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2538
	struct address_space *mapping;
2539 2540
	struct sg_table *st;
	struct scatterlist *sg;
2541
	struct sgt_iter sgt_iter;
2542
	struct page *page;
2543
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2544
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2545
	unsigned int sg_page_sizes;
2546
	struct pagevec pvec;
2547
	gfp_t noreclaim;
I
Imre Deak 已提交
2548
	int ret;
2549

2550 2551
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2552 2553 2554
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2555 2556
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2557

2558 2559 2560 2561 2562 2563 2564
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
	if (page_count > totalram_pages)
		return -ENOMEM;

2565 2566
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2567
		return -ENOMEM;
2568

2569
rebuild_st:
2570 2571
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2572
		return -ENOMEM;
2573
	}
2574

2575 2576
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2577 2578 2579 2580
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2581
	mapping = obj->base.filp->f_mapping;
2582
	mapping_set_unevictable(mapping);
2583
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2584 2585
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2586 2587
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2588
	sg_page_sizes = 0;
2589
	for (i = 0; i < page_count; i++) {
2590 2591 2592 2593 2594 2595 2596
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2597
			cond_resched();
C
Chris Wilson 已提交
2598
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2599 2600 2601 2602 2603 2604 2605 2606
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2607
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2608

2609 2610
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2611 2612
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2613 2614 2615 2616
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2617
			 */
2618 2619 2620
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2621

2622 2623
				/*
				 * Our bo are always dirty and so we require
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2634
				 * this we want __GFP_RETRY_MAYFAIL.
2635
				 */
M
Michal Hocko 已提交
2636
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2637
			}
2638 2639
		} while (1);

2640 2641 2642
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2643
			if (i) {
M
Matthew Auld 已提交
2644
				sg_page_sizes |= sg->length;
2645
				sg = sg_next(sg);
2646
			}
2647 2648 2649 2650 2651 2652
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2653 2654 2655

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2656
	}
2657
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2658
		sg_page_sizes |= sg->length;
2659
		sg_mark_end(sg);
2660
	}
2661

2662 2663 2664
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2665
	ret = i915_gem_gtt_prepare_pages(obj, st);
2666
	if (ret) {
2667 2668
		/*
		 * DMA remapping failed? One possible cause is that
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2686

2687
	if (i915_gem_object_needs_bit17_swizzle(obj))
2688
		i915_gem_object_do_bit_17_swizzle(obj, st);
2689

M
Matthew Auld 已提交
2690
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2691 2692

	return 0;
2693

2694
err_sg:
2695
	sg_mark_end(sg);
2696
err_pages:
2697 2698 2699 2700 2701 2702 2703 2704
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2705 2706
	sg_free_table(st);
	kfree(st);
2707

2708 2709
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2710 2711 2712 2713 2714 2715 2716
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2717 2718 2719
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2720
	return ret;
2721 2722 2723
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2724
				 struct sg_table *pages,
M
Matthew Auld 已提交
2725
				 unsigned int sg_page_sizes)
2726
{
2727 2728 2729 2730
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2731
	lockdep_assert_held(&obj->mm.lock);
2732 2733 2734 2735 2736

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2737 2738

	if (i915_gem_object_is_tiled(obj) &&
2739
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2740 2741 2742 2743
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2744

M
Matthew Auld 已提交
2745 2746
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2747 2748

	/*
M
Matthew Auld 已提交
2749 2750 2751 2752 2753 2754
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2755 2756 2757 2758 2759 2760 2761
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2762 2763 2764 2765

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2766 2767 2768 2769
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2770
	int err;
2771 2772 2773 2774 2775 2776

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2777
	err = obj->ops->get_pages(obj);
2778
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2779

2780
	return err;
2781 2782
}

2783
/* Ensure that the associated pages are gathered from the backing storage
2784
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2785
 * multiple times before they are released by a single call to
2786
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2787 2788 2789
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2790
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2791
{
2792
	int err;
2793

2794 2795 2796
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2797

2798
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2799 2800
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2801 2802 2803
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2804

2805 2806 2807
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2808

2809 2810
unlock:
	mutex_unlock(&obj->mm.lock);
2811
	return err;
2812 2813
}

2814
/* The 'mapping' part of i915_gem_object_pin_map() below */
2815 2816
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2817 2818
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2819
	struct sg_table *sgt = obj->mm.pages;
2820 2821
	struct sgt_iter sgt_iter;
	struct page *page;
2822 2823
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2824
	unsigned long i = 0;
2825
	pgprot_t pgprot;
2826 2827 2828
	void *addr;

	/* A single page can always be kmapped */
2829
	if (n_pages == 1 && type == I915_MAP_WB)
2830 2831
		return kmap(sg_page(sgt->sgl));

2832 2833
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2834
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2835 2836 2837
		if (!pages)
			return NULL;
	}
2838

2839 2840
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2841 2842 2843 2844

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2845
	switch (type) {
2846 2847 2848
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2849 2850 2851 2852 2853 2854 2855 2856
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2857

2858
	if (pages != stack_pages)
M
Michal Hocko 已提交
2859
		kvfree(pages);
2860 2861 2862 2863 2864

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2865 2866
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2867
{
2868 2869 2870
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2871 2872
	int ret;

T
Tina Zhang 已提交
2873 2874
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2875

2876
	ret = mutex_lock_interruptible(&obj->mm.lock);
2877 2878 2879
	if (ret)
		return ERR_PTR(ret);

2880 2881 2882
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2883
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2884
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2885 2886
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2887 2888 2889
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2890

2891 2892 2893
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2894 2895
		pinned = false;
	}
2896
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2897

2898
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2899 2900 2901
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2902
			goto err_unpin;
2903
		}
2904 2905 2906 2907 2908 2909

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2910
		ptr = obj->mm.mapping = NULL;
2911 2912
	}

2913 2914 2915 2916
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2917
			goto err_unpin;
2918 2919
		}

2920
		obj->mm.mapping = page_pack_bits(ptr, type);
2921 2922
	}

2923 2924
out_unlock:
	mutex_unlock(&obj->mm.lock);
2925 2926
	return ptr;

2927 2928 2929 2930 2931
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2932 2933
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2951
	if (i915_gem_object_has_pages(obj))
2952 2953
		return -ENODEV;

2954 2955 2956
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

3030
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3031
{
3032 3033
	unsigned int score;
	bool banned, bannable;
3034

3035
	atomic_inc(&ctx->guilty_count);
3036

3037 3038 3039
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3040

3041 3042
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
3043 3044
		return;

3045 3046 3047 3048
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
3049
		i915_gem_context_set_banned(ctx);
3050
	}
3051 3052 3053

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3054 3055 3056 3057
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
3058
	atomic_inc(&ctx->active_count);
3059 3060
}

3061
struct i915_request *
3062
i915_gem_find_active_request(struct intel_engine_cs *engine)
3063
{
3064
	struct i915_request *request, *active = NULL;
3065
	unsigned long flags;
3066

3067 3068 3069 3070 3071 3072
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
3073 3074
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3075 3076
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
3077
	 */
3078 3079
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
3080
		if (__i915_request_completed(request, request->global_seqno))
3081
			continue;
3082

3083 3084
		active = request;
		break;
3085
	}
3086
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3087

3088
	return active;
3089 3090
}

3091 3092 3093 3094
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3095
struct i915_request *
3096 3097
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3098
	struct i915_request *request;
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3109
	request = engine->reset.prepare(engine);
3110 3111
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3112 3113 3114 3115

	return request;
}

3116
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3117 3118
{
	struct intel_engine_cs *engine;
3119
	struct i915_request *request;
3120
	enum intel_engine_id id;
3121
	int err = 0;
3122

3123
	for_each_engine(engine, dev_priv, id) {
3124 3125 3126 3127
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3128
		}
3129 3130

		engine->hangcheck.active_request = request;
3131 3132
	}

3133
	i915_gem_revoke_fences(dev_priv);
3134
	intel_uc_sanitize(dev_priv);
3135 3136

	return err;
3137 3138
}

3139
static void engine_skip_context(struct i915_request *request)
3140 3141
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3142
	struct i915_gem_context *hung_ctx = request->gem_context;
3143
	struct i915_timeline *timeline = request->timeline;
3144 3145
	unsigned long flags;

3146
	GEM_BUG_ON(timeline == &engine->timeline);
3147

3148
	spin_lock_irqsave(&engine->timeline.lock, flags);
3149
	spin_lock(&timeline->lock);
3150

3151
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3152
		if (request->gem_context == hung_ctx)
3153
			i915_request_skip(request, -EIO);
3154 3155

	list_for_each_entry(request, &timeline->requests, link)
3156
		i915_request_skip(request, -EIO);
3157 3158

	spin_unlock(&timeline->lock);
3159
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3160 3161
}

3162
/* Returns the request if it was guilty of the hang */
3163
static struct i915_request *
3164
i915_gem_reset_request(struct intel_engine_cs *engine,
3165 3166
		       struct i915_request *request,
		       bool stalled)
3167
{
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3189 3190 3191 3192 3193 3194 3195 3196 3197
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3198
		i915_gem_context_mark_guilty(request->gem_context);
3199
		i915_request_skip(request, -EIO);
3200 3201

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3202
		if (i915_gem_context_is_banned(request->gem_context))
3203
			engine_skip_context(request);
3204
	} else {
3205 3206 3207 3208 3209 3210 3211
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3212 3213
			unsigned long flags;

C
Chris Wilson 已提交
3214
			i915_gem_context_mark_innocent(request->gem_context);
3215 3216 3217
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3218
			spin_lock_irqsave(&engine->timeline.lock, flags);
3219
			request = list_prev_entry(request, link);
3220
			if (&request->link == &engine->timeline.requests)
3221
				request = NULL;
C
Chris Wilson 已提交
3222
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3223
		}
3224 3225
	}

3226
	return request;
3227 3228
}

3229
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3230 3231
			   struct i915_request *request,
			   bool stalled)
3232
{
3233 3234 3235 3236 3237 3238
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3239

3240
	if (request)
3241
		request = i915_gem_reset_request(engine, request, stalled);
3242

3243
	/* Setup the CS to resume from the breadcrumb of the hung request */
3244
	engine->reset.reset(engine, request);
3245
}
3246

3247 3248
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3249
{
3250
	struct intel_engine_cs *engine;
3251
	enum intel_engine_id id;
3252

3253 3254
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3255
	i915_retire_requests(dev_priv);
3256

3257
	for_each_engine(engine, dev_priv, id) {
3258
		struct intel_context *ce;
3259

3260 3261
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3262
				      stalled_mask & ENGINE_MASK(id));
3263 3264 3265
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3277
		if (intel_engine_is_idle(engine)) {
3278
			struct i915_request *rq;
3279

3280 3281
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3282
			if (!IS_ERR(rq))
3283
				i915_request_add(rq);
3284
		}
3285
	}
3286

3287
	i915_gem_restore_fences(dev_priv);
3288 3289
}

3290 3291
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3292 3293
	engine->reset.finish(engine);

3294
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3295 3296
}

3297 3298
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3299 3300 3301
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3302
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3303

3304
	for_each_engine(engine, dev_priv, id) {
3305
		engine->hangcheck.active_request = NULL;
3306
		i915_gem_reset_finish_engine(engine);
3307
	}
3308 3309
}

3310
static void nop_submit_request(struct i915_request *request)
3311
{
3312 3313
	unsigned long flags;

3314 3315 3316
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3317
	dma_fence_set_error(&request->fence, -EIO);
3318

3319
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3320
	__i915_request_submit(request);
3321
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3322
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3323 3324
}

3325
void i915_gem_set_wedged(struct drm_i915_private *i915)
3326
{
3327 3328 3329
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3330 3331
	GEM_TRACE("start\n");

3332
	if (GEM_SHOW_DEBUG()) {
3333 3334 3335 3336 3337 3338
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3339 3340
	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
		goto out;
3341

3342 3343 3344 3345 3346
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3347
	for_each_engine(engine, i915, id)
3348
		i915_gem_reset_prepare_engine(engine);
3349

3350
	/* Even if the GPU reset fails, it should still stop the engines */
3351 3352
	if (INTEL_GEN(i915) >= 5)
		intel_gpu_reset(i915, ALL_ENGINES);
3353

3354
	for_each_engine(engine, i915, id) {
3355 3356
		engine->submit_request = nop_submit_request;
		engine->schedule = NULL;
3357
	}
3358
	i915->caps.scheduler = 0;
3359 3360 3361 3362

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
3363
	 * in nop_submit_request.
3364
	 */
3365
	synchronize_rcu();
3366

3367 3368 3369
	/* Mark all executing requests as skipped */
	for_each_engine(engine, i915, id)
		engine->cancel_requests(engine);
3370

3371
	for_each_engine(engine, i915, id) {
3372
		i915_gem_reset_finish_engine(engine);
3373
		intel_engine_wakeup(engine);
3374
	}
3375

3376
out:
3377 3378
	GEM_TRACE("end\n");

3379
	wake_up_all(&i915->gpu_error.reset_queue);
3380 3381
}

3382 3383
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3384
	struct i915_timeline *tl;
3385 3386 3387 3388 3389

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3390 3391
	GEM_TRACE("start\n");

3392 3393
	/*
	 * Before unwedging, make sure that all pending operations
3394 3395 3396 3397 3398 3399 3400 3401 3402
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3403
		struct i915_request *rq;
3404

3405 3406 3407 3408
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3424
	}
3425 3426
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3427

3428 3429 3430
	if (!intel_gpu_reset(i915, ALL_ENGINES))
		intel_engines_sanitize(i915);

3431 3432
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3433 3434 3435 3436 3437 3438 3439 3440
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3441
	i915_gem_contexts_lost(i915);
3442

3443 3444
	GEM_TRACE("end\n");

3445 3446 3447 3448 3449 3450
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3451
static void
3452 3453
i915_gem_retire_work_handler(struct work_struct *work)
{
3454
	struct drm_i915_private *dev_priv =
3455
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3456
	struct drm_device *dev = &dev_priv->drm;
3457

3458
	/* Come back later if the device is busy... */
3459
	if (mutex_trylock(&dev->struct_mutex)) {
3460
		i915_retire_requests(dev_priv);
3461
		mutex_unlock(&dev->struct_mutex);
3462
	}
3463

3464 3465
	/*
	 * Keep the retire handler running until we are finally idle.
3466 3467 3468
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3469
	if (READ_ONCE(dev_priv->gt.awake))
3470 3471
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3472
				   round_jiffies_up_relative(HZ));
3473
}
3474

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

3526 3527
	destroy_rcu_head(&s->rcu);

3528 3529 3530 3531 3532 3533 3534 3535
	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3536 3537 3538 3539 3540 3541 3542
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3559 3560 3561 3562
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3563
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3564
	unsigned int epoch = I915_EPOCH_INVALID;
3565 3566 3567 3568 3569
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3588 3589
	/*
	 * Wait for last execlists context complete, but bail out in case a
3590 3591 3592 3593 3594
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3595
	 */
3596 3597 3598 3599
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3600 3601 3602 3603

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3604
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3605 3606 3607 3608 3609 3610 3611
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3612 3613 3614 3615
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3616
	if (new_requests_since_last_retire(dev_priv))
3617
		goto out_unlock;
3618

3619
	epoch = __i915_gem_park(dev_priv);
3620

3621 3622
	assert_kernel_context_is_current(dev_priv);

3623 3624
	rearm_hangcheck = false;
out_unlock:
3625
	mutex_unlock(&dev_priv->drm.struct_mutex);
3626

3627 3628 3629 3630
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3631
	}
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
3644
			init_rcu_head(&s->rcu);
3645 3646 3647 3648 3649
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3650 3651
}

3652 3653
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3654
	struct drm_i915_private *i915 = to_i915(gem->dev);
3655 3656
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3657
	struct i915_lut_handle *lut, *ln;
3658

3659 3660 3661 3662 3663 3664
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3665
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3666 3667 3668 3669
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3670 3671 3672 3673 3674 3675 3676
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3677
			i915_vma_close(vma);
3678

3679 3680
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3681

3682 3683
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3684
	}
3685 3686

	mutex_unlock(&i915->drm.struct_mutex);
3687 3688
}

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3700 3701
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3702 3703 3704
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3705 3706 3707 3708 3709 3710 3711
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3712
 *  -EAGAIN: incomplete, restart syscall
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3729 3730
	ktime_t start;
	long ret;
3731

3732 3733 3734
	if (args->flags != 0)
		return -EINVAL;

3735
	obj = i915_gem_object_lookup(file, args->bo_handle);
3736
	if (!obj)
3737 3738
		return -ENOENT;

3739 3740 3741
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3742 3743 3744
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3745 3746 3747 3748 3749 3750 3751
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3762 3763 3764 3765

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3766 3767
	}

C
Chris Wilson 已提交
3768
	i915_gem_object_put(obj);
3769
	return ret;
3770 3771
}

3772 3773
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3774
{
3775 3776 3777 3778
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3779
		return timeout;
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3793
	timeout = i915_request_wait(rq, flags, timeout);
3794 3795
	i915_request_put(rq);

3796
	return timeout;
3797 3798
}

3799 3800
static int wait_for_engines(struct drm_i915_private *i915)
{
3801
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3802 3803
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3804
		GEM_TRACE_DUMP();
3805 3806
		i915_gem_set_wedged(i915);
		return -EIO;
3807 3808 3809 3810 3811
	}

	return 0;
}

3812 3813
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3814
{
3815 3816 3817
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3818

3819 3820 3821 3822
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3823
	if (flags & I915_WAIT_LOCKED) {
3824 3825
		struct i915_timeline *tl;
		int err;
3826 3827 3828 3829

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3830 3831 3832
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3833
		}
3834 3835 3836 3837 3838 3839
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3840 3841 3842 3843 3844

		err = wait_for_engines(i915);
		if (err)
			return err;

3845
		i915_retire_requests(i915);
3846
		GEM_BUG_ON(i915->gt.active_requests);
3847
	} else {
3848 3849
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3850

3851
		for_each_engine(engine, i915, id) {
3852 3853 3854 3855 3856
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3857 3858
		}
	}
3859 3860

	return 0;
3861 3862
}

3863 3864
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3865 3866 3867 3868 3869 3870 3871
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3872
	obj->write_domain = 0;
3873 3874 3875 3876
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3877
	if (!READ_ONCE(obj->pin_global))
3878 3879 3880 3881 3882 3883 3884
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3909
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3930
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3931 3932 3933 3934 3935
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3936 3937
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3938
	if (write) {
3939 3940
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3941 3942 3943 3944 3945 3946 3947
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3948 3949
/**
 * Moves a single object to the GTT read, and possibly write domain.
3950 3951
 * @obj: object to act on
 * @write: ask for write access or read only
3952 3953 3954 3955
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3956
int
3957
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3958
{
3959
	int ret;
3960

3961
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3962

3963 3964 3965 3966 3967 3968
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3969 3970 3971
	if (ret)
		return ret;

3972
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3973 3974
		return 0;

3975 3976 3977 3978 3979 3980 3981 3982
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3983
	ret = i915_gem_object_pin_pages(obj);
3984 3985 3986
	if (ret)
		return ret;

3987
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3988

3989 3990 3991 3992
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3993
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3994 3995
		mb();

3996 3997 3998
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3999 4000
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4001
	if (write) {
4002 4003
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
4004
		obj->mm.dirty = true;
4005 4006
	}

C
Chris Wilson 已提交
4007
	i915_gem_object_unpin_pages(obj);
4008 4009 4010
	return 0;
}

4011 4012
/**
 * Changes the cache-level of an object across all VMA.
4013 4014
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4026 4027 4028
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4029
	struct i915_vma *vma;
4030
	int ret;
4031

4032 4033
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4034
	if (obj->cache_level == cache_level)
4035
		return 0;
4036

4037 4038 4039 4040 4041
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4042 4043
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4044 4045 4046
		if (!drm_mm_node_allocated(&vma->node))
			continue;

4047
		if (i915_vma_is_pinned(vma)) {
4048 4049 4050 4051
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4052 4053
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
4065 4066
	}

4067 4068 4069 4070 4071 4072 4073
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4074
	if (obj->bind_count) {
4075 4076 4077 4078
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4079 4080 4081 4082 4083 4084
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4085 4086 4087
		if (ret)
			return ret;

4088 4089
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4106
			for_each_ggtt_vma(vma, obj) {
4107 4108 4109 4110
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4111 4112 4113 4114 4115 4116 4117 4118
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4119 4120
		}

4121
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4122 4123 4124 4125 4126 4127 4128
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4129 4130
	}

4131
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4132
		vma->node.color = cache_level;
4133
	i915_gem_object_set_cache_coherency(obj, cache_level);
4134
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4135

4136 4137 4138
	return 0;
}

B
Ben Widawsky 已提交
4139 4140
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4141
{
B
Ben Widawsky 已提交
4142
	struct drm_i915_gem_caching *args = data;
4143
	struct drm_i915_gem_object *obj;
4144
	int err = 0;
4145

4146 4147 4148 4149 4150 4151
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4152

4153 4154 4155 4156 4157 4158
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4159 4160 4161 4162
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4163 4164 4165 4166
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4167 4168 4169
out:
	rcu_read_unlock();
	return err;
4170 4171
}

B
Ben Widawsky 已提交
4172 4173
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4174
{
4175
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4176
	struct drm_i915_gem_caching *args = data;
4177 4178
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4179
	int ret = 0;
4180

B
Ben Widawsky 已提交
4181 4182
	switch (args->caching) {
	case I915_CACHING_NONE:
4183 4184
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4185
	case I915_CACHING_CACHED:
4186 4187 4188 4189 4190 4191
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4192
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4193 4194
			return -ENODEV;

4195 4196
		level = I915_CACHE_LLC;
		break;
4197
	case I915_CACHING_DISPLAY:
4198
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4199
		break;
4200 4201 4202 4203
	default:
		return -EINVAL;
	}

4204 4205 4206 4207
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4217 4218 4219 4220 4221 4222 4223
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4224
	if (ret)
4225
		goto out;
B
Ben Widawsky 已提交
4226

4227 4228 4229
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4230 4231 4232

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4233 4234 4235

out:
	i915_gem_object_put(obj);
4236 4237 4238
	return ret;
}

4239
/*
4240 4241 4242 4243
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4244
 */
C
Chris Wilson 已提交
4245
struct i915_vma *
4246 4247
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4248 4249
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4250
{
C
Chris Wilson 已提交
4251
	struct i915_vma *vma;
4252 4253
	int ret;

4254 4255
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4256
	/* Mark the global pin early so that we account for the
4257 4258
	 * display coherency whilst setting up the cache domains.
	 */
4259
	obj->pin_global++;
4260

4261 4262 4263 4264 4265 4266 4267 4268 4269
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4270
	ret = i915_gem_object_set_cache_level(obj,
4271 4272
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4273 4274
	if (ret) {
		vma = ERR_PTR(ret);
4275
		goto err_unpin_global;
C
Chris Wilson 已提交
4276
	}
4277

4278 4279
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4280 4281 4282 4283
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4284
	 */
4285
	vma = ERR_PTR(-ENOSPC);
4286 4287
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4288
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4289 4290 4291 4292
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4293
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4294
	if (IS_ERR(vma))
4295
		goto err_unpin_global;
4296

4297 4298
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4299
	__i915_gem_object_flush_for_display(obj);
4300

4301 4302 4303
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4304
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4305

C
Chris Wilson 已提交
4306
	return vma;
4307

4308 4309
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4310
	return vma;
4311 4312 4313
}

void
C
Chris Wilson 已提交
4314
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4315
{
4316
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4317

4318
	if (WARN_ON(vma->obj->pin_global == 0))
4319 4320
		return;

4321
	if (--vma->obj->pin_global == 0)
4322
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4323

4324
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4325
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4326

C
Chris Wilson 已提交
4327
	i915_vma_unpin(vma);
4328 4329
}

4330 4331
/**
 * Moves a single object to the CPU read, and possibly write domain.
4332 4333
 * @obj: object to act on
 * @write: requesting write or read-only access
4334 4335 4336 4337
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4338
int
4339
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4340 4341 4342
{
	int ret;

4343
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4344

4345 4346 4347 4348 4349 4350
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4351 4352 4353
	if (ret)
		return ret;

4354
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4355

4356
	/* Flush the CPU cache if it's still invalid. */
4357
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4358
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4359
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4360 4361 4362 4363 4364
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4365
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4366 4367 4368 4369

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4370 4371
	if (write)
		__start_cpu_write(obj);
4372 4373 4374 4375

	return 0;
}

4376 4377 4378
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4379 4380 4381 4382
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4383 4384 4385
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4386
static int
4387
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4388
{
4389
	struct drm_i915_private *dev_priv = to_i915(dev);
4390
	struct drm_i915_file_private *file_priv = file->driver_priv;
4391
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4392
	struct i915_request *request, *target = NULL;
4393
	long ret;
4394

4395 4396 4397
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4398

4399
	spin_lock(&file_priv->mm.lock);
4400
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4401 4402
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4403

4404 4405 4406 4407
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4408

4409
		target = request;
4410
	}
4411
	if (target)
4412
		i915_request_get(target);
4413
	spin_unlock(&file_priv->mm.lock);
4414

4415
	if (target == NULL)
4416
		return 0;
4417

4418
	ret = i915_request_wait(target,
4419 4420
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4421
	i915_request_put(target);
4422

4423
	return ret < 0 ? ret : 0;
4424 4425
}

C
Chris Wilson 已提交
4426
struct i915_vma *
4427 4428
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4429
			 u64 size,
4430 4431
			 u64 alignment,
			 u64 flags)
4432
{
4433
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4434
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4435 4436
	struct i915_vma *vma;
	int ret;
4437

4438 4439
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4440 4441
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4472
	vma = i915_vma_instance(obj, vm, view);
4473
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4474
		return vma;
4475 4476

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4477 4478 4479
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4480

4481
			if (flags & PIN_MAPPABLE &&
4482
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4483 4484 4485
				return ERR_PTR(-ENOSPC);
		}

4486 4487
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4488 4489 4490
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4491
		     !!(flags & PIN_MAPPABLE),
4492
		     i915_vma_is_map_and_fenceable(vma));
4493 4494
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4495
			return ERR_PTR(ret);
4496 4497
	}

C
Chris Wilson 已提交
4498 4499 4500
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4501

C
Chris Wilson 已提交
4502
	return vma;
4503 4504
}

4505
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4520 4521 4522 4523 4524 4525 4526 4527 4528
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4529 4530
}

4531
static __always_inline unsigned int
4532
__busy_set_if_active(const struct dma_fence *fence,
4533 4534
		     unsigned int (*flag)(unsigned int id))
{
4535
	struct i915_request *rq;
4536

4537 4538 4539 4540
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4541
	 *
4542
	 * Note we only report on the status of native fences.
4543
	 */
4544 4545 4546 4547
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4548 4549
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4550 4551
		return 0;

4552
	return flag(rq->engine->uabi_id);
4553 4554
}

4555
static __always_inline unsigned int
4556
busy_check_reader(const struct dma_fence *fence)
4557
{
4558
	return __busy_set_if_active(fence, __busy_read_flag);
4559 4560
}

4561
static __always_inline unsigned int
4562
busy_check_writer(const struct dma_fence *fence)
4563
{
4564 4565 4566 4567
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4568 4569
}

4570 4571
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4572
		    struct drm_file *file)
4573 4574
{
	struct drm_i915_gem_busy *args = data;
4575
	struct drm_i915_gem_object *obj;
4576 4577
	struct reservation_object_list *list;
	unsigned int seq;
4578
	int err;
4579

4580
	err = -ENOENT;
4581 4582
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4583
	if (!obj)
4584
		goto out;
4585

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4604

4605 4606
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4607

4608 4609 4610 4611
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4612

4613 4614 4615 4616 4617 4618
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4619
	}
4620

4621 4622 4623 4624
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4625 4626 4627
out:
	rcu_read_unlock();
	return err;
4628 4629 4630 4631 4632 4633
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4634
	return i915_gem_ring_throttle(dev, file_priv);
4635 4636
}

4637 4638 4639 4640
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4641
	struct drm_i915_private *dev_priv = to_i915(dev);
4642
	struct drm_i915_gem_madvise *args = data;
4643
	struct drm_i915_gem_object *obj;
4644
	int err;
4645 4646 4647 4648 4649 4650 4651 4652 4653

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4654
	obj = i915_gem_object_lookup(file_priv, args->handle);
4655 4656 4657 4658 4659 4660
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4661

4662
	if (i915_gem_object_has_pages(obj) &&
4663
	    i915_gem_object_is_tiled(obj) &&
4664
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4665 4666
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4667
			__i915_gem_object_unpin_pages(obj);
4668 4669 4670
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4671
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4672
			__i915_gem_object_pin_pages(obj);
4673 4674
			obj->mm.quirked = true;
		}
4675 4676
	}

C
Chris Wilson 已提交
4677 4678
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4679

C
Chris Wilson 已提交
4680
	/* if the object is no longer attached, discard its backing storage */
4681 4682
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4683 4684
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4685
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4686
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4687

4688
out:
4689
	i915_gem_object_put(obj);
4690
	return err;
4691 4692
}

4693
static void
4694
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4695 4696 4697 4698
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4699
	intel_fb_obj_flush(obj, ORIGIN_CS);
4700 4701
}

4702 4703
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4704
{
4705 4706
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4707
	INIT_LIST_HEAD(&obj->vma_list);
4708
	INIT_LIST_HEAD(&obj->lut_list);
4709
	INIT_LIST_HEAD(&obj->batch_pool_link);
4710

4711 4712
	init_rcu_head(&obj->rcu);

4713 4714
	obj->ops = ops;

4715 4716 4717
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4718
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4719
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4720 4721 4722 4723

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4724

4725
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4726 4727
}

4728
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4729 4730
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4731

4732 4733
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4734 4735

	.pwrite = i915_gem_object_pwrite_gtt,
4736 4737
};

M
Matthew Auld 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4762
struct drm_i915_gem_object *
4763
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4764
{
4765
	struct drm_i915_gem_object *obj;
4766
	struct address_space *mapping;
4767
	unsigned int cache_level;
D
Daniel Vetter 已提交
4768
	gfp_t mask;
4769
	int ret;
4770

4771 4772 4773 4774 4775
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4776
	if (size >> PAGE_SHIFT > INT_MAX)
4777 4778 4779 4780 4781
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4782
	obj = i915_gem_object_alloc(dev_priv);
4783
	if (obj == NULL)
4784
		return ERR_PTR(-ENOMEM);
4785

M
Matthew Auld 已提交
4786
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4787 4788
	if (ret)
		goto fail;
4789

4790
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4791
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4792 4793 4794 4795 4796
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4797
	mapping = obj->base.filp->f_mapping;
4798
	mapping_set_gfp_mask(mapping, mask);
4799
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4800

4801
	i915_gem_object_init(obj, &i915_gem_object_ops);
4802

4803 4804
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4805

4806
	if (HAS_LLC(dev_priv))
4807
		/* On some devices, we can have the GPU use the LLC (the CPU
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4819 4820 4821
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4822

4823
	i915_gem_object_set_cache_coherency(obj, cache_level);
4824

4825 4826
	trace_i915_gem_object_create(obj);

4827
	return obj;
4828 4829 4830 4831

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4832 4833
}

4834 4835 4836 4837 4838 4839 4840 4841
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4842
	if (obj->mm.madv != I915_MADV_WILLNEED)
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4858 4859
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4860
{
4861
	struct drm_i915_gem_object *obj, *on;
4862

4863
	intel_runtime_pm_get(i915);
4864
	llist_for_each_entry_safe(obj, on, freed, freed) {
4865 4866 4867 4868
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4869 4870
		mutex_lock(&i915->drm.struct_mutex);

4871 4872 4873 4874 4875
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4876
			i915_vma_destroy(vma);
4877
		}
4878 4879
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4880

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4893
		mutex_unlock(&i915->drm.struct_mutex);
4894 4895

		GEM_BUG_ON(obj->bind_count);
4896
		GEM_BUG_ON(obj->userfault_count);
4897
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4898
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4899 4900 4901

		if (obj->ops->release)
			obj->ops->release(obj);
4902

4903 4904
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4905
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4906
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4907 4908 4909 4910

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4911
		reservation_object_fini(&obj->__builtin_resv);
4912 4913 4914 4915 4916
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4917

4918 4919 4920
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4921 4922
		if (on)
			cond_resched();
4923
	}
4924
	intel_runtime_pm_put(i915);
4925 4926 4927 4928 4929 4930
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4941
		__i915_gem_free_objects(i915, freed);
4942
	}
4943 4944 4945 4946 4947 4948 4949
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4950

4951 4952
	/*
	 * All file-owned VMA should have been released by this point through
4953 4954 4955 4956 4957 4958
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4959

4960
	spin_lock(&i915->mm.free_lock);
4961
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4962 4963
		spin_unlock(&i915->mm.free_lock);

4964
		__i915_gem_free_objects(i915, freed);
4965
		if (need_resched())
4966 4967 4968
			return;

		spin_lock(&i915->mm.free_lock);
4969
	}
4970
	spin_unlock(&i915->mm.free_lock);
4971
}
4972

4973 4974 4975 4976 4977
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4978 4979 4980 4981 4982 4983 4984

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4985

4986 4987 4988 4989 4990 4991 4992 4993 4994
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4995 4996
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4997
		queue_work(i915->wq, &i915->mm.free_work);
4998
}
4999

5000 5001 5002
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
5003

5004 5005 5006
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

5007
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
5008
		obj->mm.madv = I915_MADV_DONTNEED;
5009

5010 5011
	/*
	 * Before we free the object, make sure any pure RCU-only
5012 5013 5014 5015
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
5016
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5017
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5018 5019
}

5020 5021 5022 5023
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

5024 5025
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
5026 5027 5028 5029 5030
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

5031 5032
void i915_gem_sanitize(struct drm_i915_private *i915)
{
5033
	int err;
5034 5035 5036

	GEM_TRACE("\n");

5037
	mutex_lock(&i915->drm.struct_mutex);
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
5048
	if (i915_terminally_wedged(&i915->gpu_error))
5049 5050
		i915_gem_unset_wedged(i915);

5051 5052 5053 5054 5055 5056
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
5057
	 * of the reset, so this could be applied to even earlier gen.
5058
	 */
5059
	err = -ENODEV;
5060
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5061 5062 5063
		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
	if (!err)
		intel_engines_sanitize(i915);
5064 5065 5066 5067

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

5068 5069
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
5070 5071
}

C
Chris Wilson 已提交
5072
int i915_gem_suspend(struct drm_i915_private *i915)
5073
{
5074
	int ret;
5075

5076 5077
	GEM_TRACE("\n");

C
Chris Wilson 已提交
5078 5079
	intel_runtime_pm_get(i915);
	intel_suspend_gt_powersave(i915);
5080

C
Chris Wilson 已提交
5081
	mutex_lock(&i915->drm.struct_mutex);
5082

C
Chris Wilson 已提交
5083 5084
	/*
	 * We have to flush all the executing contexts to main memory so
5085 5086
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
5087
	 * leaves the i915->kernel_context still active when
5088 5089 5090 5091
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
5092 5093
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
5094 5095
		if (ret)
			goto err_unlock;
5096

C
Chris Wilson 已提交
5097
		ret = i915_gem_wait_for_idle(i915,
5098
					     I915_WAIT_INTERRUPTIBLE |
5099
					     I915_WAIT_LOCKED |
5100 5101
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
5102 5103
		if (ret && ret != -EIO)
			goto err_unlock;
5104

C
Chris Wilson 已提交
5105
		assert_kernel_context_is_current(i915);
5106
	}
5107 5108
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
5109
	mutex_unlock(&i915->drm.struct_mutex);
5110

C
Chris Wilson 已提交
5111
	intel_uc_suspend(i915);
5112

C
Chris Wilson 已提交
5113 5114
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
5115

C
Chris Wilson 已提交
5116 5117
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
5118 5119
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
5120
	drain_delayed_work(&i915->gt.idle_work);
5121

C
Chris Wilson 已提交
5122 5123
	/*
	 * Assert that we successfully flushed all the work and
5124 5125
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
5126 5127 5128
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
5129

C
Chris Wilson 已提交
5130
	intel_runtime_pm_put(i915);
5131 5132 5133
	return 0;

err_unlock:
C
Chris Wilson 已提交
5134 5135
	mutex_unlock(&i915->drm.struct_mutex);
	intel_runtime_pm_put(i915);
5136 5137 5138 5139 5140
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5141 5142 5143 5144 5145 5146 5147
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5168 5169 5170 5171 5172 5173 5174
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5175 5176
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5177 5178
}

5179
void i915_gem_resume(struct drm_i915_private *i915)
5180
{
5181 5182
	GEM_TRACE("\n");

5183
	WARN_ON(i915->gt.awake);
5184

5185 5186
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5187

5188 5189
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5190

5191 5192
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5193 5194 5195
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5196
	i915->gt.resume(i915);
5197

5198 5199 5200
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5201
	intel_uc_resume(i915);
5202

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5213 5214 5215 5216
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5217
	goto out_unlock;
5218 5219
}

5220
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5221
{
5222
	if (INTEL_GEN(dev_priv) < 5 ||
5223 5224 5225 5226 5227 5228
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5229
	if (IS_GEN5(dev_priv))
5230 5231
		return;

5232
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5233
	if (IS_GEN6(dev_priv))
5234
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5235
	else if (IS_GEN7(dev_priv))
5236
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5237
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5238
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5239 5240
	else
		BUG();
5241
}
D
Daniel Vetter 已提交
5242

5243
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5244 5245 5246 5247 5248 5249 5250
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5251
static void init_unused_rings(struct drm_i915_private *dev_priv)
5252
{
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5265 5266 5267
	}
}

5268
static int __i915_gem_restart_engines(void *data)
5269
{
5270
	struct drm_i915_private *i915 = data;
5271
	struct intel_engine_cs *engine;
5272
	enum intel_engine_id id;
5273 5274 5275 5276
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5277 5278 5279
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5280
			return err;
5281
		}
5282 5283 5284 5285 5286 5287 5288
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5289
	int ret;
5290

5291 5292
	dev_priv->gt.last_init_time = ktime_get();

5293 5294 5295
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5296
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5297
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5298

5299
	if (IS_HASWELL(dev_priv))
5300
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5301
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5302

5303 5304
	intel_gt_workarounds_apply(dev_priv);

5305
	i915_gem_init_swizzling(dev_priv);
5306

5307 5308 5309 5310 5311 5312
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5313
	init_unused_rings(dev_priv);
5314

5315
	BUG_ON(!dev_priv->kernel_context);
5316 5317 5318 5319
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5320

5321
	ret = i915_ppgtt_init_hw(dev_priv);
5322
	if (ret) {
5323
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5324 5325 5326
		goto out;
	}

5327 5328 5329 5330 5331 5332
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5333 5334
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5335 5336
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5337
		goto out;
5338
	}
5339

5340
	intel_mocs_init_l3cc_table(dev_priv);
5341

5342 5343
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5344 5345
	if (ret)
		goto cleanup_uc;
5346

5347
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5348 5349

	return 0;
5350 5351 5352

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
5353 5354 5355 5356
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
5357 5358
}

5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5380
		struct i915_request *rq;
5381

5382
		rq = i915_request_alloc(engine, ctx);
5383 5384 5385 5386 5387
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5388
		err = 0;
5389 5390 5391
		if (engine->init_context)
			err = engine->init_context(rq);

5392
		i915_request_add(rq);
5393 5394 5395 5396 5397 5398 5399 5400
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5401 5402 5403
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5404
		goto err_active;
5405
	}
5406 5407 5408

	assert_kernel_context_is_current(i915);

5409 5410 5411 5412 5413 5414 5415 5416
	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

5417 5418
	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
5419
		void *vaddr;
5420

5421 5422
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

5423
		state = to_intel_context(ctx, engine)->state;
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
5444 5445 5446

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
5447
						I915_MAP_FORCE_WB);
5448 5449 5450 5451 5452 5453
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5489 5490 5491
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5492 5493 5494 5495 5496 5497
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5498
int i915_gem_init(struct drm_i915_private *dev_priv)
5499 5500 5501
{
	int ret;

5502 5503
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5504 5505 5506
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5507
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5508

5509
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5510
		dev_priv->gt.resume = intel_lr_context_resume;
5511
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5512 5513 5514
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5515 5516
	}

5517 5518 5519 5520
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5521
	ret = intel_uc_init_misc(dev_priv);
5522 5523 5524
	if (ret)
		return ret;

5525
	ret = intel_wopcm_init(&dev_priv->wopcm);
5526
	if (ret)
5527
		goto err_uc_misc;
5528

5529 5530 5531 5532 5533 5534
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5535
	mutex_lock(&dev_priv->drm.struct_mutex);
5536 5537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5538
	ret = i915_gem_init_ggtt(dev_priv);
5539 5540 5541 5542
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5543

5544
	ret = i915_gem_contexts_init(dev_priv);
5545 5546 5547 5548
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5549

5550
	ret = intel_engines_init(dev_priv);
5551 5552 5553 5554
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5555

5556 5557
	intel_init_gt_powersave(dev_priv);

5558
	ret = intel_uc_init(dev_priv);
5559
	if (ret)
5560
		goto err_pm;
5561

5562 5563 5564 5565
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5577
	ret = __intel_engines_record_defaults(dev_priv);
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5603 5604 5605 5606 5607
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5608 5609
	i915_gem_drain_workqueue(dev_priv);

5610
	mutex_lock(&dev_priv->drm.struct_mutex);
5611
	intel_uc_fini_hw(dev_priv);
5612 5613
err_uc_init:
	intel_uc_fini(dev_priv);
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5627
err_uc_misc:
5628
	intel_uc_fini_misc(dev_priv);
5629

5630 5631 5632
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5633
	if (ret == -EIO) {
5634 5635
		mutex_lock(&dev_priv->drm.struct_mutex);

5636 5637
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5638 5639 5640
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5641
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5642 5643
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5644 5645
			i915_gem_set_wedged(dev_priv);
		}
5646 5647 5648 5649 5650 5651 5652 5653

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5654 5655
	}

5656
	i915_gem_drain_freed_objects(dev_priv);
5657
	return ret;
5658 5659
}

5660 5661 5662
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5663
	intel_disable_gt_powersave(dev_priv);
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5675 5676
	intel_cleanup_gt_powersave(dev_priv);

5677 5678 5679 5680 5681 5682 5683 5684
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5685 5686 5687 5688 5689
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5690
void
5691
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5692
{
5693
	struct intel_engine_cs *engine;
5694
	enum intel_engine_id id;
5695

5696
	for_each_engine(engine, dev_priv, id)
5697
		dev_priv->gt.cleanup_engine(engine);
5698 5699
}

5700 5701 5702
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5703
	int i;
5704

5705
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5706 5707
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5708
	else if (INTEL_GEN(dev_priv) >= 4 ||
5709 5710
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5711 5712 5713 5714
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5715
	if (intel_vgpu_active(dev_priv))
5716 5717 5718 5719
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5720 5721 5722 5723 5724 5725 5726
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5727
	i915_gem_restore_fences(dev_priv);
5728

5729
	i915_gem_detect_bit_6_swizzle(dev_priv);
5730 5731
}

5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5748
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5749
{
5750
	int err = -ENOMEM;
5751

5752 5753
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5754 5755
		goto err_out;

5756 5757
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5758 5759
		goto err_objects;

5760 5761 5762 5763
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5764
	dev_priv->requests = KMEM_CACHE(i915_request,
5765 5766
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5767
					SLAB_TYPESAFE_BY_RCU);
5768
	if (!dev_priv->requests)
5769
		goto err_luts;
5770

5771 5772 5773 5774 5775 5776
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5777 5778 5779 5780
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5781
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5782
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5783
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5784

5785
	i915_gem_init__mm(dev_priv);
5786

5787
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5788
			  i915_gem_retire_work_handler);
5789
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5790
			  i915_gem_idle_work_handler);
5791
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5792
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5793

5794 5795
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5796
	spin_lock_init(&dev_priv->fb_tracking.lock);
5797

M
Matthew Auld 已提交
5798 5799 5800 5801
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5802 5803
	return 0;

5804 5805
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5806 5807
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5808 5809
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5810 5811 5812 5813 5814 5815
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5816
}
5817

5818
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5819
{
5820
	i915_gem_drain_freed_objects(dev_priv);
5821 5822
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5823
	WARN_ON(dev_priv->mm.object_count);
5824 5825
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5826
	kmem_cache_destroy(dev_priv->priorities);
5827
	kmem_cache_destroy(dev_priv->dependencies);
5828
	kmem_cache_destroy(dev_priv->requests);
5829
	kmem_cache_destroy(dev_priv->luts);
5830 5831
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5832 5833 5834

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5835 5836

	i915_gemfs_fini(dev_priv);
5837 5838
}

5839 5840
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5841 5842 5843
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5844 5845 5846 5847 5848
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5849
int i915_gem_freeze_late(struct drm_i915_private *i915)
5850 5851
{
	struct drm_i915_gem_object *obj;
5852
	struct list_head *phases[] = {
5853 5854
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5855
		NULL
5856
	}, **phase;
5857

5858 5859
	/*
	 * Called just before we write the hibernation image.
5860 5861 5862 5863 5864 5865 5866 5867
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5868 5869
	 *
	 * To try and reduce the hibernation image, we manually shrink
5870
	 * the objects as well, see i915_gem_freeze()
5871 5872
	 */

5873 5874
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5875

5876 5877 5878 5879
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5880
	}
5881
	mutex_unlock(&i915->drm.struct_mutex);
5882 5883 5884 5885

	return 0;
}

5886
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5887
{
5888
	struct drm_i915_file_private *file_priv = file->driver_priv;
5889
	struct i915_request *request;
5890 5891 5892 5893 5894

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5895
	spin_lock(&file_priv->mm.lock);
5896
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5897
		request->file_priv = NULL;
5898
	spin_unlock(&file_priv->mm.lock);
5899 5900
}

5901
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5902 5903
{
	struct drm_i915_file_private *file_priv;
5904
	int ret;
5905

5906
	DRM_DEBUG("\n");
5907 5908 5909 5910 5911 5912

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5913
	file_priv->dev_priv = i915;
5914
	file_priv->file = file;
5915 5916 5917 5918

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5919
	file_priv->bsd_engine = -1;
5920
	file_priv->hang_timestamp = jiffies;
5921

5922
	ret = i915_gem_context_open(i915, file);
5923 5924
	if (ret)
		kfree(file_priv);
5925

5926
	return ret;
5927 5928
}

5929 5930
/**
 * i915_gem_track_fb - update frontbuffer tracking
5931 5932 5933
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5934 5935 5936 5937
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5938 5939 5940 5941
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5942 5943 5944 5945 5946 5947 5948
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5949
		     BITS_PER_TYPE(atomic_t));
5950

5951
	if (old) {
5952 5953
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5954 5955 5956
	}

	if (new) {
5957 5958
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5959 5960 5961
	}
}

5962 5963
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5964
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5965 5966 5967
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5968 5969 5970
	struct file *file;
	size_t offset;
	int err;
5971

5972
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5973
	if (IS_ERR(obj))
5974 5975
		return obj;

5976
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5977

5978 5979 5980 5981 5982 5983
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5984

5985 5986 5987 5988 5989
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5990

5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
6005 6006 6007 6008

	return obj;

fail:
6009
	i915_gem_object_put(obj);
6010
	return ERR_PTR(err);
6011
}
6012 6013 6014 6015 6016 6017

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
6018
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6019 6020 6021 6022 6023
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
6024
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
6050 6051
		void *entry;
		unsigned long i;
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

6066
		entry = xa_mk_value(idx);
6067
		for (i = 1; i < count; i++) {
6068
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
6106
	 * the radix tree will contain a value entry that points
6107 6108 6109 6110 6111
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
6112 6113
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6146
	if (!obj->mm.dirty)
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6162

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6198
	pages = __i915_gem_object_unset_pages(obj);
6199

6200 6201
	obj->ops = &i915_gem_phys_ops;

6202
	err = ____i915_gem_object_get_pages(obj);
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6216 6217 6218 6219 6220
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6221 6222 6223 6224 6225
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6226 6227
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6228
#include "selftests/mock_gem_device.c"
6229
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6230
#include "selftests/huge_pages.c"
6231
#include "selftests/i915_gem_object.c"
6232
#include "selftests/i915_gem_coherency.c"
6233
#include "selftests/i915_gem.c"
6234
#endif