core.c 145.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6 7 8
//
// core.c  --  Voltage/Current Regulator framework.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 10 11

#include <linux/kernel.h>
#include <linux/init.h>
12
#include <linux/debugfs.h>
13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/async.h>
16 17 18
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
19
#include <linux/delay.h>
20
#include <linux/gpio/consumer.h>
21
#include <linux/of.h>
22
#include <linux/regmap.h>
23
#include <linux/regulator/of_regulator.h>
24
#include <linux/regulator/consumer.h>
25
#include <linux/regulator/coupler.h>
26 27
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
28
#include <linux/module.h>
29

30 31 32
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

33
#include "dummy.h"
34
#include "internal.h"
35

M
Mark Brown 已提交
36 37
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 39 40 41 42 43 44 45 46
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

47 48
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
49 50
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
51
static LIST_HEAD(regulator_ena_gpio_list);
52
static LIST_HEAD(regulator_supply_alias_list);
53
static LIST_HEAD(regulator_coupler_list);
54
static bool has_full_constraints;
55

56 57
static struct dentry *debugfs_root;

58
/*
59 60 61 62 63 64
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
65
	const char *dev_name;   /* The dev_name() for the consumer */
66
	const char *supply;
67
	struct regulator_dev *regulator;
68 69
};

70 71 72 73 74 75 76
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
77
	struct gpio_desc *gpiod;
78 79 80 81
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
};

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

95
static int _regulator_is_enabled(struct regulator_dev *rdev);
96
static int _regulator_disable(struct regulator *regulator);
97 98
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99
static int _notifier_call_chain(struct regulator_dev *rdev,
100
				  unsigned long event, void *data);
101 102
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
103 104
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
105 106 107
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
108
static void _regulator_put(struct regulator *regulator);
109

110
const char *rdev_get_name(struct regulator_dev *rdev)
111 112 113 114 115 116 117 118 119
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

120 121
static bool have_full_constraints(void)
{
122
	return has_full_constraints || of_have_populated_dt();
123 124
}

125 126 127 128 129 130 131 132 133 134 135 136 137
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

138 139 140
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
141
 * @ww_ctx:		w/w mutex acquire context
142 143 144 145 146 147 148
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
149 150
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
151
{
152 153 154 155 156 157 158
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
159
			rdev->ref_cnt++;
160 161 162 163 164 165 166
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
167
		}
168 169
	} else {
		lock = true;
170 171
	}

172 173 174 175 176 177 178 179
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
180 181
}

182 183 184 185 186 187 188 189 190 191 192
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
193
{
194
	regulator_lock_nested(rdev, NULL);
195
}
196
EXPORT_SYMBOL_GPL(regulator_lock);
197 198 199 200 201 202 203 204

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
205
void regulator_unlock(struct regulator_dev *rdev)
206
{
207
	mutex_lock(&regulator_nesting_mutex);
208

209 210 211
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
212
	}
213 214 215 216

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
217
}
218
EXPORT_SYMBOL_GPL(regulator_unlock);
219

220
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221
{
222 223 224 225 226
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227

228 229 230 231 232 233 234
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

235 236
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
237
{
238
	struct regulator_dev *c_rdev;
239
	int i;
240

241 242
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243 244 245 246

		if (!c_rdev)
			continue;

247
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 249 250
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
251

252 253
		regulator_unlock(c_rdev);
	}
254 255
}

256 257 258 259
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
260
{
261
	struct regulator_dev *c_rdev;
262
	int i, err;
263

264 265
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266

267 268
		if (!c_rdev)
			continue;
269

270 271 272 273 274 275 276
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
277

278 279 280 281 282 283 284
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

285
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 287 288 289 290 291 292 293
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
294 295
		}
	}
296 297 298 299 300 301 302

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
303 304
}

305
/**
306 307 308 309 310
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
311
 * Unlock all regulators related with rdev by coupling or supplying.
312
 */
313 314
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
315
{
316 317
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
318 319 320
}

/**
321 322
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
323
 * @ww_ctx:			w/w mutex acquire context
324 325
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
326
 * all regulators related with rdev by coupling or supplying.
327
 */
328 329
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
330
{
331 332 333
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
334

335
	mutex_lock(&regulator_list_mutex);
336

337
	ww_acquire_init(ww_ctx, &regulator_ww_class);
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
383 384
			if (regnode)
				goto err_node_put;
385
		} else {
386
			goto err_node_put;
387 388 389
		}
	}
	return NULL;
390 391 392 393

err_node_put:
	of_node_put(child);
	return regnode;
394 395
}

396 397 398 399 400 401
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
402
 * returns the device node corresponding to the regulator if found, else
403 404 405 406 407 408 409 410 411 412 413 414 415
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
416 417 418 419
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

420 421
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
422 423 424 425 426
		return NULL;
	}
	return regnode;
}

427
/* Platform voltage constraint check */
428 429
int regulator_check_voltage(struct regulator_dev *rdev,
			    int *min_uV, int *max_uV)
430 431 432
{
	BUG_ON(*min_uV > *max_uV);

433
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434
		rdev_err(rdev, "voltage operation not allowed\n");
435 436 437 438 439 440 441 442
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

443 444
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445
			 *min_uV, *max_uV);
446
		return -EINVAL;
447
	}
448 449 450 451

	return 0;
}

452 453 454 455 456 457
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

458 459 460
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
461 462 463
int regulator_check_consumers(struct regulator_dev *rdev,
			      int *min_uV, int *max_uV,
			      suspend_state_t state)
464 465
{
	struct regulator *regulator;
466
	struct regulator_voltage *voltage;
467 468

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
469
		voltage = &regulator->voltage[state];
470 471 472 473
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
474
		if (!voltage->min_uV && !voltage->max_uV)
475 476
			continue;

477 478 479 480
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
481 482
	}

483
	if (*min_uV > *max_uV) {
484 485
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
486
		return -EINVAL;
487
	}
488 489 490 491

	return 0;
}

492 493 494 495 496 497
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

498
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499
		rdev_err(rdev, "current operation not allowed\n");
500 501 502 503 504 505 506 507
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

508 509
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510
			 *min_uA, *max_uA);
511
		return -EINVAL;
512
	}
513 514 515 516 517

	return 0;
}

/* operating mode constraint check */
518 519
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
520
{
521
	switch (*mode) {
522 523 524 525 526 527
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
528
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 530 531
		return -EINVAL;
	}

532
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533
		rdev_err(rdev, "mode operation not allowed\n");
534 535
		return -EPERM;
	}
536 537 538 539 540 541 542 543

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
544
	}
545 546

	return -EINVAL;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

567 568 569
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
570
	struct regulator_dev *rdev = dev_get_drvdata(dev);
571 572
	ssize_t ret;

573
	regulator_lock(rdev);
574
	ret = sprintf(buf, "%d\n", regulator_get_voltage_rdev(rdev));
575
	regulator_unlock(rdev);
576 577 578

	return ret;
}
579
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
580 581 582 583

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
584
	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 586 587

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
588
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
589

590 591
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
592 593 594
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

595
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
596
}
597
static DEVICE_ATTR_RO(name);
598

599
static const char *regulator_opmode_to_str(int mode)
600 601 602
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
603
		return "fast";
604
	case REGULATOR_MODE_NORMAL:
605
		return "normal";
606
	case REGULATOR_MODE_IDLE:
607
		return "idle";
608
	case REGULATOR_MODE_STANDBY:
609
		return "standby";
610
	}
611 612 613 614 615 616
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
617 618
}

D
David Brownell 已提交
619 620
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
621
{
622
	struct regulator_dev *rdev = dev_get_drvdata(dev);
623

D
David Brownell 已提交
624 625
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
626
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
627 628 629

static ssize_t regulator_print_state(char *buf, int state)
{
630 631 632 633 634 635 636 637
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
638 639 640 641
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
642 643
	ssize_t ret;

644
	regulator_lock(rdev);
645
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
646
	regulator_unlock(rdev);
D
David Brownell 已提交
647

648
	return ret;
D
David Brownell 已提交
649
}
650
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
651

D
David Brownell 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
685 686 687
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
688 689 690
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
691 692 693 694 695 696 697 698
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

699 700 701
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
702
	struct regulator_dev *rdev = dev_get_drvdata(dev);
703 704 705 706 707 708

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
709
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
710 711 712 713

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
714
	struct regulator_dev *rdev = dev_get_drvdata(dev);
715 716 717 718 719 720

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
721
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
722 723 724 725

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
726
	struct regulator_dev *rdev = dev_get_drvdata(dev);
727 728 729 730 731 732

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
733
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
734 735 736 737

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
738
	struct regulator_dev *rdev = dev_get_drvdata(dev);
739 740 741 742 743 744

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
745
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
746 747 748 749

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
750
	struct regulator_dev *rdev = dev_get_drvdata(dev);
751 752 753
	struct regulator *regulator;
	int uA = 0;

754
	regulator_lock(rdev);
755 756 757 758
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
759
	regulator_unlock(rdev);
760 761
	return sprintf(buf, "%d\n", uA);
}
762
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
763

764 765
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
766
{
767
	struct regulator_dev *rdev = dev_get_drvdata(dev);
768 769
	return sprintf(buf, "%d\n", rdev->use_count);
}
770
static DEVICE_ATTR_RO(num_users);
771

772 773
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
774
{
775
	struct regulator_dev *rdev = dev_get_drvdata(dev);
776 777 778 779 780 781 782 783 784

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
785
static DEVICE_ATTR_RO(type);
786 787 788 789

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
790
	struct regulator_dev *rdev = dev_get_drvdata(dev);
791 792 793

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
794 795
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
796 797 798 799

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
800
	struct regulator_dev *rdev = dev_get_drvdata(dev);
801 802 803

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
804 805
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
806 807 808 809

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
810
	struct regulator_dev *rdev = dev_get_drvdata(dev);
811 812 813

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
814 815
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
816 817 818 819

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
820
	struct regulator_dev *rdev = dev_get_drvdata(dev);
821

D
David Brownell 已提交
822 823
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
824
}
825 826
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
827 828 829 830

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
831
	struct regulator_dev *rdev = dev_get_drvdata(dev);
832

D
David Brownell 已提交
833 834
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
835
}
836 837
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
838 839 840 841

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
842
	struct regulator_dev *rdev = dev_get_drvdata(dev);
843

D
David Brownell 已提交
844 845
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
846
}
847 848
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
849 850 851 852

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
853
	struct regulator_dev *rdev = dev_get_drvdata(dev);
854

D
David Brownell 已提交
855 856
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
857
}
858 859
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
860 861 862 863

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
864
	struct regulator_dev *rdev = dev_get_drvdata(dev);
865

D
David Brownell 已提交
866 867
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
868
}
869 870
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
871 872 873 874

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
875
	struct regulator_dev *rdev = dev_get_drvdata(dev);
876

D
David Brownell 已提交
877 878
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
879
}
880 881 882
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
904

905 906
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
907
static int drms_uA_update(struct regulator_dev *rdev)
908 909 910 911 912
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

913 914 915 916
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
917 918
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
		rdev_dbg(rdev, "DRMS operation not allowed\n");
919
		return 0;
920
	}
921

922 923
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
924 925
		return 0;

926 927
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
928
		return -EINVAL;
929 930

	/* calc total requested load */
931 932 933 934
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
935

936 937
	current_uA += rdev->constraints->system_load;

938 939 940 941 942 943
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
944
		/* get output voltage */
945
		output_uV = regulator_get_voltage_rdev(rdev);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

962 963 964 965 966 967 968 969 970 971 972
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
973

974 975 976
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
977 978 979
	}

	return err;
980 981 982
}

static int suspend_set_state(struct regulator_dev *rdev,
983
				    suspend_state_t state)
984 985
{
	int ret = 0;
986 987 988 989
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
990
		return 0;
991

992
	/* If we have no suspend mode configuration don't set anything;
993 994
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
995
	 */
996 997
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
998 999
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1000
			rdev_warn(rdev, "No configuration\n");
1001 1002 1003
		return 0;
	}

1004 1005
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1006
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1007 1008
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1009
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1010 1011 1012
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1013
	if (ret < 0) {
1014
		rdev_err(rdev, "failed to enabled/disable\n");
1015 1016 1017 1018 1019 1020
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1021
			rdev_err(rdev, "failed to set voltage\n");
1022 1023 1024 1025 1026 1027 1028
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1029
			rdev_err(rdev, "failed to set mode\n");
1030 1031 1032 1033
			return ret;
		}
	}

1034
	return ret;
1035 1036 1037 1038 1039
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1040
	char buf[160] = "";
1041
	size_t len = sizeof(buf) - 1;
1042 1043
	int count = 0;
	int ret;
1044

1045
	if (constraints->min_uV && constraints->max_uV) {
1046
		if (constraints->min_uV == constraints->max_uV)
1047 1048
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1049
		else
1050 1051 1052 1053
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1054 1055 1056 1057
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
1058
		ret = regulator_get_voltage_rdev(rdev);
1059
		if (ret > 0)
1060 1061
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1062 1063
	}

1064
	if (constraints->uV_offset)
1065 1066
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1067

1068
	if (constraints->min_uA && constraints->max_uA) {
1069
		if (constraints->min_uA == constraints->max_uA)
1070 1071
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1072
		else
1073 1074 1075 1076
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1077 1078 1079 1080 1081 1082
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1083 1084
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1085
	}
1086

1087
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1088
		count += scnprintf(buf + count, len - count, "fast ");
1089
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1090
		count += scnprintf(buf + count, len - count, "normal ");
1091
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1092
		count += scnprintf(buf + count, len - count, "idle ");
1093
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1094
		count += scnprintf(buf + count, len - count, "standby");
1095

1096
	if (!count)
1097
		scnprintf(buf, len, "no parameters");
1098

1099
	rdev_dbg(rdev, "%s\n", buf);
1100 1101

	if ((constraints->min_uV != constraints->max_uV) &&
1102
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1103 1104
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1105 1106
}

1107
static int machine_constraints_voltage(struct regulator_dev *rdev,
1108
	struct regulation_constraints *constraints)
1109
{
1110
	const struct regulator_ops *ops = rdev->desc->ops;
1111 1112 1113 1114
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1115 1116
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1117
		int current_uV = regulator_get_voltage_rdev(rdev);
1118 1119

		if (current_uV == -ENOTRECOVERABLE) {
1120
			/* This regulator can't be read and must be initialized */
1121 1122 1123 1124 1125 1126
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
1127
			current_uV = regulator_get_voltage_rdev(rdev);
1128 1129
		}

1130
		if (current_uV < 0) {
1131 1132 1133
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1134 1135
			return current_uV;
		}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1156 1157
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1158
			ret = _regulator_do_set_voltage(
1159
				rdev, target_min, target_max);
1160 1161
			if (ret < 0) {
				rdev_err(rdev,
1162 1163
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1164 1165
				return ret;
			}
1166
		}
1167
	}
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1180 1181
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1182
		if (count == 1 && !cmin) {
1183
			cmin = 1;
1184
			cmax = INT_MAX;
1185 1186
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1187 1188
		}

1189 1190
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1191
			return 0;
1192

1193
		/* else require explicit machine-level constraints */
1194
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1195
			rdev_err(rdev, "invalid voltage constraints\n");
1196
			return -EINVAL;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1216 1217 1218
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1219
			return -EINVAL;
1220 1221 1222 1223
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1224 1225
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1226 1227 1228
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1229 1230
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1231 1232 1233 1234
			constraints->max_uV = max_uV;
		}
	}

1235 1236 1237
	return 0;
}

1238 1239 1240
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1241
	const struct regulator_ops *ops = rdev->desc->ops;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1268 1269
static int _regulator_do_enable(struct regulator_dev *rdev);

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1282
	const struct regulation_constraints *constraints)
1283 1284
{
	int ret = 0;
1285
	const struct regulator_ops *ops = rdev->desc->ops;
1286

1287 1288 1289 1290 1291 1292
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1293 1294
	if (!rdev->constraints)
		return -ENOMEM;
1295

1296
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1297
	if (ret != 0)
1298
		return ret;
1299

1300
	ret = machine_constraints_current(rdev, rdev->constraints);
1301
	if (ret != 0)
1302
		return ret;
1303

1304 1305 1306 1307 1308
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1309
			return ret;
1310 1311 1312
		}
	}

1313
	/* do we need to setup our suspend state */
1314
	if (rdev->constraints->initial_state) {
1315
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1316
		if (ret < 0) {
1317
			rdev_err(rdev, "failed to set suspend state\n");
1318
			return ret;
1319 1320
		}
	}
1321

1322
	if (rdev->constraints->initial_mode) {
1323
		if (!ops->set_mode) {
1324
			rdev_err(rdev, "no set_mode operation\n");
1325
			return -EINVAL;
1326 1327
		}

1328
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1329
		if (ret < 0) {
1330
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1331
			return ret;
1332
		}
1333 1334 1335 1336 1337 1338
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1339 1340
	}

1341 1342
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1343 1344 1345
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1346
			return ret;
1347 1348 1349
		}
	}

S
Stephen Boyd 已提交
1350 1351 1352 1353
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1354
			return ret;
S
Stephen Boyd 已提交
1355 1356 1357
		}
	}

S
Stephen Boyd 已提交
1358 1359 1360 1361
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1362
			return ret;
S
Stephen Boyd 已提交
1363 1364 1365
		}
	}

1366 1367 1368 1369 1370
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1371
			return ret;
1372 1373 1374
		}
	}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1386 1387 1388 1389
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1390 1391 1392 1393 1394 1395 1396 1397 1398
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1399 1400 1401 1402 1403
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1404
		rdev->use_count++;
1405 1406
	}

1407
	print_constraints(rdev);
1408
	return 0;
1409 1410 1411 1412
}

/**
 * set_supply - set regulator supply regulator
1413 1414
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1415 1416 1417 1418 1419 1420
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1421
		      struct regulator_dev *supply_rdev)
1422 1423 1424
{
	int err;

1425 1426
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1427 1428 1429
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1430
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1431 1432
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1433
		return err;
1434
	}
1435
	supply_rdev->open_count++;
1436 1437

	return 0;
1438 1439 1440
}

/**
1441
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1442
 * @rdev:         regulator source
1443
 * @consumer_dev_name: dev_name() string for device supply applies to
1444
 * @supply:       symbolic name for supply
1445 1446 1447 1448 1449 1450 1451
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1452 1453
				      const char *consumer_dev_name,
				      const char *supply)
1454 1455
{
	struct regulator_map *node;
1456
	int has_dev;
1457 1458 1459 1460

	if (supply == NULL)
		return -EINVAL;

1461 1462 1463 1464 1465
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1466
	list_for_each_entry(node, &regulator_map_list, list) {
1467 1468 1469 1470
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1471
			continue;
1472 1473
		}

1474 1475 1476
		if (strcmp(node->supply, supply) != 0)
			continue;

1477 1478 1479 1480 1481 1482
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1483 1484 1485
		return -EBUSY;
	}

1486
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1487 1488 1489 1490 1491 1492
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1493 1494 1495 1496 1497 1498
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1499 1500
	}

1501 1502 1503 1504
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1505 1506 1507 1508 1509 1510 1511
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1512
			kfree(node->dev_name);
1513 1514 1515 1516 1517
			kfree(node);
		}
	}
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1567
#define REG_STR_SIZE	64
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1581
	regulator_lock(rdev);
1582 1583 1584 1585
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1586 1587
		regulator->dev = dev;

1588
		/* Add a link to the device sysfs entry */
1589 1590
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1591
		if (size >= REG_STR_SIZE)
1592
			goto overflow_err;
1593 1594 1595

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1596
			goto overflow_err;
1597

1598
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1599 1600
					buf);
		if (err) {
1601
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1602
				  dev->kobj.name, err);
1603
			/* non-fatal */
1604
		}
1605
	} else {
1606
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1607
		if (regulator->supply_name == NULL)
1608
			goto overflow_err;
1609 1610 1611 1612
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1613
	if (!regulator->debugfs) {
1614
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1615 1616 1617 1618
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1619
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1620
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1621
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1622 1623 1624
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1625
	}
1626

1627 1628 1629 1630 1631
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1632
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1633 1634 1635
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1636
	regulator_unlock(rdev);
1637 1638 1639 1640
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1641
	regulator_unlock(rdev);
1642 1643 1644
	return NULL;
}

1645 1646
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1647 1648
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1649 1650 1651
	if (rdev->desc->ops->enable_time)
		return rdev->desc->ops->enable_time(rdev);
	return rdev->desc->enable_time;
1652 1653
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1702 1703 1704 1705 1706
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1707
 */
1708
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1709
						  const char *supply)
1710
{
1711
	struct regulator_dev *r = NULL;
1712
	struct device_node *node;
1713 1714
	struct regulator_map *map;
	const char *devname = NULL;
1715

1716 1717
	regulator_supply_alias(&dev, &supply);

1718 1719 1720
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1721
		if (node) {
1722 1723 1724
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1725

1726
			/*
1727 1728
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1729
			 */
1730
			return ERR_PTR(-EPROBE_DEFER);
1731
		}
1732 1733 1734
	}

	/* if not found, try doing it non-dt way */
1735 1736 1737
	if (dev)
		devname = dev_name(dev);

1738
	mutex_lock(&regulator_list_mutex);
1739 1740 1741 1742 1743 1744
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1745 1746
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1747 1748
			r = map->regulator;
			break;
1749
		}
1750
	}
1751
	mutex_unlock(&regulator_list_mutex);
1752

1753 1754 1755 1756
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1757 1758 1759 1760
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1761 1762
}

1763 1764 1765 1766 1767 1768
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

1769
	/* No supply to resolve? */
1770 1771 1772 1773 1774 1775 1776
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1777 1778 1779 1780
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1781 1782 1783 1784
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1785 1786
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1787
			get_device(&r->dev);
1788 1789 1790 1791 1792
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1793 1794
	}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1808 1809
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1810 1811
	if (ret < 0) {
		put_device(&r->dev);
1812
		return ret;
1813
	}
1814 1815

	ret = set_supply(rdev, r);
1816 1817
	if (ret < 0) {
		put_device(&r->dev);
1818
		return ret;
1819
	}
1820

1821 1822 1823 1824 1825 1826
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1827
		ret = regulator_enable(rdev->supply);
1828
		if (ret < 0) {
1829
			_regulator_put(rdev->supply);
1830
			rdev->supply = NULL;
1831
			return ret;
1832
		}
1833 1834 1835 1836 1837
	}

	return 0;
}

1838
/* Internal regulator request function */
1839 1840
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1841 1842
{
	struct regulator_dev *rdev;
1843
	struct regulator *regulator;
1844
	const char *devname = dev ? dev_name(dev) : "deviceless";
1845
	int ret;
1846

1847 1848 1849 1850 1851
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1852
	if (id == NULL) {
1853
		pr_err("get() with no identifier\n");
1854
		return ERR_PTR(-EINVAL);
1855 1856
	}

1857
	rdev = regulator_dev_lookup(dev, id);
1858 1859
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1860

1861 1862 1863 1864 1865 1866
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1867

1868 1869 1870 1871 1872
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1873

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1887

1888 1889 1890 1891
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1892

1893 1894 1895
		default:
			return ERR_PTR(-ENODEV);
		}
1896 1897
	}

1898 1899
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1900 1901
		put_device(&rdev->dev);
		return regulator;
1902 1903
	}

1904
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1905
		regulator = ERR_PTR(-EBUSY);
1906 1907
		put_device(&rdev->dev);
		return regulator;
1908 1909
	}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1920 1921 1922
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1923 1924
		put_device(&rdev->dev);
		return regulator;
1925 1926
	}

1927
	if (!try_module_get(rdev->owner)) {
1928
		regulator = ERR_PTR(-EPROBE_DEFER);
1929 1930 1931
		put_device(&rdev->dev);
		return regulator;
	}
1932

1933 1934 1935
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1936
		put_device(&rdev->dev);
1937
		module_put(rdev->owner);
1938
		return regulator;
1939 1940
	}

1941
	rdev->open_count++;
1942
	if (get_type == EXCLUSIVE_GET) {
1943 1944 1945 1946 1947 1948 1949 1950 1951
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1952 1953
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1954 1955
	return regulator;
}
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1972
	return _regulator_get(dev, id, NORMAL_GET);
1973
}
1974 1975
EXPORT_SYMBOL_GPL(regulator_get);

1976 1977 1978 1979 1980 1981 1982
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1983 1984 1985
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1999
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2000 2001 2002
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2003 2004 2005 2006 2007 2008
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2009
 * or IS_ERR() condition containing errno.
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2025
	return _regulator_get(dev, id, OPTIONAL_GET);
2026 2027 2028
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2029
/* regulator_list_mutex lock held by regulator_put() */
2030
static void _regulator_put(struct regulator *regulator)
2031 2032 2033
{
	struct regulator_dev *rdev;

2034
	if (IS_ERR_OR_NULL(regulator))
2035 2036
		return;

2037 2038
	lockdep_assert_held_once(&regulator_list_mutex);

2039 2040 2041
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2042 2043
	rdev = regulator->rdev;

2044 2045
	debugfs_remove_recursive(regulator->debugfs);

2046
	if (regulator->dev) {
2047
		device_link_remove(regulator->dev, &rdev->dev);
2048 2049

		/* remove any sysfs entries */
2050
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2051 2052
	}

2053
	regulator_lock(rdev);
2054 2055
	list_del(&regulator->list);

2056 2057
	rdev->open_count--;
	rdev->exclusive = 0;
2058
	put_device(&rdev->dev);
2059
	regulator_unlock(rdev);
2060

2061
	kfree_const(regulator->supply_name);
2062 2063
	kfree(regulator);

2064
	module_put(rdev->owner);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2079 2080 2081 2082
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2160 2161
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2162
					 struct device *alias_dev,
2163
					 const char *const *alias_id,
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2201
					    const char *const *id,
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2212 2213 2214 2215 2216
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2217
	struct gpio_desc *gpiod;
2218

2219
	gpiod = config->ena_gpiod;
2220

2221
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2222
		if (pin->gpiod == gpiod) {
2223
			rdev_dbg(rdev, "GPIO is already used\n");
2224 2225 2226 2227 2228
			goto update_ena_gpio_to_rdev;
		}
	}

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2229
	if (pin == NULL)
2230 2231
		return -ENOMEM;

2232
	pin->gpiod = gpiod;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2250
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2251 2252
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2253
				gpiod_put(pin->gpiod);
2254 2255
				list_del(&pin->list);
				kfree(pin);
2256 2257
				rdev->ena_pin = NULL;
				return;
2258 2259 2260 2261 2262 2263 2264
			} else {
				pin->request_count--;
			}
		}
	}
}

2265
/**
2266 2267 2268 2269
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2283
			gpiod_set_value_cansleep(pin->gpiod, 1);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2294
			gpiod_set_value_cansleep(pin->gpiod, 0);
2295 2296 2297 2298 2299 2300 2301
			pin->enable_count = 0;
		}
	}

	return 0;
}

2302 2303 2304 2305 2306 2307
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
2308
 *     Documentation/timers/timers-howto.rst
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
2371
			 * detected and we get a penalty of
2372 2373 2374 2375 2376 2377 2378 2379 2380
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2381
	if (rdev->ena_pin) {
2382 2383 2384 2385 2386 2387
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2388
	} else if (rdev->desc->ops->enable) {
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2401
	_regulator_enable_delay(delay);
2402 2403 2404 2405 2406 2407

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2467
/* locks held by regulator_enable() */
2468
static int _regulator_enable(struct regulator *regulator)
2469
{
2470
	struct regulator_dev *rdev = regulator->rdev;
2471
	int ret;
2472

2473 2474
	lockdep_assert_held_once(&rdev->mutex.base);

2475
	if (rdev->use_count == 0 && rdev->supply) {
2476
		ret = _regulator_enable(rdev->supply);
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2487

2488 2489 2490
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2491

2492 2493 2494 2495
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2496
			if (!regulator_ops_is_valid(rdev,
2497 2498
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2499
				goto err_consumer_disable;
2500
			}
2501

2502
			ret = _regulator_do_enable(rdev);
2503
			if (ret < 0)
2504
				goto err_consumer_disable;
2505

2506 2507
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2508
		} else if (ret < 0) {
2509
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2510
			goto err_consumer_disable;
2511
		}
2512
		/* Fallthrough on positive return values - already enabled */
2513 2514
	}

2515 2516 2517
	rdev->use_count++;

	return 0;
2518

2519 2520 2521
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2522
err_disable_supply:
2523
	if (rdev->use_count == 0 && rdev->supply)
2524
		_regulator_disable(rdev->supply);
2525 2526

	return ret;
2527 2528 2529 2530 2531 2532
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2533 2534 2535 2536
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2537
 * NOTE: the output value can be set by other drivers, boot loader or may be
2538
 * hardwired in the regulator.
2539 2540 2541
 */
int regulator_enable(struct regulator *regulator)
{
2542
	struct regulator_dev *rdev = regulator->rdev;
2543
	struct ww_acquire_ctx ww_ctx;
2544
	int ret;
2545

2546
	regulator_lock_dependent(rdev, &ww_ctx);
2547
	ret = _regulator_enable(regulator);
2548
	regulator_unlock_dependent(rdev, &ww_ctx);
2549

2550 2551 2552 2553
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2554 2555 2556 2557 2558 2559
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2560
	if (rdev->ena_pin) {
2561 2562 2563 2564 2565 2566
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2567 2568 2569 2570 2571 2572 2573

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2574 2575 2576 2577 2578 2579
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2580 2581 2582 2583 2584
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2585
/* locks held by regulator_disable() */
2586
static int _regulator_disable(struct regulator *regulator)
2587
{
2588
	struct regulator_dev *rdev = regulator->rdev;
2589 2590
	int ret = 0;

2591
	lockdep_assert_held_once(&rdev->mutex.base);
2592

D
David Brownell 已提交
2593
	if (WARN(rdev->use_count <= 0,
2594
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2595 2596
		return -EIO;

2597
	/* are we the last user and permitted to disable ? */
2598 2599
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2600 2601

		/* we are last user */
2602
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2603 2604 2605 2606 2607 2608
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2609
			ret = _regulator_do_disable(rdev);
2610
			if (ret < 0) {
2611
				rdev_err(rdev, "failed to disable\n");
2612 2613 2614
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2615 2616
				return ret;
			}
2617 2618
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2619 2620 2621 2622 2623 2624
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2625

2626 2627 2628
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2629 2630 2631
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2632
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2633
		ret = _regulator_disable(rdev->supply);
2634

2635 2636 2637 2638 2639 2640 2641
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2642 2643 2644
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2645
 *
2646
 * NOTE: this will only disable the regulator output if no other consumer
2647 2648
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2649 2650 2651
 */
int regulator_disable(struct regulator *regulator)
{
2652
	struct regulator_dev *rdev = regulator->rdev;
2653
	struct ww_acquire_ctx ww_ctx;
2654
	int ret;
2655

2656
	regulator_lock_dependent(rdev, &ww_ctx);
2657
	ret = _regulator_disable(regulator);
2658
	regulator_unlock_dependent(rdev, &ww_ctx);
2659

2660 2661 2662 2663 2664
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2665
static int _regulator_force_disable(struct regulator_dev *rdev)
2666 2667 2668
{
	int ret = 0;

2669
	lockdep_assert_held_once(&rdev->mutex.base);
2670

2671 2672 2673 2674 2675
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2676 2677 2678
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2679 2680
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2681
		return ret;
2682 2683
	}

2684 2685 2686 2687
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2701
	struct regulator_dev *rdev = regulator->rdev;
2702
	struct ww_acquire_ctx ww_ctx;
2703 2704
	int ret;

2705
	regulator_lock_dependent(rdev, &ww_ctx);
2706

2707
	ret = _regulator_force_disable(regulator->rdev);
2708

2709 2710
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2711 2712 2713 2714 2715 2716

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2717 2718
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2719

2720
	regulator_unlock_dependent(rdev, &ww_ctx);
2721

2722 2723 2724 2725
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2726 2727 2728 2729
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2730
	struct ww_acquire_ctx ww_ctx;
2731
	int count, i, ret;
2732 2733
	struct regulator *regulator;
	int total_count = 0;
2734

2735
	regulator_lock_dependent(rdev, &ww_ctx);
2736

2737 2738 2739 2740 2741 2742 2743 2744
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2759
	}
2760
	WARN_ON(!total_count);
2761

2762 2763 2764 2765
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2766 2767 2768 2769 2770
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
2771
 * @ms: milliseconds until the regulator is disabled
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2784 2785 2786
	if (!ms)
		return regulator_disable(regulator);

2787
	regulator_lock(rdev);
2788
	regulator->deferred_disables++;
2789 2790
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2791
	regulator_unlock(rdev);
2792

2793
	return 0;
2794 2795 2796
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2797 2798
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2799
	/* A GPIO control always takes precedence */
2800
	if (rdev->ena_pin)
2801 2802
		return rdev->ena_gpio_state;

2803
	/* If we don't know then assume that the regulator is always on */
2804
	if (!rdev->desc->ops->is_enabled)
2805
		return 1;
2806

2807
	return rdev->desc->ops->is_enabled(rdev);
2808 2809
}

2810 2811
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2823
			regulator_lock(rdev);
2824 2825
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2826
			regulator_unlock(rdev);
2827
	} else if (rdev->is_switch && rdev->supply) {
2828 2829
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2844 2845 2846 2847
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2848 2849 2850 2851 2852 2853 2854
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2855 2856 2857
 */
int regulator_is_enabled(struct regulator *regulator)
{
2858 2859
	int ret;

2860 2861 2862
	if (regulator->always_on)
		return 1;

2863
	regulator_lock(regulator->rdev);
2864
	ret = _regulator_is_enabled(regulator->rdev);
2865
	regulator_unlock(regulator->rdev);
2866 2867

	return ret;
2868 2869 2870
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2883 2884 2885
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2886
	if (!rdev->is_switch || !rdev->supply)
2887 2888 2889
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2900
 * zero if this selector code can't be used on this system, or a
2901 2902 2903 2904
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2905
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2906 2907 2908
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2941 2942
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2943 2944 2945 2946

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2947 2948
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2968 2969
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2995 2996 2997 2998 2999 3000 3001
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
3002
 * Returns a boolean.
3003 3004 3005 3006
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3007
	struct regulator_dev *rdev = regulator->rdev;
3008 3009
	int i, voltages, ret;

3010
	/* If we can't change voltage check the current voltage */
3011
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3012 3013
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3014
			return min_uV <= ret && ret <= max_uV;
3015 3016 3017 3018
		else
			return ret;
	}

3019 3020 3021 3022 3023
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3024 3025
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
3026
		return 0;
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3038
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3054 3055 3056 3057 3058
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3059 3060 3061
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3062 3063 3064 3065 3066 3067 3068
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

3069
	data.old_uV = regulator_get_voltage_rdev(rdev);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

3093
	data.old_uV = regulator_get_voltage_rdev(rdev);
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
					   int uV, int new_selector)
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int diff, old_sel, curr_sel, ret;

	/* Stepping is only needed if the regulator is enabled. */
	if (!_regulator_is_enabled(rdev))
		goto final_set;

	if (!ops->get_voltage_sel)
		return -EINVAL;

	old_sel = ops->get_voltage_sel(rdev);
	if (old_sel < 0)
		return old_sel;

	diff = new_selector - old_sel;
	if (diff == 0)
		return 0; /* No change needed. */

	if (diff > 0) {
		/* Stepping up. */
		for (curr_sel = old_sel + rdev->desc->vsel_step;
		     curr_sel < new_selector;
		     curr_sel += rdev->desc->vsel_step) {
			/*
			 * Call the callback directly instead of using
			 * _regulator_call_set_voltage_sel() as we don't
			 * want to notify anyone yet. Same in the branch
			 * below.
			 */
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	} else {
		/* Stepping down. */
		for (curr_sel = old_sel - rdev->desc->vsel_step;
		     curr_sel > new_selector;
		     curr_sel -= rdev->desc->vsel_step) {
			ret = ops->set_voltage_sel(rdev, curr_sel);
			if (ret)
				goto try_revert;
		}
	}

final_set:
	/* The final selector will trigger the notifiers. */
	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);

try_revert:
	/*
	 * At least try to return to the previous voltage if setting a new
	 * one failed.
	 */
	(void)ops->set_voltage_sel(rdev, old_sel);
	return ret;
}

3171 3172 3173 3174 3175 3176 3177 3178 3179
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3180 3181
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3182 3183 3184 3185 3186 3187
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3188 3189

	if (ramp_delay == 0) {
3190
		rdev_dbg(rdev, "ramp_delay not set\n");
3191 3192 3193 3194 3195 3196
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3197 3198 3199 3200
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3201
	int delay = 0;
3202
	int best_val = 0;
3203
	unsigned int selector;
3204
	int old_selector = -1;
3205
	const struct regulator_ops *ops = rdev->desc->ops;
3206
	int old_uV = regulator_get_voltage_rdev(rdev);
3207 3208 3209

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3210 3211 3212
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3213 3214 3215 3216
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3217
	if (_regulator_is_enabled(rdev) &&
3218 3219
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3220 3221 3222 3223
		if (old_selector < 0)
			return old_selector;
	}

3224
	if (ops->set_voltage) {
3225 3226
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3227 3228

		if (ret >= 0) {
3229 3230 3231
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3232
			else
3233
				best_val = regulator_get_voltage_rdev(rdev);
3234 3235
		}

3236
	} else if (ops->set_voltage_sel) {
3237
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3238
		if (ret >= 0) {
3239
			best_val = ops->list_voltage(rdev, ret);
3240 3241
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3242 3243
				if (old_selector == selector)
					ret = 0;
3244 3245 3246
				else if (rdev->desc->vsel_step)
					ret = _regulator_set_voltage_sel_step(
						rdev, best_val, selector);
3247
				else
3248 3249
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3250 3251 3252
			} else {
				ret = -EINVAL;
			}
3253
		}
3254 3255 3256
	} else {
		ret = -EINVAL;
	}
3257

3258 3259
	if (ret)
		goto out;
3260

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3278
		}
3279
	}
3280

3281 3282 3283
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3284 3285
	}

3286 3287 3288 3289 3290 3291
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3292 3293
	}

3294
	if (best_val >= 0) {
3295 3296
		unsigned long data = best_val;

3297
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3298 3299
				     (void *)data);
	}
3300

3301
out:
3302
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3303 3304 3305 3306

	return ret;
}

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3333
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3334 3335
					  int min_uV, int max_uV,
					  suspend_state_t state)
3336 3337
{
	struct regulator_dev *rdev = regulator->rdev;
3338
	struct regulator_voltage *voltage = &regulator->voltage[state];
3339
	int ret = 0;
3340
	int old_min_uV, old_max_uV;
3341
	int current_uV;
3342

3343 3344 3345 3346
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3347
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3348 3349
		goto out;

3350
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3351
	 * return successfully even though the regulator does not support
3352 3353
	 * changing the voltage.
	 */
3354
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3355
		current_uV = regulator_get_voltage_rdev(rdev);
3356
		if (min_uV <= current_uV && current_uV <= max_uV) {
3357 3358
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3359 3360 3361 3362
			goto out;
		}
	}

3363
	/* sanity check */
3364 3365
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3366 3367 3368 3369 3370 3371 3372 3373
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3374

3375
	/* restore original values in case of error */
3376 3377 3378 3379
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3380

3381 3382
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3383 3384 3385 3386
	if (ret < 0) {
		voltage->min_uV = old_min_uV;
		voltage->max_uV = old_max_uV;
	}
3387

3388 3389 3390 3391
out:
	return ret;
}

3392 3393
int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
			       int max_uV, suspend_state_t state)
3394 3395 3396 3397 3398
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3399 3400 3401
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3402 3403
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3404 3405 3406 3407 3408 3409
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3410
			goto out;
3411 3412
		}

M
Mark Brown 已提交
3413
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3414 3415
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3416
			goto out;
3417 3418 3419 3420
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

3421
		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3422 3423
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3424
			goto out;
3425 3426 3427 3428 3429 3430 3431
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3432
				best_supply_uV, INT_MAX, state);
3433 3434 3435
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3436
			goto out;
3437 3438 3439
		}
	}

3440 3441 3442 3443 3444
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3445
	if (ret < 0)
3446
		goto out;
3447

3448 3449
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3450
				best_supply_uV, INT_MAX, state);
3451 3452 3453 3454 3455 3456 3457
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3458
out:
3459
	return ret;
3460 3461
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
3472
		*current_uV = regulator_get_voltage_rdev(rdev);
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
3504
	int i, ret, max_spread;
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3538
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3549

3550 3551 3552 3553 3554 3555 3556 3557
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

3558 3559
	max_spread = constraints->max_spread[0];

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

3577
		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3615 3616 3617 3618
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
3619
			ret = regulator_get_voltage_rdev(rdev);
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
3641
	struct regulator_coupler *coupler = c_desc->coupler;
3642 3643
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	unsigned int delta, best_delta;
3644 3645
	unsigned long c_rdev_done = 0;
	bool best_c_rdev_done;
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

3662 3663 3664
	/* Invoke custom balancer for customized couplers */
	if (coupler && coupler->balance_voltage)
		return coupler->balance_voltage(coupler, rdev, state);
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

3691
			if (test_bit(i, &c_rdev_done))
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3719

3720 3721
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3722

3723 3724 3725
		if (ret < 0)
			goto out;

3726 3727
		if (best_c_rdev_done)
			set_bit(best_c_rdev, &c_rdev_done);
3728 3729 3730 3731

	} while (n_coupled > 1);

out:
3732 3733 3734
	return ret;
}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3755 3756
	struct ww_acquire_ctx ww_ctx;
	int ret;
3757

3758
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3759

3760 3761
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3762

3763
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3764

3765 3766 3767 3768
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3781
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3835 3836
	struct ww_acquire_ctx ww_ctx;
	int ret;
3837 3838 3839 3840 3841

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3842
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3843 3844 3845 3846

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3847
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3848 3849 3850 3851 3852

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3866 3867
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3868 3869 3870 3871 3872
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3873 3874 3875 3876 3877
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3878
	/* Currently requires operations to do this */
3879
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3902
/**
3903 3904
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3905 3906 3907 3908 3909 3910
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3911
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3912
 * set_voltage_time_sel() operation.
3913 3914 3915 3916 3917
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3918
	int old_volt, new_volt;
3919

3920 3921 3922
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3923

3924 3925 3926
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3927 3928 3929 3930 3931
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3932
}
3933
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3946
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3947 3948
	int ret, min_uV, max_uV;

3949
	regulator_lock(rdev);
3950 3951 3952 3953 3954 3955 3956 3957

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3958
	if (!voltage->min_uV && !voltage->max_uV) {
3959 3960 3961 3962
		ret = -EINVAL;
		goto out;
	}

3963 3964
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3965 3966 3967 3968 3969 3970

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3971
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3972 3973 3974 3975 3976 3977
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3978
	regulator_unlock(rdev);
3979 3980 3981 3982
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3983
int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3984
{
3985
	int sel, ret;
3986 3987 3988 3989 3990 3991 3992 3993
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3994 3995 3996 3997 3998
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3999

4000
			return regulator_get_voltage_rdev(rdev->supply->rdev);
4001 4002
		}
	}
4003 4004 4005 4006 4007

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
4008
		ret = rdev->desc->ops->list_voltage(rdev, sel);
4009
	} else if (rdev->desc->ops->get_voltage) {
4010
		ret = rdev->desc->ops->get_voltage(rdev);
4011 4012
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
4013 4014
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
4015
	} else if (rdev->supply) {
4016
		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4017
	} else {
4018
		return -EINVAL;
4019
	}
4020

4021 4022
	if (ret < 0)
		return ret;
4023
	return ret - rdev->constraints->uV_offset;
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4037
	struct ww_acquire_ctx ww_ctx;
4038 4039
	int ret;

4040
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4041
	ret = regulator_get_voltage_rdev(regulator->rdev);
4042
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4043 4044 4045 4046 4047 4048 4049 4050

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4051
 * @min_uA: Minimum supported current in uA
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4070
	regulator_lock(rdev);
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4085
	regulator_unlock(rdev);
4086 4087 4088 4089
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4090 4091 4092 4093 4094 4095 4096 4097 4098
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4099 4100 4101 4102
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4103
	regulator_lock(rdev);
4104
	ret = _regulator_get_current_limit_unlocked(rdev);
4105
	regulator_unlock(rdev);
4106

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4140
	int regulator_curr_mode;
4141

4142
	regulator_lock(rdev);
4143 4144 4145 4146 4147 4148 4149

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4150 4151 4152 4153 4154 4155 4156 4157 4158
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4159
	/* constraints check */
4160
	ret = regulator_mode_constrain(rdev, &mode);
4161 4162 4163 4164 4165
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4166
	regulator_unlock(rdev);
4167 4168 4169 4170
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4171 4172 4173 4174 4175 4176 4177 4178 4179
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4180 4181 4182 4183
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4184
	regulator_lock(rdev);
4185
	ret = _regulator_get_mode_unlocked(rdev);
4186
	regulator_unlock(rdev);
4187

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4203 4204 4205 4206 4207
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4208
	regulator_lock(rdev);
4209 4210 4211 4212 4213 4214 4215 4216 4217

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4218
	regulator_unlock(rdev);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4236
/**
4237
 * regulator_set_load - set regulator load
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4260 4261 4262 4263 4264 4265 4266 4267
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4268
 * On error a negative errno is returned.
4269
 */
4270
int regulator_set_load(struct regulator *regulator, int uA_load)
4271 4272
{
	struct regulator_dev *rdev = regulator->rdev;
4273 4274
	int old_uA_load;
	int ret = 0;
4275

4276
	regulator_lock(rdev);
4277
	old_uA_load = regulator->uA_load;
4278
	regulator->uA_load = uA_load;
4279 4280 4281 4282 4283
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4284
	regulator_unlock(rdev);
4285

4286 4287
	return ret;
}
4288
EXPORT_SYMBOL_GPL(regulator_set_load);
4289

4290 4291 4292 4293
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4294
 * @enable: enable or disable bypass mode
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4309
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4310 4311
		return 0;

4312
	regulator_lock(rdev);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4336
	regulator_unlock(rdev);
4337 4338 4339 4340 4341

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4342 4343 4344
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4345
 * @nb: notifier block
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4360
 * @nb: notifier block
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4372 4373 4374
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4375
static int _notifier_call_chain(struct regulator_dev *rdev,
4376 4377 4378
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4379
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4406 4407
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4418 4419 4420 4421 4422 4423 4424
	if (ret != -EPROBE_DEFER)
		dev_err(dev, "Failed to get supply '%s': %d\n",
			consumers[i].supply, ret);
	else
		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
			consumers[i].supply);

4425
	while (--i >= 0)
4426 4427 4428 4429 4430 4431
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4432 4433 4434 4435 4436 4437 4438
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4454
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4455
	int i;
4456
	int ret = 0;
4457

4458
	for (i = 0; i < num_consumers; i++) {
4459 4460
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4461
	}
4462 4463 4464 4465

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4466
	for (i = 0; i < num_consumers; i++) {
4467 4468
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4469
			goto err;
4470
		}
4471 4472 4473 4474 4475
	}

	return 0;

err:
4476 4477 4478 4479 4480 4481 4482
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4496 4497
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4498 4499 4500 4501 4502 4503
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4504
	int ret, r;
4505

4506
	for (i = num_consumers - 1; i >= 0; --i) {
4507 4508 4509 4510 4511 4512 4513 4514
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4515
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4516 4517 4518
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4519
			pr_err("Failed to re-enable %s: %d\n",
4520 4521
			       consumers[i].supply, r);
	}
4522 4523 4524 4525 4526

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4545
	int ret = 0;
4546

4547
	for (i = 0; i < num_consumers; i++) {
4548 4549 4550
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4551 4552
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4553 4554 4555 4556 4557 4558 4559
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4583
 * @rdev: regulator source
4584
 * @event: notifier block
4585
 * @data: callback-specific data.
4586 4587 4588
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4589
 * Note lock must be held by caller.
4590 4591 4592 4593
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4594
	lockdep_assert_held_once(&rdev->mutex.base);
4595

4596 4597 4598 4599 4600 4601
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4618
	case REGULATOR_MODE_STANDBY:
4619 4620
		return REGULATOR_STATUS_STANDBY;
	default:
4621
		return REGULATOR_STATUS_UNDEFINED;
4622 4623 4624 4625
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4653 4654 4655 4656
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4657 4658
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4659
{
4660
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4661
	struct regulator_dev *rdev = dev_to_rdev(dev);
4662
	const struct regulator_ops *ops = rdev->desc->ops;
4663 4664 4665 4666 4667 4668 4669
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4670 4671

	/* some attributes need specific methods to be displayed */
4672 4673 4674 4675 4676 4677 4678
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4679
	}
4680

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4696
	/* constraints need specific supporting methods */
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4732

4733 4734 4735
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4736 4737 4738

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4739
	kfree(rdev);
4740 4741
}

4742 4743
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4756
	if (!rdev->debugfs) {
4757 4758 4759 4760 4761 4762 4763 4764
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4765 4766
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4767 4768
}

4769 4770
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4771 4772 4773 4774 4775 4776
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4777 4778
}

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
int regulator_coupler_register(struct regulator_coupler *coupler)
{
	mutex_lock(&regulator_list_mutex);
	list_add_tail(&coupler->list, &regulator_coupler_list);
	mutex_unlock(&regulator_list_mutex);

	return 0;
}

static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev *rdev)
{
	struct regulator_coupler *coupler;
	int err;

	/*
	 * Note that regulators are appended to the list and the generic
	 * coupler is registered first, hence it will be attached at last
	 * if nobody cared.
	 */
	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
		err = coupler->attach_regulator(coupler, rdev);
		if (!err) {
			if (!coupler->balance_voltage &&
			    rdev->coupling_desc.n_coupled > 2)
				goto err_unsupported;

			return coupler;
		}

		if (err < 0)
			return ERR_PTR(err);

		if (err == 1)
			continue;

		break;
	}

	return ERR_PTR(-EINVAL);

err_unsupported:
	if (coupler->detach_regulator)
		coupler->detach_regulator(coupler, rdev);

	rdev_err(rdev,
		"Voltage balancing for multiple regulator couples is unimplemented\n");

	return ERR_PTR(-EPERM);
}

4830
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4831
{
4832
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4845 4846
		if (!c_rdev)
			continue;
4847

4848 4849 4850 4851 4852 4853
		if (c_rdev->coupling_desc.coupler != coupler) {
			rdev_err(rdev, "coupler mismatch with %s\n",
				 rdev_get_name(c_rdev));
			return;
		}

4854
		regulator_lock(c_rdev);
4855

4856 4857
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4858

4859
		regulator_unlock(c_rdev);
4860

4861 4862
		regulator_resolve_coupling(c_rdev);
	}
4863 4864
}

4865
static void regulator_remove_coupling(struct regulator_dev *rdev)
4866
{
4867
	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4868 4869 4870 4871
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4872
	int err;
4873

4874
	n_coupled = c_desc->n_coupled;
4875

4876 4877
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4878

4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911

	if (coupler && coupler->detach_regulator) {
		err = coupler->detach_regulator(coupler, rdev);
		if (err)
			rdev_err(rdev, "failed to detach from coupler: %d\n",
				 err);
	}

	kfree(rdev->coupling_desc.coupled_rdevs);
	rdev->coupling_desc.coupled_rdevs = NULL;
4912 4913
}

4914
static int regulator_init_coupling(struct regulator_dev *rdev)
4915
{
4916 4917
	int err, n_phandles;
	size_t alloc_size;
4918 4919 4920 4921 4922 4923

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

4924 4925 4926 4927 4928
	alloc_size = sizeof(*rdev) * (n_phandles + 1);

	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
	if (!rdev->coupling_desc.coupled_rdevs)
		return -ENOMEM;
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

4942
	if (!of_check_coupling_data(rdev))
4943 4944
		return -EPERM;

4945 4946 4947 4948 4949
	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
	if (IS_ERR(rdev->coupling_desc.coupler)) {
		err = PTR_ERR(rdev->coupling_desc.coupler);
		rdev_err(rdev, "failed to get coupler: %d\n", err);
		return err;
4950 4951
	}

4952 4953 4954 4955 4956 4957 4958 4959 4960
	return 0;
}

static int generic_coupler_attach(struct regulator_coupler *coupler,
				  struct regulator_dev *rdev)
{
	if (rdev->coupling_desc.n_coupled > 2) {
		rdev_err(rdev,
			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4961
		return -EPERM;
4962
	}
4963 4964 4965 4966

	return 0;
}

4967 4968 4969 4970
static struct regulator_coupler generic_regulator_coupler = {
	.attach_regulator = generic_coupler_attach,
};

4971 4972
/**
 * regulator_register - register regulator
4973
 * @regulator_desc: regulator to register
4974
 * @cfg: runtime configuration for regulator
4975 4976
 *
 * Called by regulator drivers to register a regulator.
4977 4978
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4979
 */
4980 4981
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4982
		   const struct regulator_config *cfg)
4983
{
4984
	const struct regulation_constraints *constraints = NULL;
4985
	const struct regulator_init_data *init_data;
4986
	struct regulator_config *config = NULL;
4987
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4988
	struct regulator_dev *rdev;
4989 4990
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4991
	struct device *dev;
4992
	int ret, i;
4993

4994
	if (cfg == NULL)
4995
		return ERR_PTR(-EINVAL);
4996 4997 4998 4999 5000 5001
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5002

5003
	dev = cfg->dev;
5004
	WARN_ON(!dev);
5005

5006 5007 5008 5009
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
5010

5011
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5012 5013 5014 5015
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
5016

5017 5018 5019
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
5020 5021
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
5022 5023 5024 5025

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5026 5027
		ret = -EINVAL;
		goto rinse;
5028
	}
5029 5030
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
5031 5032
		ret = -EINVAL;
		goto rinse;
5033
	}
5034

5035
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5036 5037 5038 5039
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
5040

5041 5042 5043 5044 5045 5046 5047
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
5048 5049
		ret = -ENOMEM;
		goto rinse;
5050 5051
	}

5052
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5053
					       &rdev->dev.of_node);
5054 5055 5056 5057 5058
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
5059
	 * a descriptor, we definitely got one from parsing the device
5060 5061 5062 5063
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
5064 5065 5066 5067 5068
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

5069
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5070
	rdev->reg_data = config->driver_data;
5071 5072
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
5073 5074
	if (config->regmap)
		rdev->regmap = config->regmap;
5075
	else if (dev_get_regmap(dev, NULL))
5076
		rdev->regmap = dev_get_regmap(dev, NULL);
5077 5078
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5079 5080 5081
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5082
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5083

5084
	/* preform any regulator specific init */
5085
	if (init_data && init_data->regulator_init) {
5086
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
5087 5088
		if (ret < 0)
			goto clean;
5089 5090
	}

5091
	if (config->ena_gpiod) {
5092
		mutex_lock(&regulator_list_mutex);
5093
		ret = regulator_ena_gpio_request(rdev, config);
5094
		mutex_unlock(&regulator_list_mutex);
5095
		if (ret != 0) {
5096 5097
			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
				 ret);
5098
			goto clean;
5099
		}
5100 5101 5102
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
5103 5104
	}

5105
	/* register with sysfs */
5106
	rdev->dev.class = &regulator_class;
5107
	rdev->dev.parent = dev;
5108
	dev_set_name(&rdev->dev, "regulator.%lu",
5109
		    (unsigned long) atomic_inc_return(&regulator_no));
5110

5111
	/* set regulator constraints */
5112 5113 5114 5115
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
5116
		rdev->supply_name = init_data->supply_regulator;
5117
	else if (regulator_desc->supply_name)
5118
		rdev->supply_name = regulator_desc->supply_name;
5119

5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5132
	mutex_lock(&regulator_list_mutex);
5133
	ret = regulator_init_coupling(rdev);
5134
	mutex_unlock(&regulator_list_mutex);
5135
	if (ret < 0)
5136 5137
		goto wash;

5138
	/* add consumers devices */
5139
	if (init_data) {
5140
		mutex_lock(&regulator_list_mutex);
5141 5142 5143
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5144
				init_data->consumer_supplies[i].supply);
5145
			if (ret < 0) {
5146
				mutex_unlock(&regulator_list_mutex);
5147 5148 5149 5150
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5151
		}
5152
		mutex_unlock(&regulator_list_mutex);
5153
	}
5154

5155 5156 5157 5158 5159
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5160
	dev_set_drvdata(&rdev->dev, rdev);
5161 5162 5163 5164 5165 5166
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5167
	rdev_init_debugfs(rdev);
5168

5169 5170 5171 5172 5173
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5174 5175 5176
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5177
	kfree(config);
5178
	return rdev;
D
David Brownell 已提交
5179

5180
unset_supplies:
5181
	mutex_lock(&regulator_list_mutex);
5182
	unset_regulator_supplies(rdev);
5183
	regulator_remove_coupling(rdev);
5184
	mutex_unlock(&regulator_list_mutex);
5185
wash:
5186
	kfree(rdev->constraints);
5187
	mutex_lock(&regulator_list_mutex);
5188
	regulator_ena_gpio_free(rdev);
5189
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5190
clean:
5191 5192
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5193
	kfree(rdev);
5194
	kfree(config);
5195 5196 5197
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5198
	return ERR_PTR(ret);
5199 5200 5201 5202 5203
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5204
 * @rdev: regulator to unregister
5205 5206 5207 5208 5209 5210 5211 5212
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5213 5214 5215
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5216
		regulator_put(rdev->supply);
5217
	}
5218

5219 5220
	flush_work(&rdev->disable_work.work);

5221
	mutex_lock(&regulator_list_mutex);
5222

5223
	debugfs_remove_recursive(rdev->debugfs);
5224
	WARN_ON(rdev->open_count);
5225
	regulator_remove_coupling(rdev);
5226
	unset_regulator_supplies(rdev);
5227
	list_del(&rdev->list);
5228
	regulator_ena_gpio_free(rdev);
5229
	device_unregister(&rdev->dev);
5230 5231

	mutex_unlock(&regulator_list_mutex);
5232 5233 5234
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5235
#ifdef CONFIG_SUSPEND
5236
/**
5237
 * regulator_suspend - prepare regulators for system wide suspend
5238
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5239 5240 5241
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5242
static int regulator_suspend(struct device *dev)
5243
{
5244
	struct regulator_dev *rdev = dev_to_rdev(dev);
5245
	suspend_state_t state = pm_suspend_target_state;
5246 5247 5248 5249 5250
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5251

5252
	return ret;
5253
}
5254

5255
static int regulator_resume(struct device *dev)
5256
{
5257
	suspend_state_t state = pm_suspend_target_state;
5258
	struct regulator_dev *rdev = dev_to_rdev(dev);
5259
	struct regulator_state *rstate;
5260
	int ret = 0;
5261

5262
	rstate = regulator_get_suspend_state(rdev, state);
5263
	if (rstate == NULL)
5264
		return 0;
5265

5266
	regulator_lock(rdev);
5267

5268
	if (rdev->desc->ops->resume &&
5269 5270
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5271
		ret = rdev->desc->ops->resume(rdev);
5272

5273
	regulator_unlock(rdev);
5274

5275
	return ret;
5276
}
5277 5278
#else /* !CONFIG_SUSPEND */

5279 5280
#define regulator_suspend	NULL
#define regulator_resume	NULL
5281 5282 5283 5284 5285

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5286 5287
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5288 5289 5290
};
#endif

M
Mark Brown 已提交
5291
struct class regulator_class = {
5292 5293 5294 5295 5296 5297 5298
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5316 5317
/**
 * rdev_get_drvdata - get rdev regulator driver data
5318
 * @rdev: regulator
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5355
 * @rdev: regulator
5356 5357 5358 5359 5360 5361 5362
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5363 5364 5365 5366 5367 5368
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

5369 5370 5371 5372 5373 5374
struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
{
	return rdev->regmap;
}
EXPORT_SYMBOL_GPL(rdev_get_regmap);

5375 5376 5377 5378 5379 5380
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5381
#ifdef CONFIG_DEBUG_FS
5382
static int supply_map_show(struct seq_file *sf, void *data)
5383 5384 5385 5386
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5387 5388 5389
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5390 5391
	}

5392 5393
	return 0;
}
5394
DEFINE_SHOW_ATTRIBUTE(supply_map);
5395

5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5418 5419 5420 5421 5422 5423
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5424
	struct summary_data summary_data;
5425
	unsigned int opmode;
5426 5427 5428 5429

	if (!rdev)
		return;

5430
	opmode = _regulator_get_mode_unlocked(rdev);
5431
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5432 5433
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5434
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5435
		   regulator_opmode_to_str(opmode));
5436

5437
	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5438 5439
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5458
		if (consumer->dev && consumer->dev->class == &regulator_class)
5459 5460 5461 5462
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5463 5464
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5465 5466 5467

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5468 5469
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5470
				   consumer->uA_load / 1000,
5471 5472
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5473 5474
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5475 5476 5477 5478 5479 5480 5481 5482
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5483 5484 5485
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5486

5487 5488
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5526 5527

	regulator_unlock(rdev);
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5558 5559
	mutex_lock(&regulator_list_mutex);

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5586 5587

	mutex_unlock(&regulator_list_mutex);
5588 5589
}

5590
static int regulator_summary_show_roots(struct device *dev, void *data)
5591
{
5592 5593
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5594

5595 5596
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5597

5598 5599
	return 0;
}
5600

5601 5602
static int regulator_summary_show(struct seq_file *s, void *data)
{
5603 5604
	struct ww_acquire_ctx ww_ctx;

5605 5606
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5607

5608 5609
	regulator_summary_lock(&ww_ctx);

5610 5611
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5612

5613 5614
	regulator_summary_unlock(&ww_ctx);

5615 5616
	return 0;
}
5617 5618
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5619

5620 5621
static int __init regulator_init(void)
{
5622 5623 5624 5625
	int ret;

	ret = class_register(&regulator_class);

5626
	debugfs_root = debugfs_create_dir("regulator", NULL);
5627
	if (!debugfs_root)
5628
		pr_warn("regulator: Failed to create debugfs directory\n");
5629

5630
#ifdef CONFIG_DEBUG_FS
5631 5632
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5633

5634
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5635
			    NULL, &regulator_summary_fops);
5636
#endif
5637 5638
	regulator_dummy_init();

5639 5640
	regulator_coupler_register(&generic_regulator_coupler);

5641
	return ret;
5642 5643 5644 5645
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5646

5647
static int __init regulator_late_cleanup(struct device *dev, void *data)
5648
{
5649 5650 5651
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5652 5653
	int enabled, ret;

5654 5655 5656
	if (c && c->always_on)
		return 0;

5657
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5658 5659
		return 0;

5660
	regulator_lock(rdev);
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5691
	regulator_unlock(rdev);
5692 5693 5694 5695 5696 5697

	return 0;
}

static int __init regulator_init_complete(void)
{
5698 5699 5700 5701 5702 5703 5704 5705 5706
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5717
	/* If we have a full configuration then disable any regulators
5718 5719 5720
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5721
	 */
5722 5723
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5724 5725 5726

	return 0;
}
5727
late_initcall_sync(regulator_init_complete);