intel_pm.c 234.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_atomic_plane.h"
37
#include "display/intel_bw.h"
38
#include "display/intel_display_types.h"
39 40
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"
41
#include "display/skl_universal_plane.h"
42

A
Andi Shyti 已提交
43 44
#include "gt/intel_llc.h"

45
#include "i915_drv.h"
46
#include "i915_fixed.h"
47
#include "i915_irq.h"
48
#include "i915_trace.h"
49
#include "intel_pm.h"
50
#include "intel_sideband.h"
51
#include "../../../platform/x86/intel_ips.h"
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

76
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
77
{
78 79 80
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
81
		 * Display WA #0390: skl,kbl
82 83 84 85
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
86 87
		intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
88 89 90
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

91
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
92 93
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
94

95
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
96 97
	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
98

99 100 101 102
	/*
	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
	 * Display WA #0859: skl,bxt,kbl,glk,cfl
	 */
103
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
104
		   DISP_FBC_MEMORY_WAKE);
105 106
}

107
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
108
{
109
	gen9_init_clock_gating(dev_priv);
110

111
	/* WaDisableSDEUnitClockGating:bxt */
112
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
113 114
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

115 116
	/*
	 * FIXME:
117
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
118
	 */
119
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
120
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
121 122 123 124 125

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
126
	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
127
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
128 129 130 131 132 133 134

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
135
	intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
136

137 138 139 140
	/*
	 * WaFbcTurnOffFbcWatermark:bxt
	 * Display WA #0562: bxt
	 */
141
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
142
		   DISP_FBC_WM_DIS);
143

144 145 146 147
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:bxt
	 * Display WA #0883: bxt
	 */
148
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
149
		   ILK_DPFC_DISABLE_DUMMY0);
150 151
}

152 153 154 155 156 157 158 159 160
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
161
	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
162 163 164
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

165
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
166 167 168
{
	u32 tmp;

169
	tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
199
	tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
200 201 202
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

203
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
204 205 206
{
	u16 ddrpll, csipll;

207 208
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
224 225
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
253 254
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
255 256 257 258 259
		dev_priv->fsb_freq = 0;
		break;
	}
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

298 299
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

322 323 324 325
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

326
	vlv_punit_get(dev_priv);
327 328 329 330 331 332 333 334 335 336 337 338

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
339 340
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
341

342
	vlv_punit_put(dev_priv);
343 344
}

345 346 347 348
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

349
	vlv_punit_get(dev_priv);
350

351
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
352 353 354 355
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
356
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
357

358
	vlv_punit_put(dev_priv);
359 360
}

361 362 363
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

364
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
365
{
366
	bool was_enabled;
367
	u32 val;
368

369
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
370 371 372
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
373
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
374 375 376
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
377
	} else if (IS_PINEVIEW(dev_priv)) {
378
		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
379 380 381 382 383
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
384 385
		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
386
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
387
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
388 389
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
390 391
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
392
	} else if (IS_I915GM(dev_priv)) {
393 394 395 396 397
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
398
		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
399 400
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
401 402
		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
403
	} else {
404
		return false;
405
	}
406

407 408
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

409 410 411
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
412 413

	return was_enabled;
414 415
}

V
Ville Syrjälä 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
453
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
454
{
455 456
	bool ret;

457
	mutex_lock(&dev_priv->wm.wm_mutex);
458
	ret = _intel_set_memory_cxsr(dev_priv, enable);
459 460 461 462
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
463
	mutex_unlock(&dev_priv->wm.wm_mutex);
464 465

	return ret;
466
}
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
482
static const int pessimal_latency_ns = 5000;
483

484 485 486
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

487
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
488
{
489
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
490
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
491
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
492 493
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
494
	u32 dsparb, dsparb2, dsparb3;
495

496
	switch (pipe) {
497
	case PIPE_A:
498 499
		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
500 501 502 503
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
504 505
		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
506 507 508 509
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
510 511
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
512 513 514 515
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
516 517
		MISSING_CASE(pipe);
		return;
518 519
	}

520 521 522 523
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
524 525
}

526 527
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
528
{
529
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
530 531 532
	int size;

	size = dsparb & 0x7f;
533
	if (i9xx_plane == PLANE_B)
534 535
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

536 537
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
538 539 540 541

	return size;
}

542 543
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
544
{
545
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
546 547 548
	int size;

	size = dsparb & 0x1ff;
549
	if (i9xx_plane == PLANE_B)
550 551 552
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

553 554
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
555 556 557 558

	return size;
}

559 560
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
561
{
562
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
563 564 565 566 567
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

568 569
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
570 571 572 573 574

	return size;
}

/* Pineview has different values for various configs */
575
static const struct intel_watermark_params pnv_display_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581
};
582 583

static const struct intel_watermark_params pnv_display_hplloff_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589
};
590 591

static const struct intel_watermark_params pnv_cursor_wm = {
592 593 594 595 596
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
597
};
598 599

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
600 601 602 603 604
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
605
};
606

607
static const struct intel_watermark_params i965_cursor_wm_info = {
608 609 610 611 612
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
613
};
614

615
static const struct intel_watermark_params i945_wm_info = {
616 617 618 619 620
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
621
};
622

623
static const struct intel_watermark_params i915_wm_info = {
624 625 626 627 628
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
629
};
630

631
static const struct intel_watermark_params i830_a_wm_info = {
632 633 634 635 636
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
637
};
638

639 640 641 642 643 644 645
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
646

647
static const struct intel_watermark_params i845_wm_info = {
648 649 650 651 652
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
653 654
};

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
692
	u64 ret;
693

694
	ret = mul_u32_u32(pixel_rate, cpp * latency);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

751 752
/**
 * intel_calculate_wm - calculate watermark level
753
 * @pixel_rate: pixel clock
754
 * @wm: chip FIFO params
755
 * @fifo_size: size of the FIFO buffer
756
 * @cpp: bytes per pixel
757 758 759 760 761 762 763 764 765 766 767 768 769
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
770 771 772 773
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
774
{
775
	int entries, wm_size;
776 777 778 779 780 781 782

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
783 784 785 786 787
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
788

789 790
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
791 792

	/* Don't promote wm_size to unsigned... */
793
	if (wm_size > wm->max_wm)
794 795 796
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
797 798 799 800 801 802 803 804 805 806 807

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

808 809 810
	return wm_size;
}

811 812 813 814 815 816 817 818 819 820
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

821 822 823 824 825
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

826 827 828
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
829
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
830 831

	/* FIXME check the 'enable' instead */
832
	if (!crtc_state->hw.active)
833 834 835 836 837 838 839 840 841 842 843
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
844
		return plane_state->hw.fb != NULL;
845
	else
846
		return plane_state->uapi.visible;
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

868
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
869
{
870
	struct intel_crtc *crtc, *enabled = NULL;
871

872
	for_each_intel_crtc(&dev_priv->drm, crtc) {
873
		if (intel_crtc_active(crtc)) {
874 875 876 877 878 879 880 881 882
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

883
static void pnv_update_wm(struct intel_crtc *unused_crtc)
884
{
885
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
886
	struct intel_crtc *crtc;
887 888
	const struct cxsr_latency *latency;
	u32 reg;
889
	unsigned int wm;
890

891
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
892 893 894
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
895
	if (!latency) {
896 897
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
898
		intel_set_memory_cxsr(dev_priv, false);
899 900 901
		return;
	}

902
	crtc = single_enabled_crtc(dev_priv);
903
	if (crtc) {
904 905
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
906 907
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
908
		int cpp = fb->format->cpp[0];
909
		int clock = pipe_mode->crtc_clock;
910 911

		/* Display SR */
912 913
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
914
					cpp, latency->display_sr);
915
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
916
		reg &= ~DSPFW_SR_MASK;
917
		reg |= FW_WM(wm, SR);
918
		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
919
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
920 921

		/* cursor SR */
922 923
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
924
					4, latency->cursor_sr);
925
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
926
		reg &= ~DSPFW_CURSOR_SR_MASK;
927
		reg |= FW_WM(wm, CURSOR_SR);
928
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
929 930

		/* Display HPLL off SR */
931 932
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
933
					cpp, latency->display_hpll_disable);
934
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
935
		reg &= ~DSPFW_HPLL_SR_MASK;
936
		reg |= FW_WM(wm, HPLL_SR);
937
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
938 939

		/* cursor HPLL off SR */
940 941
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
942
					4, latency->cursor_hpll_disable);
943
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
944
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
945
		reg |= FW_WM(wm, HPLL_CURSOR);
946
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
947
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
948

949
		intel_set_memory_cxsr(dev_priv, true);
950
	} else {
951
		intel_set_memory_cxsr(dev_priv, false);
952 953 954
	}
}

955 956 957 958 959 960 961 962 963 964
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
965
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
966 967 968 969 970 971
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

972 973
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
974
{
975 976 977 978 979
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

980
	intel_uncore_write(&dev_priv->uncore, DSPFW1,
981 982 983 984
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
985
	intel_uncore_write(&dev_priv->uncore, DSPFW2,
986 987 988 989 990 991
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
992
	intel_uncore_write(&dev_priv->uncore, DSPFW3,
993 994 995 996
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
997

998
	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
999 1000
}

1001 1002 1003
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

1004
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1005 1006
				const struct vlv_wm_values *wm)
{
1007 1008 1009
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1010 1011
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1012
		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1013 1014 1015 1016 1017
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1018

1019 1020 1021 1022 1023
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
1024 1025 1026 1027 1028
	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1029

1030
	intel_uncore_write(&dev_priv->uncore, DSPFW1,
1031
		   FW_WM(wm->sr.plane, SR) |
1032 1033 1034
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1035
	intel_uncore_write(&dev_priv->uncore, DSPFW2,
1036 1037 1038
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1039
	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1040
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1041 1042

	if (IS_CHERRYVIEW(dev_priv)) {
1043
		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1044 1045
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1046
		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1047 1048
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1049
		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1050 1051
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1052
		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1053
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1054 1055 1056 1057 1058 1059 1060 1061 1062
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1063
	} else {
1064
		intel_uncore_write(&dev_priv->uncore, DSPFW7,
1065 1066
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1067
		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1068
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1069 1070 1071 1072 1073 1074
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1075 1076
	}

1077
	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1078 1079
}

1080 1081
#undef FW_WM_VLV

1082 1083 1084 1085 1086
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1087
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1088

1089
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1134 1135 1136
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1137
{
1138
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1139
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1140 1141
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1142 1143
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1144 1145 1146 1147 1148 1149 1150

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1151
	cpp = plane_state->hw.fb->format->cpp[0];
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1166
		cpp = max(cpp, 4u);
1167

1168 1169
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1170

1171
	width = drm_rect_width(&plane_state->uapi.dst);
1172 1173 1174 1175 1176 1177 1178

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1179
		unsigned int small, large;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1192
	return min_t(unsigned int, wm, USHRT_MAX);
1193 1194 1195 1196 1197
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1198
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1214
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1230 1231
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1232
			      u32 pri_val);
1233 1234 1235 1236

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1237
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1238
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1291 1292 1293 1294 1295 1296
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1297 1298

		if (plane_id == PLANE_PRIMARY)
1299 1300 1301 1302
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1319
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
			       int level)
{
	if (level < G4X_WM_LEVEL_SR)
		return false;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		return false;

	if (level >= G4X_WM_LEVEL_HPLL &&
	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		return false;

	return true;
}

1372 1373
static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1374
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1375
	struct intel_atomic_state *state =
1376
		to_intel_atomic_state(crtc_state->uapi.state);
1377
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1378 1379
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1380
	const struct g4x_pipe_wm *raw;
1381 1382
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1383 1384 1385 1386 1387
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1388 1389 1390
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1391 1392
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1393 1394
			continue;

1395
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
1444 1445 1446
	 * watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely. 'level-1' is the highest valid
	 * level here.
1447
	 */
1448
	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1449 1450 1451 1452

	return 0;
}

1453
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1454
{
1455
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1456
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1457 1458 1459
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1460
		to_intel_atomic_state(new_crtc_state->uapi.state);
1461 1462 1463
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1464 1465
	enum plane_id plane_id;

1466
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1467 1468 1469 1470 1471 1472 1473
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1474
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1475
		!new_crtc_state->disable_cxsr;
1476
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1477
		!new_crtc_state->disable_cxsr;
1478 1479 1480 1481 1482 1483 1484
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

1485 1486
		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		    intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		    intermediate->hpll_en);

	drm_WARN_ON(&dev_priv->drm,
		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		    intermediate->fbc_en && intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		    intermediate->fbc_en && intermediate->hpll_en);
1522

1523
out:
1524 1525 1526 1527 1528
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1529
		new_crtc_state->wm.need_postvbl_update = true;
1530 1531 1532 1533 1534 1535 1536 1537

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1538
	int num_active_pipes = 0;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1557
		num_active_pipes++;
1558 1559
	}

1560
	if (num_active_pipes != 1) {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1600
				   struct intel_crtc *crtc)
1601
{
1602 1603 1604
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1605 1606 1607 1608 1609 1610 1611 1612

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1613
				    struct intel_crtc *crtc)
1614
{
1615 1616 1617
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1618 1619 1620 1621 1622

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1623
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1624 1625 1626 1627
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1628 1629
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1630 1631
				   unsigned int htotal,
				   unsigned int width,
1632
				   unsigned int cpp,
1633 1634 1635 1636
				   unsigned int latency)
{
	unsigned int ret;

1637 1638
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1639 1640 1641 1642 1643
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1644
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1645 1646 1647 1648
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1649 1650
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1651 1652 1653
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1654 1655

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1656 1657 1658
	}
}

1659 1660 1661
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1662
{
1663
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1664
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1665 1666
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1667
	unsigned int clock, htotal, cpp, width, wm;
1668 1669 1670 1671

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1672
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1673 1674
		return 0;

1675
	cpp = plane_state->hw.fb->format->cpp[0];
1676 1677
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1678
	width = crtc_state->pipe_src_w;
1679

1680
	if (plane->id == PLANE_CURSOR) {
1681 1682 1683 1684 1685 1686 1687 1688
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1689
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1690 1691 1692
				    dev_priv->wm.pri_latency[level] * 10);
	}

1693
	return min_t(unsigned int, wm, USHRT_MAX);
1694 1695
}

1696 1697 1698 1699 1700 1701
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1702
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1703
{
1704
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1705
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1706
	const struct g4x_pipe_wm *raw =
1707
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1708
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1709
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1710
	int num_active_planes = hweight8(active_planes);
1711
	const int fifo_size = 511;
1712
	int fifo_extra, fifo_left = fifo_size;
1713
	int sprite0_fifo_extra = 0;
1714 1715
	unsigned int total_rate;
	enum plane_id plane_id;
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1728 1729
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1730 1731
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1732

1733 1734
	if (total_rate > fifo_size)
		return -EINVAL;
1735

1736 1737
	if (total_rate == 0)
		total_rate = 1;
1738

1739
	for_each_plane_id_on_crtc(crtc, plane_id) {
1740 1741
		unsigned int rate;

1742 1743
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1744 1745 1746
			continue;
		}

1747 1748 1749
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1750 1751
	}

1752 1753 1754
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1755 1756 1757
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1758 1759

	/* spread the remainder evenly */
1760
	for_each_plane_id_on_crtc(crtc, plane_id) {
1761 1762 1763 1764 1765
		int plane_extra;

		if (fifo_left == 0)
			break;

1766
		if ((active_planes & BIT(plane_id)) == 0)
1767 1768 1769
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1770
		fifo_state->plane[plane_id] += plane_extra;
1771 1772 1773
		fifo_left -= plane_extra;
	}

1774
	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1775 1776 1777

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
1778
		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1779 1780 1781 1782
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1783 1784
}

1785 1786 1787 1788 1789 1790
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1791
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1802 1803 1804 1805 1806 1807 1808 1809
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1810 1811 1812 1813
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1814
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1815
				 int level, enum plane_id plane_id, u16 value)
1816
{
1817
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1818
	int num_levels = intel_wm_num_levels(dev_priv);
1819
	bool dirty = false;
1820

1821
	for (; level < num_levels; level++) {
1822
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1823

1824
		dirty |= raw->plane[plane_id] != value;
1825
		raw->plane[plane_id] = value;
1826
	}
1827 1828

	return dirty;
1829 1830
}

1831 1832
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1833
{
1834
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1835
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1836
	enum plane_id plane_id = plane->id;
1837
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1838
	int level;
1839
	bool dirty = false;
1840

1841
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1842 1843
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1844
	}
1845

1846
	for (level = 0; level < num_levels; level++) {
1847
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1848 1849
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1850

1851 1852
		if (wm > max_wm)
			break;
1853

1854
		dirty |= raw->plane[plane_id] != wm;
1855 1856
		raw->plane[plane_id] = wm;
	}
1857

1858
	/* mark all higher levels as invalid */
1859
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1860

1861 1862
out:
	if (dirty)
1863 1864 1865 1866 1867 1868
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1869 1870

	return dirty;
1871
}
1872

1873 1874
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1875
{
1876
	const struct g4x_pipe_wm *raw =
1877 1878 1879
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1880

1881 1882
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1883

1884
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1885
{
1886 1887 1888 1889
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1890 1891 1892 1893
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1894
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1895 1896
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1897
		to_intel_atomic_state(crtc_state->uapi.state);
1898 1899 1900
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1901 1902
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1903
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1904 1905
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1906 1907 1908
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1909
	unsigned int dirty = 0;
1910

1911 1912 1913
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1914 1915
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1916
			continue;
1917

1918
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1937
			intel_atomic_get_old_crtc_state(state, crtc);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1949
	}
1950

1951
	/* initially allow all levels */
1952
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1953 1954 1955 1956 1957
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1958
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1959

1960
	for (level = 0; level < wm_state->num_levels; level++) {
1961
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1962
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1963

1964
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1965
			break;
1966

1967 1968 1969 1970 1971 1972 1973 1974
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1975
						 raw->plane[PLANE_SPRITE0],
1976 1977
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1978

1979 1980 1981
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1982 1983
	}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1994 1995
}

1996 1997 1998
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1999
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2000
				   struct intel_crtc *crtc)
2001
{
2002
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2003
	struct intel_uncore *uncore = &dev_priv->uncore;
2004 2005
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2006 2007
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
2008
	int sprite0_start, sprite1_start, fifo_size;
2009
	u32 dsparb, dsparb2, dsparb3;
2010

2011 2012 2013
	if (!crtc_state->fifo_changed)
		return;

2014 2015 2016
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2017

2018 2019
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2020

2021 2022
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2023 2024 2025 2026 2027 2028 2029 2030 2031
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2032
	spin_lock(&uncore->lock);
2033

2034 2035
	switch (crtc->pipe) {
	case PIPE_A:
2036 2037
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2049 2050
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2051 2052
		break;
	case PIPE_B:
2053 2054
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2066 2067
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2068 2069
		break;
	case PIPE_C:
2070 2071
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2083 2084
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2085 2086 2087 2088
		break;
	default:
		break;
	}
2089

2090
	intel_uncore_posting_read_fw(uncore, DSPARB);
2091

2092
	spin_unlock(&uncore->lock);
2093 2094 2095 2096
}

#undef VLV_FIFO

2097
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2098
{
2099
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2100 2101 2102
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2103
		to_intel_atomic_state(new_crtc_state->uapi.state);
2104 2105 2106
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2107 2108
	int level;

2109
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2110 2111 2112 2113 2114 2115
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2116
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2117
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2118
		!new_crtc_state->disable_cxsr;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2137
out:
2138 2139 2140 2141
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2142
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2143
		new_crtc_state->wm.need_postvbl_update = true;
2144 2145 2146 2147

	return 0;
}

2148
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2149 2150 2151
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2152
	int num_active_pipes = 0;
2153

2154
	wm->level = dev_priv->wm.max_level;
2155 2156
	wm->cxsr = true;

2157
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2158
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2159 2160 2161 2162 2163 2164 2165

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2166
		num_active_pipes++;
2167 2168 2169
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2170
	if (num_active_pipes != 1)
2171 2172
		wm->cxsr = false;

2173
	if (num_active_pipes > 1)
2174 2175
		wm->level = VLV_WM_LEVEL_PM2;

2176
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2177
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2178 2179 2180
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2181
		if (crtc->active && wm->cxsr)
2182 2183
			wm->sr = wm_state->sr[wm->level];

2184 2185 2186 2187
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2188 2189 2190
	}
}

2191
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2192
{
2193 2194
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2195

2196
	vlv_merge_wm(dev_priv, &new_wm);
2197

2198
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2199 2200
		return;

2201
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2202 2203
		chv_set_memory_dvfs(dev_priv, false);

2204
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2205 2206
		chv_set_memory_pm5(dev_priv, false);

2207
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2208
		_intel_set_memory_cxsr(dev_priv, false);
2209

2210
	vlv_write_wm_values(dev_priv, &new_wm);
2211

2212
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2213
		_intel_set_memory_cxsr(dev_priv, true);
2214

2215
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2216 2217
		chv_set_memory_pm5(dev_priv, true);

2218
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2219 2220
		chv_set_memory_dvfs(dev_priv, true);

2221
	*old_wm = new_wm;
2222 2223
}

2224
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2225
				   struct intel_crtc *crtc)
2226
{
2227 2228 2229
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2230 2231

	mutex_lock(&dev_priv->wm.wm_mutex);
2232 2233 2234 2235 2236 2237
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2238
				    struct intel_crtc *crtc)
2239
{
2240 2241 2242
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2243 2244 2245 2246 2247

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2248
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2249 2250 2251 2252
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2253
static void i965_update_wm(struct intel_crtc *unused_crtc)
2254
{
2255
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2256
	struct intel_crtc *crtc;
2257 2258
	int srwm = 1;
	int cursor_sr = 16;
2259
	bool cxsr_enabled;
2260 2261

	/* Calc sr entries for one plane configs */
2262
	crtc = single_enabled_crtc(dev_priv);
2263 2264 2265
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2266 2267
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2268 2269
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2270 2271
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2272
		int hdisplay = crtc->config->pipe_src_w;
2273
		int cpp = fb->format->cpp[0];
2274 2275
		int entries;

2276 2277
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2278 2279 2280 2281 2282
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2283 2284 2285
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2286

2287 2288 2289
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2290
		entries = DIV_ROUND_UP(entries,
2291 2292
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2293

2294
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2295 2296 2297
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2298 2299 2300
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2301

2302
		cxsr_enabled = true;
2303
	} else {
2304
		cxsr_enabled = false;
2305
		/* Turn off self refresh if both pipes are enabled */
2306
		intel_set_memory_cxsr(dev_priv, false);
2307 2308
	}

2309 2310 2311
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2312 2313

	/* 965 has limitations... */
2314
	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2315 2316 2317
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
2318
	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2319
		   FW_WM(8, PLANEC_OLD));
2320
	/* update cursor SR watermark */
2321
	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2322 2323 2324

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2325 2326
}

2327 2328
#undef FW_WM

2329
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2330
{
2331
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2332
	const struct intel_watermark_params *wm_info;
2333 2334
	u32 fwater_lo;
	u32 fwater_hi;
2335 2336 2337
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2338
	struct intel_crtc *crtc, *enabled = NULL;
2339

2340
	if (IS_I945GM(dev_priv))
2341
		wm_info = &i945_wm_info;
2342
	else if (!IS_GEN(dev_priv, 2))
2343 2344
		wm_info = &i915_wm_info;
	else
2345
		wm_info = &i830_a_wm_info;
2346

2347 2348
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2349
	if (intel_crtc_active(crtc)) {
2350 2351
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2352 2353 2354 2355
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2356
		if (IS_GEN(dev_priv, 2))
2357
			cpp = 4;
2358
		else
2359
			cpp = fb->format->cpp[0];
2360

2361
		planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2362
					       wm_info, fifo_size, cpp,
2363
					       pessimal_latency_ns);
2364
		enabled = crtc;
2365
	} else {
2366
		planea_wm = fifo_size - wm_info->guard_size;
2367 2368 2369 2370
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2371
	if (IS_GEN(dev_priv, 2))
2372
		wm_info = &i830_bc_wm_info;
2373

2374 2375
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2376
	if (intel_crtc_active(crtc)) {
2377 2378
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2379 2380 2381 2382
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2383
		if (IS_GEN(dev_priv, 2))
2384
			cpp = 4;
2385
		else
2386
			cpp = fb->format->cpp[0];
2387

2388
		planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2389
					       wm_info, fifo_size, cpp,
2390
					       pessimal_latency_ns);
2391 2392 2393 2394
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2395
	} else {
2396
		planeb_wm = fifo_size - wm_info->guard_size;
2397 2398 2399
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2400

2401 2402
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2403

2404
	if (IS_I915GM(dev_priv) && enabled) {
2405
		struct drm_i915_gem_object *obj;
2406

2407
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2408 2409

		/* self-refresh seems busted with untiled */
2410
		if (!i915_gem_object_is_tiled(obj))
2411 2412 2413
			enabled = NULL;
	}

2414 2415 2416 2417 2418 2419
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2420
	intel_set_memory_cxsr(dev_priv, false);
2421 2422

	/* Calc sr entries for one plane configs */
2423
	if (HAS_FW_BLC(dev_priv) && enabled) {
2424 2425
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2426 2427
		const struct drm_display_mode *pipe_mode =
			&enabled->config->hw.pipe_mode;
2428 2429
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2430 2431
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2432 2433
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2434 2435
		int entries;

2436
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2437
			cpp = 4;
2438
		else
2439
			cpp = fb->format->cpp[0];
2440

2441 2442
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2443
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2444 2445
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2446 2447 2448 2449
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2450
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2451
			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2452
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2453
		else
2454
			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2455 2456
	}

2457 2458 2459
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2460 2461 2462 2463 2464 2465 2466 2467

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

2468 2469
	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2470

2471 2472
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2473 2474
}

2475
static void i845_update_wm(struct intel_crtc *unused_crtc)
2476
{
2477
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2478
	struct intel_crtc *crtc;
2479
	const struct drm_display_mode *pipe_mode;
2480
	u32 fwater_lo;
2481 2482
	int planea_wm;

2483
	crtc = single_enabled_crtc(dev_priv);
2484 2485 2486
	if (crtc == NULL)
		return;

2487 2488
	pipe_mode = &crtc->config->hw.pipe_mode;
	planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2489
				       &i845_wm_info,
2490
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2491
				       4, pessimal_latency_ns);
2492
	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2493 2494
	fwater_lo |= (3<<8) | planea_wm;

2495 2496
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2497

2498
	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2499 2500
}

2501
/* latency must be in 0.1us units. */
2502 2503 2504
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2505
{
2506
	unsigned int ret;
2507

2508 2509
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2510 2511 2512 2513

	return ret;
}

2514
/* latency must be in 0.1us units. */
2515 2516 2517 2518 2519
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2520
{
2521
	unsigned int ret;
2522

2523 2524
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2525
	ret = DIV_ROUND_UP(ret, 64) + 2;
2526

2527 2528 2529
	return ret;
}

2530
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2531
{
2532 2533 2534 2535 2536 2537
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2538
	if (WARN_ON(!cpp))
2539 2540 2541 2542
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2543
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2544 2545
}

2546
struct ilk_wm_maximums {
2547 2548 2549 2550
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2551 2552
};

2553 2554 2555 2556
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2557 2558
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2559
			      u32 mem_value, bool is_lp)
2560
{
2561
	u32 method1, method2;
2562
	int cpp;
2563

2564 2565 2566
	if (mem_value == 0)
		return U32_MAX;

2567
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2568 2569
		return 0;

2570
	cpp = plane_state->hw.fb->format->cpp[0];
2571

2572
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2573 2574 2575 2576

	if (!is_lp)
		return method1;

2577
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2578
				 crtc_state->hw.pipe_mode.crtc_htotal,
2579
				 drm_rect_width(&plane_state->uapi.dst),
2580
				 cpp, mem_value);
2581 2582

	return min(method1, method2);
2583 2584
}

2585 2586 2587 2588
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2589 2590
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2591
			      u32 mem_value)
2592
{
2593
	u32 method1, method2;
2594
	int cpp;
2595

2596 2597 2598
	if (mem_value == 0)
		return U32_MAX;

2599
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2600 2601
		return 0;

2602
	cpp = plane_state->hw.fb->format->cpp[0];
2603

2604 2605
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2606
				 crtc_state->hw.pipe_mode.crtc_htotal,
2607
				 drm_rect_width(&plane_state->uapi.dst),
2608
				 cpp, mem_value);
2609 2610 2611
	return min(method1, method2);
}

2612 2613 2614 2615
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2616 2617
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2618
			      u32 mem_value)
2619
{
2620 2621
	int cpp;

2622 2623 2624
	if (mem_value == 0)
		return U32_MAX;

2625
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2626 2627
		return 0;

2628
	cpp = plane_state->hw.fb->format->cpp[0];
2629

2630
	return ilk_wm_method2(crtc_state->pixel_rate,
2631
			      crtc_state->hw.pipe_mode.crtc_htotal,
2632
			      drm_rect_width(&plane_state->uapi.dst),
2633
			      cpp, mem_value);
2634 2635
}

2636
/* Only for WM_LP. */
2637 2638
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2639
			      u32 pri_val)
2640
{
2641
	int cpp;
2642

2643
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2644 2645
		return 0;

2646
	cpp = plane_state->hw.fb->format->cpp[0];
2647

2648 2649
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2650 2651
}

2652 2653
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2654
{
2655
	if (INTEL_GEN(dev_priv) >= 8)
2656
		return 3072;
2657
	else if (INTEL_GEN(dev_priv) >= 7)
2658 2659 2660 2661 2662
		return 768;
	else
		return 512;
}

2663 2664 2665
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2666
{
2667
	if (INTEL_GEN(dev_priv) >= 8)
2668 2669
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2670
	else if (INTEL_GEN(dev_priv) >= 7)
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2681 2682
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2683
{
2684
	if (INTEL_GEN(dev_priv) >= 7)
2685 2686 2687 2688 2689
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2690
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2691
{
2692
	if (INTEL_GEN(dev_priv) >= 8)
2693 2694 2695 2696 2697
		return 31;
	else
		return 15;
}

2698
/* Calculate the maximum primary/sprite plane watermark */
2699
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2700
				     int level,
2701
				     const struct intel_wm_config *config,
2702 2703 2704
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2705
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2706 2707

	/* if sprites aren't enabled, sprites get nothing */
2708
	if (is_sprite && !config->sprites_enabled)
2709 2710 2711
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2712
	if (level == 0 || config->num_pipes_active > 1) {
2713
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2714 2715 2716 2717 2718 2719

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2720
		if (INTEL_GEN(dev_priv) <= 6)
2721 2722 2723
			fifo_size /= 2;
	}

2724
	if (config->sprites_enabled) {
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2736
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2737 2738 2739
}

/* Calculate the maximum cursor plane watermark */
2740
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2741 2742
				      int level,
				      const struct intel_wm_config *config)
2743 2744
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2745
	if (level > 0 && config->num_pipes_active > 1)
2746 2747 2748
		return 64;

	/* otherwise just report max that registers can hold */
2749
	return ilk_cursor_wm_reg_max(dev_priv, level);
2750 2751
}

2752
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2753 2754 2755
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2756
				    struct ilk_wm_maximums *max)
2757
{
2758 2759 2760 2761
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2762 2763
}

2764
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2765 2766 2767
					int level,
					struct ilk_wm_maximums *max)
{
2768 2769 2770 2771
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2772 2773
}

2774
static bool ilk_validate_wm_level(int level,
2775
				  const struct ilk_wm_maximums *max,
2776
				  struct intel_wm_level *result)
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2806 2807 2808
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2809 2810 2811 2812 2813 2814
		result->enable = true;
	}

	return ret;
}

2815
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2816
				 const struct intel_crtc *crtc,
2817
				 int level,
2818
				 struct intel_crtc_state *crtc_state,
2819 2820 2821
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2822
				 struct intel_wm_level *result)
2823
{
2824 2825 2826
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2827 2828 2829 2830 2831 2832 2833 2834

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2835
	if (pristate) {
2836
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2837
						     pri_latency, level);
2838
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2839 2840 2841
	}

	if (sprstate)
2842
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2843 2844

	if (curstate)
2845
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2846

2847 2848 2849
	result->enable = true;
}

2850
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2851
				  u16 wm[8])
2852
{
2853 2854
	struct intel_uncore *uncore = &dev_priv->uncore;

2855
	if (INTEL_GEN(dev_priv) >= 9) {
2856
		u32 val;
2857
		int ret, i;
2858
		int level, max_level = ilk_wm_max_level(dev_priv);
2859 2860 2861 2862 2863

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2864
					     &val, NULL);
2865 2866

		if (ret) {
2867 2868
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2884
					     &val, NULL);
2885
		if (ret) {
2886 2887
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2912
		/*
2913
		 * WaWmMemoryReadLatency:skl+,glk
2914
		 *
2915
		 * punit doesn't take into account the read latency so we need
2916 2917
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2918
		 */
2919 2920 2921 2922 2923
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2924
				wm[level] += 2;
2925
			}
2926 2927
		}

2928 2929 2930 2931 2932 2933
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2934
		if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2935 2936
			wm[0] += 1;

2937
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2938
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2939 2940 2941 2942

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2943 2944 2945 2946
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2947
	} else if (INTEL_GEN(dev_priv) >= 6) {
2948
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2949 2950 2951 2952 2953

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2954
	} else if (INTEL_GEN(dev_priv) >= 5) {
2955
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2956 2957 2958 2959 2960

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2961 2962
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2963 2964 2965
	}
}

2966
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2967
				       u16 wm[5])
2968 2969
{
	/* ILK sprite LP0 latency is 1300 ns */
2970
	if (IS_GEN(dev_priv, 5))
2971 2972 2973
		wm[0] = 13;
}

2974
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2975
				       u16 wm[5])
2976 2977
{
	/* ILK cursor LP0 latency is 1300 ns */
2978
	if (IS_GEN(dev_priv, 5))
2979 2980 2981
		wm[0] = 13;
}

2982
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2983 2984
{
	/* how many WM levels are we expecting */
2985
	if (INTEL_GEN(dev_priv) >= 9)
2986
		return 7;
2987
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2988
		return 4;
2989
	else if (INTEL_GEN(dev_priv) >= 6)
2990
		return 3;
2991
	else
2992 2993
		return 2;
}
2994

2995
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2996
				   const char *name,
2997
				   const u16 wm[8])
2998
{
2999
	int level, max_level = ilk_wm_max_level(dev_priv);
3000 3001 3002 3003 3004

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
3005 3006 3007
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
3008 3009 3010
			continue;
		}

3011 3012 3013 3014
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
3015
		if (INTEL_GEN(dev_priv) >= 9)
3016 3017
			latency *= 10;
		else if (level > 0)
3018 3019
			latency *= 5;

3020 3021 3022
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3023 3024 3025
	}
}

3026
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3027
				    u16 wm[5], u16 min)
3028
{
3029
	int level, max_level = ilk_wm_max_level(dev_priv);
3030 3031 3032 3033 3034 3035

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3036
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3037 3038 3039 3040

	return true;
}

3041
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3056 3057
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3058 3059 3060
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3061 3062
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3085 3086
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3087 3088 3089 3090 3091
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3092
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3093
{
3094
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3095 3096 3097 3098 3099 3100

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3101
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3102
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3103

3104 3105 3106
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3107

3108
	if (IS_GEN(dev_priv, 6)) {
3109
		snb_wm_latency_quirk(dev_priv);
3110 3111
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3112 3113
}

3114
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3115
{
3116
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3117
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3118 3119
}

3120
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3132
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3133 3134 3135

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3136
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3137 3138 3139 3140 3141 3142
		return false;
	}

	return true;
}

3143
/* Compute new watermarks for the pipe */
3144
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3145
{
3146
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3147
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3148
	struct intel_pipe_wm *pipe_wm;
3149 3150
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3151 3152 3153
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3154
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3155
	struct ilk_wm_maximums max;
3156

3157
	pipe_wm = &crtc_state->wm.ilk.optimal;
3158

3159 3160 3161 3162 3163 3164 3165
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3166 3167
	}

3168
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3169
	if (sprstate) {
3170 3171 3172 3173
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3174 3175
	}

3176 3177
	usable_level = max_level;

3178
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3179
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3180
		usable_level = 1;
3181 3182

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3183
	if (pipe_wm->sprites_scaled)
3184
		usable_level = 0;
3185

3186
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3187
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3188
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3189

3190
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3191
		return -EINVAL;
3192

3193
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3194

3195 3196
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3197

3198
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3199
				     pristate, sprstate, curstate, wm);
3200 3201 3202 3203 3204 3205

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3206 3207 3208 3209
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3210 3211
	}

3212
	return 0;
3213 3214
}

3215 3216 3217 3218 3219
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3220
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3221
{
3222
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3223
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3224
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3225
	struct intel_atomic_state *intel_state =
3226
		to_intel_atomic_state(newstate->uapi.state);
3227 3228 3229
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3230
	int level, max_level = ilk_wm_max_level(dev_priv);
3231 3232 3233 3234 3235 3236

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3237
	*a = newstate->wm.ilk.optimal;
3238
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3239
	    intel_state->skip_intermediate_wm)
3240 3241
		return 0;

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3263
	if (!ilk_validate_pipe_wm(dev_priv, a))
3264 3265 3266 3267 3268 3269
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3270 3271
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3272 3273 3274 3275

	return 0;
}

3276 3277 3278
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3279
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3280 3281 3282 3283 3284
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3285 3286
	ret_wm->enable = true;

3287
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3288
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3289 3290 3291 3292
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3293

3294 3295 3296 3297 3298
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3299
		if (!wm->enable)
3300
			ret_wm->enable = false;
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3312
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3313
			 const struct intel_wm_config *config,
3314
			 const struct ilk_wm_maximums *max,
3315 3316
			 struct intel_pipe_wm *merged)
{
3317
	int level, max_level = ilk_wm_max_level(dev_priv);
3318
	int last_enabled_level = max_level;
3319

3320
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3321
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3322
	    config->num_pipes_active > 1)
3323
		last_enabled_level = 0;
3324

3325
	/* ILK: FBC WM must be disabled always */
3326
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3327 3328 3329 3330 3331

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3332
		ilk_merge_wm_level(dev_priv, level, wm);
3333

3334 3335 3336 3337 3338
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3339 3340 3341 3342 3343 3344

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3345 3346
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3347 3348 3349
			wm->fbc_val = 0;
		}
	}
3350 3351 3352 3353 3354 3355 3356

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3357
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3358
	    intel_fbc_is_active(dev_priv)) {
3359 3360 3361 3362 3363 3364
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3365 3366
}

3367 3368 3369 3370 3371 3372
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3373
/* The value we need to program into the WM_LPx latency field */
3374 3375
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3376
{
3377
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3378 3379 3380 3381 3382
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3383
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3384
				   const struct intel_pipe_wm *merged,
3385
				   enum intel_ddb_partitioning partitioning,
3386
				   struct ilk_wm_values *results)
3387
{
3388 3389
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3390

3391
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3392
	results->partitioning = partitioning;
3393

3394
	/* LP1+ register values */
3395
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3396
		const struct intel_wm_level *r;
3397

3398
		level = ilk_wm_lp_to_level(wm_lp, merged);
3399

3400
		r = &merged->wm[level];
3401

3402 3403 3404 3405 3406
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3407
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3408 3409 3410
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3411 3412 3413
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3414
		if (INTEL_GEN(dev_priv) >= 8)
3415 3416 3417 3418 3419 3420
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3421 3422 3423 3424
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3425
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3426
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3427 3428 3429
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3430
	}
3431

3432
	/* LP0 register values */
3433
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3434
		enum pipe pipe = intel_crtc->pipe;
3435 3436
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3437

3438
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3439
			continue;
3440

3441 3442 3443 3444
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3445 3446 3447
	}
}

3448 3449
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3450 3451 3452 3453
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3454
{
3455
	int level, max_level = ilk_wm_max_level(dev_priv);
3456
	int level1 = 0, level2 = 0;
3457

3458 3459 3460 3461 3462
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3463 3464
	}

3465 3466
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3467 3468 3469
			return r2;
		else
			return r1;
3470
	} else if (level1 > level2) {
3471 3472 3473 3474 3475 3476
		return r1;
	} else {
		return r2;
	}
}

3477 3478 3479 3480 3481 3482 3483
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3484
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3485 3486
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3487 3488 3489 3490 3491
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3492
	for_each_pipe(dev_priv, pipe) {
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3530 3531
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3532
{
3533
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3534
	bool changed = false;
3535

3536 3537
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3538
		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3539
		changed = true;
3540 3541 3542
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3543
		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3544
		changed = true;
3545 3546 3547
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3548
		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3549
		changed = true;
3550
	}
3551

3552 3553 3554 3555
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3556

3557 3558 3559 3560 3561 3562 3563
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3564 3565
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3566
{
3567
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3568
	unsigned int dirty;
3569
	u32 val;
3570

3571
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3572 3573 3574 3575 3576
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3577
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3578
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3579
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3580
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3581
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3582
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3583

3584
	if (dirty & WM_DIRTY_DDB) {
3585
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3586
			val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3587 3588 3589 3590
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
3591
			intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3592
		} else {
3593
			val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3594 3595 3596 3597
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
3598
			intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3599
		}
3600 3601
	}

3602
	if (dirty & WM_DIRTY_FBC) {
3603
		val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3604 3605 3606 3607
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
3608
		intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3609 3610
	}

3611 3612
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3613
		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3614

3615
	if (INTEL_GEN(dev_priv) >= 7) {
3616
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3617
			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3618
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3619
			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3620
	}
3621

3622
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3623
		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3624
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3625
		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3626
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3627
		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3628 3629

	dev_priv->wm.hw = *results;
3630 3631
}

3632
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3633 3634 3635 3636
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3637
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3638
{
3639 3640 3641
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3642

3643
	for (i = 0; i < max_slices; i++) {
3644
		if (intel_uncore_read(&dev_priv->uncore, DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3645 3646
			enabled_slices_mask |= BIT(i);
	}
3647

3648
	return enabled_slices_mask;
3649 3650
}

3651 3652 3653 3654
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3655
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3656
{
3657
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3658 3659
}

3660 3661 3662
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3663 3664
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3665 3666
}

3667 3668 3669
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3682
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3683
	} else if (IS_GEN(dev_priv, 11)) {
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
3711
static int
3712
intel_enable_sagv(struct drm_i915_private *dev_priv)
3713 3714 3715
{
	int ret;

3716 3717 3718 3719
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3720 3721
		return 0;

3722
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3723 3724 3725
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3726
	/* We don't need to wait for SAGV when enabling */
3727 3728 3729

	/*
	 * Some skl systems, pre-release machines in particular,
3730
	 * don't actually have SAGV.
3731
	 */
3732
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3733
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3734
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3735 3736
		return 0;
	} else if (ret < 0) {
3737
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3738 3739 3740
		return ret;
	}

3741
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3742 3743 3744
	return 0;
}

3745
static int
3746
intel_disable_sagv(struct drm_i915_private *dev_priv)
3747
{
3748
	int ret;
3749

3750 3751 3752 3753
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3754 3755
		return 0;

3756
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3757
	/* bspec says to keep retrying for at least 1 ms */
3758 3759 3760 3761
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3762 3763
	/*
	 * Some skl systems, pre-release machines in particular,
3764
	 * don't actually have SAGV.
3765
	 */
3766
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3767
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3768
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3769
		return 0;
3770
	} else if (ret < 0) {
3771
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3772
		return ret;
3773 3774
	}

3775
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3776 3777 3778
	return 0;
}

3779 3780 3781
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3782
	const struct intel_bw_state *new_bw_state;
3783 3784
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3785

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;

	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3800
	if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3801
		intel_disable_sagv(dev_priv);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to mask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;

	/*
	 * If new mask is zero - means there is nothing to mask,
	 * we can only unmask, which should be done in unmask.
	 */
	if (!new_mask)
		return;

	/*
	 * Restrict required qgv points before updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3828 3829 3830 3831 3832
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3833
	const struct intel_bw_state *new_bw_state;
3834 3835
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845

	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;
3846

3847 3848 3849 3850
	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3851
	if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3852
		intel_enable_sagv(dev_priv);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to unmask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = new_bw_state->qgv_points_mask;

	/*
	 * Allow required qgv points after updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3872 3873
}

3874
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3875
{
3876
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3877
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3878
	enum plane_id plane_id;
3879

3880 3881 3882
	if (!intel_has_sagv(dev_priv))
		return false;

3883
	if (!crtc_state->hw.active)
3884
		return true;
3885

3886
	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3887 3888
		return false;

3889
	for_each_plane_id_on_crtc(crtc, plane_id) {
3890
		const struct skl_plane_wm *wm =
3891 3892
			&crtc_state->wm.skl.optimal.planes[plane_id];
		int level;
3893

3894
		/* Skip this plane if it's not enabled */
3895
		if (!wm->wm[0].plane_en)
3896 3897 3898
			continue;

		/* Find the highest enabled wm level for this plane */
3899
		for (level = ilk_wm_max_level(dev_priv);
3900
		     !wm->wm[level].plane_en; --level)
3901 3902 3903
		     { }

		/*
3904 3905
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3906
		 * can't enable SAGV.
3907
		 */
3908
		if (!wm->wm[level].can_sagv)
3909 3910 3911 3912 3913 3914
			return false;
	}

	return true;
}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum plane_id plane_id;

	if (!crtc_state->hw.active)
		return true;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		const struct skl_plane_wm *wm =
			&crtc_state->wm.skl.optimal.planes[plane_id];

3927
		if (wm->wm[0].plane_en && !wm->sagv.wm0.plane_en)
3928 3929 3930 3931 3932 3933
			return false;
	}

	return true;
}

3934 3935
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
3936 3937 3938 3939 3940 3941 3942
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	if (INTEL_GEN(dev_priv) >= 12)
		return tgl_crtc_can_enable_sagv(crtc_state);
	else
		return skl_crtc_can_enable_sagv(crtc_state);
3943 3944
}

3945 3946
bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
			   const struct intel_bw_state *bw_state)
3947
{
3948 3949
	if (INTEL_GEN(dev_priv) < 11 &&
	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3950 3951
		return false;

3952 3953 3954 3955 3956
	return bw_state->pipe_sagv_reject == 0;
}

static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
3957
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3958
	int ret;
3959
	struct intel_crtc *crtc;
3960
	struct intel_crtc_state *new_crtc_state;
3961 3962 3963
	struct intel_bw_state *new_bw_state = NULL;
	const struct intel_bw_state *old_bw_state = NULL;
	int i;
3964

3965 3966 3967 3968 3969
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
3970

3971
		old_bw_state = intel_atomic_get_old_bw_state(state);
3972

3973 3974 3975 3976 3977
		if (intel_crtc_can_enable_sagv(new_crtc_state))
			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
		else
			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
	}
3978

3979 3980
	if (!new_bw_state)
		return 0;
3981

3982 3983
	new_bw_state->active_pipes =
		intel_calc_active_pipes(state, old_bw_state->active_pipes);
3984

3985 3986 3987 3988 3989 3990
	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;

		/*
		 * We store use_sagv_wm in the crtc state rather than relying on
		 * that bw state since we have no convenient way to get at the
		 * latter from the plane commit hooks (especially in the legacy
		 * cursor case)
		 */
		pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
				       intel_can_enable_sagv(dev_priv, new_bw_state);
	}

4005 4006
	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

	return 0;
4017 4018
}

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
static int intel_dbuf_size(struct drm_i915_private *dev_priv)
{
	int ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
{
	return intel_dbuf_size(dev_priv) /
		INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
}

4037 4038 4039
static void
skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
			 struct skl_ddb_entry *ddb)
4040
{
4041
	int slice_size = intel_dbuf_slice_size(dev_priv);
4042

4043 4044 4045 4046 4047
	if (!slice_mask) {
		ddb->start = 0;
		ddb->end = 0;
		return;
	}
4048

4049 4050
	ddb->start = (ffs(slice_mask) - 1) * slice_size;
	ddb->end = fls(slice_mask) * slice_size;
4051

4052 4053
	WARN_ON(ddb->start >= ddb->end);
	WARN_ON(ddb->end > intel_dbuf_size(dev_priv));
4054 4055
}

4056 4057 4058 4059
u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
			    const struct skl_ddb_entry *entry)
{
	u32 slice_mask = 0;
4060
	u16 ddb_size = intel_dbuf_size(dev_priv);
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u16 slice_size = ddb_size / num_supported_slices;
	u16 start_slice;
	u16 end_slice;

	if (!skl_ddb_entry_size(entry))
		return 0;

	start_slice = entry->start / slice_size;
	end_slice = (entry->end - 1) / slice_size;

	/*
	 * Per plane DDB entry can in a really worst case be on multiple slices
	 * but single entry is anyway contigious.
	 */
	while (start_slice <= end_slice) {
		slice_mask |= BIT(start_slice);
		start_slice++;
	}

	return slice_mask;
}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
{
	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
	int hdisplay, vdisplay;

	if (!crtc_state->hw.active)
		return 0;

	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);

	return hdisplay;
}

4102 4103 4104 4105 4106 4107 4108 4109 4110
static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
				    enum pipe for_pipe,
				    unsigned int *weight_start,
				    unsigned int *weight_end,
				    unsigned int *weight_total)
{
	struct drm_i915_private *dev_priv =
		to_i915(dbuf_state->base.state->base.dev);
	enum pipe pipe;
4111

4112 4113 4114
	*weight_start = 0;
	*weight_end = 0;
	*weight_total = 0;
4115

4116 4117
	for_each_pipe(dev_priv, pipe) {
		int weight = dbuf_state->weight[pipe];
4118 4119 4120 4121 4122 4123 4124 4125

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
4126
		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4127 4128
			continue;

4129 4130 4131 4132 4133 4134 4135
		*weight_total += weight;
		if (pipe < for_pipe) {
			*weight_start += weight;
			*weight_end += weight;
		} else if (pipe == for_pipe) {
			*weight_end += weight;
		}
4136
	}
4137 4138 4139
}

static int
4140
skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
4141
{
4142 4143
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	unsigned int weight_total, weight_start, weight_end;
4144 4145 4146 4147
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);
	struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
4148
	struct intel_crtc_state *crtc_state;
4149
	struct skl_ddb_entry ddb_slices;
4150
	enum pipe pipe = crtc->pipe;
4151 4152 4153 4154 4155
	u32 ddb_range_size;
	u32 dbuf_slice_mask;
	u32 start, end;
	int ret;

4156 4157 4158 4159
	if (new_dbuf_state->weight[pipe] == 0) {
		new_dbuf_state->ddb[pipe].start = 0;
		new_dbuf_state->ddb[pipe].end = 0;
		goto out;
4160 4161
	}

4162
	dbuf_slice_mask = new_dbuf_state->slices[pipe];
4163 4164 4165 4166

	skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
	ddb_range_size = skl_ddb_entry_size(&ddb_slices);

4167 4168
	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
				&weight_start, &weight_end, &weight_total);
4169 4170 4171

	start = ddb_range_size * weight_start / weight_total;
	end = ddb_range_size * weight_end / weight_total;
4172

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	new_dbuf_state->ddb[pipe].start = ddb_slices.start + start;
	new_dbuf_state->ddb[pipe].end = ddb_slices.start + end;

out:
	if (skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
				&new_dbuf_state->ddb[pipe]))
		return 0;

	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
	if (ret)
		return ret;

	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
	if (IS_ERR(crtc_state))
		return PTR_ERR(crtc_state);

	crtc_state->wm.skl.ddb = new_dbuf_state->ddb[pipe];
4190

4191
	drm_dbg_kms(&dev_priv->drm,
4192
		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4193
		    crtc->base.base.id, crtc->base.name,
4194 4195 4196 4197
		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4198 4199

	return 0;
4200 4201
}

4202 4203 4204 4205 4206
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4207
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4208
				 int level,
4209
				 unsigned int latency,
4210 4211 4212 4213 4214 4215 4216
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4217
{
4218
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4229
	drm_WARN_ON(&dev_priv->drm, ret);
4230 4231

	for (level = 0; level <= max_level; level++) {
4232 4233 4234
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4235 4236 4237 4238 4239
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4240

4241
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4242 4243
}

4244 4245
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4246
{
4247

4248 4249
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4250

4251 4252
	if (entry->end)
		entry->end += 1;
4253 4254
}

4255 4256 4257 4258
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4259 4260
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4261
{
4262 4263
	u32 val, val2;
	u32 fourcc = 0;
4264 4265 4266

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
4267
		val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4268
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4269 4270 4271
		return;
	}

4272
	val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
4273 4274

	/* No DDB allocated for disabled planes */
4275 4276 4277 4278
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4279

4280
	if (INTEL_GEN(dev_priv) >= 11) {
4281
		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4282 4283
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
4284 4285
		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
		val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4286

4287 4288
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4289 4290 4291 4292
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4293 4294 4295
	}
}

4296 4297 4298
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4299
{
4300 4301 4302
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4303
	intel_wakeref_t wakeref;
4304
	enum plane_id plane_id;
4305

4306
	power_domain = POWER_DOMAIN_PIPE(pipe);
4307 4308
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4309
		return;
4310

4311 4312 4313 4314 4315
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4316

4317
	intel_display_power_put(dev_priv, power_domain, wakeref);
4318
}
4319

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4336
static uint_fixed_16_16_t
4337 4338
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4339
{
4340
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4341
	u32 src_w, src_h, dst_w, dst_h;
4342 4343
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4344

4345 4346
	if (drm_WARN_ON(&dev_priv->drm,
			!intel_wm_plane_visible(crtc_state, plane_state)))
4347
		return u32_to_fixed16(0);
4348

4349 4350 4351 4352 4353 4354 4355
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4356 4357 4358 4359
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4360

4361 4362 4363 4364
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4365

4366
	return mul_fixed16(downscale_w, downscale_h);
4367 4368
}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4384
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4385 4386 4387 4388 4389
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4390 4391
			[PIPE_A] = BIT(DBUF_S1),
		},
4392 4393 4394 4395
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4396 4397
			[PIPE_B] = BIT(DBUF_S1),
		},
4398 4399 4400 4401 4402
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4403 4404
			[PIPE_B] = BIT(DBUF_S2),
		},
4405 4406 4407 4408
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4409 4410
			[PIPE_C] = BIT(DBUF_S2),
		},
4411 4412 4413 4414 4415
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4416 4417
			[PIPE_C] = BIT(DBUF_S2),
		},
4418 4419 4420 4421 4422
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4423 4424
			[PIPE_C] = BIT(DBUF_S2),
		},
4425 4426 4427 4428 4429 4430
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4431 4432
			[PIPE_C] = BIT(DBUF_S2),
		},
4433
	},
4434
	{}
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4447
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4448 4449 4450 4451 4452
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4453 4454
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4455 4456 4457 4458
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4459 4460
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4461 4462 4463 4464 4465
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4466 4467
			[PIPE_B] = BIT(DBUF_S1),
		},
4468 4469 4470 4471
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4472 4473
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4474 4475 4476 4477 4478
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4479 4480
			[PIPE_C] = BIT(DBUF_S2),
		},
4481 4482 4483 4484 4485
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4486 4487
			[PIPE_C] = BIT(DBUF_S2),
		},
4488 4489 4490 4491 4492 4493
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4494 4495
			[PIPE_C] = BIT(DBUF_S2),
		},
4496 4497 4498 4499
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4500 4501
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4502 4503 4504 4505 4506
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4507 4508
			[PIPE_D] = BIT(DBUF_S2),
		},
4509 4510 4511 4512 4513
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4514 4515
			[PIPE_D] = BIT(DBUF_S2),
		},
4516 4517 4518 4519 4520 4521
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4522 4523
			[PIPE_D] = BIT(DBUF_S2),
		},
4524 4525 4526 4527 4528
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4529 4530
			[PIPE_D] = BIT(DBUF_S2),
		},
4531 4532 4533 4534 4535 4536
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4537 4538
			[PIPE_D] = BIT(DBUF_S2),
		},
4539 4540 4541 4542 4543 4544
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4545 4546
			[PIPE_D] = BIT(DBUF_S2),
		},
4547 4548 4549 4550 4551 4552 4553
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4554 4555
			[PIPE_D] = BIT(DBUF_S2),
		},
4556
	},
4557
	{}
4558 4559
};

4560 4561
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4562 4563 4564
{
	int i;

4565
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4577
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4591
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4592 4593
}

4594
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4595
{
4596
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4597 4598
}

4599
static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes)
4600 4601 4602 4603 4604
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4605
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4606
	else if (IS_GEN(dev_priv, 11))
4607
		return icl_compute_dbuf_slices(pipe, active_pipes);
4608 4609 4610 4611
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
4612
	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4613 4614
}

4615
static u64
4616 4617
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4618
			     int color_plane)
4619
{
4620
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4621
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4622 4623
	u32 data_rate;
	u32 width = 0, height = 0;
4624
	uint_fixed_16_16_t down_scale_amount;
4625
	u64 rate;
4626

4627
	if (!plane_state->uapi.visible)
4628
		return 0;
4629

4630
	if (plane->id == PLANE_CURSOR)
4631
		return 0;
4632 4633

	if (color_plane == 1 &&
4634
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4635
		return 0;
4636

4637 4638 4639 4640 4641
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4642 4643
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4644

4645
	/* UV plane does 1/2 pixel sub-sampling */
4646
	if (color_plane == 1) {
4647 4648
		width /= 2;
		height /= 2;
4649 4650
	}

4651
	data_rate = width * height;
4652

4653
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4654

4655 4656
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4657
	rate *= fb->format->cpp[color_plane];
4658
	return rate;
4659 4660
}

4661
static u64
4662 4663
skl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4664
{
4665 4666
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4667
	const struct intel_plane_state *plane_state;
4668
	struct intel_plane *plane;
4669
	u64 total_data_rate = 0;
4670 4671
	enum plane_id plane_id;
	int i;
4672

4673
	/* Calculate and cache data rate for each plane */
4674 4675 4676 4677 4678
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4679

4680
		/* packed/y */
4681 4682
		crtc_state->plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4683

4684
		/* uv-plane */
4685 4686 4687 4688 4689 4690 4691
		crtc_state->uv_plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 1);
	}

	for_each_plane_id_on_crtc(crtc, plane_id) {
		total_data_rate += crtc_state->plane_data_rate[plane_id];
		total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
4692 4693 4694 4695 4696
	}

	return total_data_rate;
}

4697
static u64
4698 4699
icl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4700
{
4701 4702
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4703
	const struct intel_plane_state *plane_state;
4704
	struct intel_plane *plane;
4705
	u64 total_data_rate = 0;
4706 4707
	enum plane_id plane_id;
	int i;
4708 4709

	/* Calculate and cache data rate for each plane */
4710 4711 4712 4713 4714
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4715

4716
		if (!plane_state->planar_linked_plane) {
4717 4718
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4719 4720 4721 4722 4723
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4724
			 * intel_atomic_crtc_state_for_each_plane_state(),
4725 4726 4727 4728
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4729
			if (plane_state->planar_slave)
4730 4731 4732
				continue;

			/* Y plane rate is calculated on the slave */
4733
			y_plane_id = plane_state->planar_linked_plane->id;
4734 4735
			crtc_state->plane_data_rate[y_plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4736

4737 4738
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4739 4740 4741
		}
	}

4742 4743 4744
	for_each_plane_id_on_crtc(crtc, plane_id)
		total_data_rate += crtc_state->plane_data_rate[plane_id];

4745 4746 4747
	return total_data_rate;
}

4748
static const struct skl_wm_level *
4749
skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
4750 4751 4752
		   enum plane_id plane_id,
		   int level)
{
4753 4754 4755
	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];

	if (level == 0 && pipe_wm->use_sagv_wm)
4756
		return &wm->sagv.wm0;
4757 4758 4759 4760

	return &wm->wm[level];
}

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
static const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
		   enum plane_id plane_id)
{
	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];

	if (pipe_wm->use_sagv_wm)
		return &wm->sagv.trans_wm;

	return &wm->trans_wm;
}

4773
static int
4774 4775
skl_allocate_plane_ddb(struct intel_atomic_state *state,
		       struct intel_crtc *crtc)
4776
{
4777
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4778 4779
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4780
	const struct intel_dbuf_state *dbuf_state =
4781
		intel_atomic_get_new_dbuf_state(state);
4782 4783
	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
	int num_active = hweight8(dbuf_state->active_pipes);
4784 4785 4786
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4787
	u64 total_data_rate;
4788
	enum plane_id plane_id;
4789
	u32 blocks;
4790
	int level;
4791

4792
	/* Clear the partitioning for disabled planes. */
4793 4794
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4795

4796
	if (!crtc_state->hw.active)
4797 4798
		return 0;

4799 4800
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4801
			icl_get_total_relative_data_rate(state, crtc);
4802
	else
4803
		total_data_rate =
4804
			skl_get_total_relative_data_rate(state, crtc);
4805

4806
	alloc_size = skl_ddb_entry_size(alloc);
4807
	if (alloc_size == 0)
4808
		return 0;
4809

4810
	/* Allocate fixed number of blocks for cursor. */
4811
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4812
	alloc_size -= total[PLANE_CURSOR];
4813
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4814
		alloc->end - total[PLANE_CURSOR];
4815
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4816 4817 4818

	if (total_data_rate == 0)
		return 0;
4819

4820
	/*
4821 4822
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4823
	 */
4824
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4825
		blocks = 0;
4826
		for_each_plane_id_on_crtc(crtc, plane_id) {
4827
			const struct skl_plane_wm *wm =
4828
				&crtc_state->wm.skl.optimal.planes[plane_id];
4829 4830

			if (plane_id == PLANE_CURSOR) {
4831
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4832 4833
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4834 4835 4836
					blocks = U32_MAX;
					break;
				}
4837
				continue;
4838
			}
4839

4840 4841
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4842 4843
		}

4844
		if (blocks <= alloc_size) {
4845 4846 4847
			alloc_size -= blocks;
			break;
		}
4848 4849
	}

4850
	if (level < 0) {
4851 4852 4853 4854
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4855 4856 4857
		return -EINVAL;
	}

4858
	/*
4859 4860 4861
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4862
	 */
4863
	for_each_plane_id_on_crtc(crtc, plane_id) {
4864
		const struct skl_plane_wm *wm =
4865
			&crtc_state->wm.skl.optimal.planes[plane_id];
4866 4867
		u64 rate;
		u16 extra;
4868

4869
		if (plane_id == PLANE_CURSOR)
4870 4871
			continue;

4872
		/*
4873 4874
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4875
		 */
4876 4877
		if (total_data_rate == 0)
			break;
4878

4879
		rate = crtc_state->plane_data_rate[plane_id];
4880 4881 4882
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4883
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4884 4885
		alloc_size -= extra;
		total_data_rate -= rate;
4886

4887 4888
		if (total_data_rate == 0)
			break;
4889

4890
		rate = crtc_state->uv_plane_data_rate[plane_id];
4891 4892 4893
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4894
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4895 4896 4897
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4898
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4899 4900 4901

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4902
	for_each_plane_id_on_crtc(crtc, plane_id) {
4903
		struct skl_ddb_entry *plane_alloc =
4904
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4905
		struct skl_ddb_entry *uv_plane_alloc =
4906
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4907 4908 4909 4910

		if (plane_id == PLANE_CURSOR)
			continue;

4911
		/* Gen11+ uses a separate plane for UV watermarks */
4912 4913
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4914 4915 4916 4917 4918 4919 4920

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4921

4922 4923 4924 4925
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4926
		}
4927
	}
4928

4929 4930 4931 4932 4933 4934 4935
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4936
		for_each_plane_id_on_crtc(crtc, plane_id) {
4937
			struct skl_plane_wm *wm =
4938
				&crtc_state->wm.skl.optimal.planes[plane_id];
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4955

4956
			/*
4957
			 * Wa_1408961008:icl, ehl
4958 4959
			 * Underruns with WM1+ disabled
			 */
4960
			if (IS_GEN(dev_priv, 11) &&
4961 4962
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4963 4964
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4965
			}
4966 4967 4968 4969
		}
	}

	/*
4970 4971
	 * Go back and disable the transition and SAGV watermarks
	 * if it turns out we don't have enough DDB blocks for them.
4972
	 */
4973
	for_each_plane_id_on_crtc(crtc, plane_id) {
4974
		struct skl_plane_wm *wm =
4975
			&crtc_state->wm.skl.optimal.planes[plane_id];
4976

4977
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4978
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4979

4980 4981
		if (wm->sagv.wm0.plane_res_b >= total[plane_id])
			memset(&wm->sagv.wm0, 0, sizeof(wm->sagv.wm0));
4982 4983 4984

		if (wm->sagv.trans_wm.plane_res_b >= total[plane_id])
			memset(&wm->sagv.trans_wm, 0, sizeof(wm->sagv.trans_wm));
4985 4986
	}

4987
	return 0;
4988 4989
}

4990 4991
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4992
 * for the read latency) and cpp should always be <= 8, so that
4993 4994 4995
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4996
static uint_fixed_16_16_t
4997 4998
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4999
{
5000
	u32 wm_intermediate_val;
5001
	uint_fixed_16_16_t ret;
5002 5003

	if (latency == 0)
5004
		return FP_16_16_MAX;
5005

5006
	wm_intermediate_val = latency * pixel_rate * cpp;
5007
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5008

5009
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5010 5011
		ret = add_fixed16_u32(ret, 1);

5012 5013 5014
	return ret;
}

5015 5016 5017
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
5018
{
5019
	u32 wm_intermediate_val;
5020
	uint_fixed_16_16_t ret;
5021 5022

	if (latency == 0)
5023
		return FP_16_16_MAX;
5024 5025

	wm_intermediate_val = latency * pixel_rate;
5026 5027
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
5028
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5029 5030 5031
	return ret;
}

5032
static uint_fixed_16_16_t
5033
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5034
{
5035
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5036 5037
	u32 pixel_rate;
	u32 crtc_htotal;
5038 5039
	uint_fixed_16_16_t linetime_us;

5040
	if (!crtc_state->hw.active)
5041
		return u32_to_fixed16(0);
5042

5043
	pixel_rate = crtc_state->pixel_rate;
5044

5045
	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5046
		return u32_to_fixed16(0);
5047

5048
	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5049
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5050 5051 5052 5053

	return linetime_us;
}

5054
static int
5055 5056 5057 5058 5059
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
5060
{
5061
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5062
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5063
	u32 interm_pbpl;
5064

5065
	/* only planar format has two planes */
5066 5067
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5068 5069
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
5070 5071 5072
		return -EINVAL;
	}

5073 5074 5075 5076 5077 5078 5079
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5080
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5081

5082
	wp->width = width;
5083
	if (color_plane == 1 && wp->is_planar)
5084 5085
		wp->width /= 2;

5086 5087
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
5088

5089
	if (INTEL_GEN(dev_priv) >= 11 &&
5090
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5091 5092 5093 5094
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

5095
	if (drm_rotation_90_or_270(rotation)) {
5096
		switch (wp->cpp) {
5097
		case 1:
5098
			wp->y_min_scanlines = 16;
5099 5100
			break;
		case 2:
5101
			wp->y_min_scanlines = 8;
5102 5103
			break;
		case 4:
5104
			wp->y_min_scanlines = 4;
5105
			break;
5106
		default:
5107
			MISSING_CASE(wp->cpp);
5108
			return -EINVAL;
5109 5110
		}
	} else {
5111
		wp->y_min_scanlines = 4;
5112 5113
	}

5114
	if (skl_needs_memory_bw_wa(dev_priv))
5115
		wp->y_min_scanlines *= 2;
5116

5117 5118 5119
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5120 5121
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
5122

5123
		if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5124 5125
			interm_pbpl++;

5126 5127
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
5128
	} else {
5129
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5130 5131 5132 5133 5134 5135
					   wp->dbuf_block_size);

		if (!wp->x_tiled ||
		    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
			interm_pbpl++;

5136
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5137 5138
	}

5139 5140
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
5141

5142
	wp->linetime_us = fixed16_to_u32_round_up(
5143
					intel_get_linetime_us(crtc_state));
5144 5145 5146 5147

	return 0;
}

5148 5149 5150 5151 5152
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
5153
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5154 5155
	int width;

5156 5157 5158 5159 5160
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
5161
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5162 5163 5164

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
5165
				     plane_state->hw.rotation,
5166
				     intel_plane_pixel_rate(crtc_state, plane_state),
5167 5168 5169
				     wp, color_plane);
}

5170 5171 5172 5173 5174 5175 5176 5177 5178
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5179
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5180
				 int level,
5181
				 unsigned int latency,
5182 5183 5184
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5185
{
5186
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5187 5188
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5189
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5190

5191 5192 5193
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5194
		return;
5195
	}
5196

5197 5198 5199 5200
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5201 5202 5203
	if ((IS_KABYLAKE(dev_priv) ||
	     IS_COFFEELAKE(dev_priv) ||
	     IS_COMETLAKE(dev_priv)) &&
5204 5205 5206
	    dev_priv->ipc_enabled)
		latency += 4;

5207
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5208 5209 5210
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5211
				 wp->cpp, latency, wp->dbuf_block_size);
5212
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5213
				 crtc_state->hw.pipe_mode.crtc_htotal,
5214
				 latency,
5215
				 wp->plane_blocks_per_line);
5216

5217 5218
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5219
	} else {
5220
		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5221
		     wp->dbuf_block_size < 1) &&
5222
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5223
			selected_result = method2;
5224
		} else if (latency >= wp->linetime_us) {
5225
			if (IS_GEN(dev_priv, 9) &&
5226 5227 5228 5229 5230
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5231
			selected_result = method1;
5232
		}
5233
	}
5234

5235
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5236
	res_lines = div_round_up_fixed16(selected_result,
5237
					 wp->plane_blocks_per_line);
5238

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5254

5255 5256 5257 5258 5259 5260 5261 5262 5263
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5264
	}
5265

5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5284 5285 5286
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5287 5288 5289
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5290
		return;
5291
	}
5292 5293 5294 5295 5296 5297 5298

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5299 5300
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5301 5302
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5303
	result->plane_en = true;
5304 5305 5306

	if (INTEL_GEN(dev_priv) < 12)
		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5307 5308
}

5309
static void
5310
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5311
		      const struct skl_wm_params *wm_params,
5312
		      struct skl_wm_level *levels)
5313
{
5314
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5315
	int level, max_level = ilk_wm_max_level(dev_priv);
5316
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5317

5318
	for (level = 0; level <= max_level; level++) {
5319
		struct skl_wm_level *result = &levels[level];
5320
		unsigned int latency = dev_priv->wm.skl_latency[level];
5321

5322 5323
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5324 5325

		result_prev = result;
5326
	}
5327 5328
}

5329 5330 5331 5332 5333
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
				const struct skl_wm_params *wm_params,
				struct skl_plane_wm *plane_wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5334
	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
5335 5336 5337 5338 5339 5340 5341 5342
	struct skl_wm_level *levels = plane_wm->wm;
	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;

	skl_compute_plane_wm(crtc_state, 0, latency,
			     wm_params, &levels[0],
			     sagv_wm);
}

5343 5344 5345 5346
static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
				      struct skl_wm_level *trans_wm,
				      const struct skl_wm_level *wm0,
				      const struct skl_wm_params *wp)
5347
{
5348
	u16 trans_min, trans_amount, trans_y_tile_min;
5349
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5350 5351 5352

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5353
		return;
5354

5355 5356 5357 5358 5359 5360 5361
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5362
	if (INTEL_GEN(dev_priv) >= 11)
5363
		trans_min = 4;
5364 5365 5366 5367 5368 5369 5370 5371
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5372 5373 5374

	trans_offset_b = trans_min + trans_amount;

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5385
	wm0_sel_res_b = wm0->plane_res_b - 1;
5386

5387
	if (wp->y_tiled) {
5388 5389
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5390
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5391 5392
				trans_offset_b;
	} else {
5393
		res_blocks = wm0_sel_res_b + trans_offset_b;
5394 5395
	}

5396 5397 5398 5399 5400
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
5401 5402
	trans_wm->plane_res_b = res_blocks + 1;
	trans_wm->plane_en = true;
5403 5404
}

5405
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5406 5407
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5408
{
5409 5410
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5411
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5412 5413 5414
	struct skl_wm_params wm_params;
	int ret;

5415
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5416 5417 5418 5419
					  &wm_params, color_plane);
	if (ret)
		return ret;

5420
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5421

5422 5423 5424 5425
	skl_compute_transition_wm(dev_priv, &wm->trans_wm,
				  &wm->wm[0], &wm_params);

	if (INTEL_GEN(dev_priv) >= 12) {
5426 5427
		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);

5428 5429 5430
		skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
					  &wm->sagv.wm0, &wm_params);
	}
5431 5432 5433 5434

	return 0;
}

5435
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5436 5437
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5438
{
5439
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5440 5441 5442
	struct skl_wm_params wm_params;
	int ret;

5443
	wm->is_planar = true;
5444 5445

	/* uv plane watermarks must also be validated for NV12/Planar */
5446
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5447 5448 5449
					  &wm_params, 1);
	if (ret)
		return ret;
5450

5451
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5452

5453
	return 0;
5454 5455
}

5456
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5457
			      const struct intel_plane_state *plane_state)
5458
{
5459
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5460
	enum plane_id plane_id = plane->id;
5461 5462
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5463 5464
	int ret;

5465 5466
	memset(wm, 0, sizeof(*wm));

5467 5468 5469
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5470
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5471
					plane_id, 0);
5472 5473 5474
	if (ret)
		return ret;

5475
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5476
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5477 5478 5479 5480 5481 5482 5483 5484
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5485
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5486 5487
			      const struct intel_plane_state *plane_state)
{
5488 5489 5490 5491
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	enum plane_id plane_id = plane->id;
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5492 5493
	int ret;

5494 5495
	memset(wm, 0, sizeof(*wm));

5496
	/* Watermarks calculated in master */
5497
	if (plane_state->planar_slave)
5498 5499
		return 0;

5500
	if (plane_state->planar_linked_plane) {
5501
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5502
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5503

5504 5505 5506 5507
		drm_WARN_ON(&dev_priv->drm,
			    !intel_wm_plane_visible(crtc_state, plane_state));
		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
			    fb->format->num_planes == 1);
5508

5509
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5510 5511 5512 5513
						y_plane_id, 0);
		if (ret)
			return ret;

5514
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5515 5516 5517 5518
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5519
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5520 5521 5522 5523 5524 5525
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5526 5527
}

5528 5529
static int skl_build_pipe_wm(struct intel_atomic_state *state,
			     struct intel_crtc *crtc)
5530
{
5531 5532 5533
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5534
	const struct intel_plane_state *plane_state;
5535 5536
	struct intel_plane *plane;
	int ret, i;
L
Lyude 已提交
5537

5538 5539 5540 5541 5542 5543 5544 5545
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		/*
		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
		 * instead but we don't populate that correctly for NV12 Y
		 * planes so for now hack this.
		 */
		if (plane->pipe != crtc->pipe)
			continue;
5546

5547
		if (INTEL_GEN(dev_priv) >= 11)
5548
			ret = icl_build_plane_wm(crtc_state, plane_state);
5549
		else
5550
			ret = skl_build_plane_wm(crtc_state, plane_state);
5551 5552
		if (ret)
			return ret;
5553
	}
5554

5555 5556
	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;

5557
	return 0;
5558 5559
}

5560 5561
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5562 5563 5564
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5565 5566
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5567
	else
5568
		intel_de_write_fw(dev_priv, reg, 0);
5569 5570
}

5571 5572 5573 5574
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5575
	u32 val = 0;
5576

5577
	if (level->plane_en)
5578
		val |= PLANE_WM_EN;
5579 5580 5581 5582
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5583

5584
	intel_de_write_fw(dev_priv, reg, val);
5585 5586
}

5587 5588
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5589
{
5590
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5591
	int level, max_level = ilk_wm_max_level(dev_priv);
5592 5593
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
5594 5595
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
5596 5597 5598 5599
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5600

5601
	for (level = 0; level <= max_level; level++)
5602
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5603 5604
				   skl_plane_wm_level(pipe_wm, plane_id, level));

5605
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5606
			   skl_plane_trans_wm(pipe_wm, plane_id));
5607

5608
	if (INTEL_GEN(dev_priv) >= 11) {
5609
		skl_ddb_entry_write(dev_priv,
5610 5611
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5612
	}
5613 5614 5615 5616 5617 5618 5619 5620

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5621 5622
}

5623 5624
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5625
{
5626
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5627
	int level, max_level = ilk_wm_max_level(dev_priv);
5628 5629
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
5630
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5631 5632
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5633

5634
	for (level = 0; level <= max_level; level++)
5635
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5636 5637
				   skl_plane_wm_level(pipe_wm, plane_id, level));

5638 5639
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
			   skl_plane_trans_wm(pipe_wm, plane_id));
5640

5641
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5642 5643
}

5644 5645 5646
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5647
	return l1->plane_en == l2->plane_en &&
5648
		l1->ignore_lines == l2->ignore_lines &&
5649 5650 5651
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5652

5653 5654 5655 5656 5657
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5658

5659
	for (level = 0; level <= max_level; level++) {
5660 5661 5662 5663 5664 5665
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5666 5667 5668
			return false;
	}

5669
	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
5670 5671
		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
5672 5673
}

5674 5675
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5676
{
5677
	return a->start < b->end && b->start < a->end;
5678 5679
}

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
static void skl_ddb_entry_union(struct skl_ddb_entry *a,
				const struct skl_ddb_entry *b)
{
	if (a->end && b->end) {
		a->start = min(a->start, b->start);
		a->end = max(a->end, b->end);
	} else if (b->end) {
		a->start = b->start;
		a->end = b->end;
	}
}

5692
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5693
				 const struct skl_ddb_entry *entries,
5694
				 int num_entries, int ignore_idx)
5695
{
5696
	int i;
5697

5698 5699 5700
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5701
			return true;
5702
	}
5703

5704
	return false;
5705 5706
}

5707
static int
5708 5709
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5710
{
5711 5712
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5713 5714
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5715

5716 5717 5718
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5719

5720 5721 5722 5723
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5724 5725
			continue;

5726
		plane_state = intel_atomic_get_plane_state(state, plane);
5727 5728
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5729

5730
		new_crtc_state->update_planes |= BIT(plane_id);
5731 5732 5733 5734 5735
	}

	return 0;
}

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
{
	struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
	u8 enabled_slices;
	enum pipe pipe;

	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
	enabled_slices = BIT(DBUF_S1);

	for_each_pipe(dev_priv, pipe)
		enabled_slices |= dbuf_state->slices[pipe];

	return enabled_slices;
}

5754
static int
5755
skl_compute_ddb(struct intel_atomic_state *state)
5756
{
5757 5758
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *old_dbuf_state;
5759
	struct intel_dbuf_state *new_dbuf_state = NULL;
5760
	const struct intel_crtc_state *old_crtc_state;
5761
	struct intel_crtc_state *new_crtc_state;
5762 5763
	struct intel_crtc *crtc;
	int ret, i;
5764

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		new_dbuf_state = intel_atomic_get_dbuf_state(state);
		if (IS_ERR(new_dbuf_state))
			return PTR_ERR(new_dbuf_state);

		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
		break;
	}

	if (!new_dbuf_state)
		return 0;

	new_dbuf_state->active_pipes =
		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);

	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
5782 5783
		if (ret)
			return ret;
5784
	}
5785

5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		enum pipe pipe = crtc->pipe;

		new_dbuf_state->slices[pipe] =
			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes);

		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
			continue;

		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
5796 5797
		if (ret)
			return ret;
5798 5799
	}

5800 5801 5802 5803 5804 5805
	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);

	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
5806 5807 5808 5809 5810 5811

		drm_dbg_kms(&dev_priv->drm,
			    "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
			    old_dbuf_state->enabled_slices,
			    new_dbuf_state->enabled_slices,
			    INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
	}

	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		enum pipe pipe = crtc->pipe;

		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);

		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
			continue;

		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		ret = skl_crtc_allocate_ddb(state, crtc);
		if (ret)
			return ret;
	}

	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		ret = skl_allocate_plane_ddb(state, crtc);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
		if (ret)
			return ret;
	}
5844

5845 5846 5847
	return 0;
}

5848 5849 5850 5851 5852
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5853
static void
5854
skl_print_wm_changes(struct intel_atomic_state *state)
5855
{
5856 5857 5858 5859 5860
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5861
	int i;
5862

5863
	if (!drm_debug_enabled(DRM_UT_KMS))
5864 5865
		return;

5866 5867
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5868 5869 5870 5871 5872
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5873 5874
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5875 5876
			const struct skl_ddb_entry *old, *new;

5877 5878
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5879 5880 5881 5882

			if (skl_ddb_entry_equal(old, new))
				continue;

5883 5884 5885 5886 5887
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5900
			drm_dbg_kms(&dev_priv->drm,
5901 5902
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
5903 5904 5905 5906 5907 5908
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
5909
				    enast(old_wm->sagv.wm0.plane_en),
5910
				    enast(old_wm->sagv.trans_wm.plane_en),
5911 5912 5913 5914
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5915
				    enast(new_wm->trans_wm.plane_en),
5916 5917
				    enast(new_wm->sagv.wm0.plane_en),
				    enast(new_wm->sagv.trans_wm.plane_en));
5918 5919

			drm_dbg_kms(&dev_priv->drm,
5920 5921
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5932
				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.plane_res_l,
5933
				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.plane_res_l,
5934 5935 5936 5937 5938 5939 5940 5941
				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5942
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
5943 5944
				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.plane_res_l,
				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.plane_res_l);
5945 5946

			drm_dbg_kms(&dev_priv->drm,
5947 5948
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
5949 5950 5951 5952 5953 5954
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
5955
				    old_wm->sagv.wm0.plane_res_b,
5956
				    old_wm->sagv.trans_wm.plane_res_b,
5957 5958 5959 5960
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5961
				    new_wm->trans_wm.plane_res_b,
5962 5963
				    new_wm->sagv.wm0.plane_res_b,
				    new_wm->sagv.trans_wm.plane_res_b);
5964 5965

			drm_dbg_kms(&dev_priv->drm,
5966 5967
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
5968 5969 5970 5971 5972 5973
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
5974
				    old_wm->sagv.wm0.min_ddb_alloc,
5975
				    old_wm->sagv.trans_wm.min_ddb_alloc,
5976 5977 5978 5979
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5980
				    new_wm->trans_wm.min_ddb_alloc,
5981 5982
				    new_wm->sagv.wm0.min_ddb_alloc,
				    new_wm->sagv.trans_wm.min_ddb_alloc);
5983 5984 5985 5986
		}
	}
}

5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
					 const struct skl_pipe_wm *old_pipe_wm,
					 const struct skl_pipe_wm *new_pipe_wm)
{
	struct drm_i915_private *i915 = to_i915(plane->base.dev);
	int level, max_level = ilk_wm_max_level(i915);

	for (level = 0; level <= max_level; level++) {
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, level, plane->id),
					 skl_plane_wm_level(new_pipe_wm, level, plane->id)))
			return false;
	}

6005 6006
	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
				   skl_plane_trans_wm(new_pipe_wm, plane->id));
6007 6008
}

6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
6053
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6054 6055 6056
		    skl_plane_selected_wm_equals(plane,
						 &old_crtc_state->wm.skl.optimal,
						 &new_crtc_state->wm.skl.optimal))
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

6069
static int
6070
skl_compute_wm(struct intel_atomic_state *state)
6071
{
6072
	struct intel_crtc *crtc;
6073
	struct intel_crtc_state *new_crtc_state;
6074 6075
	int ret, i;

6076 6077
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		ret = skl_build_pipe_wm(state, crtc);
6078 6079
		if (ret)
			return ret;
6080 6081
	}

6082 6083 6084 6085
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

6086 6087 6088
	ret = intel_compute_sagv_mask(state);
	if (ret)
		return ret;
6089

6090 6091 6092 6093 6094
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
6095
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6096 6097 6098 6099 6100
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

6101
	skl_print_wm_changes(state);
6102

6103 6104 6105
	return 0;
}

6106
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6107 6108 6109 6110 6111
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
6112
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

6124
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6125
{
6126
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6127
	struct ilk_wm_maximums max;
6128
	struct intel_wm_config config = {};
6129
	struct ilk_wm_values results = {};
6130
	enum intel_ddb_partitioning partitioning;
6131

6132
	ilk_compute_wm_config(dev_priv, &config);
6133

6134 6135
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6136 6137

	/* 5/6 split only in single pipe config on IVB+ */
6138
	if (INTEL_GEN(dev_priv) >= 7 &&
6139
	    config.num_pipes_active == 1 && config.sprites_enabled) {
6140 6141
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6142

6143
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6144
	} else {
6145
		best_lp_wm = &lp_wm_1_2;
6146 6147
	}

6148
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6149
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6150

6151
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6152

6153
	ilk_write_wm_values(dev_priv, &results);
6154 6155
}

6156
static void ilk_initial_watermarks(struct intel_atomic_state *state,
6157
				   struct intel_crtc *crtc)
6158
{
6159 6160 6161
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6162

6163
	mutex_lock(&dev_priv->wm.wm_mutex);
6164
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6165 6166 6167
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
6168

6169
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6170
				    struct intel_crtc *crtc)
6171
{
6172 6173 6174
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6175 6176 6177

	if (!crtc_state->wm.need_postvbl_update)
		return;
6178

6179
	mutex_lock(&dev_priv->wm.wm_mutex);
6180 6181
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
6182
	mutex_unlock(&dev_priv->wm.wm_mutex);
6183 6184
}

6185
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6186
{
6187
	level->plane_en = val & PLANE_WM_EN;
6188
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6189 6190 6191
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
6192 6193
}

6194
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6195
			      struct skl_pipe_wm *out)
6196
{
6197 6198
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
6199 6200
	int level, max_level;
	enum plane_id plane_id;
6201
	u32 val;
6202

6203
	max_level = ilk_wm_max_level(dev_priv);
6204

6205
	for_each_plane_id_on_crtc(crtc, plane_id) {
6206
		struct skl_plane_wm *wm = &out->planes[plane_id];
6207

6208
		for (level = 0; level <= max_level; level++) {
6209
			if (plane_id != PLANE_CURSOR)
6210
				val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6211
			else
6212
				val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6213

6214
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6215 6216
		}

6217
		if (plane_id != PLANE_CURSOR)
6218
			val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6219
		else
6220
			val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6221 6222

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6223 6224 6225 6226 6227

		if (INTEL_GEN(dev_priv) >= 12) {
			wm->sagv.wm0 = wm->wm[0];
			wm->sagv.trans_wm = wm->trans_wm;
		}
6228 6229 6230
	}
}

6231
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6232
{
6233 6234
	struct intel_dbuf_state *dbuf_state =
		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6235
	struct intel_crtc *crtc;
6236

6237
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6238 6239 6240 6241
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
6242

6243
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6244
		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272

		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));

		for_each_plane_id_on_crtc(crtc, plane_id) {
			struct skl_ddb_entry *ddb_y =
				&crtc_state->wm.skl.plane_ddb_y[plane_id];
			struct skl_ddb_entry *ddb_uv =
				&crtc_state->wm.skl.plane_ddb_uv[plane_id];

			skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
						   plane_id, ddb_y, ddb_uv);

			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv);
		}

		dbuf_state->slices[pipe] =
			skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes);

		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);

		crtc_state->wm.skl.ddb = dbuf_state->ddb[pipe];

		drm_dbg_kms(&dev_priv->drm,
			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
			    crtc->base.base.id, crtc->base.name,
			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes);
6273
	}
6274 6275

	dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6276 6277
}

6278
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6279
{
6280
	struct drm_device *dev = crtc->base.dev;
6281
	struct drm_i915_private *dev_priv = to_i915(dev);
6282
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6283 6284
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6285
	enum pipe pipe = crtc->pipe;
6286

6287
	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6288

6289 6290
	memset(active, 0, sizeof(*active));

6291
	active->pipe_enabled = crtc->active;
6292 6293

	if (active->pipe_enabled) {
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6307
		int level, max_level = ilk_wm_max_level(dev_priv);
6308 6309 6310 6311 6312 6313 6314 6315 6316

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6317

6318
	crtc->wm.active.ilk = *active;
6319 6320
}

6321 6322 6323 6324 6325
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6326 6327 6328
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6329
	u32 tmp;
6330

6331
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6332 6333 6334 6335 6336
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

6337
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6338 6339 6340 6341 6342 6343 6344
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

6345
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6346 6347 6348 6349 6350 6351
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6352 6353 6354 6355
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6356
	u32 tmp;
6357 6358

	for_each_pipe(dev_priv, pipe) {
6359
		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6360

6361
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6362
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6363
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6364
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6365
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6366
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6367
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6368 6369 6370
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

6371
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6372
	wm->sr.plane = _FW_WM(tmp, SR);
6373 6374 6375
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6376

6377
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6378 6379 6380
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6381

6382
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6383 6384 6385
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
6386
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6387 6388
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6389

6390
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6391 6392
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6393

6394
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6395 6396
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6397

6398
		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6399
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6400 6401 6402 6403 6404 6405 6406 6407 6408
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6409
	} else {
6410
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6411 6412
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6413

6414
		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6415
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6416 6417 6418 6419 6420 6421
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6422 6423 6424 6425 6426 6427
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6428
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6429 6430 6431 6432 6433 6434
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

6435
	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6436

6437
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6497 6498 6499 6500 6501 6502
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6503 6504
	}

6505 6506 6507 6508 6509 6510 6511 6512
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6533
		if (plane_state->uapi.visible)
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6571
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6572 6573
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6574
	struct intel_crtc *crtc;
6575 6576 6577 6578
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

6579
	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6580 6581 6582
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6583
		vlv_punit_get(dev_priv);
6584

6585
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6586 6587 6588
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6589 6590 6591 6592 6593 6594 6595 6596 6597
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6598
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6599 6600 6601 6602 6603
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6604 6605 6606
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6607 6608 6609 6610 6611 6612
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6613

6614
		vlv_punit_put(dev_priv);
6615 6616
	}

6617
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6633
			struct g4x_pipe_wm *raw =
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6655
		crtc_state->wm.vlv.intermediate = *active;
6656

6657 6658 6659 6660 6661 6662 6663
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6664
	}
6665

6666 6667 6668
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6669 6670
}

6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6691
		if (plane_state->uapi.visible)
6692 6693 6694
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6695
			struct g4x_pipe_wm *raw =
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6720 6721 6722 6723 6724 6725
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
6726 6727 6728
	intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
	intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
	intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
6729 6730 6731 6732 6733 6734 6735

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6736
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6737
{
6738
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6739
	struct intel_crtc *crtc;
6740

6741 6742
	ilk_init_lp_watermarks(dev_priv);

6743
	for_each_intel_crtc(&dev_priv->drm, crtc)
6744 6745
		ilk_pipe_wm_get_hw_state(crtc);

6746 6747 6748
	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
6749

6750
	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
6751
	if (INTEL_GEN(dev_priv) >= 7) {
6752 6753
		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
6754
	}
6755

6756
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6757
		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6758
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6759
	else if (IS_IVYBRIDGE(dev_priv))
6760
		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6761
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6762 6763

	hw->enable_fbc_wm =
6764
		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6765 6766
}

6767 6768
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6769
 * @crtc: the #intel_crtc on which to compute the WM
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6800
void intel_update_watermarks(struct intel_crtc *crtc)
6801
{
6802
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6803 6804

	if (dev_priv->display.update_wm)
6805
		dev_priv->display.update_wm(crtc);
6806 6807
}

6808 6809 6810 6811
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6812 6813 6814
	if (!HAS_IPC(dev_priv))
		return;

6815
	val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
6816 6817 6818 6819 6820 6821

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

6822
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
6823 6824
}

6825 6826 6827 6828 6829 6830 6831
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
6832 6833 6834
	if (IS_KABYLAKE(dev_priv) ||
	    IS_COFFEELAKE(dev_priv) ||
	    IS_COMETLAKE(dev_priv))
6835 6836 6837 6838 6839
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6840 6841 6842 6843 6844
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6845
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6846

6847 6848 6849
	intel_enable_ipc(dev_priv);
}

6850 6851 6852 6853 6854 6855 6856
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6857
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6858
}
6859

6860
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6861
{
6862
	enum pipe pipe;
6863

6864
	for_each_pipe(dev_priv, pipe) {
6865 6866
		intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
			   intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
6867
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6868

6869 6870
		intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
		intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
6871 6872 6873
	}
}

6874
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6875
{
6876
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6877

6878 6879 6880 6881 6882 6883 6884
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6885

6886
	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
6887 6888
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6889
	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
6890
		   VFMUNIT_CLOCK_GATE_DISABLE);
6891

6892 6893 6894 6895 6896 6897 6898
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
6899 6900
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6901 6902
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6903 6904
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
		   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
6905
		    DISP_FBC_WM_DIS));
6906 6907

	/*
6908 6909 6910 6911 6912
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6913
	 */
6914 6915
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6916 6917
		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
6918
			   ILK_FBCQ_DIS);
6919 6920
		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6921 6922
			   ILK_DPARB_GATE);
	}
6923

6924
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
6925

6926 6927
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6928
		   ILK_ELPIN_409_SELECT);
6929

6930
	g4x_disable_trickle_feed(dev_priv);
6931

6932
	ibx_init_clock_gating(dev_priv);
6933 6934
}

6935
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6936
{
6937 6938
	enum pipe pipe;
	u32 val;
6939

6940 6941 6942 6943 6944
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6945
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6946 6947
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6948
	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
6949 6950 6951 6952 6953
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
6954
		val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
6955 6956 6957 6958 6959 6960
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6961
		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
6962 6963 6964
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
6965
		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
6966 6967
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6968 6969
}

6970
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6971
{
6972
	u32 tmp;
6973

6974
	tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
6975
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6976 6977 6978
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6979 6980
}

6981
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6982
{
6983
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6984

6985
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
6986

6987 6988
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6989
		   ILK_ELPIN_409_SELECT);
6990

6991 6992
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
6993 6994
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6995

6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7008
	 */
7009
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7010 7011
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
7012

7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
7024 7025
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7026
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7027 7028
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
7029
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7030 7031
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
		   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
7032 7033
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7034

7035
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
7036

7037
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
7038

7039
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
7040 7041
}

7042
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7043
{
7044 7045 7046
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
7047
	 */
7048
	if (HAS_PCH_LPT_LP(dev_priv))
7049 7050
		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
			   intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7051
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7052 7053

	/* WADPOClockGatingDisable:hsw */
7054 7055
	intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7056
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7057 7058
}

7059
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7060
{
7061
	if (HAS_PCH_LPT_LP(dev_priv)) {
7062
		u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7063 7064

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7065
		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7066 7067 7068
	}
}

7069 7070 7071 7072 7073
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
7074
	u32 val;
7075 7076

	/* WaTempDisableDOPClkGating:bdw */
7077 7078
	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7079

7080
	val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7081 7082 7083
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7084
	intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7085 7086 7087 7088 7089

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
7090
	intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7091
	udelay(1);
7092
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7093 7094
}

O
Oscar Mateo 已提交
7095 7096
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
7097
	/* Wa_1409120013:icl,ehl */
7098
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7099 7100
		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);

O
Oscar Mateo 已提交
7101
	/* This is not an Wa. Enable to reduce Sampler power */
7102 7103
	intel_uncore_write(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   intel_uncore_read(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7104

7105 7106 7107
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
7108 7109
}

7110
static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7111
{
7112
	/* Wa_1409120013:tgl,rkl,adl_s,dg1 */
7113
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7114
			   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7115

7116
	/* Wa_1409825376:tgl (pre-prod)*/
7117
	if (IS_TGL_DISP_STEPPING(dev_priv, STEP_A0, STEP_B1))
7118
		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7119
			   TGL_VRH_GATING_DIS);
M
Matt Atwood 已提交
7120

7121
	/* Wa_14011059788:tgl,rkl,adl_s,dg1 */
M
Matt Atwood 已提交
7122 7123
	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
			 0, DFR_DISABLE);
7124 7125
}

7126 7127
static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
{
7128 7129
	gen12lp_init_clock_gating(dev_priv);

7130 7131
	/* Wa_1409836686:dg1[a0] */
	if (IS_DG1_REVID(dev_priv, DG1_REVID_A0, DG1_REVID_A0))
7132
		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7133 7134 7135
			   DPT_GATING_DIS);
}

7136 7137 7138 7139 7140
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

7141
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7142
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7143
		   CNP_PWM_CGE_GATING_DISABLE);
7144 7145
}

7146
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7147
{
7148
	u32 val;
7149 7150
	cnp_init_clock_gating(dev_priv);

7151
	/* This is not an Wa. Enable for better image quality */
7152
	intel_uncore_write(&dev_priv->uncore, _3D_CHICKEN3,
7153 7154
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

7155
	/* WaEnableChickenDCPR:cnl */
7156 7157
	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7158

7159 7160 7161 7162
	/*
	 * WaFbcWakeMemOn:cnl
	 * Display WA #0859: cnl
	 */
7163
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7164 7165
		   DISP_FBC_MEMORY_WAKE);

7166
	val = intel_uncore_read(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE);
7167 7168
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
7169
	intel_uncore_write(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE, val);
7170

R
Rodrigo Vivi 已提交
7171
	/* Wa_2201832410:cnl */
7172
	val = intel_uncore_read(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE);
R
Rodrigo Vivi 已提交
7173
	val |= GWUNIT_CLKGATE_DIS;
7174
	intel_uncore_write(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE, val);
R
Rodrigo Vivi 已提交
7175

7176
	/* WaDisableVFclkgate:cnl */
7177
	/* WaVFUnitClockGatingDisable:cnl */
7178
	val = intel_uncore_read(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE);
7179
	val |= VFUNIT_CLKGATE_DIS;
7180
	intel_uncore_write(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE, val);
7181 7182
}

7183 7184 7185 7186 7187
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

7188
	/* WAC6entrylatency:cfl */
7189
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7190 7191
		   FBC_LLC_FULLY_OPEN);

7192 7193 7194 7195
	/*
	 * WaFbcTurnOffFbcWatermark:cfl
	 * Display WA #0562: cfl
	 */
7196
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7197 7198
		   DISP_FBC_WM_DIS);

7199 7200 7201 7202
	/*
	 * WaFbcNukeOnHostModify:cfl
	 * Display WA #0873: cfl
	 */
7203
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7204 7205 7206
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

7207
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7208
{
7209
	gen9_init_clock_gating(dev_priv);
7210

7211
	/* WAC6entrylatency:kbl */
7212
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7213 7214
		   FBC_LLC_FULLY_OPEN);

7215
	/* WaDisableSDEUnitClockGating:kbl */
7216
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7217
		intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7218
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7219 7220

	/* WaDisableGamClockGating:kbl */
7221
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7222
		intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7223
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7224

7225 7226 7227 7228
	/*
	 * WaFbcTurnOffFbcWatermark:kbl
	 * Display WA #0562: kbl
	 */
7229
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7230 7231
		   DISP_FBC_WM_DIS);

7232 7233 7234 7235
	/*
	 * WaFbcNukeOnHostModify:kbl
	 * Display WA #0873: kbl
	 */
7236
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7237
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7238 7239
}

7240
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7241
{
7242
	gen9_init_clock_gating(dev_priv);
7243

7244
	/* WaDisableDopClockGating:skl */
7245
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7246 7247
		   ~GEN7_DOP_CLOCK_GATE_ENABLE);

7248
	/* WAC6entrylatency:skl */
7249
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7250
		   FBC_LLC_FULLY_OPEN);
7251

7252 7253 7254 7255
	/*
	 * WaFbcTurnOffFbcWatermark:skl
	 * Display WA #0562: skl
	 */
7256
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7257 7258
		   DISP_FBC_WM_DIS);

7259 7260 7261 7262
	/*
	 * WaFbcNukeOnHostModify:skl
	 * Display WA #0873: skl
	 */
7263
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7264
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7265

7266 7267 7268 7269
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:skl
	 * Display WA #0883: skl
	 */
7270
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7271
		   ILK_DPFC_DISABLE_DUMMY0);
7272 7273
}

7274
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7275
{
7276
	enum pipe pipe;
B
Ben Widawsky 已提交
7277

7278
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7279 7280
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7281 7282
		   HSW_FBCQ_DIS);

7283
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7284
	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7285

7286
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7287 7288
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7289

7290
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7291
	for_each_pipe(dev_priv, pipe) {
7292 7293
		intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7294
			   BDW_DPRS_MASK_VBLANK_SRD);
7295
	}
7296

7297 7298
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
7299 7300
	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7301
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7302

7303
	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7304
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7305 7306

	/* WaDisableSDEUnitClockGating:bdw */
7307
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7308
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7309

7310 7311
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7312

7313
	/* WaKVMNotificationOnConfigChange:bdw */
7314
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7315 7316
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7317
	lpt_init_clock_gating(dev_priv);
7318 7319 7320 7321 7322 7323

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
7324 7325
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7326 7327
}

7328
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7329
{
7330
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7331 7332
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7333 7334
		   HSW_FBCQ_DIS);

7335
	/* This is required by WaCatErrorRejectionIssue:hsw */
7336 7337
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7338
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7339

7340
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7341
	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7342

7343
	lpt_init_clock_gating(dev_priv);
7344 7345
}

7346
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7347
{
7348
	u32 snpcr;
7349

7350
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7351

7352
	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
7353 7354
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7355 7356
		   ILK_FBCQ_DIS);

7357
	/* WaDisableBackToBackFlipFix:ivb */
7358
	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7359 7360 7361
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7362
	if (IS_IVB_GT1(dev_priv))
7363
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7364
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7365 7366
	else {
		/* must write both registers */
7367
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7368
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7369
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7370
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7371
	}
7372

7373
	/*
7374
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7375
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7376
	 */
7377
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7378
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7379

7380
	/* This is required by WaCatErrorRejectionIssue:ivb */
7381 7382
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7383 7384
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7385
	g4x_disable_trickle_feed(dev_priv);
7386

7387
	snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7388 7389
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
7390
	intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7391

7392
	if (!HAS_PCH_NOP(dev_priv))
7393
		cpt_init_clock_gating(dev_priv);
7394

7395
	gen6_check_mch_setup(dev_priv);
7396 7397
}

7398
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7399
{
7400
	/* WaDisableBackToBackFlipFix:vlv */
7401
	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7402 7403 7404
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7405
	/* WaDisableDopClockGating:vlv */
7406
	intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7407 7408
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7409
	/* This is required by WaCatErrorRejectionIssue:vlv */
7410 7411
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7412 7413
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7414
	/*
7415
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7416
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7417
	 */
7418
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7419
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7420

7421 7422 7423
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7424 7425
	intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
		   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7426

7427
	/*
7428
	 * WaDisableVLVClockGating_VBIIssue:vlv
7429 7430 7431
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7432
	intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7433 7434
}

7435
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7436
{
7437 7438
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
7439 7440
	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7441
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7442 7443

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7444
	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7445
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7446 7447

	/* WaDisableCSUnitClockGating:chv */
7448
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7449
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7450 7451

	/* WaDisableSDEUnitClockGating:chv */
7452
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7453
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7454

7455 7456 7457 7458 7459 7460
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7461 7462
}

7463
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7464
{
7465
	u32 dspclk_gate;
7466

7467 7468
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7469 7470
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
7471
	intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7472 7473 7474
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7475
	if (IS_GM45(dev_priv))
7476
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7477
	intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7478

7479
	g4x_disable_trickle_feed(dev_priv);
7480 7481
}

7482
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7483
{
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7494 7495
}

7496
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7497
{
7498
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7499 7500 7501 7502
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
7503 7504
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7505
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7506 7507
}

7508
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7509
{
7510
	u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7511 7512 7513

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
7514
	intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7515

7516
	if (IS_PINEVIEW(dev_priv))
7517
		intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7518 7519

	/* IIR "flip pending" means done if this bit is set */
7520
	intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7521 7522

	/* interrupts should cause a wake up from C3 */
7523
	intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7524 7525

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7526
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7527

7528
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7529
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7530 7531
}

7532
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7533
{
7534
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7535 7536

	/* interrupts should cause a wake up from C3 */
7537
	intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7538
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7539

7540
	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7541
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7542 7543 7544 7545 7546 7547 7548 7549

	/*
	 * Have FBC ignore 3D activity since we use software
	 * render tracking, and otherwise a pure 3D workload
	 * (even if it just renders a single frame and then does
	 * abosultely nothing) would not allow FBC to recompress
	 * until a 2D blit occurs.
	 */
7550
	intel_uncore_write(&dev_priv->uncore, SCPD0,
7551
		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7552 7553
}

7554
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7555
{
7556
	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7557 7558
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7559 7560
}

7561
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7562
{
7563
	dev_priv->display.init_clock_gating(dev_priv);
7564 7565
}

7566
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7567
{
7568 7569
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7570 7571
}

7572
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7573
{
7574 7575
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7589 7590 7591
	if (IS_DG1(dev_priv))
		dev_priv->display.init_clock_gating = dg1_init_clock_gating;
	else if (IS_GEN(dev_priv, 12))
7592
		dev_priv->display.init_clock_gating = gen12lp_init_clock_gating;
7593
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7594
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7595
	else if (IS_CANNONLAKE(dev_priv))
7596
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7597
	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7598
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7599
	else if (IS_SKYLAKE(dev_priv))
7600
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7601
	else if (IS_KABYLAKE(dev_priv))
7602
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7603
	else if (IS_BROXTON(dev_priv))
7604
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7605 7606
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7607
	else if (IS_BROADWELL(dev_priv))
7608
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7609
	else if (IS_CHERRYVIEW(dev_priv))
7610
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7611
	else if (IS_HASWELL(dev_priv))
7612
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7613
	else if (IS_IVYBRIDGE(dev_priv))
7614
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7615
	else if (IS_VALLEYVIEW(dev_priv))
7616
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7617
	else if (IS_GEN(dev_priv, 6))
7618
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7619
	else if (IS_GEN(dev_priv, 5))
7620
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7621 7622
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7623
	else if (IS_I965GM(dev_priv))
7624
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7625
	else if (IS_I965G(dev_priv))
7626
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7627
	else if (IS_GEN(dev_priv, 3))
7628 7629 7630
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7631
	else if (IS_GEN(dev_priv, 2))
7632 7633 7634 7635 7636 7637 7638
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7639
/* Set up chip specific power management-related functions */
7640
void intel_init_pm(struct drm_i915_private *dev_priv)
7641
{
7642
	/* For cxsr */
7643
	if (IS_PINEVIEW(dev_priv))
7644
		pnv_get_mem_freq(dev_priv);
7645
	else if (IS_GEN(dev_priv, 5))
7646
		ilk_get_mem_freq(dev_priv);
7647

7648 7649 7650
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7651
	/* For FIFO watermark updates */
7652
	if (INTEL_GEN(dev_priv) >= 9) {
7653
		skl_setup_wm_latency(dev_priv);
7654
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7655
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7656
		ilk_setup_wm_latency(dev_priv);
7657

7658
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7659
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7660
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7661
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7662
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7663 7664 7665 7666 7667 7668
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7669
		} else {
7670 7671 7672
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7673
		}
7674
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7675
		vlv_setup_wm_latency(dev_priv);
7676
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7677
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7678
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7679
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7680
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7681 7682 7683 7684 7685 7686
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7687
	} else if (IS_PINEVIEW(dev_priv)) {
7688
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7689 7690 7691
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7692 7693
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7694 7695 7696 7697 7698
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7699
			intel_set_memory_cxsr(dev_priv, false);
7700 7701
			dev_priv->display.update_wm = NULL;
		} else
7702
			dev_priv->display.update_wm = pnv_update_wm;
7703
	} else if (IS_GEN(dev_priv, 4)) {
7704
		dev_priv->display.update_wm = i965_update_wm;
7705
	} else if (IS_GEN(dev_priv, 3)) {
7706 7707
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7708
	} else if (IS_GEN(dev_priv, 2)) {
7709
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7710
			dev_priv->display.update_wm = i845_update_wm;
7711
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7712 7713
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7714
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7715 7716
		}
	} else {
7717 7718
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7719 7720 7721
	}
}

7722
void intel_pm_setup(struct drm_i915_private *dev_priv)
7723
{
7724 7725
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7726
}
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775

static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return NULL;

	return &dbuf_state->base;
}

static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
				     struct intel_global_state *state)
{
	kfree(state);
}

static const struct intel_global_state_funcs intel_dbuf_funcs = {
	.atomic_duplicate_state = intel_dbuf_duplicate_state,
	.atomic_destroy_state = intel_dbuf_destroy_state,
};

struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *dbuf_state;

	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
	if (IS_ERR(dbuf_state))
		return ERR_CAST(dbuf_state);

	return to_intel_dbuf_state(dbuf_state);
}

int intel_dbuf_init(struct drm_i915_private *dev_priv)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return -ENOMEM;

	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
				     &dbuf_state->base, &intel_dbuf_funcs);

	return 0;
}
7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812

void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				old_dbuf_state->enabled_slices |
				new_dbuf_state->enabled_slices);
}

void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				new_dbuf_state->enabled_slices);
}