intel_pm.c 218.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_irq.h"
44
#include "i915_trace.h"
45
#include "intel_pm.h"
46
#include "intel_sideband.h"
47
#include "../../../platform/x86/intel_ips.h"
48

49
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
50
{
51 52 53
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
54
		 * Display WA #0390: skl,kbl
55 56 57 58 59 60 61 62 63
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

64
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
65 66 67
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71

72 73
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77

78
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79 80
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82 83 84 85 86

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
87 88
}

89
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
90
{
91
	gen9_init_clock_gating(dev_priv);
92

93 94 95 96
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

97 98
	/*
	 * FIXME:
99
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
100 101
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
108 109
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
110 111 112 113 114 115 116 117

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
118 119
}

120 121 122 123 124 125 126 127 128 129 130 131 132
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

133
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

171
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
172 173 174
{
	u16 ddrpll, csipll;

175 176
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
192 193
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
221 222
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
223 224 225 226 227
		dev_priv->fsb_freq = 0;
		break;
	}
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

266 267
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

290 291 292 293
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

294
	vlv_punit_get(dev_priv);
295 296 297 298 299 300 301 302 303 304 305 306

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
307 308
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
309

310
	vlv_punit_put(dev_priv);
311 312
}

313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

317
	vlv_punit_get(dev_priv);
318

319
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
320 321 322 323
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
324
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
325

326
	vlv_punit_put(dev_priv);
327 328
}

329 330 331
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

332
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
333
{
334
	bool was_enabled;
335
	u32 val;
336

337
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
338
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
339
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
340
		POSTING_READ(FW_BLC_SELF_VLV);
341
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
342
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
343
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
344
		POSTING_READ(FW_BLC_SELF);
345
	} else if (IS_PINEVIEW(dev_priv)) {
346 347 348 349 350 351
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
352
		I915_WRITE(DSPFW3, val);
353
		POSTING_READ(DSPFW3);
354
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
355
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
356 357 358
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
359
		POSTING_READ(FW_BLC_SELF);
360
	} else if (IS_I915GM(dev_priv)) {
361 362 363 364 365
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
366
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
367 368 369
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
370
		POSTING_READ(INSTPM);
371
	} else {
372
		return false;
373
	}
374

375 376
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

377 378 379
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
380 381

	return was_enabled;
382 383
}

V
Ville Syrjälä 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
421
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
422
{
423 424
	bool ret;

425
	mutex_lock(&dev_priv->wm.wm_mutex);
426
	ret = _intel_set_memory_cxsr(dev_priv, enable);
427 428 429 430
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
431
	mutex_unlock(&dev_priv->wm.wm_mutex);
432 433

	return ret;
434
}
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
450
static const int pessimal_latency_ns = 5000;
451

452 453 454
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

455
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
456
{
457
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
458
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
459
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
460 461
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
462
	u32 dsparb, dsparb2, dsparb3;
463

464
	switch (pipe) {
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
484 485
		MISSING_CASE(pipe);
		return;
486 487
	}

488 489 490 491
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
492 493
}

494 495
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
496
{
497
	u32 dsparb = I915_READ(DSPARB);
498 499 500
	int size;

	size = dsparb & 0x7f;
501
	if (i9xx_plane == PLANE_B)
502 503
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

504 505
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
506 507 508 509

	return size;
}

510 511
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
512
{
513
	u32 dsparb = I915_READ(DSPARB);
514 515 516
	int size;

	size = dsparb & 0x1ff;
517
	if (i9xx_plane == PLANE_B)
518 519 520
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

521 522
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
523 524 525 526

	return size;
}

527 528
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
529
{
530
	u32 dsparb = I915_READ(DSPARB);
531 532 533 534 535
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

536 537
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
538 539 540 541 542

	return size;
}

/* Pineview has different values for various configs */
543
static const struct intel_watermark_params pnv_display_wm = {
544 545 546 547 548
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
549
};
550 551

static const struct intel_watermark_params pnv_display_hplloff_wm = {
552 553 554 555 556
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
557
};
558 559

static const struct intel_watermark_params pnv_cursor_wm = {
560 561 562 563 564
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
565
};
566 567

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573
};
574

575
static const struct intel_watermark_params i965_cursor_wm_info = {
576 577 578 579 580
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
581
};
582

583
static const struct intel_watermark_params i945_wm_info = {
584 585 586 587 588
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
589
};
590

591
static const struct intel_watermark_params i915_wm_info = {
592 593 594 595 596
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
597
};
598

599
static const struct intel_watermark_params i830_a_wm_info = {
600 601 602 603 604
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
605
};
606

607 608 609 610 611 612 613
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
614

615
static const struct intel_watermark_params i845_wm_info = {
616 617 618 619 620
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
621 622
};

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
660
	u64 ret;
661

662
	ret = mul_u32_u32(pixel_rate, cpp * latency);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

719 720
/**
 * intel_calculate_wm - calculate watermark level
721
 * @pixel_rate: pixel clock
722
 * @wm: chip FIFO params
723
 * @fifo_size: size of the FIFO buffer
724
 * @cpp: bytes per pixel
725 726 727 728 729 730 731 732 733 734 735 736 737
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
738 739 740 741
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
742
{
743
	int entries, wm_size;
744 745 746 747 748 749 750

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
751 752 753 754 755
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
756

757 758
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
759 760

	/* Don't promote wm_size to unsigned... */
761
	if (wm_size > wm->max_wm)
762 763 764
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
765 766 767 768 769 770 771 772 773 774 775

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

776 777 778
	return wm_size;
}

779 780 781 782 783 784 785 786 787 788
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

789 790 791 792 793
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

794 795 796
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
797
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
798 799

	/* FIXME check the 'enable' instead */
800
	if (!crtc_state->hw.active)
801 802 803 804 805 806 807 808 809 810 811
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
812
		return plane_state->hw.fb != NULL;
813
	else
814
		return plane_state->uapi.visible;
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

836
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
837
{
838
	struct intel_crtc *crtc, *enabled = NULL;
839

840
	for_each_intel_crtc(&dev_priv->drm, crtc) {
841
		if (intel_crtc_active(crtc)) {
842 843 844 845 846 847 848 849 850
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

851
static void pnv_update_wm(struct intel_crtc *unused_crtc)
852
{
853
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
854
	struct intel_crtc *crtc;
855 856
	const struct cxsr_latency *latency;
	u32 reg;
857
	unsigned int wm;
858

859
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
860 861 862
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
863
	if (!latency) {
864 865
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
866
		intel_set_memory_cxsr(dev_priv, false);
867 868 869
		return;
	}

870
	crtc = single_enabled_crtc(dev_priv);
871
	if (crtc) {
872
		const struct drm_display_mode *adjusted_mode =
873
			&crtc->config->hw.adjusted_mode;
874 875
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
876
		int cpp = fb->format->cpp[0];
877
		int clock = adjusted_mode->crtc_clock;
878 879

		/* Display SR */
880 881
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
882
					cpp, latency->display_sr);
883 884
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
885
		reg |= FW_WM(wm, SR);
886
		I915_WRITE(DSPFW1, reg);
887
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
888 889

		/* cursor SR */
890 891
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
892
					4, latency->cursor_sr);
893 894
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
895
		reg |= FW_WM(wm, CURSOR_SR);
896 897 898
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
899 900
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
901
					cpp, latency->display_hpll_disable);
902 903
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
904
		reg |= FW_WM(wm, HPLL_SR);
905 906 907
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
908 909
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
910
					4, latency->cursor_hpll_disable);
911 912
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
913
		reg |= FW_WM(wm, HPLL_CURSOR);
914
		I915_WRITE(DSPFW3, reg);
915
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
916

917
		intel_set_memory_cxsr(dev_priv, true);
918
	} else {
919
		intel_set_memory_cxsr(dev_priv, false);
920 921 922
	}
}

923 924 925 926 927 928 929 930 931 932
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
933
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
934 935 936 937 938 939
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

940 941
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
942
{
943 944 945 946 947
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
965

966
	POSTING_READ(DSPFW1);
967 968
}

969 970 971
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

972
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
973 974
				const struct vlv_wm_values *wm)
{
975 976 977
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
978 979
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

980 981 982 983 984 985
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
986

987 988 989 990 991 992 993 994 995 996 997
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

998
	I915_WRITE(DSPFW1,
999
		   FW_WM(wm->sr.plane, SR) |
1000 1001 1002
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1003
	I915_WRITE(DSPFW2,
1004 1005 1006
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1007
	I915_WRITE(DSPFW3,
1008
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1009 1010 1011

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1012 1013
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1014
		I915_WRITE(DSPFW8_CHV,
1015 1016
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1017
		I915_WRITE(DSPFW9_CHV,
1018 1019
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1020
		I915_WRITE(DSPHOWM,
1021
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1022 1023 1024 1025 1026 1027 1028 1029 1030
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1031 1032
	} else {
		I915_WRITE(DSPFW7,
1033 1034
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1035
		I915_WRITE(DSPHOWM,
1036
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1037 1038 1039 1040 1041 1042
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1043 1044 1045
	}

	POSTING_READ(DSPFW1);
1046 1047
}

1048 1049
#undef FW_WM_VLV

1050 1051 1052 1053 1054
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1055
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1056

1057
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1102 1103 1104
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1105
{
1106
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1107 1108
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1109
		&crtc_state->hw.adjusted_mode;
1110 1111
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1112 1113 1114 1115 1116 1117 1118

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1119
	cpp = plane_state->hw.fb->format->cpp[0];
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1134
		cpp = max(cpp, 4u);
1135 1136 1137 1138

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1139
	width = drm_rect_width(&plane_state->uapi.dst);
1140 1141 1142 1143 1144 1145 1146

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1147
		unsigned int small, large;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1160
	return min_t(unsigned int, wm, USHRT_MAX);
1161 1162 1163 1164 1165
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1166
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1182
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1198 1199
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1200
			      u32 pri_val);
1201 1202 1203 1204

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1205
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1206
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1259 1260 1261 1262 1263 1264
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1265 1266

		if (plane_id == PLANE_PRIMARY)
1267 1268 1269 1270
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1287
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1325
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1326
	struct intel_atomic_state *state =
1327
		to_intel_atomic_state(crtc_state->uapi.state);
1328
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1329 1330
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1331
	const struct g4x_pipe_wm *raw;
1332 1333
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1334 1335 1336 1337 1338
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1339 1340 1341
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1342 1343
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1344 1345
			continue;

1346
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1412
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1413
{
1414
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1415 1416 1417
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1418
		to_intel_atomic_state(new_crtc_state->uapi.state);
1419 1420 1421
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1422 1423
	enum plane_id plane_id;

1424
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1425 1426 1427 1428 1429 1430 1431
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1432
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1433
		!new_crtc_state->disable_cxsr;
1434
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1435
		!new_crtc_state->disable_cxsr;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1477
out:
1478 1479 1480 1481 1482
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1483
		new_crtc_state->wm.need_postvbl_update = true;
1484 1485 1486 1487 1488 1489 1490 1491

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1492
	int num_active_pipes = 0;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1511
		num_active_pipes++;
1512 1513
	}

1514
	if (num_active_pipes != 1) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1554
				   struct intel_crtc *crtc)
1555
{
1556 1557 1558
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1559 1560 1561 1562 1563 1564 1565 1566

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1567
				    struct intel_crtc *crtc)
1568
{
1569 1570 1571
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1572 1573 1574 1575 1576

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1577
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1578 1579 1580 1581
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1582 1583
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1584 1585
				   unsigned int htotal,
				   unsigned int width,
1586
				   unsigned int cpp,
1587 1588 1589 1590
				   unsigned int latency)
{
	unsigned int ret;

1591 1592
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1593 1594 1595 1596 1597
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1598
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1599 1600 1601 1602
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1603 1604
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1605 1606 1607
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1608 1609

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1610 1611 1612
	}
}

1613 1614 1615
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1616
{
1617
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1618
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1619
	const struct drm_display_mode *adjusted_mode =
1620
		&crtc_state->hw.adjusted_mode;
1621
	unsigned int clock, htotal, cpp, width, wm;
1622 1623 1624 1625

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1626
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1627 1628
		return 0;

1629
	cpp = plane_state->hw.fb->format->cpp[0];
1630 1631 1632
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1633

1634
	if (plane->id == PLANE_CURSOR) {
1635 1636 1637 1638 1639 1640 1641 1642
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1643
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1644 1645 1646
				    dev_priv->wm.pri_latency[level] * 10);
	}

1647
	return min_t(unsigned int, wm, USHRT_MAX);
1648 1649
}

1650 1651 1652 1653 1654 1655
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1656
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1657
{
1658
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1659
	const struct g4x_pipe_wm *raw =
1660
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1661
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1662
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1663
	int num_active_planes = hweight8(active_planes);
1664
	const int fifo_size = 511;
1665
	int fifo_extra, fifo_left = fifo_size;
1666
	int sprite0_fifo_extra = 0;
1667 1668
	unsigned int total_rate;
	enum plane_id plane_id;
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1681 1682
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1683 1684
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1685

1686 1687
	if (total_rate > fifo_size)
		return -EINVAL;
1688

1689 1690
	if (total_rate == 0)
		total_rate = 1;
1691

1692
	for_each_plane_id_on_crtc(crtc, plane_id) {
1693 1694
		unsigned int rate;

1695 1696
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1697 1698 1699
			continue;
		}

1700 1701 1702
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1703 1704
	}

1705 1706 1707
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1708 1709 1710
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1711 1712

	/* spread the remainder evenly */
1713
	for_each_plane_id_on_crtc(crtc, plane_id) {
1714 1715 1716 1717 1718
		int plane_extra;

		if (fifo_left == 0)
			break;

1719
		if ((active_planes & BIT(plane_id)) == 0)
1720 1721 1722
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1723
		fifo_state->plane[plane_id] += plane_extra;
1724 1725 1726
		fifo_left -= plane_extra;
	}

1727 1728 1729 1730 1731 1732 1733 1734 1735
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1736 1737
}

1738 1739 1740 1741 1742 1743
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1744
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1755 1756 1757 1758 1759 1760 1761 1762
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1763 1764 1765 1766
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1767
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1768
				 int level, enum plane_id plane_id, u16 value)
1769
{
1770
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1771
	int num_levels = intel_wm_num_levels(dev_priv);
1772
	bool dirty = false;
1773

1774
	for (; level < num_levels; level++) {
1775
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1776

1777
		dirty |= raw->plane[plane_id] != value;
1778
		raw->plane[plane_id] = value;
1779
	}
1780 1781

	return dirty;
1782 1783
}

1784 1785
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1786
{
1787
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1788
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1789
	enum plane_id plane_id = plane->id;
1790
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1791
	int level;
1792
	bool dirty = false;
1793

1794
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1795 1796
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1797
	}
1798

1799
	for (level = 0; level < num_levels; level++) {
1800
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1801 1802
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1803

1804 1805
		if (wm > max_wm)
			break;
1806

1807
		dirty |= raw->plane[plane_id] != wm;
1808 1809
		raw->plane[plane_id] = wm;
	}
1810

1811
	/* mark all higher levels as invalid */
1812
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1813

1814 1815
out:
	if (dirty)
1816 1817 1818 1819 1820 1821
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1822 1823

	return dirty;
1824
}
1825

1826 1827
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1828
{
1829
	const struct g4x_pipe_wm *raw =
1830 1831 1832
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1833

1834 1835
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1836

1837
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1838
{
1839 1840 1841 1842
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1843 1844 1845 1846
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1847
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1848 1849
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1850
		to_intel_atomic_state(crtc_state->uapi.state);
1851 1852 1853
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1854 1855
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1856
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1857 1858
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1859 1860 1861
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1862
	unsigned int dirty = 0;
1863

1864 1865 1866
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1867 1868
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1869
			continue;
1870

1871
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1890
			intel_atomic_get_old_crtc_state(state, crtc);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1902
	}
1903

1904
	/* initially allow all levels */
1905
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1906 1907 1908 1909 1910
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1911
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1912

1913
	for (level = 0; level < wm_state->num_levels; level++) {
1914
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1915
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1916

1917
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1918
			break;
1919

1920 1921 1922 1923 1924 1925 1926 1927
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1928
						 raw->plane[PLANE_SPRITE0],
1929 1930
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1931

1932 1933 1934
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1935 1936
	}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1947 1948
}

1949 1950 1951
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1952
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1953
				   struct intel_crtc *crtc)
1954
{
1955
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1956
	struct intel_uncore *uncore = &dev_priv->uncore;
1957 1958
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1959 1960
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1961
	int sprite0_start, sprite1_start, fifo_size;
1962
	u32 dsparb, dsparb2, dsparb3;
1963

1964 1965 1966
	if (!crtc_state->fifo_changed)
		return;

1967 1968 1969
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1970

1971 1972
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1973

1974 1975
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1976 1977 1978 1979 1980 1981 1982 1983 1984
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1985
	spin_lock(&uncore->lock);
1986

1987 1988
	switch (crtc->pipe) {
	case PIPE_A:
1989 1990
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2002 2003
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2004 2005
		break;
	case PIPE_B:
2006 2007
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2019 2020
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2021 2022
		break;
	case PIPE_C:
2023 2024
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2036 2037
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2038 2039 2040 2041
		break;
	default:
		break;
	}
2042

2043
	intel_uncore_posting_read_fw(uncore, DSPARB);
2044

2045
	spin_unlock(&uncore->lock);
2046 2047 2048 2049
}

#undef VLV_FIFO

2050
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2051
{
2052
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2053 2054 2055
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2056
		to_intel_atomic_state(new_crtc_state->uapi.state);
2057 2058 2059
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2060 2061
	int level;

2062
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2063 2064 2065 2066 2067 2068
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2069
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2070
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2071
		!new_crtc_state->disable_cxsr;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2090
out:
2091 2092 2093 2094
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2095
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2096
		new_crtc_state->wm.need_postvbl_update = true;
2097 2098 2099 2100

	return 0;
}

2101
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2102 2103 2104
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2105
	int num_active_pipes = 0;
2106

2107
	wm->level = dev_priv->wm.max_level;
2108 2109
	wm->cxsr = true;

2110
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2111
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2112 2113 2114 2115 2116 2117 2118

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2119
		num_active_pipes++;
2120 2121 2122
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2123
	if (num_active_pipes != 1)
2124 2125
		wm->cxsr = false;

2126
	if (num_active_pipes > 1)
2127 2128
		wm->level = VLV_WM_LEVEL_PM2;

2129
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2130
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2131 2132 2133
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2134
		if (crtc->active && wm->cxsr)
2135 2136
			wm->sr = wm_state->sr[wm->level];

2137 2138 2139 2140
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2141 2142 2143
	}
}

2144
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2145
{
2146 2147
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2148

2149
	vlv_merge_wm(dev_priv, &new_wm);
2150

2151
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2152 2153
		return;

2154
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2155 2156
		chv_set_memory_dvfs(dev_priv, false);

2157
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2158 2159
		chv_set_memory_pm5(dev_priv, false);

2160
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2161
		_intel_set_memory_cxsr(dev_priv, false);
2162

2163
	vlv_write_wm_values(dev_priv, &new_wm);
2164

2165
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2166
		_intel_set_memory_cxsr(dev_priv, true);
2167

2168
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2169 2170
		chv_set_memory_pm5(dev_priv, true);

2171
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2172 2173
		chv_set_memory_dvfs(dev_priv, true);

2174
	*old_wm = new_wm;
2175 2176
}

2177
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2178
				   struct intel_crtc *crtc)
2179
{
2180 2181 2182
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2183 2184

	mutex_lock(&dev_priv->wm.wm_mutex);
2185 2186 2187 2188 2189 2190
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2191
				    struct intel_crtc *crtc)
2192
{
2193 2194 2195
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2196 2197 2198 2199 2200

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2201
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2202 2203 2204 2205
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2206
static void i965_update_wm(struct intel_crtc *unused_crtc)
2207
{
2208
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2209
	struct intel_crtc *crtc;
2210 2211
	int srwm = 1;
	int cursor_sr = 16;
2212
	bool cxsr_enabled;
2213 2214

	/* Calc sr entries for one plane configs */
2215
	crtc = single_enabled_crtc(dev_priv);
2216 2217 2218
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2219
		const struct drm_display_mode *adjusted_mode =
2220
			&crtc->config->hw.adjusted_mode;
2221 2222
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2223
		int clock = adjusted_mode->crtc_clock;
2224
		int htotal = adjusted_mode->crtc_htotal;
2225
		int hdisplay = crtc->config->pipe_src_w;
2226
		int cpp = fb->format->cpp[0];
2227 2228
		int entries;

2229 2230
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2231 2232 2233 2234 2235
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2236 2237 2238
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2239

2240 2241 2242
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2243
		entries = DIV_ROUND_UP(entries,
2244 2245
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2246

2247
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2248 2249 2250
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2251 2252 2253
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2254

2255
		cxsr_enabled = true;
2256
	} else {
2257
		cxsr_enabled = false;
2258
		/* Turn off self refresh if both pipes are enabled */
2259
		intel_set_memory_cxsr(dev_priv, false);
2260 2261
	}

2262 2263 2264
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2265 2266

	/* 965 has limitations... */
2267 2268 2269 2270 2271 2272
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2273
	/* update cursor SR watermark */
2274
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2275 2276 2277

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2278 2279
}

2280 2281
#undef FW_WM

2282
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2283
{
2284
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2285
	const struct intel_watermark_params *wm_info;
2286 2287
	u32 fwater_lo;
	u32 fwater_hi;
2288 2289 2290
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2291
	struct intel_crtc *crtc, *enabled = NULL;
2292

2293
	if (IS_I945GM(dev_priv))
2294
		wm_info = &i945_wm_info;
2295
	else if (!IS_GEN(dev_priv, 2))
2296 2297
		wm_info = &i915_wm_info;
	else
2298
		wm_info = &i830_a_wm_info;
2299

2300 2301
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2302 2303
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2304
			&crtc->config->hw.adjusted_mode;
2305 2306 2307 2308
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2309
		if (IS_GEN(dev_priv, 2))
2310
			cpp = 4;
2311
		else
2312
			cpp = fb->format->cpp[0];
2313

2314
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2315
					       wm_info, fifo_size, cpp,
2316
					       pessimal_latency_ns);
2317
		enabled = crtc;
2318
	} else {
2319
		planea_wm = fifo_size - wm_info->guard_size;
2320 2321 2322 2323
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2324
	if (IS_GEN(dev_priv, 2))
2325
		wm_info = &i830_bc_wm_info;
2326

2327 2328
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2329 2330
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2331
			&crtc->config->hw.adjusted_mode;
2332 2333 2334 2335
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2336
		if (IS_GEN(dev_priv, 2))
2337
			cpp = 4;
2338
		else
2339
			cpp = fb->format->cpp[0];
2340

2341
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2342
					       wm_info, fifo_size, cpp,
2343
					       pessimal_latency_ns);
2344 2345 2346 2347
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2348
	} else {
2349
		planeb_wm = fifo_size - wm_info->guard_size;
2350 2351 2352
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2353

2354 2355
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2356

2357
	if (IS_I915GM(dev_priv) && enabled) {
2358
		struct drm_i915_gem_object *obj;
2359

2360
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2361 2362

		/* self-refresh seems busted with untiled */
2363
		if (!i915_gem_object_is_tiled(obj))
2364 2365 2366
			enabled = NULL;
	}

2367 2368 2369 2370 2371 2372
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2373
	intel_set_memory_cxsr(dev_priv, false);
2374 2375

	/* Calc sr entries for one plane configs */
2376
	if (HAS_FW_BLC(dev_priv) && enabled) {
2377 2378
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2379
		const struct drm_display_mode *adjusted_mode =
2380
			&enabled->config->hw.adjusted_mode;
2381 2382
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2383
		int clock = adjusted_mode->crtc_clock;
2384
		int htotal = adjusted_mode->crtc_htotal;
2385 2386
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2387 2388
		int entries;

2389
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2390
			cpp = 4;
2391
		else
2392
			cpp = fb->format->cpp[0];
2393

2394 2395
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2396
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2397 2398
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2399 2400 2401 2402
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2403
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2404 2405
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2406
		else
2407 2408 2409
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

2410 2411 2412
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2424 2425
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2426 2427
}

2428
static void i845_update_wm(struct intel_crtc *unused_crtc)
2429
{
2430
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2431
	struct intel_crtc *crtc;
2432
	const struct drm_display_mode *adjusted_mode;
2433
	u32 fwater_lo;
2434 2435
	int planea_wm;

2436
	crtc = single_enabled_crtc(dev_priv);
2437 2438 2439
	if (crtc == NULL)
		return;

2440
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2441
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2442
				       &i845_wm_info,
2443
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2444
				       4, pessimal_latency_ns);
2445 2446 2447
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

2448 2449
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2450 2451 2452 2453

	I915_WRITE(FW_BLC, fwater_lo);
}

2454
/* latency must be in 0.1us units. */
2455 2456 2457
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2458
{
2459
	unsigned int ret;
2460

2461 2462
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2463 2464 2465 2466

	return ret;
}

2467
/* latency must be in 0.1us units. */
2468 2469 2470 2471 2472
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2473
{
2474
	unsigned int ret;
2475

2476 2477
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2478
	ret = DIV_ROUND_UP(ret, 64) + 2;
2479

2480 2481 2482
	return ret;
}

2483
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2484
{
2485 2486 2487 2488 2489 2490
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2491
	if (WARN_ON(!cpp))
2492 2493 2494 2495
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2496
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2497 2498
}

2499
struct ilk_wm_maximums {
2500 2501 2502 2503
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2504 2505
};

2506 2507 2508 2509
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2510 2511
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2512
			      u32 mem_value, bool is_lp)
2513
{
2514
	u32 method1, method2;
2515
	int cpp;
2516

2517 2518 2519
	if (mem_value == 0)
		return U32_MAX;

2520
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2521 2522
		return 0;

2523
	cpp = plane_state->hw.fb->format->cpp[0];
2524

2525
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2526 2527 2528 2529

	if (!is_lp)
		return method1;

2530
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2531
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2532
				 drm_rect_width(&plane_state->uapi.dst),
2533
				 cpp, mem_value);
2534 2535

	return min(method1, method2);
2536 2537
}

2538 2539 2540 2541
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2542 2543
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2544
			      u32 mem_value)
2545
{
2546
	u32 method1, method2;
2547
	int cpp;
2548

2549 2550 2551
	if (mem_value == 0)
		return U32_MAX;

2552
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2553 2554
		return 0;

2555
	cpp = plane_state->hw.fb->format->cpp[0];
2556

2557 2558
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2559
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2560
				 drm_rect_width(&plane_state->uapi.dst),
2561
				 cpp, mem_value);
2562 2563 2564
	return min(method1, method2);
}

2565 2566 2567 2568
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2569 2570
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2571
			      u32 mem_value)
2572
{
2573 2574
	int cpp;

2575 2576 2577
	if (mem_value == 0)
		return U32_MAX;

2578
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2579 2580
		return 0;

2581
	cpp = plane_state->hw.fb->format->cpp[0];
2582

2583
	return ilk_wm_method2(crtc_state->pixel_rate,
2584
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2585
			      drm_rect_width(&plane_state->uapi.dst),
2586
			      cpp, mem_value);
2587 2588
}

2589
/* Only for WM_LP. */
2590 2591
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2592
			      u32 pri_val)
2593
{
2594
	int cpp;
2595

2596
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2597 2598
		return 0;

2599
	cpp = plane_state->hw.fb->format->cpp[0];
2600

2601 2602
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2603 2604
}

2605 2606
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2607
{
2608
	if (INTEL_GEN(dev_priv) >= 8)
2609
		return 3072;
2610
	else if (INTEL_GEN(dev_priv) >= 7)
2611 2612 2613 2614 2615
		return 768;
	else
		return 512;
}

2616 2617 2618
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2619
{
2620
	if (INTEL_GEN(dev_priv) >= 8)
2621 2622
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2623
	else if (INTEL_GEN(dev_priv) >= 7)
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2634 2635
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2636
{
2637
	if (INTEL_GEN(dev_priv) >= 7)
2638 2639 2640 2641 2642
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2643
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2644
{
2645
	if (INTEL_GEN(dev_priv) >= 8)
2646 2647 2648 2649 2650
		return 31;
	else
		return 15;
}

2651
/* Calculate the maximum primary/sprite plane watermark */
2652
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2653
				     int level,
2654
				     const struct intel_wm_config *config,
2655 2656 2657
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2658
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2659 2660

	/* if sprites aren't enabled, sprites get nothing */
2661
	if (is_sprite && !config->sprites_enabled)
2662 2663 2664
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2665
	if (level == 0 || config->num_pipes_active > 1) {
2666
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2667 2668 2669 2670 2671 2672

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2673
		if (INTEL_GEN(dev_priv) <= 6)
2674 2675 2676
			fifo_size /= 2;
	}

2677
	if (config->sprites_enabled) {
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2689
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2690 2691 2692
}

/* Calculate the maximum cursor plane watermark */
2693
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2694 2695
				      int level,
				      const struct intel_wm_config *config)
2696 2697
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2698
	if (level > 0 && config->num_pipes_active > 1)
2699 2700 2701
		return 64;

	/* otherwise just report max that registers can hold */
2702
	return ilk_cursor_wm_reg_max(dev_priv, level);
2703 2704
}

2705
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2706 2707 2708
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2709
				    struct ilk_wm_maximums *max)
2710
{
2711 2712 2713 2714
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2715 2716
}

2717
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2718 2719 2720
					int level,
					struct ilk_wm_maximums *max)
{
2721 2722 2723 2724
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2725 2726
}

2727
static bool ilk_validate_wm_level(int level,
2728
				  const struct ilk_wm_maximums *max,
2729
				  struct intel_wm_level *result)
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2759 2760 2761
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2762 2763 2764 2765 2766 2767
		result->enable = true;
	}

	return ret;
}

2768
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2769
				 const struct intel_crtc *crtc,
2770
				 int level,
2771
				 struct intel_crtc_state *crtc_state,
2772 2773 2774
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2775
				 struct intel_wm_level *result)
2776
{
2777 2778 2779
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2780 2781 2782 2783 2784 2785 2786 2787

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2788
	if (pristate) {
2789
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2790
						     pri_latency, level);
2791
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2792 2793 2794
	}

	if (sprstate)
2795
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2796 2797

	if (curstate)
2798
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2799

2800 2801 2802
	result->enable = true;
}

2803
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2804
				  u16 wm[8])
2805
{
2806 2807
	struct intel_uncore *uncore = &dev_priv->uncore;

2808
	if (INTEL_GEN(dev_priv) >= 9) {
2809
		u32 val;
2810
		int ret, i;
2811
		int level, max_level = ilk_wm_max_level(dev_priv);
2812 2813 2814 2815 2816

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2817
					     &val, NULL);
2818 2819

		if (ret) {
2820 2821
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2837
					     &val, NULL);
2838
		if (ret) {
2839 2840
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2865
		/*
2866
		 * WaWmMemoryReadLatency:skl+,glk
2867
		 *
2868
		 * punit doesn't take into account the read latency so we need
2869 2870
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2871
		 */
2872 2873 2874 2875 2876
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2877
				wm[level] += 2;
2878
			}
2879 2880
		}

2881 2882 2883 2884 2885 2886
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2887
		if (dev_priv->dram_info.is_16gb_dimm)
2888 2889
			wm[0] += 1;

2890
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2891
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2892 2893 2894 2895

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2896 2897 2898 2899
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2900
	} else if (INTEL_GEN(dev_priv) >= 6) {
2901
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2902 2903 2904 2905 2906

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2907
	} else if (INTEL_GEN(dev_priv) >= 5) {
2908
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2909 2910 2911 2912 2913

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2914 2915
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2916 2917 2918
	}
}

2919
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2920
				       u16 wm[5])
2921 2922
{
	/* ILK sprite LP0 latency is 1300 ns */
2923
	if (IS_GEN(dev_priv, 5))
2924 2925 2926
		wm[0] = 13;
}

2927
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2928
				       u16 wm[5])
2929 2930
{
	/* ILK cursor LP0 latency is 1300 ns */
2931
	if (IS_GEN(dev_priv, 5))
2932 2933 2934
		wm[0] = 13;
}

2935
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2936 2937
{
	/* how many WM levels are we expecting */
2938
	if (INTEL_GEN(dev_priv) >= 9)
2939
		return 7;
2940
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2941
		return 4;
2942
	else if (INTEL_GEN(dev_priv) >= 6)
2943
		return 3;
2944
	else
2945 2946
		return 2;
}
2947

2948
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2949
				   const char *name,
2950
				   const u16 wm[8])
2951
{
2952
	int level, max_level = ilk_wm_max_level(dev_priv);
2953 2954 2955 2956 2957

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2958 2959 2960
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
2961 2962 2963
			continue;
		}

2964 2965 2966 2967
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2968
		if (INTEL_GEN(dev_priv) >= 9)
2969 2970
			latency *= 10;
		else if (level > 0)
2971 2972
			latency *= 5;

2973 2974 2975
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
2976 2977 2978
	}
}

2979
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2980
				    u16 wm[5], u16 min)
2981
{
2982
	int level, max_level = ilk_wm_max_level(dev_priv);
2983 2984 2985 2986 2987 2988

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2989
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2990 2991 2992 2993

	return true;
}

2994
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3009 3010
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3011 3012 3013
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3038 3039
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3040 3041 3042 3043 3044
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3045
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3046
{
3047
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3048 3049 3050 3051 3052 3053

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3054
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3055
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3056

3057 3058 3059
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3060

3061
	if (IS_GEN(dev_priv, 6)) {
3062
		snb_wm_latency_quirk(dev_priv);
3063 3064
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3065 3066
}

3067
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3068
{
3069
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3070
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3071 3072
}

3073
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3085
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3086 3087 3088

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3089
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3090 3091 3092 3093 3094 3095
		return false;
	}

	return true;
}

3096
/* Compute new watermarks for the pipe */
3097
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3098
{
3099
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3100
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3101
	struct intel_pipe_wm *pipe_wm;
3102 3103
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3104 3105 3106
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3107
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3108
	struct ilk_wm_maximums max;
3109

3110
	pipe_wm = &crtc_state->wm.ilk.optimal;
3111

3112 3113 3114 3115 3116 3117 3118
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3119 3120
	}

3121
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3122
	if (sprstate) {
3123 3124 3125 3126
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3127 3128
	}

3129 3130
	usable_level = max_level;

3131
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3132
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3133
		usable_level = 1;
3134 3135

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3136
	if (pipe_wm->sprites_scaled)
3137
		usable_level = 0;
3138

3139
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3140
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3141
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3142

3143
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3144
		return -EINVAL;
3145

3146
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3147

3148 3149
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3150

3151
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3152
				     pristate, sprstate, curstate, wm);
3153 3154 3155 3156 3157 3158

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3159 3160 3161 3162
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3163 3164
	}

3165
	return 0;
3166 3167
}

3168 3169 3170 3171 3172
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3173
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3174
{
3175
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3176
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3177
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3178
	struct intel_atomic_state *intel_state =
3179
		to_intel_atomic_state(newstate->uapi.state);
3180 3181 3182
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3183
	int level, max_level = ilk_wm_max_level(dev_priv);
3184 3185 3186 3187 3188 3189

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3190
	*a = newstate->wm.ilk.optimal;
3191
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3192
	    intel_state->skip_intermediate_wm)
3193 3194
		return 0;

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3216
	if (!ilk_validate_pipe_wm(dev_priv, a))
3217 3218 3219 3220 3221 3222
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3223 3224
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3225 3226 3227 3228

	return 0;
}

3229 3230 3231
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3232
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3233 3234 3235 3236 3237
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3238 3239
	ret_wm->enable = true;

3240
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3241
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3242 3243 3244 3245
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3246

3247 3248 3249 3250 3251
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3252
		if (!wm->enable)
3253
			ret_wm->enable = false;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3265
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3266
			 const struct intel_wm_config *config,
3267
			 const struct ilk_wm_maximums *max,
3268 3269
			 struct intel_pipe_wm *merged)
{
3270
	int level, max_level = ilk_wm_max_level(dev_priv);
3271
	int last_enabled_level = max_level;
3272

3273
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3274
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3275
	    config->num_pipes_active > 1)
3276
		last_enabled_level = 0;
3277

3278
	/* ILK: FBC WM must be disabled always */
3279
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3280 3281 3282 3283 3284

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3285
		ilk_merge_wm_level(dev_priv, level, wm);
3286

3287 3288 3289 3290 3291
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3292 3293 3294 3295 3296 3297

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3298 3299
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3300 3301 3302
			wm->fbc_val = 0;
		}
	}
3303 3304 3305 3306 3307 3308 3309

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3310
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3311
	    intel_fbc_is_active(dev_priv)) {
3312 3313 3314 3315 3316 3317
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3318 3319
}

3320 3321 3322 3323 3324 3325
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3326
/* The value we need to program into the WM_LPx latency field */
3327 3328
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3329
{
3330
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3331 3332 3333 3334 3335
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3336
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3337
				   const struct intel_pipe_wm *merged,
3338
				   enum intel_ddb_partitioning partitioning,
3339
				   struct ilk_wm_values *results)
3340
{
3341 3342
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3343

3344
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3345
	results->partitioning = partitioning;
3346

3347
	/* LP1+ register values */
3348
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3349
		const struct intel_wm_level *r;
3350

3351
		level = ilk_wm_lp_to_level(wm_lp, merged);
3352

3353
		r = &merged->wm[level];
3354

3355 3356 3357 3358 3359
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3360
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3361 3362 3363
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3364 3365 3366
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3367
		if (INTEL_GEN(dev_priv) >= 8)
3368 3369 3370 3371 3372 3373
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3374 3375 3376 3377
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3378
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3379
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3380 3381 3382
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3383
	}
3384

3385
	/* LP0 register values */
3386
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3387
		enum pipe pipe = intel_crtc->pipe;
3388 3389
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3390

3391
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3392
			continue;
3393

3394 3395 3396 3397
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3398 3399 3400
	}
}

3401 3402
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3403 3404 3405 3406
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3407
{
3408
	int level, max_level = ilk_wm_max_level(dev_priv);
3409
	int level1 = 0, level2 = 0;
3410

3411 3412 3413 3414 3415
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3416 3417
	}

3418 3419
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3420 3421 3422
			return r2;
		else
			return r1;
3423
	} else if (level1 > level2) {
3424 3425 3426 3427 3428 3429
		return r1;
	} else {
		return r2;
	}
}

3430 3431 3432 3433 3434 3435 3436
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3437
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3438 3439
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3440 3441 3442 3443 3444
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3445
	for_each_pipe(dev_priv, pipe) {
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3483 3484
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3485
{
3486
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3487
	bool changed = false;
3488

3489 3490 3491
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3492
		changed = true;
3493 3494 3495 3496
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3497
		changed = true;
3498 3499 3500 3501
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3502
		changed = true;
3503
	}
3504

3505 3506 3507 3508
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3509

3510 3511 3512 3513 3514 3515 3516
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3517 3518
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3519
{
3520
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3521
	unsigned int dirty;
3522
	u32 val;
3523

3524
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3525 3526 3527 3528 3529
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3530
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3531
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3532
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3533
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3534
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3535 3536
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3537
	if (dirty & WM_DIRTY_DDB) {
3538
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3553 3554
	}

3555
	if (dirty & WM_DIRTY_FBC) {
3556 3557 3558 3559 3560 3561 3562 3563
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3564 3565 3566 3567
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3568
	if (INTEL_GEN(dev_priv) >= 7) {
3569 3570 3571 3572 3573
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3574

3575
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3576
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3577
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3578
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3579
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3580
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3581 3582

	dev_priv->wm.hw = *results;
3583 3584
}

3585
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3586 3587 3588 3589
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3590
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3591
{
3592 3593 3594
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3595

3596 3597 3598 3599
	for (i = 0; i < max_slices; i++) {
		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
			enabled_slices_mask |= BIT(i);
	}
3600

3601
	return enabled_slices_mask;
3602 3603
}

3604 3605 3606 3607
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3608
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3609
{
3610
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3611 3612
}

3613 3614 3615
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3616 3617 3618 3619
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3620 3621
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3622 3623
}

3624 3625 3626
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3639
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3640
	} else if (IS_GEN(dev_priv, 11)) {
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3669
intel_enable_sagv(struct drm_i915_private *dev_priv)
3670 3671 3672
{
	int ret;

3673 3674 3675 3676
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3677 3678
		return 0;

3679
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3680 3681 3682
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3683
	/* We don't need to wait for SAGV when enabling */
3684 3685 3686

	/*
	 * Some skl systems, pre-release machines in particular,
3687
	 * don't actually have SAGV.
3688
	 */
3689
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3690
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3691
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3692 3693
		return 0;
	} else if (ret < 0) {
3694
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3695 3696 3697
		return ret;
	}

3698
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3699 3700 3701 3702
	return 0;
}

int
3703
intel_disable_sagv(struct drm_i915_private *dev_priv)
3704
{
3705
	int ret;
3706

3707 3708 3709 3710
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3711 3712
		return 0;

3713
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3714
	/* bspec says to keep retrying for at least 1 ms */
3715 3716 3717 3718
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3719 3720
	/*
	 * Some skl systems, pre-release machines in particular,
3721
	 * don't actually have SAGV.
3722
	 */
3723
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3724
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3725
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3726
		return 0;
3727
	} else if (ret < 0) {
3728
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3729
		return ret;
3730 3731
	}

3732
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3733 3734 3735
	return 0;
}

3736
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3737
{
3738
	struct drm_device *dev = state->base.dev;
3739
	struct drm_i915_private *dev_priv = to_i915(dev);
3740 3741
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3742
	struct intel_crtc_state *crtc_state;
3743
	enum pipe pipe;
3744
	int level, latency;
3745

3746 3747 3748
	if (!intel_has_sagv(dev_priv))
		return false;

3749 3750 3751
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3752
	if (hweight8(state->active_pipes) == 0)
3753
		return true;
3754 3755 3756 3757 3758

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3759
	if (hweight8(state->active_pipes) > 1)
3760 3761 3762
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3763
	pipe = ffs(state->active_pipes) - 1;
3764
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3765
	crtc_state = to_intel_crtc_state(crtc->base.state);
3766

3767
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3768 3769
		return false;

3770
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3771
		struct skl_plane_wm *wm =
3772
			&crtc_state->wm.skl.optimal.planes[plane->id];
3773

3774
		/* Skip this plane if it's not enabled */
3775
		if (!wm->wm[0].plane_en)
3776 3777 3778
			continue;

		/* Find the highest enabled wm level for this plane */
3779
		for (level = ilk_wm_max_level(dev_priv);
3780
		     !wm->wm[level].plane_en; --level)
3781 3782
		     { }

3783 3784
		latency = dev_priv->wm.skl_latency[level];

3785
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3786
		    plane->base.state->fb->modifier ==
3787 3788 3789
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3790
		/*
3791 3792
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3793
		 * can't enable SAGV.
3794
		 */
3795
		if (latency < dev_priv->sagv_block_time_us)
3796 3797 3798 3799 3800 3801
			return false;
	}

	return true;
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3824 3825 3826
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

3827
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3828 3829 3830 3831 3832 3833 3834

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

3835 3836 3837
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
				  u32 active_pipes);

3838
static void
3839
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3840
				   const struct intel_crtc_state *crtc_state,
3841
				   const u64 total_data_rate,
3842 3843
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3844
{
3845
	struct drm_atomic_state *state = crtc_state->uapi.state;
3846
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3847
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3848
	const struct intel_crtc *crtc;
3849
	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3850 3851
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
3852
	u32 ddb_range_size;
3853
	u32 i;
3854 3855 3856 3857 3858 3859
	u32 dbuf_slice_mask;
	u32 active_pipes;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
3860

3861
	if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3862 3863
		alloc->start = 0;
		alloc->end = 0;
3864
		*num_active = hweight8(dev_priv->active_pipes);
3865 3866 3867
		return;
	}

3868
	if (intel_state->active_pipe_changes)
3869
		active_pipes = intel_state->active_pipes;
3870
	else
3871 3872 3873 3874 3875
		active_pipes = dev_priv->active_pipes;

	*num_active = hweight8(active_pipes);

	ddb_size = intel_get_ddb_size(dev_priv);
3876

3877
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3878

3879
	/*
3880 3881 3882 3883 3884 3885
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3886
	 */
3887
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3888 3889 3890 3891 3892
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3893
		return;
3894
	}
3895

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);

	DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
		      dbuf_slice_mask,
		      pipe_name(for_pipe), active_pipes);

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

3920 3921 3922 3923 3924
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3925
	total_slice_mask = dbuf_slice_mask;
3926 3927
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
3928
			&crtc_state->hw.adjusted_mode;
3929
		enum pipe pipe = crtc->pipe;
3930
		int hdisplay, vdisplay;
3931
		u32 pipe_dbuf_slice_mask;
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
		if (!crtc_state->hw.active)
			continue;

		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
							       active_pipes);

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
3956 3957 3958
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3959 3960

		total_width_in_range += hdisplay;
3961 3962

		if (pipe < for_pipe)
3963
			width_before_pipe_in_range += hdisplay;
3964 3965 3966 3967
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
	intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);

	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
	end = ddb_range_size *
		(width_before_pipe_in_range + pipe_width) / total_width_in_range;

	alloc->start = offset + start;
	alloc->end = offset + end;

	DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
		      alloc->start, alloc->end);
	DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
		      intel_state->enabled_dbuf_slices_mask,
		      INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
3986 3987
}

3988 3989 3990 3991 3992
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3993
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3994 3995 3996 3997 3998 3999 4000 4001
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4002
{
4003
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4014
	drm_WARN_ON(&dev_priv->drm, ret);
4015 4016

	for (level = 0; level <= max_level; level++) {
4017
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
4018 4019 4020 4021 4022
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4023

4024
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4025 4026
}

4027 4028
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4029
{
4030

4031 4032
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4033

4034 4035
	if (entry->end)
		entry->end += 1;
4036 4037
}

4038 4039 4040 4041
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4042 4043
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4044
{
4045 4046
	u32 val, val2;
	u32 fourcc = 0;
4047 4048 4049 4050

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4051
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4052 4053 4054 4055 4056 4057
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4058 4059 4060 4061
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4062

4063 4064 4065 4066 4067
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4068
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4069

4070 4071
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4072 4073 4074 4075
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4076 4077 4078
	}
}

4079 4080 4081
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4082
{
4083 4084 4085
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4086
	intel_wakeref_t wakeref;
4087
	enum plane_id plane_id;
4088

4089
	power_domain = POWER_DOMAIN_PIPE(pipe);
4090 4091
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4092
		return;
4093

4094 4095 4096 4097 4098
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4099

4100
	intel_display_power_put(dev_priv, power_domain, wakeref);
4101
}
4102

4103
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4104
{
4105 4106
	dev_priv->enabled_dbuf_slices_mask =
				intel_enabled_dbuf_slices_mask(dev_priv);
4107 4108
}

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4125
static uint_fixed_16_16_t
4126 4127
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4128
{
4129
	u32 src_w, src_h, dst_w, dst_h;
4130 4131
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4132

4133
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4134
		return u32_to_fixed16(0);
4135

4136 4137 4138 4139 4140 4141 4142
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4143 4144 4145 4146
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4147

4148 4149 4150 4151
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4152

4153
	return mul_fixed16(downscale_w, downscale_h);
4154 4155
}

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4171
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4172 4173 4174 4175 4176
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4177 4178
			[PIPE_A] = BIT(DBUF_S1),
		},
4179 4180 4181 4182
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4183 4184
			[PIPE_B] = BIT(DBUF_S1),
		},
4185 4186 4187 4188 4189
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4190 4191
			[PIPE_B] = BIT(DBUF_S2),
		},
4192 4193 4194 4195
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4196 4197
			[PIPE_C] = BIT(DBUF_S2),
		},
4198 4199 4200 4201 4202
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4203 4204
			[PIPE_C] = BIT(DBUF_S2),
		},
4205 4206 4207 4208 4209
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4210 4211
			[PIPE_C] = BIT(DBUF_S2),
		},
4212 4213 4214 4215 4216 4217
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4218 4219
			[PIPE_C] = BIT(DBUF_S2),
		},
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	},
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4233
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4234 4235 4236 4237 4238
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4239 4240
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4241 4242 4243 4244
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4245 4246
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4247 4248 4249 4250 4251
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4252 4253
			[PIPE_B] = BIT(DBUF_S1),
		},
4254 4255 4256 4257
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4258 4259
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4260 4261 4262 4263 4264
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4265 4266
			[PIPE_C] = BIT(DBUF_S2),
		},
4267 4268 4269 4270 4271
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4272 4273
			[PIPE_C] = BIT(DBUF_S2),
		},
4274 4275 4276 4277 4278 4279
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4280 4281
			[PIPE_C] = BIT(DBUF_S2),
		},
4282 4283 4284 4285
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4286 4287
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4288 4289 4290 4291 4292
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4293 4294
			[PIPE_D] = BIT(DBUF_S2),
		},
4295 4296 4297 4298 4299
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4300 4301
			[PIPE_D] = BIT(DBUF_S2),
		},
4302 4303 4304 4305 4306 4307
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4308 4309
			[PIPE_D] = BIT(DBUF_S2),
		},
4310 4311 4312 4313 4314
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4315 4316
			[PIPE_D] = BIT(DBUF_S2),
		},
4317 4318 4319 4320 4321 4322
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4323 4324
			[PIPE_D] = BIT(DBUF_S2),
		},
4325 4326 4327 4328 4329 4330
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4331 4332
			[PIPE_D] = BIT(DBUF_S2),
		},
4333 4334 4335 4336 4337 4338 4339
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4340 4341
			[PIPE_D] = BIT(DBUF_S2),
		},
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	},
};

static u8 compute_dbuf_slices(enum pipe pipe,
			      u32 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices,
			      int size)
{
	int i;

	for (i = 0; i < size; i++) {
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
static u32 icl_compute_dbuf_slices(enum pipe pipe,
				   u32 active_pipes)
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
	return compute_dbuf_slices(pipe, active_pipes,
				   icl_allowed_dbufs,
				   ARRAY_SIZE(icl_allowed_dbufs));
}

static u32 tgl_compute_dbuf_slices(enum pipe pipe,
				   u32 active_pipes)
{
	return compute_dbuf_slices(pipe, active_pipes,
				   tgl_allowed_dbufs,
				   ARRAY_SIZE(tgl_allowed_dbufs));
}

static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
				  u32 active_pipes)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
		return tgl_compute_dbuf_slices(pipe,
					       active_pipes);
	else if (IS_GEN(dev_priv, 11))
		return icl_compute_dbuf_slices(pipe,
					       active_pipes);
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
	return BIT(DBUF_S1);
}

4412
static u64
4413 4414
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4415
			     int color_plane)
4416
{
4417
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4418
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4419 4420
	u32 data_rate;
	u32 width = 0, height = 0;
4421
	uint_fixed_16_16_t down_scale_amount;
4422
	u64 rate;
4423

4424
	if (!plane_state->uapi.visible)
4425
		return 0;
4426

4427
	if (plane->id == PLANE_CURSOR)
4428
		return 0;
4429 4430

	if (color_plane == 1 &&
4431
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4432
		return 0;
4433

4434 4435 4436 4437 4438
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4439 4440
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4441

4442
	/* UV plane does 1/2 pixel sub-sampling */
4443
	if (color_plane == 1) {
4444 4445
		width /= 2;
		height /= 2;
4446 4447
	}

4448
	data_rate = width * height;
4449

4450
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4451

4452 4453
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4454
	rate *= fb->format->cpp[color_plane];
4455
	return rate;
4456 4457
}

4458
static u64
4459
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4460 4461
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4462
{
4463 4464
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4465
	u64 total_data_rate = 0;
4466

4467
	/* Calculate and cache data rate for each plane */
4468 4469
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4470
		u64 rate;
4471

4472
		/* packed/y */
4473
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4474
		plane_data_rate[plane_id] = rate;
4475
		total_data_rate += rate;
4476

4477
		/* uv-plane */
4478
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4479
		uv_plane_data_rate[plane_id] = rate;
4480
		total_data_rate += rate;
4481 4482 4483 4484 4485
	}

	return total_data_rate;
}

4486
static u64
4487
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4488 4489
				 u64 *plane_data_rate)
{
4490 4491
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4492 4493 4494
	u64 total_data_rate = 0;

	/* Calculate and cache data rate for each plane */
4495 4496
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4497 4498
		u64 rate;

4499
		if (!plane_state->planar_linked_plane) {
4500
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4501 4502 4503 4504 4505 4506 4507
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4508
			 * intel_atomic_crtc_state_for_each_plane_state(),
4509 4510 4511 4512
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4513
			if (plane_state->planar_slave)
4514 4515 4516
				continue;

			/* Y plane rate is calculated on the slave */
4517
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4518
			y_plane_id = plane_state->planar_linked_plane->id;
4519 4520 4521
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4522
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4523 4524 4525 4526 4527 4528 4529 4530
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4531
static int
4532
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4533
{
4534 4535
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4536
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4537 4538 4539
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4540
	u64 total_data_rate;
4541
	enum plane_id plane_id;
4542
	int num_active;
4543 4544
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4545
	u32 blocks;
4546
	int level;
4547

4548
	/* Clear the partitioning for disabled planes. */
4549 4550
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4551

4552
	if (!crtc_state->hw.active) {
4553
		alloc->start = alloc->end = 0;
4554 4555 4556
		return 0;
	}

4557 4558
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4559
			icl_get_total_relative_data_rate(crtc_state,
4560 4561
							 plane_data_rate);
	else
4562
		total_data_rate =
4563
			skl_get_total_relative_data_rate(crtc_state,
4564 4565
							 plane_data_rate,
							 uv_plane_data_rate);
4566

4567

4568
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4569
					   alloc, &num_active);
4570
	alloc_size = skl_ddb_entry_size(alloc);
4571
	if (alloc_size == 0)
4572
		return 0;
4573

4574
	/* Allocate fixed number of blocks for cursor. */
4575
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4576
	alloc_size -= total[PLANE_CURSOR];
4577
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4578
		alloc->end - total[PLANE_CURSOR];
4579
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4580 4581 4582

	if (total_data_rate == 0)
		return 0;
4583

4584
	/*
4585 4586
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4587
	 */
4588
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4589
		blocks = 0;
4590
		for_each_plane_id_on_crtc(crtc, plane_id) {
4591
			const struct skl_plane_wm *wm =
4592
				&crtc_state->wm.skl.optimal.planes[plane_id];
4593 4594

			if (plane_id == PLANE_CURSOR) {
4595
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4596 4597
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4598 4599 4600
					blocks = U32_MAX;
					break;
				}
4601
				continue;
4602
			}
4603

4604 4605
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4606 4607
		}

4608
		if (blocks <= alloc_size) {
4609 4610 4611
			alloc_size -= blocks;
			break;
		}
4612 4613
	}

4614
	if (level < 0) {
4615 4616 4617 4618
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4619 4620 4621
		return -EINVAL;
	}

4622
	/*
4623 4624 4625
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4626
	 */
4627
	for_each_plane_id_on_crtc(crtc, plane_id) {
4628
		const struct skl_plane_wm *wm =
4629
			&crtc_state->wm.skl.optimal.planes[plane_id];
4630 4631
		u64 rate;
		u16 extra;
4632

4633
		if (plane_id == PLANE_CURSOR)
4634 4635
			continue;

4636
		/*
4637 4638
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4639
		 */
4640 4641
		if (total_data_rate == 0)
			break;
4642

4643 4644 4645 4646
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4647
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4648 4649
		alloc_size -= extra;
		total_data_rate -= rate;
4650

4651 4652
		if (total_data_rate == 0)
			break;
4653

4654 4655 4656 4657
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4658
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4659 4660 4661
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4662
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4663 4664 4665

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4666
	for_each_plane_id_on_crtc(crtc, plane_id) {
4667
		struct skl_ddb_entry *plane_alloc =
4668
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4669
		struct skl_ddb_entry *uv_plane_alloc =
4670
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4671 4672 4673 4674

		if (plane_id == PLANE_CURSOR)
			continue;

4675
		/* Gen11+ uses a separate plane for UV watermarks */
4676 4677
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4678 4679 4680 4681 4682 4683 4684

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4685

4686 4687 4688 4689
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4690
		}
4691
	}
4692

4693 4694 4695 4696 4697 4698 4699
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4700
		for_each_plane_id_on_crtc(crtc, plane_id) {
4701
			struct skl_plane_wm *wm =
4702
				&crtc_state->wm.skl.optimal.planes[plane_id];
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4719

4720
			/*
4721
			 * Wa_1408961008:icl, ehl
4722 4723
			 * Underruns with WM1+ disabled
			 */
4724
			if (IS_GEN(dev_priv, 11) &&
4725 4726
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4727 4728
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4729
			}
4730 4731 4732 4733 4734 4735 4736
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
4737
	for_each_plane_id_on_crtc(crtc, plane_id) {
4738
		struct skl_plane_wm *wm =
4739
			&crtc_state->wm.skl.optimal.planes[plane_id];
4740

4741
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4742
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4743 4744
	}

4745
	return 0;
4746 4747
}

4748 4749
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4750
 * for the read latency) and cpp should always be <= 8, so that
4751 4752 4753
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4754
static uint_fixed_16_16_t
4755 4756
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4757
{
4758
	u32 wm_intermediate_val;
4759
	uint_fixed_16_16_t ret;
4760 4761

	if (latency == 0)
4762
		return FP_16_16_MAX;
4763

4764
	wm_intermediate_val = latency * pixel_rate * cpp;
4765
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4766 4767 4768 4769

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4770 4771 4772
	return ret;
}

4773 4774 4775
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4776
{
4777
	u32 wm_intermediate_val;
4778
	uint_fixed_16_16_t ret;
4779 4780

	if (latency == 0)
4781
		return FP_16_16_MAX;
4782 4783

	wm_intermediate_val = latency * pixel_rate;
4784 4785
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4786
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4787 4788 4789
	return ret;
}

4790
static uint_fixed_16_16_t
4791
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4792
{
4793 4794
	u32 pixel_rate;
	u32 crtc_htotal;
4795 4796
	uint_fixed_16_16_t linetime_us;

4797
	if (!crtc_state->hw.active)
4798
		return u32_to_fixed16(0);
4799

4800
	pixel_rate = crtc_state->pixel_rate;
4801 4802

	if (WARN_ON(pixel_rate == 0))
4803
		return u32_to_fixed16(0);
4804

4805
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4806
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4807 4808 4809 4810

	return linetime_us;
}

4811
static u32
4812 4813
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4814
{
4815
	u64 adjusted_pixel_rate;
4816
	uint_fixed_16_16_t downscale_amount;
4817 4818

	/* Shouldn't reach here on disabled planes... */
4819
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4820 4821 4822 4823 4824 4825
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4826 4827
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4828

4829 4830
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4831 4832
}

4833
static int
4834 4835 4836 4837 4838
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4839
{
4840
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4841
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4842
	u32 interm_pbpl;
4843

4844
	/* only planar format has two planes */
4845 4846
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4847 4848
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
4849 4850 4851
		return -EINVAL;
	}

4852 4853 4854 4855 4856 4857 4858
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4859
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4860

4861
	wp->width = width;
4862
	if (color_plane == 1 && wp->is_planar)
4863 4864
		wp->width /= 2;

4865 4866
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4867

4868
	if (INTEL_GEN(dev_priv) >= 11 &&
4869
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4870 4871 4872 4873
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4874
	if (drm_rotation_90_or_270(rotation)) {
4875
		switch (wp->cpp) {
4876
		case 1:
4877
			wp->y_min_scanlines = 16;
4878 4879
			break;
		case 2:
4880
			wp->y_min_scanlines = 8;
4881 4882
			break;
		case 4:
4883
			wp->y_min_scanlines = 4;
4884
			break;
4885
		default:
4886
			MISSING_CASE(wp->cpp);
4887
			return -EINVAL;
4888 4889
		}
	} else {
4890
		wp->y_min_scanlines = 4;
4891 4892
	}

4893
	if (skl_needs_memory_bw_wa(dev_priv))
4894
		wp->y_min_scanlines *= 2;
4895

4896 4897 4898
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4899 4900
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4901 4902 4903 4904

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4905 4906
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4907
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4908 4909
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4910
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4911
	} else {
4912 4913
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4914
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4915 4916
	}

4917 4918
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4919

4920
	wp->linetime_us = fixed16_to_u32_round_up(
4921
					intel_get_linetime_us(crtc_state));
4922 4923 4924 4925

	return 0;
}

4926 4927 4928 4929 4930
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
4931
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4932 4933
	int width;

4934 4935 4936 4937 4938
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4939
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4940 4941 4942

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
4943
				     plane_state->hw.rotation,
4944 4945 4946 4947
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4948 4949 4950 4951 4952 4953 4954 4955 4956
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4957
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4958 4959 4960 4961
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4962
{
4963
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4964
	u32 latency = dev_priv->wm.skl_latency[level];
4965 4966
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4967
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4968

4969 4970 4971
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4972
		return;
4973
	}
4974

4975 4976 4977 4978
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4979
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4980 4981 4982
	    dev_priv->ipc_enabled)
		latency += 4;

4983
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4984 4985 4986
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4987
				 wp->cpp, latency, wp->dbuf_block_size);
4988
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4989
				 crtc_state->hw.adjusted_mode.crtc_htotal,
4990
				 latency,
4991
				 wp->plane_blocks_per_line);
4992

4993 4994
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4995
	} else {
4996
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
4997
		     wp->dbuf_block_size < 1) &&
4998
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4999
			selected_result = method2;
5000
		} else if (latency >= wp->linetime_us) {
5001
			if (IS_GEN(dev_priv, 9) &&
5002 5003 5004 5005 5006
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5007
			selected_result = method1;
5008
		}
5009
	}
5010

5011
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5012
	res_lines = div_round_up_fixed16(selected_result,
5013
					 wp->plane_blocks_per_line);
5014

5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5030

5031 5032 5033 5034 5035 5036 5037 5038 5039
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5040
	}
5041

5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5060 5061 5062
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5063 5064 5065
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5066
		return;
5067
	}
5068 5069 5070 5071 5072 5073 5074

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5075 5076
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5077 5078
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5079
	result->plane_en = true;
5080 5081
}

5082
static void
5083
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5084
		      const struct skl_wm_params *wm_params,
5085
		      struct skl_wm_level *levels)
5086
{
5087
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5088
	int level, max_level = ilk_wm_max_level(dev_priv);
5089
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5090

5091
	for (level = 0; level <= max_level; level++) {
5092
		struct skl_wm_level *result = &levels[level];
5093

5094
		skl_compute_plane_wm(crtc_state, level, wm_params,
5095
				     result_prev, result);
5096 5097

		result_prev = result;
5098
	}
5099 5100
}

5101
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5102
				      const struct skl_wm_params *wp,
5103
				      struct skl_plane_wm *wm)
5104
{
5105
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5106
	const struct drm_i915_private *dev_priv = to_i915(dev);
5107 5108 5109
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5110 5111 5112

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
5113
		return;
5114 5115 5116

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5117
		return;
5118

5119 5120
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
5121 5122 5123 5124
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5135
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5136

5137
	if (wp->y_tiled) {
5138 5139
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5140
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5141 5142
				trans_offset_b;
	} else {
5143
		res_blocks = wm0_sel_res_b + trans_offset_b;
5144 5145 5146 5147 5148 5149 5150

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

5151 5152 5153 5154 5155 5156 5157
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5158 5159
}

5160
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5161 5162
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5163
{
5164
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5165 5166 5167
	struct skl_wm_params wm_params;
	int ret;

5168
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5169 5170 5171 5172
					  &wm_params, color_plane);
	if (ret)
		return ret;

5173
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5174
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5175 5176 5177 5178

	return 0;
}

5179
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5180 5181
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5182
{
5183
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5184 5185 5186
	struct skl_wm_params wm_params;
	int ret;

5187
	wm->is_planar = true;
5188 5189

	/* uv plane watermarks must also be validated for NV12/Planar */
5190
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5191 5192 5193
					  &wm_params, 1);
	if (ret)
		return ret;
5194

5195
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5196

5197
	return 0;
5198 5199
}

5200
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5201
			      const struct intel_plane_state *plane_state)
5202
{
5203
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5204
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5205
	enum plane_id plane_id = plane->id;
5206 5207
	int ret;

5208 5209 5210
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5211
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5212
					plane_id, 0);
5213 5214 5215
	if (ret)
		return ret;

5216
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5217
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5218 5219 5220 5221 5222 5223 5224 5225
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5226
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5227 5228
			      const struct intel_plane_state *plane_state)
{
5229
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5230 5231 5232
	int ret;

	/* Watermarks calculated in master */
5233
	if (plane_state->planar_slave)
5234 5235
		return 0;

5236
	if (plane_state->planar_linked_plane) {
5237
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5238
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5239 5240 5241 5242 5243

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5244
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5245 5246 5247 5248
						y_plane_id, 0);
		if (ret)
			return ret;

5249
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5250 5251 5252 5253
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5254
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5255 5256 5257 5258 5259 5260
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5261 5262
}

5263
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5264
{
5265
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5266
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5267 5268
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5269
	int ret;
5270

L
Lyude 已提交
5271 5272 5273 5274 5275 5276
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5277 5278
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5279

5280
		if (INTEL_GEN(dev_priv) >= 11)
5281
			ret = icl_build_plane_wm(crtc_state, plane_state);
5282
		else
5283
			ret = skl_build_plane_wm(crtc_state, plane_state);
5284 5285
		if (ret)
			return ret;
5286
	}
5287

5288
	return 0;
5289 5290
}

5291 5292
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5293 5294 5295
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5296 5297
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5298
	else
5299
		intel_de_write_fw(dev_priv, reg, 0);
5300 5301
}

5302 5303 5304 5305
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5306
	u32 val = 0;
5307

5308
	if (level->plane_en)
5309
		val |= PLANE_WM_EN;
5310 5311 5312 5313
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5314

5315
	intel_de_write_fw(dev_priv, reg, val);
5316 5317
}

5318 5319
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5320
{
5321
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5322
	int level, max_level = ilk_wm_max_level(dev_priv);
5323 5324 5325 5326 5327 5328 5329 5330
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5331 5332

	for (level = 0; level <= max_level; level++) {
5333
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5334
				   &wm->wm[level]);
5335
	}
5336
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5337
			   &wm->trans_wm);
5338

5339
	if (INTEL_GEN(dev_priv) >= 11) {
5340
		skl_ddb_entry_write(dev_priv,
5341 5342
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5343
	}
5344 5345 5346 5347 5348 5349 5350 5351

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5352 5353
}

5354 5355
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5356
{
5357
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5358
	int level, max_level = ilk_wm_max_level(dev_priv);
5359 5360 5361 5362 5363 5364
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5365 5366

	for (level = 0; level <= max_level; level++) {
5367 5368
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5369
	}
5370
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5371

5372
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5373 5374
}

5375 5376 5377
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5378
	return l1->plane_en == l2->plane_en &&
5379
		l1->ignore_lines == l2->ignore_lines &&
5380 5381 5382
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5383

5384 5385 5386 5387 5388
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5389

5390 5391 5392 5393 5394 5395 5396
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5397 5398
}

5399 5400
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5401
{
5402
	return a->start < b->end && b->start < a->end;
5403 5404
}

5405
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5406
				 const struct skl_ddb_entry *entries,
5407
				 int num_entries, int ignore_idx)
5408
{
5409
	int i;
5410

5411 5412 5413
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5414
			return true;
5415
	}
5416

5417
	return false;
5418 5419
}

5420
static int
5421 5422
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5423
{
5424 5425
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5426 5427
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5428

5429 5430 5431
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5432

5433 5434 5435 5436
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5437 5438
			continue;

5439
		plane_state = intel_atomic_get_plane_state(state, plane);
5440 5441
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5442

5443
		new_crtc_state->update_planes |= BIT(plane_id);
5444 5445 5446 5447 5448 5449
	}

	return 0;
}

static int
5450
skl_compute_ddb(struct intel_atomic_state *state)
5451
{
5452
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5453 5454
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5455 5456
	struct intel_crtc *crtc;
	int ret, i;
5457

5458
	state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5459

5460
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5461
					    new_crtc_state, i) {
5462
		ret = skl_allocate_pipe_ddb(new_crtc_state);
5463 5464 5465
		if (ret)
			return ret;

5466 5467
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5468 5469
		if (ret)
			return ret;
5470 5471 5472 5473 5474
	}

	return 0;
}

5475 5476 5477 5478 5479
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5480
static void
5481
skl_print_wm_changes(struct intel_atomic_state *state)
5482
{
5483 5484 5485 5486 5487
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5488
	int i;
5489

5490
	if (!drm_debug_enabled(DRM_UT_KMS))
5491 5492
		return;

5493 5494
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5495 5496 5497 5498 5499
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5500 5501
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5502 5503
			const struct skl_ddb_entry *old, *new;

5504 5505
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5506 5507 5508 5509

			if (skl_ddb_entry_equal(old, new))
				continue;

5510 5511 5512 5513 5514
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				    enast(new_wm->trans_wm.plane_en));

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5544
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				    new_wm->trans_wm.plane_res_b);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				    new_wm->trans_wm.min_ddb_alloc);
5595 5596 5597 5598
		}
	}
}

V
Ville Syrjälä 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5615
static int
5616
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5617
{
V
Ville Syrjälä 已提交
5618
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5619
	int ret;
5620

5621 5622 5623 5624 5625 5626 5627
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5628
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5629
				       state->base.acquire_ctx);
5630 5631 5632
		if (ret)
			return ret;

5633
		state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5634 5635

		/*
5636
		 * We usually only initialize state->active_pipes if we
5637 5638 5639 5640
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5641
		if (!state->modeset)
5642
			state->active_pipes = dev_priv->active_pipes;
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5658
	if (state->active_pipe_changes || state->modeset) {
V
Ville Syrjälä 已提交
5659 5660 5661
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5662 5663 5664 5665 5666
	}

	return 0;
}

5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5711
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5727
static int
5728
skl_compute_wm(struct intel_atomic_state *state)
5729
{
5730
	struct intel_crtc *crtc;
5731
	struct intel_crtc_state *new_crtc_state;
5732
	struct intel_crtc_state *old_crtc_state;
5733 5734
	int ret, i;

5735 5736
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5737 5738
		return ret;

5739 5740
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5741
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5742
	 * weren't otherwise being modified if pipe allocations had to change.
5743
	 */
5744
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5745 5746
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5747 5748 5749
		if (ret)
			return ret;

5750
		ret = skl_wm_add_affected_planes(state, crtc);
5751 5752 5753 5754
		if (ret)
			return ret;
	}

5755 5756 5757 5758
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5759
	skl_print_wm_changes(state);
5760

5761 5762 5763
	return 0;
}

5764
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5765 5766 5767 5768 5769
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5770
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5782
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5783
{
5784
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5785
	struct ilk_wm_maximums max;
5786
	struct intel_wm_config config = {};
5787
	struct ilk_wm_values results = {};
5788
	enum intel_ddb_partitioning partitioning;
5789

5790
	ilk_compute_wm_config(dev_priv, &config);
5791

5792 5793
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5794 5795

	/* 5/6 split only in single pipe config on IVB+ */
5796
	if (INTEL_GEN(dev_priv) >= 7 &&
5797
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5798 5799
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5800

5801
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5802
	} else {
5803
		best_lp_wm = &lp_wm_1_2;
5804 5805
	}

5806
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5807
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5808

5809
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5810

5811
	ilk_write_wm_values(dev_priv, &results);
5812 5813
}

5814
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5815
				   struct intel_crtc *crtc)
5816
{
5817 5818 5819
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5820

5821
	mutex_lock(&dev_priv->wm.wm_mutex);
5822
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5823 5824 5825
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5826

5827
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5828
				    struct intel_crtc *crtc)
5829
{
5830 5831 5832
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5833 5834 5835

	if (!crtc_state->wm.need_postvbl_update)
		return;
5836

5837
	mutex_lock(&dev_priv->wm.wm_mutex);
5838 5839
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5840
	mutex_unlock(&dev_priv->wm.wm_mutex);
5841 5842
}

5843
static inline void skl_wm_level_from_reg_val(u32 val,
5844
					     struct skl_wm_level *level)
5845
{
5846
	level->plane_en = val & PLANE_WM_EN;
5847
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5848 5849 5850
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5851 5852
}

5853
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5854
			      struct skl_pipe_wm *out)
5855
{
5856 5857
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5858 5859
	int level, max_level;
	enum plane_id plane_id;
5860
	u32 val;
5861

5862
	max_level = ilk_wm_max_level(dev_priv);
5863

5864
	for_each_plane_id_on_crtc(crtc, plane_id) {
5865
		struct skl_plane_wm *wm = &out->planes[plane_id];
5866

5867
		for (level = 0; level <= max_level; level++) {
5868 5869
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5870 5871
			else
				val = I915_READ(CUR_WM(pipe, level));
5872

5873
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5874 5875
		}

5876 5877
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5878 5879 5880 5881
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5882 5883
	}

5884
	if (!crtc->active)
5885
		return;
5886 5887
}

5888
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5889
{
5890
	struct intel_crtc *crtc;
5891
	struct intel_crtc_state *crtc_state;
5892

5893
	skl_ddb_get_hw_state(dev_priv);
5894
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5895
		crtc_state = to_intel_crtc_state(crtc->base.state);
5896

5897
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5898
	}
5899

5900
	if (dev_priv->active_pipes) {
5901 5902 5903
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5904 5905
}

5906
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5907
{
5908
	struct drm_device *dev = crtc->base.dev;
5909
	struct drm_i915_private *dev_priv = to_i915(dev);
5910
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5911 5912
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5913
	enum pipe pipe = crtc->pipe;
5914
	static const i915_reg_t wm0_pipe_reg[] = {
5915 5916 5917 5918 5919 5920 5921
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);

5922 5923
	memset(active, 0, sizeof(*active));

5924
	active->pipe_enabled = crtc->active;
5925 5926

	if (active->pipe_enabled) {
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
5940
		int level, max_level = ilk_wm_max_level(dev_priv);
5941 5942 5943 5944 5945 5946 5947 5948 5949

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5950

5951
	crtc->wm.active.ilk = *active;
5952 5953
}

5954 5955 5956 5957 5958
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5959 5960 5961
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5962
	u32 tmp;
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5985 5986 5987 5988
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5989
	u32 tmp;
5990 5991 5992 5993

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5994
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5995
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5996
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5997
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5998
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5999
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6000
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6001 6002 6003 6004 6005
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
6006 6007 6008
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6009 6010

	tmp = I915_READ(DSPFW2);
6011 6012 6013
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6014 6015 6016 6017 6018 6019

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
6020 6021
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6022 6023

		tmp = I915_READ(DSPFW8_CHV);
6024 6025
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6026 6027

		tmp = I915_READ(DSPFW9_CHV);
6028 6029
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6030 6031 6032

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6033 6034 6035 6036 6037 6038 6039 6040 6041
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6042 6043
	} else {
		tmp = I915_READ(DSPFW7);
6044 6045
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6046 6047 6048

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6049 6050 6051 6052 6053 6054
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6055 6056 6057 6058 6059 6060
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6061
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6062 6063 6064 6065 6066 6067 6068 6069
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

6070
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6130 6131 6132 6133 6134 6135
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6136 6137
	}

6138 6139 6140 6141 6142 6143 6144 6145
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6166
		if (plane_state->uapi.visible)
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6204
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6205 6206
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6207
	struct intel_crtc *crtc;
6208 6209 6210 6211 6212 6213 6214 6215
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6216
		vlv_punit_get(dev_priv);
6217

6218
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6219 6220 6221
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6222 6223 6224 6225 6226 6227 6228 6229 6230
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6231
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6232 6233 6234 6235 6236
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6237 6238 6239
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6240 6241 6242 6243 6244 6245
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6246

6247
		vlv_punit_put(dev_priv);
6248 6249
	}

6250
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6266
			struct g4x_pipe_wm *raw =
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6288
		crtc_state->wm.vlv.intermediate = *active;
6289

6290 6291 6292 6293 6294 6295 6296
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6297
	}
6298

6299 6300 6301
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6302 6303
}

6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6324
		if (plane_state->uapi.visible)
6325 6326 6327
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6328
			struct g4x_pipe_wm *raw =
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6369
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6370
{
6371
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6372
	struct intel_crtc *crtc;
6373

6374 6375
	ilk_init_lp_watermarks(dev_priv);

6376
	for_each_intel_crtc(&dev_priv->drm, crtc)
6377 6378 6379 6380 6381 6382 6383
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6384
	if (INTEL_GEN(dev_priv) >= 7) {
6385 6386 6387
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6388

6389
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6390 6391
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6392
	else if (IS_IVYBRIDGE(dev_priv))
6393 6394
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6395 6396 6397 6398 6399

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6400 6401
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6402
 * @crtc: the #intel_crtc on which to compute the WM
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6433
void intel_update_watermarks(struct intel_crtc *crtc)
6434
{
6435
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6436 6437

	if (dev_priv->display.update_wm)
6438
		dev_priv->display.update_wm(crtc);
6439 6440
}

6441 6442 6443 6444
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6445 6446 6447
	if (!HAS_IPC(dev_priv))
		return;

6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6471 6472 6473 6474 6475
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6476
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6477

6478 6479 6480
	intel_enable_ipc(dev_priv);
}

6481 6482 6483 6484 6485 6486 6487 6488 6489
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6490

6491
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6492
{
6493
	enum pipe pipe;
6494

6495 6496 6497 6498
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6499

6500 6501
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6502 6503 6504
	}
}

6505
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6506
{
6507
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6508

6509 6510 6511 6512 6513 6514 6515
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6516

6517 6518 6519 6520 6521
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6522

6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6537 6538

	/*
6539 6540 6541 6542 6543
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6544
	 */
6545 6546 6547 6548 6549 6550 6551 6552 6553
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6554

6555
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6556

6557 6558 6559 6560 6561 6562
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6563

6564 6565 6566
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6567

6568 6569
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6570

6571
	g4x_disable_trickle_feed(dev_priv);
6572

6573
	ibx_init_clock_gating(dev_priv);
6574 6575
}

6576
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6577
{
6578 6579
	enum pipe pipe;
	u32 val;
6580

6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6609 6610
}

6611
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6612
{
6613
	u32 tmp;
6614

6615 6616
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6617 6618 6619
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6620 6621
}

6622
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6623
{
6624
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6625

6626
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6627

6628 6629 6630
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6631

6632 6633 6634
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6635

6636 6637
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6638

6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6649

6650 6651
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6652

6653 6654 6655 6656
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6657

6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6670
	 */
6671 6672 6673
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6674

6675 6676 6677
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6678

6679 6680 6681 6682 6683 6684 6685
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6686

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6708

6709
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6710

6711
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6712

6713
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6714 6715
}

6716
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6717
{
6718
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6719

6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6730

6731
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6732 6733
}

6734
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6735
{
6736 6737 6738
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6739
	 */
6740
	if (HAS_PCH_LPT_LP(dev_priv))
6741 6742 6743
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6744 6745

	/* WADPOClockGatingDisable:hsw */
6746 6747
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6748
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6749 6750
}

6751
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6752
{
6753
	if (HAS_PCH_LPT_LP(dev_priv)) {
6754
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6755 6756 6757 6758 6759 6760

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6761 6762 6763 6764 6765
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6766
	u32 val;
6767 6768 6769 6770 6771

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6772 6773 6774 6775 6776
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6787 6788 6789 6790 6791
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6792 6793 6794 6795

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
6796 6797 6798 6799 6800 6801 6802 6803

	/*
	 * Wa_1408615072:icl,ehl  (vsunit)
	 * Wa_1407596294:icl,ehl  (hsunit)
	 */
	intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE,
			 0, VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);

M
Matt Roper 已提交
6804 6805 6806
	/* Wa_1407352427:icl,ehl */
	intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE2,
			 0, PSDUNIT_CLKGATE_DIS);
6807 6808 6809 6810

	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
6811 6812
}

6813 6814 6815 6816 6817
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

6818 6819 6820 6821
	/* Wa_1408615072:tgl */
	intel_uncore_rmw(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE2,
			 0, VSUNIT_CLKGATE_DIS_TGL);

6822 6823 6824 6825 6826 6827 6828 6829 6830
	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6831 6832 6833 6834 6835

	/* Wa_1409825376:tgl (pre-prod)*/
	if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   TGL_VRH_GATING_DIS);
6836 6837
}

6838 6839 6840 6841 6842
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6843
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6844 6845
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6846 6847
}

6848
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6849
{
6850
	u32 val;
6851 6852
	cnp_init_clock_gating(dev_priv);

6853 6854 6855 6856
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6857 6858 6859 6860 6861 6862 6863 6864
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6865 6866 6867
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
6868 6869
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6870 6871
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6872

R
Rodrigo Vivi 已提交
6873 6874 6875 6876 6877
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6878
	/* WaDisableVFclkgate:cnl */
6879
	/* WaVFUnitClockGatingDisable:cnl */
6880 6881 6882
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6883 6884
}

6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

6895
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6896
{
6897
	gen9_init_clock_gating(dev_priv);
6898 6899 6900 6901 6902

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6903 6904 6905 6906 6907

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6908

6909
	/* WaFbcNukeOnHostModify:kbl */
6910 6911
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6912 6913
}

6914
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6915
{
6916
	gen9_init_clock_gating(dev_priv);
6917 6918 6919 6920

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
6921 6922 6923 6924

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6925 6926
}

6927
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
6928
{
6929
	enum pipe pipe;
B
Ben Widawsky 已提交
6930

6931
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6932
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6933

6934
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6935 6936 6937
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6938
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6939
	for_each_pipe(dev_priv, pipe) {
6940
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6941
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6942
			   BDW_DPRS_MASK_VBLANK_SRD);
6943
	}
6944

6945 6946 6947 6948 6949
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6950

6951 6952
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6953 6954 6955 6956

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6957

6958 6959
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6960

6961 6962 6963 6964
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

6965
	lpt_init_clock_gating(dev_priv);
6966 6967 6968 6969 6970 6971 6972 6973

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
6974 6975
}

6976
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6977
{
6978 6979 6980 6981 6982
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6983
	/* This is required by WaCatErrorRejectionIssue:hsw */
6984 6985 6986 6987
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6988 6989 6990
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6991

6992 6993 6994
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6995 6996 6997 6998
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6999
	/* WaDisable4x2SubspanOptimization:hsw */
7000 7001
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7002

7003 7004 7005
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7006 7007 7008 7009
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7010 7011
	 */
	I915_WRITE(GEN7_GT_MODE,
7012
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7013

7014 7015 7016 7017
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7018
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7019 7020
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7021
	lpt_init_clock_gating(dev_priv);
7022 7023
}

7024
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7025
{
7026
	u32 snpcr;
7027

7028
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7029

7030
	/* WaDisableEarlyCull:ivb */
7031 7032 7033
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7034
	/* WaDisableBackToBackFlipFix:ivb */
7035 7036 7037 7038
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7039
	/* WaDisablePSDDualDispatchEnable:ivb */
7040
	if (IS_IVB_GT1(dev_priv))
7041 7042 7043
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7044 7045 7046
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7047
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7048 7049 7050
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7051
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7052 7053 7054
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7055
		   GEN7_WA_L3_CHICKEN_MODE);
7056
	if (IS_IVB_GT1(dev_priv))
7057 7058
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7059 7060 7061 7062
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7063 7064
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7065
	}
7066

7067
	/* WaForceL3Serialization:ivb */
7068 7069 7070
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7071
	/*
7072
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7073
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7074 7075
	 */
	I915_WRITE(GEN6_UCGCTL2,
7076
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7077

7078
	/* This is required by WaCatErrorRejectionIssue:ivb */
7079 7080 7081 7082
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7083
	g4x_disable_trickle_feed(dev_priv);
7084 7085

	gen7_setup_fixed_func_scheduler(dev_priv);
7086

7087 7088 7089 7090 7091
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7092

7093
	/* WaDisable4x2SubspanOptimization:ivb */
7094 7095
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7096

7097 7098 7099
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7100 7101 7102 7103
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7104 7105
	 */
	I915_WRITE(GEN7_GT_MODE,
7106
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7107

7108 7109 7110 7111
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7112

7113
	if (!HAS_PCH_NOP(dev_priv))
7114
		cpt_init_clock_gating(dev_priv);
7115

7116
	gen6_check_mch_setup(dev_priv);
7117 7118
}

7119
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7120
{
7121
	/* WaDisableEarlyCull:vlv */
7122 7123 7124
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7125
	/* WaDisableBackToBackFlipFix:vlv */
7126 7127 7128 7129
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7130
	/* WaPsdDispatchEnable:vlv */
7131
	/* WaDisablePSDDualDispatchEnable:vlv */
7132
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7133 7134
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7135

7136 7137 7138
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7139
	/* WaForceL3Serialization:vlv */
7140 7141 7142
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7143
	/* WaDisableDopClockGating:vlv */
7144 7145 7146
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7147
	/* This is required by WaCatErrorRejectionIssue:vlv */
7148 7149 7150 7151
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7152 7153
	gen7_setup_fixed_func_scheduler(dev_priv);

7154
	/*
7155
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7156
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7157 7158
	 */
	I915_WRITE(GEN6_UCGCTL2,
7159
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7160

7161 7162 7163 7164 7165
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7166

7167 7168 7169 7170
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7171 7172
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7173

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7185 7186 7187 7188 7189 7190
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7191
	/*
7192
	 * WaDisableVLVClockGating_VBIIssue:vlv
7193 7194 7195
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7196
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7197 7198
}

7199
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7200
{
7201 7202 7203 7204 7205
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7206 7207 7208 7209

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7210 7211 7212 7213

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7214 7215 7216 7217

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7218

7219 7220 7221 7222 7223 7224
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7225 7226
}

7227
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7228
{
7229
	u32 dspclk_gate;
7230 7231 7232 7233 7234 7235 7236 7237 7238

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7239
	if (IS_GM45(dev_priv))
7240 7241
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7242 7243 7244 7245

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7246

7247 7248 7249
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7250
	g4x_disable_trickle_feed(dev_priv);
7251 7252
}

7253
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7254
{
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7265 7266

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7267 7268 7269
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7270 7271
}

7272
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7273 7274 7275 7276 7277 7278 7279
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7280 7281
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7282 7283 7284

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7285 7286
}

7287
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7288 7289 7290 7291 7292 7293
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7294

7295
	if (IS_PINEVIEW(dev_priv))
7296
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7297 7298 7299

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7300 7301

	/* interrupts should cause a wake up from C3 */
7302
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7303 7304 7305

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7306 7307 7308

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7309 7310
}

7311
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7312 7313
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7314 7315 7316 7317

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7318 7319 7320

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7321 7322
}

7323
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7324
{
7325 7326 7327
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7328 7329
}

7330
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7331
{
7332
	dev_priv->display.init_clock_gating(dev_priv);
7333 7334
}

7335
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7336
{
7337 7338
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7339 7340
}

7341
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7342
{
7343 7344
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7358
	if (IS_GEN(dev_priv, 12))
7359
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7360
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7361
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7362
	else if (IS_CANNONLAKE(dev_priv))
7363
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7364 7365
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7366
	else if (IS_SKYLAKE(dev_priv))
7367
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7368
	else if (IS_KABYLAKE(dev_priv))
7369
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7370
	else if (IS_BROXTON(dev_priv))
7371
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7372 7373
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7374
	else if (IS_BROADWELL(dev_priv))
7375
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7376
	else if (IS_CHERRYVIEW(dev_priv))
7377
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7378
	else if (IS_HASWELL(dev_priv))
7379
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7380
	else if (IS_IVYBRIDGE(dev_priv))
7381
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7382
	else if (IS_VALLEYVIEW(dev_priv))
7383
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7384
	else if (IS_GEN(dev_priv, 6))
7385
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7386
	else if (IS_GEN(dev_priv, 5))
7387
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7388 7389
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7390
	else if (IS_I965GM(dev_priv))
7391
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7392
	else if (IS_I965G(dev_priv))
7393
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7394
	else if (IS_GEN(dev_priv, 3))
7395 7396 7397
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7398
	else if (IS_GEN(dev_priv, 2))
7399 7400 7401 7402 7403 7404 7405
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7406
/* Set up chip specific power management-related functions */
7407
void intel_init_pm(struct drm_i915_private *dev_priv)
7408
{
7409
	/* For cxsr */
7410
	if (IS_PINEVIEW(dev_priv))
7411
		pnv_get_mem_freq(dev_priv);
7412
	else if (IS_GEN(dev_priv, 5))
7413
		ilk_get_mem_freq(dev_priv);
7414

7415 7416 7417
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7418
	/* For FIFO watermark updates */
7419
	if (INTEL_GEN(dev_priv) >= 9) {
7420
		skl_setup_wm_latency(dev_priv);
7421
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7422
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7423
		ilk_setup_wm_latency(dev_priv);
7424

7425
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7426
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7427
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7428
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7429
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7430 7431 7432 7433 7434 7435
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7436
		} else {
7437 7438 7439
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7440
		}
7441
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7442
		vlv_setup_wm_latency(dev_priv);
7443
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7444
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7445
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7446
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7447
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7448 7449 7450 7451 7452 7453
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7454
	} else if (IS_PINEVIEW(dev_priv)) {
7455
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7456 7457 7458
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7459 7460
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7461 7462 7463 7464 7465
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7466
			intel_set_memory_cxsr(dev_priv, false);
7467 7468
			dev_priv->display.update_wm = NULL;
		} else
7469
			dev_priv->display.update_wm = pnv_update_wm;
7470
	} else if (IS_GEN(dev_priv, 4)) {
7471
		dev_priv->display.update_wm = i965_update_wm;
7472
	} else if (IS_GEN(dev_priv, 3)) {
7473 7474
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7475
	} else if (IS_GEN(dev_priv, 2)) {
7476
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7477
			dev_priv->display.update_wm = i845_update_wm;
7478
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7479 7480
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7481
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7482 7483
		}
	} else {
7484 7485
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7486 7487 7488
	}
}

7489
void intel_pm_setup(struct drm_i915_private *dev_priv)
7490
{
7491 7492
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7493
}