intel_pm.c 212.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_irq.h"
44
#include "i915_trace.h"
45
#include "intel_pm.h"
46
#include "intel_sideband.h"
47
#include "../../../platform/x86/intel_ips.h"
48

49
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
50
{
51 52 53
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
54
		 * Display WA #0390: skl,kbl
55 56 57 58 59 60 61 62 63
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

64
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
65 66 67
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71

72 73
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77

78
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79 80
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82 83 84 85 86

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
87 88
}

89
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
90
{
91
	gen9_init_clock_gating(dev_priv);
92

93 94 95 96
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

97 98
	/*
	 * FIXME:
99
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
100 101
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
108 109
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
110 111
}

112 113 114 115 116 117 118 119 120 121 122
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
123 124 125 126 127 128 129 130 131 132

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

133 134
}

135
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

173
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
174 175 176
{
	u16 ddrpll, csipll;

177 178
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

268 269
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

296
	vlv_punit_get(dev_priv);
297 298 299 300 301 302 303 304 305 306 307 308 309 310

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

311
	vlv_punit_put(dev_priv);
312 313
}

314 315 316 317
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

318
	vlv_punit_get(dev_priv);
319

320
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
321 322 323 324
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
325
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
326

327
	vlv_punit_put(dev_priv);
328 329
}

330 331 332
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

333
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
334
{
335
	bool was_enabled;
336
	u32 val;
337

338
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
339
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
340
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
341
		POSTING_READ(FW_BLC_SELF_VLV);
342
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
344
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
345
		POSTING_READ(FW_BLC_SELF);
346
	} else if (IS_PINEVIEW(dev_priv)) {
347 348 349 350 351 352
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
353
		I915_WRITE(DSPFW3, val);
354
		POSTING_READ(DSPFW3);
355
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
356
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
357 358 359
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
360
		POSTING_READ(FW_BLC_SELF);
361
	} else if (IS_I915GM(dev_priv)) {
362 363 364 365 366
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
367
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
368 369 370
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
371
		POSTING_READ(INSTPM);
372
	} else {
373
		return false;
374
	}
375

376 377
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

378 379 380 381 382
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
383 384
}

V
Ville Syrjälä 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
422
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
423
{
424 425
	bool ret;

426
	mutex_lock(&dev_priv->wm.wm_mutex);
427
	ret = _intel_set_memory_cxsr(dev_priv, enable);
428 429 430 431
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
432
	mutex_unlock(&dev_priv->wm.wm_mutex);
433 434

	return ret;
435
}
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
451
static const int pessimal_latency_ns = 5000;
452

453 454 455
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

456
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
457
{
458
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
459
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
460
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
461 462
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
463

464
	switch (pipe) {
465
		u32 dsparb, dsparb2, dsparb3;
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
485 486
		MISSING_CASE(pipe);
		return;
487 488
	}

489 490 491 492
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
493 494
}

495 496
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
497
{
498
	u32 dsparb = I915_READ(DSPARB);
499 500 501
	int size;

	size = dsparb & 0x7f;
502
	if (i9xx_plane == PLANE_B)
503 504
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

505 506
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
507 508 509 510

	return size;
}

511 512
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
513
{
514
	u32 dsparb = I915_READ(DSPARB);
515 516 517
	int size;

	size = dsparb & 0x1ff;
518
	if (i9xx_plane == PLANE_B)
519 520 521
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

522 523
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
524 525 526 527

	return size;
}

528 529
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
530
{
531
	u32 dsparb = I915_READ(DSPARB);
532 533 534 535 536
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

537 538
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
539 540 541 542 543 544

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
545 546 547 548 549
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
550 551
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
552 553 554 555 556
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
557 558
};
static const struct intel_watermark_params pineview_cursor_wm = {
559 560 561 562 563
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
564 565
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
566 567 568 569 570
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
571 572
};
static const struct intel_watermark_params i965_cursor_wm_info = {
573 574 575 576 577
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
578 579
};
static const struct intel_watermark_params i945_wm_info = {
580 581 582 583 584
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
585 586
};
static const struct intel_watermark_params i915_wm_info = {
587 588 589 590 591
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
592
};
593
static const struct intel_watermark_params i830_a_wm_info = {
594 595 596 597 598
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
599
};
600 601 602 603 604 605 606
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
607
static const struct intel_watermark_params i845_wm_info = {
608 609 610 611 612
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
613 614
};

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
652
	u64 ret;
653

654
	ret = mul_u32_u32(pixel_rate, cpp * latency);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

711 712
/**
 * intel_calculate_wm - calculate watermark level
713
 * @pixel_rate: pixel clock
714
 * @wm: chip FIFO params
715
 * @fifo_size: size of the FIFO buffer
716
 * @cpp: bytes per pixel
717 718 719 720 721 722 723 724 725 726 727 728 729
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
730 731 732 733
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
734
{
735
	int entries, wm_size;
736 737 738 739 740 741 742

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
743 744 745 746 747
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
748

749 750
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
751 752

	/* Don't promote wm_size to unsigned... */
753
	if (wm_size > wm->max_wm)
754 755 756
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
757 758 759 760 761 762 763 764 765 766 767

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

768 769 770
	return wm_size;
}

771 772 773 774 775 776 777 778 779 780
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

781 782 783 784 785
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

786 787 788 789 790 791
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
792
	if (!crtc_state->hw.active)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

809
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
810
{
811
	struct intel_crtc *crtc, *enabled = NULL;
812

813
	for_each_intel_crtc(&dev_priv->drm, crtc) {
814
		if (intel_crtc_active(crtc)) {
815 816 817 818 819 820 821 822 823
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

824
static void pineview_update_wm(struct intel_crtc *unused_crtc)
825
{
826
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
827
	struct intel_crtc *crtc;
828 829
	const struct cxsr_latency *latency;
	u32 reg;
830
	unsigned int wm;
831

832
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
833 834 835
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
836 837
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
838
		intel_set_memory_cxsr(dev_priv, false);
839 840 841
		return;
	}

842
	crtc = single_enabled_crtc(dev_priv);
843
	if (crtc) {
844
		const struct drm_display_mode *adjusted_mode =
845
			&crtc->config->hw.adjusted_mode;
846 847
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
848
		int cpp = fb->format->cpp[0];
849
		int clock = adjusted_mode->crtc_clock;
850 851 852 853

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
854
					cpp, latency->display_sr);
855 856
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
857
		reg |= FW_WM(wm, SR);
858 859 860 861 862 863
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
864
					4, latency->cursor_sr);
865 866
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
867
		reg |= FW_WM(wm, CURSOR_SR);
868 869 870 871 872
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
873
					cpp, latency->display_hpll_disable);
874 875
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
876
		reg |= FW_WM(wm, HPLL_SR);
877 878 879 880 881
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
882
					4, latency->cursor_hpll_disable);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
885
		reg |= FW_WM(wm, HPLL_CURSOR);
886 887 888
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

889
		intel_set_memory_cxsr(dev_priv, true);
890
	} else {
891
		intel_set_memory_cxsr(dev_priv, false);
892 893 894
	}
}

895 896 897 898 899 900 901 902 903 904
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
905
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
906 907 908 909 910 911
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

912 913
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
914
{
915 916 917 918 919
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
937

938
	POSTING_READ(DSPFW1);
939 940
}

941 942 943
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

944
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
945 946
				const struct vlv_wm_values *wm)
{
947 948 949
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
950 951
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

952 953 954 955 956 957
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
958

959 960 961 962 963 964 965 966 967 968 969
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

970
	I915_WRITE(DSPFW1,
971
		   FW_WM(wm->sr.plane, SR) |
972 973 974
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
975
	I915_WRITE(DSPFW2,
976 977 978
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
979
	I915_WRITE(DSPFW3,
980
		   FW_WM(wm->sr.cursor, CURSOR_SR));
981 982 983

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
984 985
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
986
		I915_WRITE(DSPFW8_CHV,
987 988
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
989
		I915_WRITE(DSPFW9_CHV,
990 991
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
992
		I915_WRITE(DSPHOWM,
993
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
994 995 996 997 998 999 1000 1001 1002
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1003 1004
	} else {
		I915_WRITE(DSPFW7,
1005 1006
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1007
		I915_WRITE(DSPHOWM,
1008
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1009 1010 1011 1012 1013 1014
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1015 1016 1017
	}

	POSTING_READ(DSPFW1);
1018 1019
}

1020 1021
#undef FW_WM_VLV

1022 1023 1024 1025 1026
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1027
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1028

1029
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1074 1075 1076
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1077 1078 1079 1080
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1081
		&crtc_state->hw.adjusted_mode;
1082 1083
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1084 1085 1086 1087 1088 1089 1090

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1091 1092
	cpp = plane_state->base.fb->format->cpp[0];

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1106
		cpp = max(cpp, 4u);
1107 1108 1109 1110

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1111
	width = drm_rect_width(&plane_state->base.dst);
1112 1113 1114 1115 1116 1117 1118

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1119
		unsigned int small, large;
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1132
	return min_t(unsigned int, wm, USHRT_MAX);
1133 1134 1135 1136 1137
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1138
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1154
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1170 1171
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1172
			      u32 pri_val);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1256
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1294
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1295
	struct intel_atomic_state *state =
1296
		to_intel_atomic_state(crtc_state->uapi.state);
1297
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1298 1299
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1300
	const struct g4x_pipe_wm *raw;
1301 1302
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1303 1304 1305 1306 1307
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1308 1309 1310 1311
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1312 1313 1314
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1315
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1381
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1382
{
1383
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1384 1385 1386
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1387
		to_intel_atomic_state(new_crtc_state->uapi.state);
1388 1389 1390
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1391 1392
	enum plane_id plane_id;

1393
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1394 1395 1396 1397 1398 1399 1400
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1401
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1402
		!new_crtc_state->disable_cxsr;
1403
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1404
		!new_crtc_state->disable_cxsr;
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1446
out:
1447 1448 1449 1450 1451
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1452
		new_crtc_state->wm.need_postvbl_update = true;
1453 1454 1455 1456 1457 1458 1459 1460

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1461
	int num_active_pipes = 0;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1480
		num_active_pipes++;
1481 1482
	}

1483
	if (num_active_pipes != 1) {
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
1525 1526
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
1537 1538
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1539 1540 1541 1542 1543

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1544
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1545 1546 1547 1548
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1549 1550
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1551 1552
				   unsigned int htotal,
				   unsigned int width,
1553
				   unsigned int cpp,
1554 1555 1556 1557
				   unsigned int latency)
{
	unsigned int ret;

1558 1559
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1560 1561 1562 1563 1564
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1565
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1566 1567 1568 1569
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1570 1571
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1572 1573 1574
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1575 1576

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1577 1578 1579
	}
}

1580 1581 1582
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1583
{
1584
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1585
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1586
	const struct drm_display_mode *adjusted_mode =
1587
		&crtc_state->hw.adjusted_mode;
1588
	unsigned int clock, htotal, cpp, width, wm;
1589 1590 1591 1592

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1593
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1594 1595
		return 0;

1596
	cpp = plane_state->base.fb->format->cpp[0];
1597 1598 1599
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1600

1601
	if (plane->id == PLANE_CURSOR) {
1602 1603 1604 1605 1606 1607 1608 1609
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1610
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1611 1612 1613
				    dev_priv->wm.pri_latency[level] * 10);
	}

1614
	return min_t(unsigned int, wm, USHRT_MAX);
1615 1616
}

1617 1618 1619 1620 1621 1622
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1623
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1624
{
1625
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1626
	const struct g4x_pipe_wm *raw =
1627
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1628
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1629
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1630
	int num_active_planes = hweight8(active_planes);
1631
	const int fifo_size = 511;
1632
	int fifo_extra, fifo_left = fifo_size;
1633
	int sprite0_fifo_extra = 0;
1634 1635
	unsigned int total_rate;
	enum plane_id plane_id;
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1648 1649
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1650 1651
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1652

1653 1654
	if (total_rate > fifo_size)
		return -EINVAL;
1655

1656 1657
	if (total_rate == 0)
		total_rate = 1;
1658

1659
	for_each_plane_id_on_crtc(crtc, plane_id) {
1660 1661
		unsigned int rate;

1662 1663
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1664 1665 1666
			continue;
		}

1667 1668 1669
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1670 1671
	}

1672 1673 1674
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1675 1676 1677
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1678 1679

	/* spread the remainder evenly */
1680
	for_each_plane_id_on_crtc(crtc, plane_id) {
1681 1682 1683 1684 1685
		int plane_extra;

		if (fifo_left == 0)
			break;

1686
		if ((active_planes & BIT(plane_id)) == 0)
1687 1688 1689
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1690
		fifo_state->plane[plane_id] += plane_extra;
1691 1692 1693
		fifo_left -= plane_extra;
	}

1694 1695 1696 1697 1698 1699 1700 1701 1702
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1703 1704
}

1705 1706 1707 1708 1709 1710
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1711
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1722 1723 1724 1725 1726 1727 1728 1729
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1730 1731 1732 1733
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1734
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1735
				 int level, enum plane_id plane_id, u16 value)
1736
{
1737
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1738
	int num_levels = intel_wm_num_levels(dev_priv);
1739
	bool dirty = false;
1740

1741
	for (; level < num_levels; level++) {
1742
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1743

1744
		dirty |= raw->plane[plane_id] != value;
1745
		raw->plane[plane_id] = value;
1746
	}
1747 1748

	return dirty;
1749 1750
}

1751 1752
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1753
{
1754 1755
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1756
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1757
	int level;
1758
	bool dirty = false;
1759

1760
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1761 1762
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1763
	}
1764

1765
	for (level = 0; level < num_levels; level++) {
1766
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1767 1768
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1769

1770 1771
		if (wm > max_wm)
			break;
1772

1773
		dirty |= raw->plane[plane_id] != wm;
1774 1775
		raw->plane[plane_id] = wm;
	}
1776

1777
	/* mark all higher levels as invalid */
1778
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1779

1780 1781
out:
	if (dirty)
1782
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1783 1784 1785 1786 1787 1788
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1789
}
1790

1791 1792
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1793
{
1794
	const struct g4x_pipe_wm *raw =
1795 1796 1797
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1798

1799 1800
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1801

1802
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1803
{
1804 1805 1806 1807
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1808 1809 1810 1811
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1812
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1813 1814
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1815
		to_intel_atomic_state(crtc_state->uapi.state);
1816 1817 1818
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1819 1820
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1821
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1822 1823
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1824 1825 1826
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1827
	unsigned int dirty = 0;
1828

1829 1830 1831 1832
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1833 1834
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1835

1836
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1855
			intel_atomic_get_old_crtc_state(state, crtc);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1867
	}
1868

1869
	/* initially allow all levels */
1870
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1871 1872 1873 1874 1875
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1876
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1877

1878
	for (level = 0; level < wm_state->num_levels; level++) {
1879
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1880
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1881

1882
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1883
			break;
1884

1885 1886 1887 1888 1889 1890 1891 1892
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1893
						 raw->plane[PLANE_SPRITE0],
1894 1895
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1896

1897 1898 1899
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1900 1901
	}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1912 1913
}

1914 1915 1916
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1917 1918
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1919
{
1920
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1921
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1922
	struct intel_uncore *uncore = &dev_priv->uncore;
1923 1924
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1925
	int sprite0_start, sprite1_start, fifo_size;
1926

1927 1928 1929
	if (!crtc_state->fifo_changed)
		return;

1930 1931 1932
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1933

1934 1935
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1936

1937 1938
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1939 1940 1941 1942 1943 1944 1945 1946 1947
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1948
	spin_lock(&uncore->lock);
1949

1950
	switch (crtc->pipe) {
1951
		u32 dsparb, dsparb2, dsparb3;
1952
	case PIPE_A:
1953 1954
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1966 1967
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1968 1969
		break;
	case PIPE_B:
1970 1971
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1983 1984
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1985 1986
		break;
	case PIPE_C:
1987 1988
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2000 2001
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2002 2003 2004 2005
		break;
	default:
		break;
	}
2006

2007
	intel_uncore_posting_read_fw(uncore, DSPARB);
2008

2009
	spin_unlock(&uncore->lock);
2010 2011 2012 2013
}

#undef VLV_FIFO

2014
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2015
{
2016
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2017 2018 2019
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2020
		to_intel_atomic_state(new_crtc_state->uapi.state);
2021 2022 2023
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2024 2025
	int level;

2026
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2027 2028 2029 2030 2031 2032
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2033
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2034
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2035
		!new_crtc_state->disable_cxsr;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2054
out:
2055 2056 2057 2058
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2059
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2060
		new_crtc_state->wm.need_postvbl_update = true;
2061 2062 2063 2064

	return 0;
}

2065
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2066 2067 2068
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2069
	int num_active_pipes = 0;
2070

2071
	wm->level = dev_priv->wm.max_level;
2072 2073
	wm->cxsr = true;

2074
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2075
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2076 2077 2078 2079 2080 2081 2082

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2083
		num_active_pipes++;
2084 2085 2086
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2087
	if (num_active_pipes != 1)
2088 2089
		wm->cxsr = false;

2090
	if (num_active_pipes > 1)
2091 2092
		wm->level = VLV_WM_LEVEL_PM2;

2093
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2094
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2095 2096 2097
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2098
		if (crtc->active && wm->cxsr)
2099 2100
			wm->sr = wm_state->sr[wm->level];

2101 2102 2103 2104
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2105 2106 2107
	}
}

2108
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2109
{
2110 2111
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2112

2113
	vlv_merge_wm(dev_priv, &new_wm);
2114

2115
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2116 2117
		return;

2118
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2119 2120
		chv_set_memory_dvfs(dev_priv, false);

2121
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2122 2123
		chv_set_memory_pm5(dev_priv, false);

2124
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2125
		_intel_set_memory_cxsr(dev_priv, false);
2126

2127
	vlv_write_wm_values(dev_priv, &new_wm);
2128

2129
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2130
		_intel_set_memory_cxsr(dev_priv, true);
2131

2132
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2133 2134
		chv_set_memory_pm5(dev_priv, true);

2135
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2136 2137
		chv_set_memory_dvfs(dev_priv, true);

2138
	*old_wm = new_wm;
2139 2140
}

2141 2142 2143
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
2144 2145
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2146 2147

	mutex_lock(&dev_priv->wm.wm_mutex);
2148 2149 2150 2151 2152 2153 2154 2155
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
2156 2157
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2158 2159 2160 2161 2162

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2163
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2164 2165 2166 2167
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2168
static void i965_update_wm(struct intel_crtc *unused_crtc)
2169
{
2170
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2171
	struct intel_crtc *crtc;
2172 2173
	int srwm = 1;
	int cursor_sr = 16;
2174
	bool cxsr_enabled;
2175 2176

	/* Calc sr entries for one plane configs */
2177
	crtc = single_enabled_crtc(dev_priv);
2178 2179 2180
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2181
		const struct drm_display_mode *adjusted_mode =
2182
			&crtc->config->hw.adjusted_mode;
2183 2184
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2185
		int clock = adjusted_mode->crtc_clock;
2186
		int htotal = adjusted_mode->crtc_htotal;
2187
		int hdisplay = crtc->config->pipe_src_w;
2188
		int cpp = fb->format->cpp[0];
2189 2190
		int entries;

2191 2192
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2193 2194 2195 2196 2197 2198 2199 2200
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2201 2202 2203
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2204
		entries = DIV_ROUND_UP(entries,
2205 2206
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2207

2208
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2209 2210 2211 2212 2213 2214
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2215
		cxsr_enabled = true;
2216
	} else {
2217
		cxsr_enabled = false;
2218
		/* Turn off self refresh if both pipes are enabled */
2219
		intel_set_memory_cxsr(dev_priv, false);
2220 2221 2222 2223 2224 2225
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2226 2227 2228 2229 2230 2231
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2232
	/* update cursor SR watermark */
2233
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2234 2235 2236

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2237 2238
}

2239 2240
#undef FW_WM

2241
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2242
{
2243
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2244
	const struct intel_watermark_params *wm_info;
2245 2246
	u32 fwater_lo;
	u32 fwater_hi;
2247 2248 2249
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2250
	struct intel_crtc *crtc, *enabled = NULL;
2251

2252
	if (IS_I945GM(dev_priv))
2253
		wm_info = &i945_wm_info;
2254
	else if (!IS_GEN(dev_priv, 2))
2255 2256
		wm_info = &i915_wm_info;
	else
2257
		wm_info = &i830_a_wm_info;
2258

2259 2260
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2261 2262
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2263
			&crtc->config->hw.adjusted_mode;
2264 2265 2266 2267
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2268
		if (IS_GEN(dev_priv, 2))
2269
			cpp = 4;
2270
		else
2271
			cpp = fb->format->cpp[0];
2272

2273
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2274
					       wm_info, fifo_size, cpp,
2275
					       pessimal_latency_ns);
2276
		enabled = crtc;
2277
	} else {
2278
		planea_wm = fifo_size - wm_info->guard_size;
2279 2280 2281 2282
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2283
	if (IS_GEN(dev_priv, 2))
2284
		wm_info = &i830_bc_wm_info;
2285

2286 2287
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2288 2289
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2290
			&crtc->config->hw.adjusted_mode;
2291 2292 2293 2294
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2295
		if (IS_GEN(dev_priv, 2))
2296
			cpp = 4;
2297
		else
2298
			cpp = fb->format->cpp[0];
2299

2300
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2301
					       wm_info, fifo_size, cpp,
2302
					       pessimal_latency_ns);
2303 2304 2305 2306
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2307
	} else {
2308
		planeb_wm = fifo_size - wm_info->guard_size;
2309 2310 2311
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2312 2313 2314

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2315
	if (IS_I915GM(dev_priv) && enabled) {
2316
		struct drm_i915_gem_object *obj;
2317

2318
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2319 2320

		/* self-refresh seems busted with untiled */
2321
		if (!i915_gem_object_is_tiled(obj))
2322 2323 2324
			enabled = NULL;
	}

2325 2326 2327 2328 2329 2330
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2331
	intel_set_memory_cxsr(dev_priv, false);
2332 2333

	/* Calc sr entries for one plane configs */
2334
	if (HAS_FW_BLC(dev_priv) && enabled) {
2335 2336
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2337
		const struct drm_display_mode *adjusted_mode =
2338
			&enabled->config->hw.adjusted_mode;
2339 2340
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2341
		int clock = adjusted_mode->crtc_clock;
2342
		int htotal = adjusted_mode->crtc_htotal;
2343 2344
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2345 2346
		int entries;

2347
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2348
			cpp = 4;
2349
		else
2350
			cpp = fb->format->cpp[0];
2351

2352 2353
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2354 2355 2356 2357 2358 2359
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2360
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2361 2362
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2363
		else
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2380 2381
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2382 2383
}

2384
static void i845_update_wm(struct intel_crtc *unused_crtc)
2385
{
2386
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2387
	struct intel_crtc *crtc;
2388
	const struct drm_display_mode *adjusted_mode;
2389
	u32 fwater_lo;
2390 2391
	int planea_wm;

2392
	crtc = single_enabled_crtc(dev_priv);
2393 2394 2395
	if (crtc == NULL)
		return;

2396
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2397
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2398
				       &i845_wm_info,
2399
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2400
				       4, pessimal_latency_ns);
2401 2402 2403 2404 2405 2406 2407 2408
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2409
/* latency must be in 0.1us units. */
2410 2411 2412
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2413
{
2414
	unsigned int ret;
2415

2416 2417
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2418 2419 2420 2421

	return ret;
}

2422
/* latency must be in 0.1us units. */
2423 2424 2425 2426 2427
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2428
{
2429
	unsigned int ret;
2430

2431 2432
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2433
	ret = DIV_ROUND_UP(ret, 64) + 2;
2434

2435 2436 2437
	return ret;
}

2438
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2439
{
2440 2441 2442 2443 2444 2445
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2446
	if (WARN_ON(!cpp))
2447 2448 2449 2450
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2451
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2452 2453
}

2454
struct ilk_wm_maximums {
2455 2456 2457 2458
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2459 2460
};

2461 2462 2463 2464
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2465 2466
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2467
			      u32 mem_value, bool is_lp)
2468
{
2469
	u32 method1, method2;
2470
	int cpp;
2471

2472 2473 2474
	if (mem_value == 0)
		return U32_MAX;

2475
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2476 2477
		return 0;

2478
	cpp = plane_state->base.fb->format->cpp[0];
2479

2480
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2481 2482 2483 2484

	if (!is_lp)
		return method1;

2485
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2486
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2487
				 drm_rect_width(&plane_state->base.dst),
2488
				 cpp, mem_value);
2489 2490

	return min(method1, method2);
2491 2492
}

2493 2494 2495 2496
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2497 2498
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2499
			      u32 mem_value)
2500
{
2501
	u32 method1, method2;
2502
	int cpp;
2503

2504 2505 2506
	if (mem_value == 0)
		return U32_MAX;

2507
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2508 2509
		return 0;

2510
	cpp = plane_state->base.fb->format->cpp[0];
2511

2512 2513
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2514
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2515
				 drm_rect_width(&plane_state->base.dst),
2516
				 cpp, mem_value);
2517 2518 2519
	return min(method1, method2);
}

2520 2521 2522 2523
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2524 2525
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2526
			      u32 mem_value)
2527
{
2528 2529
	int cpp;

2530 2531 2532
	if (mem_value == 0)
		return U32_MAX;

2533
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2534 2535
		return 0;

2536
	cpp = plane_state->base.fb->format->cpp[0];
2537

2538
	return ilk_wm_method2(crtc_state->pixel_rate,
2539
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2540 2541
			      drm_rect_width(&plane_state->base.dst),
			      cpp, mem_value);
2542 2543
}

2544
/* Only for WM_LP. */
2545 2546
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2547
			      u32 pri_val)
2548
{
2549
	int cpp;
2550

2551
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2552 2553
		return 0;

2554
	cpp = plane_state->base.fb->format->cpp[0];
2555

2556
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2557 2558
}

2559 2560
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2561
{
2562
	if (INTEL_GEN(dev_priv) >= 8)
2563
		return 3072;
2564
	else if (INTEL_GEN(dev_priv) >= 7)
2565 2566 2567 2568 2569
		return 768;
	else
		return 512;
}

2570 2571 2572
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2573
{
2574
	if (INTEL_GEN(dev_priv) >= 8)
2575 2576
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2577
	else if (INTEL_GEN(dev_priv) >= 7)
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2588 2589
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2590
{
2591
	if (INTEL_GEN(dev_priv) >= 7)
2592 2593 2594 2595 2596
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2597
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2598
{
2599
	if (INTEL_GEN(dev_priv) >= 8)
2600 2601 2602 2603 2604
		return 31;
	else
		return 15;
}

2605
/* Calculate the maximum primary/sprite plane watermark */
2606
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2607
				     int level,
2608
				     const struct intel_wm_config *config,
2609 2610 2611
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2612
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2613 2614

	/* if sprites aren't enabled, sprites get nothing */
2615
	if (is_sprite && !config->sprites_enabled)
2616 2617 2618
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2619
	if (level == 0 || config->num_pipes_active > 1) {
2620
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2621 2622 2623 2624 2625 2626

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2627
		if (INTEL_GEN(dev_priv) <= 6)
2628 2629 2630
			fifo_size /= 2;
	}

2631
	if (config->sprites_enabled) {
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2643
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2644 2645 2646
}

/* Calculate the maximum cursor plane watermark */
2647
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2648 2649
				      int level,
				      const struct intel_wm_config *config)
2650 2651
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2652
	if (level > 0 && config->num_pipes_active > 1)
2653 2654 2655
		return 64;

	/* otherwise just report max that registers can hold */
2656
	return ilk_cursor_wm_reg_max(dev_priv, level);
2657 2658
}

2659
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2660 2661 2662
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2663
				    struct ilk_wm_maximums *max)
2664
{
2665 2666 2667 2668
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2669 2670
}

2671
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2672 2673 2674
					int level,
					struct ilk_wm_maximums *max)
{
2675 2676 2677 2678
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2679 2680
}

2681
static bool ilk_validate_wm_level(int level,
2682
				  const struct ilk_wm_maximums *max,
2683
				  struct intel_wm_level *result)
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2713 2714 2715
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2716 2717 2718 2719 2720 2721
		result->enable = true;
	}

	return ret;
}

2722
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2723
				 const struct intel_crtc *intel_crtc,
2724
				 int level,
2725
				 struct intel_crtc_state *crtc_state,
2726 2727 2728
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2729
				 struct intel_wm_level *result)
2730
{
2731 2732 2733
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2734 2735 2736 2737 2738 2739 2740 2741

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2742
	if (pristate) {
2743
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2744
						     pri_latency, level);
2745
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2746 2747 2748
	}

	if (sprstate)
2749
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2750 2751

	if (curstate)
2752
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2753

2754 2755 2756
	result->enable = true;
}

2757
static u32
2758
hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2759
{
2760
	const struct intel_atomic_state *intel_state =
2761
		to_intel_atomic_state(crtc_state->uapi.state);
2762
	const struct drm_display_mode *adjusted_mode =
2763
		&crtc_state->hw.adjusted_mode;
2764
	u32 linetime, ips_linetime;
2765

2766
	if (!crtc_state->hw.active)
2767 2768 2769
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2770
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2771
		return 0;
2772

2773 2774 2775
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2776 2777 2778
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2779
					 intel_state->cdclk.logical.cdclk);
2780

2781 2782
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2783 2784
}

2785
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2786
				  u16 wm[8])
2787
{
2788 2789
	struct intel_uncore *uncore = &dev_priv->uncore;

2790
	if (INTEL_GEN(dev_priv) >= 9) {
2791
		u32 val;
2792
		int ret, i;
2793
		int level, max_level = ilk_wm_max_level(dev_priv);
2794 2795 2796 2797 2798

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2799
					     &val, NULL);
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2818
					     &val, NULL);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2845
		/*
2846
		 * WaWmMemoryReadLatency:skl+,glk
2847
		 *
2848
		 * punit doesn't take into account the read latency so we need
2849 2850
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2851
		 */
2852 2853 2854 2855 2856
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2857
				wm[level] += 2;
2858
			}
2859 2860
		}

2861 2862 2863 2864 2865 2866
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2867
		if (dev_priv->dram_info.is_16gb_dimm)
2868 2869
			wm[0] += 1;

2870
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2871
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2872 2873 2874 2875

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2876 2877 2878 2879
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2880
	} else if (INTEL_GEN(dev_priv) >= 6) {
2881
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2882 2883 2884 2885 2886

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2887
	} else if (INTEL_GEN(dev_priv) >= 5) {
2888
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2889 2890 2891 2892 2893

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2894 2895
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2896 2897 2898
	}
}

2899
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2900
				       u16 wm[5])
2901 2902
{
	/* ILK sprite LP0 latency is 1300 ns */
2903
	if (IS_GEN(dev_priv, 5))
2904 2905 2906
		wm[0] = 13;
}

2907
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2908
				       u16 wm[5])
2909 2910
{
	/* ILK cursor LP0 latency is 1300 ns */
2911
	if (IS_GEN(dev_priv, 5))
2912 2913 2914
		wm[0] = 13;
}

2915
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2916 2917
{
	/* how many WM levels are we expecting */
2918
	if (INTEL_GEN(dev_priv) >= 9)
2919
		return 7;
2920
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2921
		return 4;
2922
	else if (INTEL_GEN(dev_priv) >= 6)
2923
		return 3;
2924
	else
2925 2926
		return 2;
}
2927

2928
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2929
				   const char *name,
2930
				   const u16 wm[8])
2931
{
2932
	int level, max_level = ilk_wm_max_level(dev_priv);
2933 2934 2935 2936 2937

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2938 2939
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2940 2941 2942
			continue;
		}

2943 2944 2945 2946
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2947
		if (INTEL_GEN(dev_priv) >= 9)
2948 2949
			latency *= 10;
		else if (level > 0)
2950 2951 2952 2953 2954 2955 2956 2957
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2958
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2959
				    u16 wm[5], u16 min)
2960
{
2961
	int level, max_level = ilk_wm_max_level(dev_priv);
2962 2963 2964 2965 2966 2967

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2968
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2969 2970 2971 2972

	return true;
}

2973
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2989 2990 2991
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2992 2993
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3022
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3023
{
3024
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3025 3026 3027 3028 3029 3030

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3031
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3032
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3033

3034 3035 3036
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3037

3038
	if (IS_GEN(dev_priv, 6)) {
3039
		snb_wm_latency_quirk(dev_priv);
3040 3041
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3042 3043
}

3044
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3045
{
3046
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3047
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3048 3049
}

3050
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3062
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3073
/* Compute new watermarks for the pipe */
3074
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3075
{
3076 3077
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
3078
	struct intel_pipe_wm *pipe_wm;
3079 3080
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3081 3082 3083
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3084
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3085
	struct ilk_wm_maximums max;
3086

3087
	pipe_wm = &crtc_state->wm.ilk.optimal;
3088

3089 3090 3091 3092 3093 3094 3095
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3096 3097
	}

3098
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3099
	if (sprstate) {
3100 3101 3102 3103
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3104 3105
	}

3106 3107
	usable_level = max_level;

3108
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3109
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3110
		usable_level = 1;
3111 3112

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3113
	if (pipe_wm->sprites_scaled)
3114
		usable_level = 0;
3115

3116
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3117
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3118
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3119

3120
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3121
		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3122

3123
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3124
		return -EINVAL;
3125

3126
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3127

3128 3129
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3130

3131
		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3132
				     pristate, sprstate, curstate, wm);
3133 3134 3135 3136 3137 3138

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3139 3140 3141 3142
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3143 3144
	}

3145
	return 0;
3146 3147
}

3148 3149 3150 3151 3152
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3153
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3154
{
3155
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3156
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3157
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3158
	struct intel_atomic_state *intel_state =
3159
		to_intel_atomic_state(newstate->uapi.state);
3160 3161 3162
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3163
	int level, max_level = ilk_wm_max_level(dev_priv);
3164 3165 3166 3167 3168 3169

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3170
	*a = newstate->wm.ilk.optimal;
3171
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3172
	    intel_state->skip_intermediate_wm)
3173 3174
		return 0;

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3196
	if (!ilk_validate_pipe_wm(dev_priv, a))
3197 3198 3199 3200 3201 3202
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3203 3204
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3205 3206 3207 3208

	return 0;
}

3209 3210 3211
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3212
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3213 3214 3215 3216 3217
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3218 3219
	ret_wm->enable = true;

3220
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3221
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3222 3223 3224 3225
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3226

3227 3228 3229 3230 3231
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3232
		if (!wm->enable)
3233
			ret_wm->enable = false;
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3245
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3246
			 const struct intel_wm_config *config,
3247
			 const struct ilk_wm_maximums *max,
3248 3249
			 struct intel_pipe_wm *merged)
{
3250
	int level, max_level = ilk_wm_max_level(dev_priv);
3251
	int last_enabled_level = max_level;
3252

3253
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3254
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3255
	    config->num_pipes_active > 1)
3256
		last_enabled_level = 0;
3257

3258
	/* ILK: FBC WM must be disabled always */
3259
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3260 3261 3262 3263 3264

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3265
		ilk_merge_wm_level(dev_priv, level, wm);
3266

3267 3268 3269 3270 3271
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3272 3273 3274 3275 3276 3277

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3278 3279
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3280 3281 3282
			wm->fbc_val = 0;
		}
	}
3283 3284 3285 3286 3287 3288 3289

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3290
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3291
	    intel_fbc_is_active(dev_priv)) {
3292 3293 3294 3295 3296 3297
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3298 3299
}

3300 3301 3302 3303 3304 3305
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3306
/* The value we need to program into the WM_LPx latency field */
3307 3308
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3309
{
3310
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3311 3312 3313 3314 3315
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3316
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3317
				   const struct intel_pipe_wm *merged,
3318
				   enum intel_ddb_partitioning partitioning,
3319
				   struct ilk_wm_values *results)
3320
{
3321 3322
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3323

3324
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3325
	results->partitioning = partitioning;
3326

3327
	/* LP1+ register values */
3328
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3329
		const struct intel_wm_level *r;
3330

3331
		level = ilk_wm_lp_to_level(wm_lp, merged);
3332

3333
		r = &merged->wm[level];
3334

3335 3336 3337 3338 3339
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3340
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3341 3342 3343
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3344 3345 3346
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3347
		if (INTEL_GEN(dev_priv) >= 8)
3348 3349 3350 3351 3352 3353
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3354 3355 3356 3357
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3358
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3359 3360 3361 3362
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3363
	}
3364

3365
	/* LP0 register values */
3366
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3367
		enum pipe pipe = intel_crtc->pipe;
3368 3369
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3370 3371 3372 3373

		if (WARN_ON(!r->enable))
			continue;

3374
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3375

3376 3377 3378 3379
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3380 3381 3382
	}
}

3383 3384
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3385 3386 3387 3388
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3389
{
3390
	int level, max_level = ilk_wm_max_level(dev_priv);
3391
	int level1 = 0, level2 = 0;
3392

3393 3394 3395 3396 3397
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3398 3399
	}

3400 3401
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3402 3403 3404
			return r2;
		else
			return r1;
3405
	} else if (level1 > level2) {
3406 3407 3408 3409 3410 3411
		return r1;
	} else {
		return r2;
	}
}

3412 3413 3414 3415 3416 3417 3418 3419
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3420
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3421 3422
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3423 3424 3425 3426 3427
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3428
	for_each_pipe(dev_priv, pipe) {
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3472 3473
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3474
{
3475
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3476
	bool changed = false;
3477

3478 3479 3480
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3481
		changed = true;
3482 3483 3484 3485
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3486
		changed = true;
3487 3488 3489 3490
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3491
		changed = true;
3492
	}
3493

3494 3495 3496 3497
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3498

3499 3500 3501 3502 3503 3504 3505
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3506 3507
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3508
{
3509
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3510
	unsigned int dirty;
3511
	u32 val;
3512

3513
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3514 3515 3516 3517 3518
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3519
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3520
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3521
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3522
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3523
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3524 3525
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3526
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3527
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3528
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3529
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3530
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3531 3532
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3533
	if (dirty & WM_DIRTY_DDB) {
3534
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3549 3550
	}

3551
	if (dirty & WM_DIRTY_FBC) {
3552 3553 3554 3555 3556 3557 3558 3559
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3560 3561 3562 3563
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3564
	if (INTEL_GEN(dev_priv) >= 7) {
3565 3566 3567 3568 3569
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3570

3571
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3572
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3573
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3574
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3575
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3576
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3577 3578

	dev_priv->wm.hw = *results;
3579 3580
}

3581
bool ilk_disable_lp_wm(struct drm_device *dev)
3582
{
3583
	struct drm_i915_private *dev_priv = to_i915(dev);
3584 3585 3586 3587

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3599 3600 3601 3602 3603 3604
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3605 3606 3607 3608 3609
		enabled_slices++;

	return enabled_slices;
}

3610 3611 3612 3613
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3614
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3615
{
3616
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3617 3618
}

3619 3620 3621
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3622 3623 3624 3625
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3626 3627
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3628 3629
}

3630 3631 3632
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

		DRM_DEBUG_DRIVER("Couldn't read SAGV block time!\n");
	} else if (IS_GEN(dev_priv, 11)) {
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3675
intel_enable_sagv(struct drm_i915_private *dev_priv)
3676 3677 3678
{
	int ret;

3679 3680 3681 3682
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3683 3684
		return 0;

3685
	DRM_DEBUG_KMS("Enabling SAGV\n");
3686 3687 3688
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3689
	/* We don't need to wait for SAGV when enabling */
3690 3691 3692

	/*
	 * Some skl systems, pre-release machines in particular,
3693
	 * don't actually have SAGV.
3694
	 */
3695
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3696
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3697
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3698 3699
		return 0;
	} else if (ret < 0) {
3700
		DRM_ERROR("Failed to enable SAGV\n");
3701 3702 3703
		return ret;
	}

3704
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3705 3706 3707 3708
	return 0;
}

int
3709
intel_disable_sagv(struct drm_i915_private *dev_priv)
3710
{
3711
	int ret;
3712

3713 3714 3715 3716
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3717 3718
		return 0;

3719
	DRM_DEBUG_KMS("Disabling SAGV\n");
3720
	/* bspec says to keep retrying for at least 1 ms */
3721 3722 3723 3724
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3725 3726
	/*
	 * Some skl systems, pre-release machines in particular,
3727
	 * don't actually have SAGV.
3728
	 */
3729
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3730
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3731
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3732
		return 0;
3733
	} else if (ret < 0) {
3734
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3735
		return ret;
3736 3737
	}

3738
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3739 3740 3741
	return 0;
}

3742
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3743
{
3744
	struct drm_device *dev = state->base.dev;
3745
	struct drm_i915_private *dev_priv = to_i915(dev);
3746 3747
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3748
	struct intel_crtc_state *crtc_state;
3749
	enum pipe pipe;
3750
	int level, latency;
3751

3752 3753 3754
	if (!intel_has_sagv(dev_priv))
		return false;

3755 3756 3757
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3758
	if (hweight8(state->active_pipes) == 0)
3759
		return true;
3760 3761 3762 3763 3764

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3765
	if (hweight8(state->active_pipes) > 1)
3766 3767 3768
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3769
	pipe = ffs(state->active_pipes) - 1;
3770
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3771
	crtc_state = to_intel_crtc_state(crtc->base.state);
3772

3773
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3774 3775
		return false;

3776
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3777
		struct skl_plane_wm *wm =
3778
			&crtc_state->wm.skl.optimal.planes[plane->id];
3779

3780
		/* Skip this plane if it's not enabled */
3781
		if (!wm->wm[0].plane_en)
3782 3783 3784
			continue;

		/* Find the highest enabled wm level for this plane */
3785
		for (level = ilk_wm_max_level(dev_priv);
3786
		     !wm->wm[level].plane_en; --level)
3787 3788
		     { }

3789 3790
		latency = dev_priv->wm.skl_latency[level];

3791
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3792
		    plane->base.state->fb->modifier ==
3793 3794 3795
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3796
		/*
3797 3798
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3799
		 * can't enable SAGV.
3800
		 */
3801
		if (latency < dev_priv->sagv_block_time_us)
3802 3803 3804 3805 3806 3807
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3808
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3809
			      const struct intel_crtc_state *crtc_state,
3810
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3811 3812
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

3823
	adjusted_mode = &crtc_state->hw.adjusted_mode;
3824
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3825 3826 3827

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3828 3829 3830 3831 3832
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3833
	 */
3834
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3835 3836 3837 3838 3839 3840 3841 3842 3843
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3844
static void
3845
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3846
				   const struct intel_crtc_state *crtc_state,
3847
				   const u64 total_data_rate,
3848
				   struct skl_ddb_allocation *ddb,
3849 3850
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3851
{
3852
	struct drm_atomic_state *state = crtc_state->uapi.state;
3853
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3854
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3855
	const struct intel_crtc *crtc;
3856 3857 3858 3859
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3860

3861
	if (WARN_ON(!state) || !crtc_state->hw.active) {
3862 3863
		alloc->start = 0;
		alloc->end = 0;
3864
		*num_active = hweight8(dev_priv->active_pipes);
3865 3866 3867
		return;
	}

3868
	if (intel_state->active_pipe_changes)
3869
		*num_active = hweight8(intel_state->active_pipes);
3870
	else
3871
		*num_active = hweight8(dev_priv->active_pipes);
3872

3873
	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3874
				      *num_active, ddb);
3875

3876
	/*
3877 3878 3879 3880 3881 3882
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3883
	 */
3884
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3885 3886 3887 3888 3889
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3890
		return;
3891
	}
3892

3893 3894 3895 3896 3897
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3898 3899
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
3900
			&crtc_state->hw.adjusted_mode;
3901
		enum pipe pipe = crtc->pipe;
3902 3903
		int hdisplay, vdisplay;

3904
		if (!crtc_state->hw.enable)
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3918 3919
}

3920 3921 3922 3923 3924
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3925
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3926 3927 3928 3929 3930 3931 3932 3933
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3934
{
3935
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3949
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3950 3951 3952 3953 3954
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3955

3956
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3957 3958
}

3959 3960
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3961
{
3962

3963 3964
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3965

3966 3967
	if (entry->end)
		entry->end += 1;
3968 3969
}

3970 3971 3972 3973
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3974 3975
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3976
{
3977 3978
	u32 val, val2;
	u32 fourcc = 0;
3979 3980 3981 3982

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3983
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3984 3985 3986 3987 3988 3989
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3990 3991 3992 3993
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3994

3995 3996 3997 3998 3999
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4000
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4001

4002 4003
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4004 4005 4006 4007
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4008 4009 4010
	}
}

4011 4012 4013
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4014
{
4015 4016 4017
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4018
	intel_wakeref_t wakeref;
4019
	enum plane_id plane_id;
4020

4021
	power_domain = POWER_DOMAIN_PIPE(pipe);
4022 4023
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4024
		return;
4025

4026 4027 4028 4029 4030
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4031

4032
	intel_display_power_put(dev_priv, power_domain, wakeref);
4033
}
4034

4035 4036 4037 4038
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4039 4040
}

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4057
static uint_fixed_16_16_t
4058 4059
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4060
{
4061
	u32 src_w, src_h, dst_w, dst_h;
4062 4063
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4064

4065
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4066
		return u32_to_fixed16(0);
4067

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
	src_w = drm_rect_width(&plane_state->base.src) >> 16;
	src_h = drm_rect_height(&plane_state->base.src) >> 16;
	dst_w = drm_rect_width(&plane_state->base.dst);
	dst_h = drm_rect_height(&plane_state->base.dst);
4079

4080 4081 4082 4083
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4084

4085
	return mul_fixed16(downscale_w, downscale_h);
4086 4087
}

4088
static u64
4089 4090
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4091
			     int color_plane)
4092
{
4093 4094
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
4095 4096
	u32 data_rate;
	u32 width = 0, height = 0;
4097
	uint_fixed_16_16_t down_scale_amount;
4098
	u64 rate;
4099

4100
	if (!plane_state->base.visible)
4101
		return 0;
4102

4103
	if (plane->id == PLANE_CURSOR)
4104
		return 0;
4105 4106 4107

	if (color_plane == 1 &&
	    !drm_format_info_is_yuv_semiplanar(fb->format))
4108
		return 0;
4109

4110 4111 4112 4113 4114
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4115 4116
	width = drm_rect_width(&plane_state->base.src) >> 16;
	height = drm_rect_height(&plane_state->base.src) >> 16;
4117

4118
	/* UV plane does 1/2 pixel sub-sampling */
4119
	if (color_plane == 1) {
4120 4121
		width /= 2;
		height /= 2;
4122 4123
	}

4124
	data_rate = width * height;
4125

4126
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4127

4128 4129
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4130
	rate *= fb->format->cpp[color_plane];
4131
	return rate;
4132 4133
}

4134
static u64
4135
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4136 4137
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4138
{
4139
	struct drm_atomic_state *state = crtc_state->uapi.state;
4140 4141
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4142
	u64 total_data_rate = 0;
4143 4144 4145

	if (WARN_ON(!state))
		return 0;
4146

4147
	/* Calculate and cache data rate for each plane */
4148 4149
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4150
		u64 rate;
4151

4152
		/* packed/y */
4153
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4154
		plane_data_rate[plane_id] = rate;
4155
		total_data_rate += rate;
4156

4157
		/* uv-plane */
4158
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4159
		uv_plane_data_rate[plane_id] = rate;
4160
		total_data_rate += rate;
4161 4162 4163 4164 4165
	}

	return total_data_rate;
}

4166
static u64
4167
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4168 4169
				 u64 *plane_data_rate)
{
4170 4171
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4172 4173
	u64 total_data_rate = 0;

4174
	if (WARN_ON(!crtc_state->uapi.state))
4175 4176 4177
		return 0;

	/* Calculate and cache data rate for each plane */
4178 4179
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4180 4181
		u64 rate;

4182
		if (!plane_state->planar_linked_plane) {
4183
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4184 4185 4186 4187 4188 4189 4190
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4191
			 * intel_atomic_crtc_state_for_each_plane_state(),
4192 4193 4194 4195
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4196
			if (plane_state->planar_slave)
4197 4198 4199
				continue;

			/* Y plane rate is calculated on the slave */
4200
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4201
			y_plane_id = plane_state->planar_linked_plane->id;
4202 4203 4204
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4205
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4206 4207 4208 4209 4210 4211 4212 4213
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4214
static int
4215
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4216 4217
		      struct skl_ddb_allocation *ddb /* out */)
{
4218 4219
	struct drm_atomic_state *state = crtc_state->uapi.state;
	struct drm_crtc *crtc = crtc_state->uapi.crtc;
4220
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4221
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4222
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4223 4224 4225
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4226
	u64 total_data_rate;
4227
	enum plane_id plane_id;
4228
	int num_active;
4229 4230
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4231
	u32 blocks;
4232
	int level;
4233

4234
	/* Clear the partitioning for disabled planes. */
4235 4236
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4237

4238 4239 4240
	if (WARN_ON(!state))
		return 0;

4241
	if (!crtc_state->hw.active) {
4242
		alloc->start = alloc->end = 0;
4243 4244 4245
		return 0;
	}

4246 4247
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4248
			icl_get_total_relative_data_rate(crtc_state,
4249 4250
							 plane_data_rate);
	else
4251
		total_data_rate =
4252
			skl_get_total_relative_data_rate(crtc_state,
4253 4254
							 plane_data_rate,
							 uv_plane_data_rate);
4255

4256

4257
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4258
					   ddb, alloc, &num_active);
4259
	alloc_size = skl_ddb_entry_size(alloc);
4260
	if (alloc_size == 0)
4261
		return 0;
4262

4263
	/* Allocate fixed number of blocks for cursor. */
4264
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4265
	alloc_size -= total[PLANE_CURSOR];
4266
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4267
		alloc->end - total[PLANE_CURSOR];
4268
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4269 4270 4271

	if (total_data_rate == 0)
		return 0;
4272

4273
	/*
4274 4275
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4276
	 */
4277
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4278
		blocks = 0;
4279
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4280
			const struct skl_plane_wm *wm =
4281
				&crtc_state->wm.skl.optimal.planes[plane_id];
4282 4283 4284 4285 4286 4287 4288

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4289
				continue;
4290
			}
4291

4292 4293
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4294 4295
		}

4296
		if (blocks <= alloc_size) {
4297 4298 4299
			alloc_size -= blocks;
			break;
		}
4300 4301
	}

4302
	if (level < 0) {
4303
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4304 4305
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4306 4307 4308
		return -EINVAL;
	}

4309
	/*
4310 4311 4312
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4313
	 */
4314
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4315
		const struct skl_plane_wm *wm =
4316
			&crtc_state->wm.skl.optimal.planes[plane_id];
4317 4318
		u64 rate;
		u16 extra;
4319

4320
		if (plane_id == PLANE_CURSOR)
4321 4322
			continue;

4323
		/*
4324 4325
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4326
		 */
4327 4328
		if (total_data_rate == 0)
			break;
4329

4330 4331 4332 4333
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4334
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4335 4336
		alloc_size -= extra;
		total_data_rate -= rate;
4337

4338 4339
		if (total_data_rate == 0)
			break;
4340

4341 4342 4343 4344
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4345
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4346 4347 4348 4349 4350 4351 4352 4353
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4354
		struct skl_ddb_entry *plane_alloc =
4355
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4356
		struct skl_ddb_entry *uv_plane_alloc =
4357
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4358 4359 4360 4361

		if (plane_id == PLANE_CURSOR)
			continue;

4362
		/* Gen11+ uses a separate plane for UV watermarks */
4363 4364 4365 4366 4367 4368 4369 4370
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4371

4372 4373 4374 4375
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4376
		}
4377
	}
4378

4379 4380 4381 4382 4383 4384 4385 4386
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4387
			struct skl_plane_wm *wm =
4388
				&crtc_state->wm.skl.optimal.planes[plane_id];
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4405

4406
			/*
4407
			 * Wa_1408961008:icl, ehl
4408 4409
			 * Underruns with WM1+ disabled
			 */
4410
			if (IS_GEN(dev_priv, 11) &&
4411 4412
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4413 4414
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4415
			}
4416 4417 4418 4419 4420 4421 4422 4423
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4424
		struct skl_plane_wm *wm =
4425
			&crtc_state->wm.skl.optimal.planes[plane_id];
4426

4427
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4428
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4429 4430
	}

4431
	return 0;
4432 4433
}

4434 4435
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4436
 * for the read latency) and cpp should always be <= 8, so that
4437 4438 4439
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4440
static uint_fixed_16_16_t
4441 4442
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4443
{
4444
	u32 wm_intermediate_val;
4445
	uint_fixed_16_16_t ret;
4446 4447

	if (latency == 0)
4448
		return FP_16_16_MAX;
4449

4450
	wm_intermediate_val = latency * pixel_rate * cpp;
4451
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4452 4453 4454 4455

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4456 4457 4458
	return ret;
}

4459 4460 4461
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4462
{
4463
	u32 wm_intermediate_val;
4464
	uint_fixed_16_16_t ret;
4465 4466

	if (latency == 0)
4467
		return FP_16_16_MAX;
4468 4469

	wm_intermediate_val = latency * pixel_rate;
4470 4471
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4472
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4473 4474 4475
	return ret;
}

4476
static uint_fixed_16_16_t
4477
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4478
{
4479 4480
	u32 pixel_rate;
	u32 crtc_htotal;
4481 4482
	uint_fixed_16_16_t linetime_us;

4483
	if (!crtc_state->hw.active)
4484
		return u32_to_fixed16(0);
4485

4486
	pixel_rate = crtc_state->pixel_rate;
4487 4488

	if (WARN_ON(pixel_rate == 0))
4489
		return u32_to_fixed16(0);
4490

4491
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4492
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4493 4494 4495 4496

	return linetime_us;
}

4497
static u32
4498 4499
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4500
{
4501
	u64 adjusted_pixel_rate;
4502
	uint_fixed_16_16_t downscale_amount;
4503 4504

	/* Shouldn't reach here on disabled planes... */
4505
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4506 4507 4508 4509 4510 4511
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4512 4513
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4514

4515 4516
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4517 4518
}

4519
static int
4520 4521 4522 4523 4524
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4525
{
4526
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4527
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4528
	u32 interm_pbpl;
4529

4530
	/* only planar format has two planes */
4531
	if (color_plane == 1 && !drm_format_info_is_yuv_semiplanar(format)) {
4532
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4533 4534 4535
		return -EINVAL;
	}

4536 4537 4538 4539 4540 4541 4542
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4543
	wp->is_planar = drm_format_info_is_yuv_semiplanar(format);
4544

4545
	wp->width = width;
4546
	if (color_plane == 1 && wp->is_planar)
4547 4548
		wp->width /= 2;

4549 4550
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4551

4552
	if (INTEL_GEN(dev_priv) >= 11 &&
4553
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4554 4555 4556 4557
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4558
	if (drm_rotation_90_or_270(rotation)) {
4559
		switch (wp->cpp) {
4560
		case 1:
4561
			wp->y_min_scanlines = 16;
4562 4563
			break;
		case 2:
4564
			wp->y_min_scanlines = 8;
4565 4566
			break;
		case 4:
4567
			wp->y_min_scanlines = 4;
4568
			break;
4569
		default:
4570
			MISSING_CASE(wp->cpp);
4571
			return -EINVAL;
4572 4573
		}
	} else {
4574
		wp->y_min_scanlines = 4;
4575 4576
	}

4577
	if (skl_needs_memory_bw_wa(dev_priv))
4578
		wp->y_min_scanlines *= 2;
4579

4580 4581 4582
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4583 4584
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4585 4586 4587 4588

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4589 4590
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4591
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4592 4593
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4594
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4595
	} else {
4596 4597
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4598
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4599 4600
	}

4601 4602
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4603

4604
	wp->linetime_us = fixed16_to_u32_round_up(
4605
					intel_get_linetime_us(crtc_state));
4606 4607 4608 4609

	return 0;
}

4610 4611 4612 4613 4614 4615 4616 4617
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

4618 4619 4620 4621 4622 4623
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
	width = drm_rect_width(&plane_state->base.src) >> 16;
4624 4625 4626 4627 4628 4629 4630 4631

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4632 4633 4634 4635 4636 4637 4638 4639 4640
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4641
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4642 4643 4644 4645
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4646
{
4647
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4648
	u32 latency = dev_priv->wm.skl_latency[level];
4649 4650
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4651
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4652

4653 4654 4655
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4656
		return;
4657
	}
4658

4659 4660 4661 4662
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4663
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4664 4665 4666
	    dev_priv->ipc_enabled)
		latency += 4;

4667
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4668 4669 4670
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4671
				 wp->cpp, latency, wp->dbuf_block_size);
4672
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4673
				 crtc_state->hw.adjusted_mode.crtc_htotal,
4674
				 latency,
4675
				 wp->plane_blocks_per_line);
4676

4677 4678
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4679
	} else {
4680
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
4681
		     wp->dbuf_block_size < 1) &&
4682
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4683
			selected_result = method2;
4684
		} else if (latency >= wp->linetime_us) {
4685
			if (IS_GEN(dev_priv, 9) &&
4686 4687 4688 4689 4690
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4691
			selected_result = method1;
4692
		}
4693
	}
4694

4695
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4696
	res_lines = div_round_up_fixed16(selected_result,
4697
					 wp->plane_blocks_per_line);
4698

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4714

4715 4716 4717 4718 4719 4720 4721 4722 4723
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4724
	}
4725

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4744 4745 4746
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4747 4748 4749
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4750
		return;
4751
	}
4752 4753 4754 4755 4756 4757 4758

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4759 4760
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4761 4762
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4763
	result->plane_en = true;
4764 4765
}

4766
static void
4767
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4768
		      const struct skl_wm_params *wm_params,
4769
		      struct skl_wm_level *levels)
4770
{
4771
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4772
	int level, max_level = ilk_wm_max_level(dev_priv);
4773
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4774

4775
	for (level = 0; level <= max_level; level++) {
4776
		struct skl_wm_level *result = &levels[level];
4777

4778
		skl_compute_plane_wm(crtc_state, level, wm_params,
4779
				     result_prev, result);
4780 4781

		result_prev = result;
4782
	}
4783 4784
}

4785
static u32
4786
skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4787
{
4788
	struct drm_atomic_state *state = crtc_state->uapi.state;
M
Mahesh Kumar 已提交
4789
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4790
	uint_fixed_16_16_t linetime_us;
4791
	u32 linetime_wm;
4792

4793
	linetime_us = intel_get_linetime_us(crtc_state);
4794
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4795

4796 4797
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4798
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4799 4800

	return linetime_wm;
4801 4802
}

4803
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4804
				      const struct skl_wm_params *wp,
4805
				      struct skl_plane_wm *wm)
4806
{
4807
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
4808
	const struct drm_i915_private *dev_priv = to_i915(dev);
4809 4810 4811
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4812 4813 4814

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4815
		return;
4816 4817 4818

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4819
		return;
4820

4821 4822
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4823 4824 4825 4826
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4837
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4838

4839
	if (wp->y_tiled) {
4840 4841
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4842
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4843 4844
				trans_offset_b;
	} else {
4845
		res_blocks = wm0_sel_res_b + trans_offset_b;
4846 4847 4848 4849 4850 4851 4852

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4853 4854 4855 4856 4857 4858 4859
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4860 4861
}

4862
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4863 4864
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4865
{
4866
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4867 4868 4869
	struct skl_wm_params wm_params;
	int ret;

4870
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4871 4872 4873 4874
					  &wm_params, color_plane);
	if (ret)
		return ret;

4875
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4876
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4877 4878 4879 4880

	return 0;
}

4881
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4882 4883
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4884
{
4885
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4886 4887 4888
	struct skl_wm_params wm_params;
	int ret;

4889
	wm->is_planar = true;
4890 4891

	/* uv plane watermarks must also be validated for NV12/Planar */
4892
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4893 4894 4895
					  &wm_params, 1);
	if (ret)
		return ret;
4896

4897
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4898

4899
	return 0;
4900 4901
}

4902
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
4903
			      const struct intel_plane_state *plane_state)
4904
{
4905 4906 4907
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
4908 4909
	int ret;

4910 4911 4912
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4913
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4914
					plane_id, 0);
4915 4916 4917
	if (ret)
		return ret;

4918
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4919
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4920 4921 4922 4923 4924 4925 4926 4927
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4928
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
4929 4930 4931 4932 4933 4934
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
4935
	if (plane_state->planar_slave)
4936 4937
		return 0;

4938
	if (plane_state->planar_linked_plane) {
4939
		const struct drm_framebuffer *fb = plane_state->base.fb;
4940
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
4941 4942 4943 4944 4945

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

4946
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4947 4948 4949 4950
						y_plane_id, 0);
		if (ret)
			return ret;

4951
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4952 4953 4954 4955
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4956
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4957 4958 4959 4960 4961 4962
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
4963 4964
}

4965
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
4966
{
4967
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4968
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
4969 4970
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4971
	int ret;
4972

L
Lyude 已提交
4973 4974 4975 4976 4977 4978
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4979 4980
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
4981

4982
		if (INTEL_GEN(dev_priv) >= 11)
4983
			ret = icl_build_plane_wm(crtc_state, plane_state);
4984
		else
4985
			ret = skl_build_plane_wm(crtc_state, plane_state);
4986 4987
		if (ret)
			return ret;
4988
	}
4989

4990
	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
4991

4992
	return 0;
4993 4994
}

4995 4996
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4997 4998 4999
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5000
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5001
	else
5002
		I915_WRITE_FW(reg, 0);
5003 5004
}

5005 5006 5007 5008
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5009
	u32 val = 0;
5010

5011
	if (level->plane_en)
5012
		val |= PLANE_WM_EN;
5013 5014 5015 5016
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5017

5018
	I915_WRITE_FW(reg, val);
5019 5020
}

5021 5022
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5023
{
5024
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5025
	int level, max_level = ilk_wm_max_level(dev_priv);
5026 5027 5028 5029 5030 5031 5032 5033
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5034 5035

	for (level = 0; level <= max_level; level++) {
5036
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5037
				   &wm->wm[level]);
5038
	}
5039
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5040
			   &wm->trans_wm);
5041

5042
	if (INTEL_GEN(dev_priv) >= 11) {
5043
		skl_ddb_entry_write(dev_priv,
5044 5045
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5046
	}
5047 5048 5049 5050 5051 5052 5053 5054

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5055 5056
}

5057 5058
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5059
{
5060
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5061
	int level, max_level = ilk_wm_max_level(dev_priv);
5062 5063 5064 5065 5066 5067
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5068 5069

	for (level = 0; level <= max_level; level++) {
5070 5071
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5072
	}
5073
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5074

5075
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5076 5077
}

5078 5079 5080
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5081
	return l1->plane_en == l2->plane_en &&
5082
		l1->ignore_lines == l2->ignore_lines &&
5083 5084 5085
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5086

5087 5088 5089 5090 5091
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5092

5093 5094 5095 5096 5097 5098 5099
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5100 5101
}

5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5119 5120
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5121
{
5122
	return a->start < b->end && b->start < a->end;
5123 5124
}

5125
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5126
				 const struct skl_ddb_entry *entries,
5127
				 int num_entries, int ignore_idx)
5128
{
5129
	int i;
5130

5131 5132 5133
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5134
			return true;
5135
	}
5136

5137
	return false;
5138 5139
}

5140
static int
5141 5142
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5143
{
5144 5145
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5146 5147
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5148

5149 5150 5151
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5152

5153 5154 5155 5156
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5157 5158
			continue;

5159
		plane_state = intel_atomic_get_plane_state(state, plane);
5160 5161
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5162

5163
		new_crtc_state->update_planes |= BIT(plane_id);
5164 5165 5166 5167 5168 5169
	}

	return 0;
}

static int
5170
skl_compute_ddb(struct intel_atomic_state *state)
5171
{
5172 5173
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5174 5175
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5176 5177
	struct intel_crtc *crtc;
	int ret, i;
5178

5179 5180
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5181
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5182 5183
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5184 5185 5186
		if (ret)
			return ret;

5187 5188
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5189 5190
		if (ret)
			return ret;
5191 5192 5193 5194 5195
	}

	return 0;
}

5196 5197 5198 5199 5200
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5201
static void
5202
skl_print_wm_changes(struct intel_atomic_state *state)
5203
{
5204 5205 5206 5207 5208
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5209
	int i;
5210

5211 5212 5213
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5214 5215
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5216 5217 5218 5219 5220
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5221 5222
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5223 5224
			const struct skl_ddb_entry *old, *new;

5225 5226
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5227 5228 5229 5230

			if (skl_ddb_entry_equal(old, new))
				continue;

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5261 5262
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5263
				      plane->base.base.id, plane->base.name,
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5300
				      plane->base.base.id, plane->base.name,
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5311 5312 5313 5314
		}
	}
}

V
Ville Syrjälä 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5331
static int
5332
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5333
{
V
Ville Syrjälä 已提交
5334
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5335
	int ret;
5336

5337 5338 5339 5340 5341 5342 5343
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5344
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5345
				       state->base.acquire_ctx);
5346 5347 5348
		if (ret)
			return ret;

5349
		state->active_pipe_changes = ~0;
5350 5351

		/*
5352
		 * We usually only initialize state->active_pipes if we
5353 5354 5355 5356
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5357
		if (!state->modeset)
5358
			state->active_pipes = dev_priv->active_pipes;
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5374 5375
	if (state->active_pipe_changes || state->modeset) {
		state->wm_results.dirty_pipes = ~0;
5376

V
Ville Syrjälä 已提交
5377 5378 5379
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5380 5381 5382 5383 5384
	}

	return 0;
}

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5429
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5445
static int
5446
skl_compute_wm(struct intel_atomic_state *state)
5447
{
5448
	struct intel_crtc *crtc;
5449
	struct intel_crtc_state *new_crtc_state;
5450 5451
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5452 5453
	int ret, i;

5454 5455 5456
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5457 5458
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5459 5460
		return ret;

5461 5462
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5463
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5464 5465 5466
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5467
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5468 5469
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5470 5471 5472
		if (ret)
			return ret;

5473
		ret = skl_wm_add_affected_planes(state, crtc);
5474 5475 5476
		if (ret)
			return ret;

5477 5478 5479
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5480
			results->dirty_pipes |= BIT(crtc->pipe);
5481 5482
	}

5483 5484 5485 5486
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5487
	skl_print_wm_changes(state);
5488

5489 5490 5491
	return 0;
}

5492
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5493
				      struct intel_crtc_state *crtc_state)
5494
{
5495
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5496
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5497
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5498
	enum pipe pipe = crtc->pipe;
5499

5500
	if ((state->wm_results.dirty_pipes & BIT(crtc->pipe)) == 0)
5501
		return;
5502 5503 5504 5505

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5506
static void skl_initial_wm(struct intel_atomic_state *state,
5507
			   struct intel_crtc_state *crtc_state)
5508
{
5509
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5510
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5511
	struct skl_ddb_values *results = &state->wm_results;
5512

5513
	if ((results->dirty_pipes & BIT(crtc->pipe)) == 0)
5514 5515
		return;

5516
	mutex_lock(&dev_priv->wm.wm_mutex);
5517

5518
	if (crtc_state->uapi.active_changed)
5519
		skl_atomic_update_crtc_wm(state, crtc_state);
5520

5521
	mutex_unlock(&dev_priv->wm.wm_mutex);
5522 5523
}

5524
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5525 5526 5527 5528 5529
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5530
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5542
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5543
{
5544
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5545
	struct ilk_wm_maximums max;
5546
	struct intel_wm_config config = {};
5547
	struct ilk_wm_values results = {};
5548
	enum intel_ddb_partitioning partitioning;
5549

5550
	ilk_compute_wm_config(dev_priv, &config);
5551

5552 5553
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5554 5555

	/* 5/6 split only in single pipe config on IVB+ */
5556
	if (INTEL_GEN(dev_priv) >= 7 &&
5557
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5558 5559
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5560

5561
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5562
	} else {
5563
		best_lp_wm = &lp_wm_1_2;
5564 5565
	}

5566
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5567
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5568

5569
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5570

5571
	ilk_write_wm_values(dev_priv, &results);
5572 5573
}

5574
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5575
				   struct intel_crtc_state *crtc_state)
5576
{
5577 5578
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5579

5580
	mutex_lock(&dev_priv->wm.wm_mutex);
5581
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5582 5583 5584
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5585

5586
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5587
				    struct intel_crtc_state *crtc_state)
5588
{
5589 5590
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5591 5592 5593

	if (!crtc_state->wm.need_postvbl_update)
		return;
5594

5595
	mutex_lock(&dev_priv->wm.wm_mutex);
5596 5597
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5598
	mutex_unlock(&dev_priv->wm.wm_mutex);
5599 5600
}

5601
static inline void skl_wm_level_from_reg_val(u32 val,
5602
					     struct skl_wm_level *level)
5603
{
5604
	level->plane_en = val & PLANE_WM_EN;
5605
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5606 5607 5608
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5609 5610
}

5611
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5612
			      struct skl_pipe_wm *out)
5613
{
5614 5615
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5616 5617
	int level, max_level;
	enum plane_id plane_id;
5618
	u32 val;
5619

5620
	max_level = ilk_wm_max_level(dev_priv);
5621

5622
	for_each_plane_id_on_crtc(crtc, plane_id) {
5623
		struct skl_plane_wm *wm = &out->planes[plane_id];
5624

5625
		for (level = 0; level <= max_level; level++) {
5626 5627
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5628 5629
			else
				val = I915_READ(CUR_WM(pipe, level));
5630

5631
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5632 5633
		}

5634 5635
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5636 5637 5638 5639
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5640 5641
	}

5642
	if (!crtc->active)
5643
		return;
5644

5645
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5646 5647
}

5648
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5649
{
5650
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5651
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5652
	struct intel_crtc *crtc;
5653
	struct intel_crtc_state *crtc_state;
5654

5655
	skl_ddb_get_hw_state(dev_priv, ddb);
5656
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5657
		crtc_state = to_intel_crtc_state(crtc->base.state);
5658

5659
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5660

5661
		if (crtc->active)
5662
			hw->dirty_pipes |= BIT(crtc->pipe);
5663
	}
5664

5665
	if (dev_priv->active_pipes) {
5666 5667 5668
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5669 5670
}

5671
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5672
{
5673
	struct drm_device *dev = crtc->base.dev;
5674
	struct drm_i915_private *dev_priv = to_i915(dev);
5675
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5676 5677
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5678
	enum pipe pipe = crtc->pipe;
5679
	static const i915_reg_t wm0_pipe_reg[] = {
5680 5681 5682 5683 5684 5685
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5686
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5687
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5688

5689 5690
	memset(active, 0, sizeof(*active));

5691
	active->pipe_enabled = crtc->active;
5692 5693

	if (active->pipe_enabled) {
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5708
		int level, max_level = ilk_wm_max_level(dev_priv);
5709 5710 5711 5712 5713 5714 5715 5716 5717

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5718

5719
	crtc->wm.active.ilk = *active;
5720 5721
}

5722 5723 5724 5725 5726
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5727 5728 5729
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5730
	u32 tmp;
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5753 5754 5755 5756
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5757
	u32 tmp;
5758 5759 5760 5761

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5762
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5763
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5764
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5765
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5766
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5767
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5768
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5769 5770 5771 5772 5773
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5774 5775 5776
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5777 5778

	tmp = I915_READ(DSPFW2);
5779 5780 5781
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5782 5783 5784 5785 5786 5787

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5788 5789
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5790 5791

		tmp = I915_READ(DSPFW8_CHV);
5792 5793
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5794 5795

		tmp = I915_READ(DSPFW9_CHV);
5796 5797
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5798 5799 5800

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5801 5802 5803 5804 5805 5806 5807 5808 5809
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5810 5811
	} else {
		tmp = I915_READ(DSPFW7);
5812 5813
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5814 5815 5816

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5817 5818 5819 5820 5821 5822
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5823 5824 5825 5826 5827 5828
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5829
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5830 5831 5832 5833 5834 5835 5836 5837
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5838
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5969
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
5970 5971
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5972
	struct intel_crtc *crtc;
5973 5974 5975 5976 5977 5978 5979 5980
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5981
		vlv_punit_get(dev_priv);
5982

5983
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
5984 5985 5986
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5987 5988 5989 5990 5991 5992 5993 5994 5995
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5996
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6010

6011
		vlv_punit_put(dev_priv);
6012 6013
	}

6014
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6030
			struct g4x_pipe_wm *raw =
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6052
		crtc_state->wm.vlv.intermediate = *active;
6053

6054
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6055 6056 6057 6058 6059
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6060
	}
6061 6062 6063 6064 6065

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6090
			struct g4x_pipe_wm *raw =
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6131
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6132
{
6133
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6134
	struct intel_crtc *crtc;
6135

6136 6137
	ilk_init_lp_watermarks(dev_priv);

6138
	for_each_intel_crtc(&dev_priv->drm, crtc)
6139 6140 6141 6142 6143 6144 6145
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6146
	if (INTEL_GEN(dev_priv) >= 7) {
6147 6148 6149
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6150

6151
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6152 6153
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6154
	else if (IS_IVYBRIDGE(dev_priv))
6155 6156
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6157 6158 6159 6160 6161

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6162 6163
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6164
 * @crtc: the #intel_crtc on which to compute the WM
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6195
void intel_update_watermarks(struct intel_crtc *crtc)
6196
{
6197
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6198 6199

	if (dev_priv->display.update_wm)
6200
		dev_priv->display.update_wm(crtc);
6201 6202
}

6203 6204 6205 6206
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6207 6208 6209
	if (!HAS_IPC(dev_priv))
		return;

6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6233 6234 6235 6236 6237
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6238
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6239

6240 6241 6242
	intel_enable_ipc(dev_priv);
}

6243 6244 6245 6246 6247 6248 6249 6250 6251
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6252

6253
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6254
{
6255
	enum pipe pipe;
6256

6257 6258 6259 6260
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6261

6262 6263
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6264 6265 6266
	}
}

6267
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6268
{
6269
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6270

6271 6272 6273 6274 6275 6276 6277
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6278

6279 6280 6281 6282 6283
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6284

6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6299 6300

	/*
6301 6302 6303 6304 6305
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6306
	 */
6307 6308 6309 6310 6311 6312 6313 6314 6315
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6316

6317
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6318

6319 6320 6321 6322 6323 6324
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6325

6326 6327 6328
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6329

6330 6331
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6332

6333
	g4x_disable_trickle_feed(dev_priv);
6334

6335
	ibx_init_clock_gating(dev_priv);
6336 6337
}

6338
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6339
{
6340 6341
	enum pipe pipe;
	u32 val;
6342

6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6372 6373
}

6374
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6375
{
6376
	u32 tmp;
6377

6378 6379 6380 6381
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6382 6383
}

6384
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6385
{
6386
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6387

6388
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6389

6390 6391 6392
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6393

6394 6395 6396
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6397

6398 6399
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6400

6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6411

6412 6413
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6414

6415 6416 6417 6418
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6419

6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6432
	 */
6433 6434 6435
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6436

6437 6438 6439
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6440

6441 6442 6443 6444 6445 6446 6447
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6448

6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6470

6471
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6472

6473
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6474

6475
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6476 6477
}

6478
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6479
{
6480
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6481

6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6492

6493
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6494 6495
}

6496
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6497
{
6498 6499 6500
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6501
	 */
6502
	if (HAS_PCH_LPT_LP(dev_priv))
6503 6504 6505
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6506 6507

	/* WADPOClockGatingDisable:hsw */
6508 6509
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6510
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6511 6512
}

6513
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6514
{
6515
	if (HAS_PCH_LPT_LP(dev_priv)) {
6516
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6517 6518 6519 6520 6521 6522

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6523 6524 6525 6526 6527
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6528
	u32 val;
6529 6530 6531 6532 6533

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6534 6535 6536 6537 6538
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6549 6550 6551 6552 6553
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6554 6555 6556 6557

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
6558 6559
}

6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
}

6576 6577 6578 6579 6580
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6581
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6582 6583
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6584 6585
}

6586
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6587
{
6588
	u32 val;
6589 6590
	cnp_init_clock_gating(dev_priv);

6591 6592 6593 6594
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6595 6596 6597 6598 6599 6600 6601 6602
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6603 6604 6605
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
6606 6607
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6608 6609
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6610

R
Rodrigo Vivi 已提交
6611 6612 6613 6614 6615
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6616
	/* WaDisableVFclkgate:cnl */
6617
	/* WaVFUnitClockGatingDisable:cnl */
6618 6619 6620
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6621 6622
}

6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

6633
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6634
{
6635
	gen9_init_clock_gating(dev_priv);
6636 6637 6638 6639 6640

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641 6642 6643 6644 6645

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6646

6647
	/* WaFbcNukeOnHostModify:kbl */
6648 6649
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6650 6651
}

6652
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6653
{
6654
	gen9_init_clock_gating(dev_priv);
6655 6656 6657 6658

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
6659 6660 6661 6662

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6663 6664
}

6665
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
6666
{
6667
	enum pipe pipe;
B
Ben Widawsky 已提交
6668

6669
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6670
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6671

6672
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6673 6674 6675
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6676
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6677
	for_each_pipe(dev_priv, pipe) {
6678
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6679
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6680
			   BDW_DPRS_MASK_VBLANK_SRD);
6681
	}
6682

6683 6684 6685 6686 6687
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6688

6689 6690
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6691 6692 6693 6694

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6695

6696 6697
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6698

6699 6700 6701 6702
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

6703
	lpt_init_clock_gating(dev_priv);
6704 6705 6706 6707 6708 6709 6710 6711

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
6712 6713
}

6714
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6715
{
6716 6717 6718 6719 6720
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6721
	/* This is required by WaCatErrorRejectionIssue:hsw */
6722 6723 6724 6725
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6726 6727 6728
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6729

6730 6731 6732
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6733 6734 6735 6736
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6737
	/* WaDisable4x2SubspanOptimization:hsw */
6738 6739
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6740

6741 6742 6743
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6744 6745 6746 6747
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6748 6749
	 */
	I915_WRITE(GEN7_GT_MODE,
6750
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6751

6752 6753 6754 6755
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6756
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6757 6758
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6759
	lpt_init_clock_gating(dev_priv);
6760 6761
}

6762
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
6763
{
6764
	u32 snpcr;
6765

6766
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6767

6768
	/* WaDisableEarlyCull:ivb */
6769 6770 6771
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6772
	/* WaDisableBackToBackFlipFix:ivb */
6773 6774 6775 6776
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6777
	/* WaDisablePSDDualDispatchEnable:ivb */
6778
	if (IS_IVB_GT1(dev_priv))
6779 6780 6781
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6782 6783 6784
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6785
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6786 6787 6788
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6789
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6790 6791 6792
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6793
		   GEN7_WA_L3_CHICKEN_MODE);
6794
	if (IS_IVB_GT1(dev_priv))
6795 6796
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6797 6798 6799 6800
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6801 6802
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6803
	}
6804

6805
	/* WaForceL3Serialization:ivb */
6806 6807 6808
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6809
	/*
6810
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6811
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6812 6813
	 */
	I915_WRITE(GEN6_UCGCTL2,
6814
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6815

6816
	/* This is required by WaCatErrorRejectionIssue:ivb */
6817 6818 6819 6820
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6821
	g4x_disable_trickle_feed(dev_priv);
6822 6823

	gen7_setup_fixed_func_scheduler(dev_priv);
6824

6825 6826 6827 6828 6829
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6830

6831
	/* WaDisable4x2SubspanOptimization:ivb */
6832 6833
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6834

6835 6836 6837
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6838 6839 6840 6841
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6842 6843
	 */
	I915_WRITE(GEN7_GT_MODE,
6844
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6845

6846 6847 6848 6849
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6850

6851
	if (!HAS_PCH_NOP(dev_priv))
6852
		cpt_init_clock_gating(dev_priv);
6853

6854
	gen6_check_mch_setup(dev_priv);
6855 6856
}

6857
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
6858
{
6859
	/* WaDisableEarlyCull:vlv */
6860 6861 6862
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6863
	/* WaDisableBackToBackFlipFix:vlv */
6864 6865 6866 6867
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6868
	/* WaPsdDispatchEnable:vlv */
6869
	/* WaDisablePSDDualDispatchEnable:vlv */
6870
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6871 6872
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6873

6874 6875 6876
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6877
	/* WaForceL3Serialization:vlv */
6878 6879 6880
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6881
	/* WaDisableDopClockGating:vlv */
6882 6883 6884
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6885
	/* This is required by WaCatErrorRejectionIssue:vlv */
6886 6887 6888 6889
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6890 6891
	gen7_setup_fixed_func_scheduler(dev_priv);

6892
	/*
6893
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6894
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6895 6896
	 */
	I915_WRITE(GEN6_UCGCTL2,
6897
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6898

6899 6900 6901 6902 6903
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6904

6905 6906 6907 6908
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6909 6910
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6911

6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6923 6924 6925 6926 6927 6928
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6929
	/*
6930
	 * WaDisableVLVClockGating_VBIIssue:vlv
6931 6932 6933
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6934
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6935 6936
}

6937
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
6938
{
6939 6940 6941 6942 6943
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6944 6945 6946 6947

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6948 6949 6950 6951

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6952 6953 6954 6955

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6956

6957 6958 6959 6960 6961 6962
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
6963 6964
}

6965
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
6966
{
6967
	u32 dspclk_gate;
6968 6969 6970 6971 6972 6973 6974 6975 6976

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
6977
	if (IS_GM45(dev_priv))
6978 6979
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6980 6981 6982 6983

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6984

6985 6986 6987
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6988
	g4x_disable_trickle_feed(dev_priv);
6989 6990
}

6991
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
6992
{
6993 6994 6995 6996 6997 6998 6999 7000 7001 7002
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7003 7004

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7005 7006 7007
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7008 7009
}

7010
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7011 7012 7013 7014 7015 7016 7017
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7018 7019
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7020 7021 7022

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7023 7024
}

7025
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7026 7027 7028 7029 7030 7031
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7032

7033
	if (IS_PINEVIEW(dev_priv))
7034
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7035 7036 7037

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7038 7039

	/* interrupts should cause a wake up from C3 */
7040
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7041 7042 7043

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7044 7045 7046

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7047 7048
}

7049
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7050 7051
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7052 7053 7054 7055

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7056 7057 7058

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7059 7060
}

7061
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7062
{
7063 7064 7065
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7066 7067
}

7068
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7069
{
7070
	dev_priv->display.init_clock_gating(dev_priv);
7071 7072
}

7073
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7074
{
7075 7076
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7077 7078
}

7079
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7095
	if (IS_GEN(dev_priv, 12))
7096
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7097
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7098
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7099
	else if (IS_CANNONLAKE(dev_priv))
7100
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7101 7102
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7103
	else if (IS_SKYLAKE(dev_priv))
7104
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7105
	else if (IS_KABYLAKE(dev_priv))
7106
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7107
	else if (IS_BROXTON(dev_priv))
7108
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7109 7110
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7111
	else if (IS_BROADWELL(dev_priv))
7112
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7113
	else if (IS_CHERRYVIEW(dev_priv))
7114
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7115
	else if (IS_HASWELL(dev_priv))
7116
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7117
	else if (IS_IVYBRIDGE(dev_priv))
7118
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7119
	else if (IS_VALLEYVIEW(dev_priv))
7120
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7121
	else if (IS_GEN(dev_priv, 6))
7122
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7123
	else if (IS_GEN(dev_priv, 5))
7124
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7125 7126
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7127
	else if (IS_I965GM(dev_priv))
7128
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7129
	else if (IS_I965G(dev_priv))
7130
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7131
	else if (IS_GEN(dev_priv, 3))
7132 7133 7134
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7135
	else if (IS_GEN(dev_priv, 2))
7136 7137 7138 7139 7140 7141 7142
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7143
/* Set up chip specific power management-related functions */
7144
void intel_init_pm(struct drm_i915_private *dev_priv)
7145
{
7146
	/* For cxsr */
7147
	if (IS_PINEVIEW(dev_priv))
7148
		i915_pineview_get_mem_freq(dev_priv);
7149
	else if (IS_GEN(dev_priv, 5))
7150
		i915_ironlake_get_mem_freq(dev_priv);
7151

7152 7153 7154
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7155
	/* For FIFO watermark updates */
7156
	if (INTEL_GEN(dev_priv) >= 9) {
7157
		skl_setup_wm_latency(dev_priv);
7158
		dev_priv->display.initial_watermarks = skl_initial_wm;
7159
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7160
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7161
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7162
		ilk_setup_wm_latency(dev_priv);
7163

7164
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7165
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7166
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7167
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7168
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7169 7170 7171 7172 7173 7174
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7175 7176 7177 7178
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7179
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7180
		vlv_setup_wm_latency(dev_priv);
7181
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7182
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7183
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7184
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7185
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7186 7187 7188 7189 7190 7191
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7192
	} else if (IS_PINEVIEW(dev_priv)) {
7193
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7194 7195 7196 7197 7198 7199 7200 7201 7202
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7203
			intel_set_memory_cxsr(dev_priv, false);
7204 7205 7206
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7207
	} else if (IS_GEN(dev_priv, 4)) {
7208
		dev_priv->display.update_wm = i965_update_wm;
7209
	} else if (IS_GEN(dev_priv, 3)) {
7210 7211
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7212
	} else if (IS_GEN(dev_priv, 2)) {
7213
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7214
			dev_priv->display.update_wm = i845_update_wm;
7215
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7216 7217
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7218
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7219 7220 7221
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7222 7223 7224
	}
}

7225
void intel_pm_setup(struct drm_i915_private *dev_priv)
7226
{
7227 7228
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7229
}