intel_pm.c 268.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61 62 63 64 65 66 67 68 69 70 71 72 73
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
		 * Display WA#0390: skl,kbl
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

74
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
75 76 77
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

78 79
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
80

81
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
82 83
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
84

85 86
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
87 88 89
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
90

91
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
92 93
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
94 95 96 97 98 99

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
100 101
}

102
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
103
{
104
	gen9_init_clock_gating(dev_priv);
105

106 107 108 109
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

110 111
	/*
	 * FIXME:
112
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
113 114
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
115
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
116 117 118 119 120

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
121 122
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
123 124
}

125 126
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
127
	u32 val;
128 129 130 131 132 133 134 135 136
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
137 138 139 140 141 142 143 144 145 146

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

147 148 149 150 151
	/* Display WA #1133: WaFbcSkipSegments:glk */
	val = I915_READ(ILK_DPFC_CHICKEN);
	val &= ~GLK_SKIP_SEG_COUNT_MASK;
	val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
	I915_WRITE(ILK_DPFC_CHICKEN, val);
152 153
}

154
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

192
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

219
	dev_priv->ips.r_t = dev_priv->mem_freq;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
251
		dev_priv->ips.c_m = 0;
252
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
253
		dev_priv->ips.c_m = 1;
254
	} else {
255
		dev_priv->ips.c_m = 2;
256 257 258
	}
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

297 298
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

321 322 323 324
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

325
	mutex_lock(&dev_priv->pcu_lock);
326 327 328 329 330 331 332 333 334 335 336 337 338 339

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

340
	mutex_unlock(&dev_priv->pcu_lock);
341 342
}

343 344 345 346
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

347
	mutex_lock(&dev_priv->pcu_lock);
348 349 350 351 352 353 354 355

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

356
	mutex_unlock(&dev_priv->pcu_lock);
357 358
}

359 360 361
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

362
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
363
{
364
	bool was_enabled;
365
	u32 val;
366

367
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
368
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
369
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
370
		POSTING_READ(FW_BLC_SELF_VLV);
371
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
372
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
373
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
374
		POSTING_READ(FW_BLC_SELF);
375
	} else if (IS_PINEVIEW(dev_priv)) {
376 377 378 379 380 381
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
382
		I915_WRITE(DSPFW3, val);
383
		POSTING_READ(DSPFW3);
384
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
385
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
389
		POSTING_READ(FW_BLC_SELF);
390
	} else if (IS_I915GM(dev_priv)) {
391 392 393 394 395
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
396
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
397 398 399
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
400
		POSTING_READ(INSTPM);
401
	} else {
402
		return false;
403
	}
404

405 406
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

407 408 409 410 411
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
412 413
}

V
Ville Syrjälä 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
451
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
452
{
453 454
	bool ret;

455
	mutex_lock(&dev_priv->wm.wm_mutex);
456
	ret = _intel_set_memory_cxsr(dev_priv, enable);
457 458 459 460
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
461
	mutex_unlock(&dev_priv->wm.wm_mutex);
462 463

	return ret;
464
}
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
480
static const int pessimal_latency_ns = 5000;
481

482 483 484
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

485
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
486
{
487
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
488
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
489
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
490 491
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
492

493
	switch (pipe) {
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
514 515
		MISSING_CASE(pipe);
		return;
516 517
	}

518 519 520 521
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
522 523
}

524
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
525 526 527 528 529 530 531 532 533 534 535 536 537 538
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

539
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

555
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
572 573 574 575 576
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
577 578
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
579 580 581 582 583
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 585
};
static const struct intel_watermark_params pineview_cursor_wm = {
586 587 588 589 590
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
591 592
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
593 594 595 596 597
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598 599
};
static const struct intel_watermark_params i965_cursor_wm_info = {
600 601 602 603 604
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
605 606
};
static const struct intel_watermark_params i945_wm_info = {
607 608 609 610 611
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
612 613
};
static const struct intel_watermark_params i915_wm_info = {
614 615 616 617 618
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
619
};
620
static const struct intel_watermark_params i830_a_wm_info = {
621 622 623 624 625
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
626
};
627 628 629 630 631 632 633
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
634
static const struct intel_watermark_params i845_wm_info = {
635 636 637 638 639
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
640 641
};

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

738 739
/**
 * intel_calculate_wm - calculate watermark level
740
 * @pixel_rate: pixel clock
741
 * @wm: chip FIFO params
742
 * @cpp: bytes per pixel
743 744 745 746 747 748 749 750 751 752 753 754 755
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
756 757 758 759
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
760
{
761
	int entries, wm_size;
762 763 764 765 766 767 768

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
769 770 771 772 773
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
774

775 776
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
777 778

	/* Don't promote wm_size to unsigned... */
779
	if (wm_size > wm->max_wm)
780 781 782
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
783 784 785 786 787 788 789 790 791 792 793

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

794 795 796
	return wm_size;
}

797 798 799 800 801 802 803 804 805 806
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

807 808 809 810 811
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

835
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
836
{
837
	struct intel_crtc *crtc, *enabled = NULL;
838

839
	for_each_intel_crtc(&dev_priv->drm, crtc) {
840
		if (intel_crtc_active(crtc)) {
841 842 843 844 845 846 847 848 849
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

850
static void pineview_update_wm(struct intel_crtc *unused_crtc)
851
{
852
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
853
	struct intel_crtc *crtc;
854 855
	const struct cxsr_latency *latency;
	u32 reg;
856
	unsigned int wm;
857

858 859 860 861
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
862 863
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
864
		intel_set_memory_cxsr(dev_priv, false);
865 866 867
		return;
	}

868
	crtc = single_enabled_crtc(dev_priv);
869
	if (crtc) {
870 871 872 873
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
874
		int cpp = fb->format->cpp[0];
875
		int clock = adjusted_mode->crtc_clock;
876 877 878 879

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
880
					cpp, latency->display_sr);
881 882
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
883
		reg |= FW_WM(wm, SR);
884 885 886 887 888 889
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
890
					4, latency->cursor_sr);
891 892
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
893
		reg |= FW_WM(wm, CURSOR_SR);
894 895 896 897 898
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
899
					cpp, latency->display_hpll_disable);
900 901
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
902
		reg |= FW_WM(wm, HPLL_SR);
903 904 905 906 907
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
908
					4, latency->cursor_hpll_disable);
909 910
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
911
		reg |= FW_WM(wm, HPLL_CURSOR);
912 913 914
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

915
		intel_set_memory_cxsr(dev_priv, true);
916
	} else {
917
		intel_set_memory_cxsr(dev_priv, false);
918 919 920
	}
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

938 939
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
940
{
941 942 943 944 945
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
963

964
	POSTING_READ(DSPFW1);
965 966
}

967 968 969
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

970
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
971 972
				const struct vlv_wm_values *wm)
{
973 974 975
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
976 977
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

978 979 980 981 982 983
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
984

985 986 987 988 989 990 991 992 993 994 995
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

996
	I915_WRITE(DSPFW1,
997
		   FW_WM(wm->sr.plane, SR) |
998 999 1000
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1001
	I915_WRITE(DSPFW2,
1002 1003 1004
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1005
	I915_WRITE(DSPFW3,
1006
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1007 1008 1009

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1010 1011
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1012
		I915_WRITE(DSPFW8_CHV,
1013 1014
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1015
		I915_WRITE(DSPFW9_CHV,
1016 1017
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1018
		I915_WRITE(DSPHOWM,
1019
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1020 1021 1022 1023 1024 1025 1026 1027 1028
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1029 1030
	} else {
		I915_WRITE(DSPFW7,
1031 1032
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1033
		I915_WRITE(DSPHOWM,
1034
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1035 1036 1037 1038 1039 1040
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1041 1042 1043
	}

	POSTING_READ(DSPFW1);
1044 1045
}

1046 1047
#undef FW_WM_VLV

1048 1049 1050 1051 1052
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1053
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1054

1055
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	int clock, htotal, cpp, width, wm;
	int latency = dev_priv->wm.pri_latency[level] * 10;

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
		int small, large;

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

	return min_t(int, wm, USHRT_MAX);
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1330 1331
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1332 1333 1334 1335 1336
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1337 1338 1339 1340
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1341 1342 1343
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1344
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
	enum plane_id plane_id;

	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
		!crtc_state->disable_cxsr;
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1566 1567
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1568 1569
				   unsigned int htotal,
				   unsigned int width,
1570
				   unsigned int cpp,
1571 1572 1573 1574
				   unsigned int latency)
{
	unsigned int ret;

1575 1576
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1577 1578 1579 1580 1581
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1582
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1583 1584 1585 1586
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1587 1588
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1589 1590 1591
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1592 1593

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1594 1595 1596
	}
}

1597 1598
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1599 1600
				     int level)
{
1601
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1602
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1603 1604
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1605
	int clock, htotal, cpp, width, wm;
1606 1607 1608 1609

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1610
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1611 1612
		return 0;

1613
	cpp = plane_state->base.fb->format->cpp[0];
1614 1615 1616
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1617

1618
	if (plane->id == PLANE_CURSOR) {
1619 1620 1621 1622 1623 1624 1625 1626
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1627
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1628 1629 1630 1631 1632 1633
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1634 1635 1636 1637 1638 1639
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1640
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1641
{
1642
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1643
	const struct g4x_pipe_wm *raw =
1644
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1645
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1646 1647 1648
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1649
	int fifo_extra, fifo_left = fifo_size;
1650
	int sprite0_fifo_extra = 0;
1651 1652
	unsigned int total_rate;
	enum plane_id plane_id;
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1665 1666
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1667 1668
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1669

1670 1671
	if (total_rate > fifo_size)
		return -EINVAL;
1672

1673 1674
	if (total_rate == 0)
		total_rate = 1;
1675

1676
	for_each_plane_id_on_crtc(crtc, plane_id) {
1677 1678
		unsigned int rate;

1679 1680
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1681 1682 1683
			continue;
		}

1684 1685 1686
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1687 1688
	}

1689 1690 1691
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1692 1693 1694
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1695 1696

	/* spread the remainder evenly */
1697
	for_each_plane_id_on_crtc(crtc, plane_id) {
1698 1699 1700 1701 1702
		int plane_extra;

		if (fifo_left == 0)
			break;

1703
		if ((active_planes & BIT(plane_id)) == 0)
1704 1705 1706
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1707
		fifo_state->plane[plane_id] += plane_extra;
1708 1709 1710
		fifo_left -= plane_extra;
	}

1711 1712 1713 1714 1715 1716 1717 1718 1719
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1720 1721
}

1722 1723 1724 1725 1726 1727
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1728
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1739 1740 1741 1742 1743 1744 1745 1746
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1747 1748 1749 1750
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1751
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1752
				 int level, enum plane_id plane_id, u16 value)
1753
{
1754
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1755
	int num_levels = intel_wm_num_levels(dev_priv);
1756
	bool dirty = false;
1757

1758
	for (; level < num_levels; level++) {
1759
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1760

1761
		dirty |= raw->plane[plane_id] != value;
1762
		raw->plane[plane_id] = value;
1763
	}
1764 1765

	return dirty;
1766 1767
}

1768 1769
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1770
{
1771 1772
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1773
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1774
	int level;
1775
	bool dirty = false;
1776

1777
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1778 1779
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1780
	}
1781

1782
	for (level = 0; level < num_levels; level++) {
1783
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1784 1785
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1786

1787 1788
		if (wm > max_wm)
			break;
1789

1790
		dirty |= raw->plane[plane_id] != wm;
1791 1792
		raw->plane[plane_id] = wm;
	}
1793

1794
	/* mark all higher levels as invalid */
1795
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1796

1797 1798
out:
	if (dirty)
1799
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1800 1801 1802 1803 1804 1805
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1806
}
1807

1808 1809
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1810
{
1811
	const struct g4x_pipe_wm *raw =
1812 1813 1814
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1815

1816 1817
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1818

1819
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1820
{
1821 1822 1823 1824
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1838
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1839 1840
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1841 1842 1843
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1844
	unsigned int dirty = 0;
1845

1846 1847 1848 1849
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1850 1851
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1852

1853
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1872
			intel_atomic_get_old_crtc_state(state, crtc);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1884
	}
1885

1886
	/* initially allow all levels */
1887
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1888 1889 1890 1891 1892
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1893
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1894

1895
	for (level = 0; level < wm_state->num_levels; level++) {
1896
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1897
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1898

1899
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1900
			break;
1901

1902 1903 1904 1905 1906 1907 1908 1909
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1910
						 raw->plane[PLANE_SPRITE0],
1911 1912
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1913

1914 1915 1916
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1917 1918
	}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1929 1930
}

1931 1932 1933
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1934 1935
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1936
{
1937
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1938
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1939 1940
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1941
	int sprite0_start, sprite1_start, fifo_size;
1942

1943 1944 1945
	if (!crtc_state->fifo_changed)
		return;

1946 1947 1948
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1949

1950 1951
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1952

1953 1954
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1965

1966 1967 1968
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1969 1970
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1982 1983
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1984 1985
		break;
	case PIPE_B:
1986 1987
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1999 2000
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2001 2002
		break;
	case PIPE_C:
2003 2004
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2016 2017
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2018 2019 2020 2021
		break;
	default:
		break;
	}
2022

2023
	POSTING_READ_FW(DSPARB);
2024

2025
	spin_unlock(&dev_priv->uncore.lock);
2026 2027 2028 2029
}

#undef VLV_FIFO

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2040 2041
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2064 2065
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
2066 2067 2068 2069

	return 0;
}

2070
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2071 2072 2073 2074 2075
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2076
	wm->level = dev_priv->wm.max_level;
2077 2078
	wm->cxsr = true;

2079
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2080
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2095 2096 2097
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2098
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2099
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2100 2101 2102
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2103
		if (crtc->active && wm->cxsr)
2104 2105
			wm->sr = wm_state->sr[wm->level];

2106 2107 2108 2109
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2110 2111 2112
	}
}

2113
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2114
{
2115 2116
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2117

2118
	vlv_merge_wm(dev_priv, &new_wm);
2119

2120
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2121 2122
		return;

2123
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2124 2125
		chv_set_memory_dvfs(dev_priv, false);

2126
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2127 2128
		chv_set_memory_pm5(dev_priv, false);

2129
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2130
		_intel_set_memory_cxsr(dev_priv, false);
2131

2132
	vlv_write_wm_values(dev_priv, &new_wm);
2133

2134
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2135
		_intel_set_memory_cxsr(dev_priv, true);
2136

2137
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2138 2139
		chv_set_memory_pm5(dev_priv, true);

2140
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141 2142
		chv_set_memory_dvfs(dev_priv, true);

2143
	*old_wm = new_wm;
2144 2145
}

2146 2147 2148 2149 2150 2151 2152
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2169 2170 2171 2172
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2173
static void i965_update_wm(struct intel_crtc *unused_crtc)
2174
{
2175
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2176
	struct intel_crtc *crtc;
2177 2178
	int srwm = 1;
	int cursor_sr = 16;
2179
	bool cxsr_enabled;
2180 2181

	/* Calc sr entries for one plane configs */
2182
	crtc = single_enabled_crtc(dev_priv);
2183 2184 2185
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2186 2187 2188 2189
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2190
		int clock = adjusted_mode->crtc_clock;
2191
		int htotal = adjusted_mode->crtc_htotal;
2192
		int hdisplay = crtc->config->pipe_src_w;
2193
		int cpp = fb->format->cpp[0];
2194 2195
		int entries;

2196 2197
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2198 2199 2200 2201 2202 2203 2204 2205
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2206 2207 2208
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2209
		entries = DIV_ROUND_UP(entries,
2210 2211
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2212

2213
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2214 2215 2216 2217 2218 2219
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2220
		cxsr_enabled = true;
2221
	} else {
2222
		cxsr_enabled = false;
2223
		/* Turn off self refresh if both pipes are enabled */
2224
		intel_set_memory_cxsr(dev_priv, false);
2225 2226 2227 2228 2229 2230
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2231 2232 2233 2234 2235 2236
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2237
	/* update cursor SR watermark */
2238
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2239 2240 2241

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2242 2243
}

2244 2245
#undef FW_WM

2246
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2247
{
2248
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2249 2250 2251 2252 2253 2254
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2255
	struct intel_crtc *crtc, *enabled = NULL;
2256

2257
	if (IS_I945GM(dev_priv))
2258
		wm_info = &i945_wm_info;
2259
	else if (!IS_GEN2(dev_priv))
2260 2261
		wm_info = &i915_wm_info;
	else
2262
		wm_info = &i830_a_wm_info;
2263

2264
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2265
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2266 2267 2268 2269 2270 2271 2272
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2273
		if (IS_GEN2(dev_priv))
2274
			cpp = 4;
2275
		else
2276
			cpp = fb->format->cpp[0];
2277

2278
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2279
					       wm_info, fifo_size, cpp,
2280
					       pessimal_latency_ns);
2281
		enabled = crtc;
2282
	} else {
2283
		planea_wm = fifo_size - wm_info->guard_size;
2284 2285 2286 2287
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2288
	if (IS_GEN2(dev_priv))
2289
		wm_info = &i830_bc_wm_info;
2290

2291
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2292
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2293 2294 2295 2296 2297 2298 2299
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2300
		if (IS_GEN2(dev_priv))
2301
			cpp = 4;
2302
		else
2303
			cpp = fb->format->cpp[0];
2304

2305
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2306
					       wm_info, fifo_size, cpp,
2307
					       pessimal_latency_ns);
2308 2309 2310 2311
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2312
	} else {
2313
		planeb_wm = fifo_size - wm_info->guard_size;
2314 2315 2316
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2317 2318 2319

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2320
	if (IS_I915GM(dev_priv) && enabled) {
2321
		struct drm_i915_gem_object *obj;
2322

2323
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2324 2325

		/* self-refresh seems busted with untiled */
2326
		if (!i915_gem_object_is_tiled(obj))
2327 2328 2329
			enabled = NULL;
	}

2330 2331 2332 2333 2334 2335
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2336
	intel_set_memory_cxsr(dev_priv, false);
2337 2338

	/* Calc sr entries for one plane configs */
2339
	if (HAS_FW_BLC(dev_priv) && enabled) {
2340 2341
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2342 2343 2344 2345
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2346
		int clock = adjusted_mode->crtc_clock;
2347
		int htotal = adjusted_mode->crtc_htotal;
2348 2349
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2350 2351
		int entries;

2352
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2353
			cpp = 4;
2354
		else
2355
			cpp = fb->format->cpp[0];
2356

2357 2358
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2359 2360 2361 2362 2363 2364
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2365
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2366 2367
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2368
		else
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2385 2386
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2387 2388
}

2389
static void i845_update_wm(struct intel_crtc *unused_crtc)
2390
{
2391
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2392
	struct intel_crtc *crtc;
2393
	const struct drm_display_mode *adjusted_mode;
2394 2395 2396
	uint32_t fwater_lo;
	int planea_wm;

2397
	crtc = single_enabled_crtc(dev_priv);
2398 2399 2400
	if (crtc == NULL)
		return;

2401
	adjusted_mode = &crtc->config->base.adjusted_mode;
2402
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2403
				       &i845_wm_info,
2404
				       dev_priv->display.get_fifo_size(dev_priv, 0),
2405
				       4, pessimal_latency_ns);
2406 2407 2408 2409 2410 2411 2412 2413
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2414
/* latency must be in 0.1us units. */
2415 2416 2417
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2418
{
2419
	unsigned int ret;
2420

2421 2422
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2423 2424 2425 2426

	return ret;
}

2427
/* latency must be in 0.1us units. */
2428 2429 2430 2431 2432
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2433
{
2434
	unsigned int ret;
2435

2436 2437
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2438
	ret = DIV_ROUND_UP(ret, 64) + 2;
2439

2440 2441 2442
	return ret;
}

2443
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2444
			   uint8_t cpp)
2445
{
2446 2447 2448 2449 2450 2451
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2452
	if (WARN_ON(!cpp))
2453 2454 2455 2456
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2457
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2458 2459
}

2460
struct ilk_wm_maximums {
2461 2462 2463 2464 2465 2466
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2467 2468 2469 2470
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2471
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2472
				   const struct intel_plane_state *pstate,
2473 2474
				   uint32_t mem_value,
				   bool is_lp)
2475
{
2476
	uint32_t method1, method2;
2477
	int cpp;
2478

2479
	if (!intel_wm_plane_visible(cstate, pstate))
2480 2481
		return 0;

2482
	cpp = pstate->base.fb->format->cpp[0];
2483

2484
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2485 2486 2487 2488

	if (!is_lp)
		return method1;

2489
	method2 = ilk_wm_method2(cstate->pixel_rate,
2490
				 cstate->base.adjusted_mode.crtc_htotal,
2491
				 drm_rect_width(&pstate->base.dst),
2492
				 cpp, mem_value);
2493 2494

	return min(method1, method2);
2495 2496
}

2497 2498 2499 2500
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2501
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2502
				   const struct intel_plane_state *pstate,
2503 2504 2505
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2506
	int cpp;
2507

2508
	if (!intel_wm_plane_visible(cstate, pstate))
2509 2510
		return 0;

2511
	cpp = pstate->base.fb->format->cpp[0];
2512

2513 2514
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2515
				 cstate->base.adjusted_mode.crtc_htotal,
2516
				 drm_rect_width(&pstate->base.dst),
2517
				 cpp, mem_value);
2518 2519 2520
	return min(method1, method2);
}

2521 2522 2523 2524
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2525
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2526
				   const struct intel_plane_state *pstate,
2527 2528
				   uint32_t mem_value)
{
2529 2530
	int cpp;

2531
	if (!intel_wm_plane_visible(cstate, pstate))
2532 2533
		return 0;

2534 2535
	cpp = pstate->base.fb->format->cpp[0];

2536
	return ilk_wm_method2(cstate->pixel_rate,
2537
			      cstate->base.adjusted_mode.crtc_htotal,
2538
			      pstate->base.crtc_w, cpp, mem_value);
2539 2540
}

2541
/* Only for WM_LP. */
2542
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2543
				   const struct intel_plane_state *pstate,
2544
				   uint32_t pri_val)
2545
{
2546
	int cpp;
2547

2548
	if (!intel_wm_plane_visible(cstate, pstate))
2549 2550
		return 0;

2551
	cpp = pstate->base.fb->format->cpp[0];
2552

2553
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2554 2555
}

2556 2557
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2558
{
2559
	if (INTEL_GEN(dev_priv) >= 8)
2560
		return 3072;
2561
	else if (INTEL_GEN(dev_priv) >= 7)
2562 2563 2564 2565 2566
		return 768;
	else
		return 512;
}

2567 2568 2569
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2570
{
2571
	if (INTEL_GEN(dev_priv) >= 8)
2572 2573
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2574
	else if (INTEL_GEN(dev_priv) >= 7)
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2585 2586
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2587
{
2588
	if (INTEL_GEN(dev_priv) >= 7)
2589 2590 2591 2592 2593
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2594
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2595
{
2596
	if (INTEL_GEN(dev_priv) >= 8)
2597 2598 2599 2600 2601
		return 31;
	else
		return 15;
}

2602 2603 2604
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2605
				     const struct intel_wm_config *config,
2606 2607 2608
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2609 2610
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2611 2612

	/* if sprites aren't enabled, sprites get nothing */
2613
	if (is_sprite && !config->sprites_enabled)
2614 2615 2616
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2617
	if (level == 0 || config->num_pipes_active > 1) {
2618
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2619 2620 2621 2622 2623 2624

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2625
		if (INTEL_GEN(dev_priv) <= 6)
2626 2627 2628
			fifo_size /= 2;
	}

2629
	if (config->sprites_enabled) {
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2641
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2642 2643 2644 2645
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2646 2647
				      int level,
				      const struct intel_wm_config *config)
2648 2649
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2650
	if (level > 0 && config->num_pipes_active > 1)
2651 2652 2653
		return 64;

	/* otherwise just report max that registers can hold */
2654
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2655 2656
}

2657
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2658 2659 2660
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2661
				    struct ilk_wm_maximums *max)
2662
{
2663 2664 2665
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2666
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2667 2668
}

2669
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2670 2671 2672
					int level,
					struct ilk_wm_maximums *max)
{
2673 2674 2675 2676
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2677 2678
}

2679
static bool ilk_validate_wm_level(int level,
2680
				  const struct ilk_wm_maximums *max,
2681
				  struct intel_wm_level *result)
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2720
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2721
				 const struct intel_crtc *intel_crtc,
2722
				 int level,
2723
				 struct intel_crtc_state *cstate,
2724 2725 2726
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2727
				 struct intel_wm_level *result)
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2752 2753 2754
	result->enable = true;
}

2755
static uint32_t
2756
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2757
{
2758 2759
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2760 2761
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2762
	u32 linetime, ips_linetime;
2763

2764 2765 2766 2767
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2768
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2769
		return 0;
2770

2771 2772 2773
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2774 2775 2776
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2777
					 intel_state->cdclk.logical.cdclk);
2778

2779 2780
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2781 2782
}

2783 2784
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2785
{
2786
	if (INTEL_GEN(dev_priv) >= 9) {
2787
		uint32_t val;
2788
		int ret, i;
2789
		int level, max_level = ilk_wm_max_level(dev_priv);
2790 2791 2792

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2793
		mutex_lock(&dev_priv->pcu_lock);
2794 2795 2796
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2797
		mutex_unlock(&dev_priv->pcu_lock);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2814
		mutex_lock(&dev_priv->pcu_lock);
2815 2816 2817
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2818
		mutex_unlock(&dev_priv->pcu_lock);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2845
		/*
2846
		 * WaWmMemoryReadLatency:skl+,glk
2847
		 *
2848
		 * punit doesn't take into account the read latency so we need
2849 2850
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2851
		 */
2852 2853 2854 2855 2856
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2857
				wm[level] += 2;
2858
			}
2859 2860
		}

2861
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2862 2863 2864 2865 2866
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2867 2868 2869 2870
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2871
	} else if (INTEL_GEN(dev_priv) >= 6) {
2872 2873 2874 2875 2876 2877
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2878
	} else if (INTEL_GEN(dev_priv) >= 5) {
2879 2880 2881 2882 2883 2884
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2885 2886
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2887 2888 2889
	}
}

2890 2891
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2892 2893
{
	/* ILK sprite LP0 latency is 1300 ns */
2894
	if (IS_GEN5(dev_priv))
2895 2896 2897
		wm[0] = 13;
}

2898 2899
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2900 2901
{
	/* ILK cursor LP0 latency is 1300 ns */
2902
	if (IS_GEN5(dev_priv))
2903 2904 2905
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2906
	if (IS_IVYBRIDGE(dev_priv))
2907 2908 2909
		wm[3] *= 2;
}

2910
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2911 2912
{
	/* how many WM levels are we expecting */
2913
	if (INTEL_GEN(dev_priv) >= 9)
2914
		return 7;
2915
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2916
		return 4;
2917
	else if (INTEL_GEN(dev_priv) >= 6)
2918
		return 3;
2919
	else
2920 2921
		return 2;
}
2922

2923
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2924
				   const char *name,
2925
				   const uint16_t wm[8])
2926
{
2927
	int level, max_level = ilk_wm_max_level(dev_priv);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2938 2939 2940 2941
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2942
		if (INTEL_GEN(dev_priv) >= 9)
2943 2944
			latency *= 10;
		else if (level > 0)
2945 2946 2947 2948 2949 2950 2951 2952
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2953 2954 2955
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2956
	int level, max_level = ilk_wm_max_level(dev_priv);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2968
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2984 2985 2986
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2987 2988
}

2989
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2990
{
2991
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2992 2993 2994 2995 2996 2997

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2998
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2999
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3000

3001 3002 3003
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3004

3005
	if (IS_GEN6(dev_priv))
3006
		snb_wm_latency_quirk(dev_priv);
3007 3008
}

3009
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3010
{
3011
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3012
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3013 3014
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3038
/* Compute new watermarks for the pipe */
3039
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3040
{
3041 3042
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3043
	struct intel_pipe_wm *pipe_wm;
3044
	struct drm_device *dev = state->dev;
3045
	const struct drm_i915_private *dev_priv = to_i915(dev);
3046 3047 3048 3049 3050
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3051
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3052
	struct ilk_wm_maximums max;
3053

3054
	pipe_wm = &cstate->wm.ilk.optimal;
3055

3056 3057
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3058

3059
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3060
			pristate = ps;
3061
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3062
			sprstate = ps;
3063
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3064
			curstate = ps;
3065 3066
	}

3067
	pipe_wm->pipe_enabled = cstate->base.active;
3068
	if (sprstate) {
3069 3070 3071 3072
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3073 3074
	}

3075 3076
	usable_level = max_level;

3077
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3078
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3079
		usable_level = 1;
3080 3081

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3082
	if (pipe_wm->sprites_scaled)
3083
		usable_level = 0;
3084

3085
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3086 3087
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3088

3089
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3090
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3091

3092
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3093
		return -EINVAL;
3094

3095
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3096

3097 3098
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3099

3100
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3101
				     pristate, sprstate, curstate, wm);
3102 3103 3104 3105 3106 3107

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3108 3109 3110 3111
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3112 3113
	}

3114
	return 0;
3115 3116
}

3117 3118 3119 3120 3121 3122 3123 3124 3125
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3126
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3127 3128 3129 3130 3131
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3132
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3133 3134 3135 3136 3137 3138

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3139
	*a = newstate->wm.ilk.optimal;
3140 3141 3142
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
		return 0;

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3171 3172
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3173 3174 3175 3176

	return 0;
}

3177 3178 3179 3180 3181 3182 3183 3184 3185
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3186 3187
	ret_wm->enable = true;

3188
	for_each_intel_crtc(dev, intel_crtc) {
3189
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3190 3191 3192 3193
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3194

3195 3196 3197 3198 3199
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3200
		if (!wm->enable)
3201
			ret_wm->enable = false;
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3214
			 const struct intel_wm_config *config,
3215
			 const struct ilk_wm_maximums *max,
3216 3217
			 struct intel_pipe_wm *merged)
{
3218
	struct drm_i915_private *dev_priv = to_i915(dev);
3219
	int level, max_level = ilk_wm_max_level(dev_priv);
3220
	int last_enabled_level = max_level;
3221

3222
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3223
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3224
	    config->num_pipes_active > 1)
3225
		last_enabled_level = 0;
3226

3227
	/* ILK: FBC WM must be disabled always */
3228
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3229 3230 3231 3232 3233 3234 3235

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3236 3237 3238 3239 3240
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3241 3242 3243 3244 3245 3246

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3247 3248
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3249 3250 3251
			wm->fbc_val = 0;
		}
	}
3252 3253 3254 3255 3256 3257 3258

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3259
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3260
	    intel_fbc_is_active(dev_priv)) {
3261 3262 3263 3264 3265 3266
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3267 3268
}

3269 3270 3271 3272 3273 3274
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3275 3276 3277
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3278
	struct drm_i915_private *dev_priv = to_i915(dev);
3279

3280
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3281 3282 3283 3284 3285
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3286
static void ilk_compute_wm_results(struct drm_device *dev,
3287
				   const struct intel_pipe_wm *merged,
3288
				   enum intel_ddb_partitioning partitioning,
3289
				   struct ilk_wm_values *results)
3290
{
3291
	struct drm_i915_private *dev_priv = to_i915(dev);
3292 3293
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3294

3295
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3296
	results->partitioning = partitioning;
3297

3298
	/* LP1+ register values */
3299
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3300
		const struct intel_wm_level *r;
3301

3302
		level = ilk_wm_lp_to_level(wm_lp, merged);
3303

3304
		r = &merged->wm[level];
3305

3306 3307 3308 3309 3310
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3311
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3312 3313 3314
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3315 3316 3317
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3318
		if (INTEL_GEN(dev_priv) >= 8)
3319 3320 3321 3322 3323 3324
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3325 3326 3327 3328
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3329
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3330 3331 3332 3333
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3334
	}
3335

3336
	/* LP0 register values */
3337
	for_each_intel_crtc(dev, intel_crtc) {
3338
		enum pipe pipe = intel_crtc->pipe;
3339 3340
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3341 3342 3343 3344

		if (WARN_ON(!r->enable))
			continue;

3345
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3346

3347 3348 3349 3350
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3351 3352 3353
	}
}

3354 3355
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3356
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3357 3358
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3359
{
3360
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3361
	int level1 = 0, level2 = 0;
3362

3363 3364 3365 3366 3367
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3368 3369
	}

3370 3371
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3372 3373 3374
			return r2;
		else
			return r1;
3375
	} else if (level1 > level2) {
3376 3377 3378 3379 3380 3381
		return r1;
	} else {
		return r2;
	}
}

3382 3383 3384 3385 3386 3387 3388 3389
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3390
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3391 3392
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3393 3394 3395 3396 3397
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3398
	for_each_pipe(dev_priv, pipe) {
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3442 3443
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3444
{
3445
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3446
	bool changed = false;
3447

3448 3449 3450
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3451
		changed = true;
3452 3453 3454 3455
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3456
		changed = true;
3457 3458 3459 3460
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3461
		changed = true;
3462
	}
3463

3464 3465 3466 3467
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3468

3469 3470 3471 3472 3473 3474 3475
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3476 3477
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3478
{
3479
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3480 3481 3482
	unsigned int dirty;
	uint32_t val;

3483
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3484 3485 3486 3487 3488
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3489
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3490
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3491
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3492
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3493
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3494 3495
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3496
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3497
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3498
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3499
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3500
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3501 3502
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3503
	if (dirty & WM_DIRTY_DDB) {
3504
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3519 3520
	}

3521
	if (dirty & WM_DIRTY_FBC) {
3522 3523 3524 3525 3526 3527 3528 3529
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3530 3531 3532 3533
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3534
	if (INTEL_GEN(dev_priv) >= 7) {
3535 3536 3537 3538 3539
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3540

3541
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3542
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3543
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3544
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3545
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3546
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3547 3548

	dev_priv->wm.hw = *results;
3549 3550
}

3551
bool ilk_disable_lp_wm(struct drm_device *dev)
3552
{
3553
	struct drm_i915_private *dev_priv = to_i915(dev);
3554 3555 3556 3557

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3558 3559 3560 3561 3562 3563 3564 3565
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3566
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3567 3568 3569 3570 3571
		return true;

	return false;
}

3572 3573 3574
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3575 3576
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3577 3578 3579 3580 3581 3582 3583
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3584 3585
}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3598
intel_enable_sagv(struct drm_i915_private *dev_priv)
3599 3600 3601
{
	int ret;

3602 3603 3604 3605
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3606 3607 3608
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3609
	mutex_lock(&dev_priv->pcu_lock);
3610 3611 3612 3613 3614

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3615
	mutex_unlock(&dev_priv->pcu_lock);
3616 3617 3618 3619 3620

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3621
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3622
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3623
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3624 3625 3626 3627 3628 3629
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3630
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3631 3632 3633 3634
	return 0;
}

int
3635
intel_disable_sagv(struct drm_i915_private *dev_priv)
3636
{
3637
	int ret;
3638

3639 3640 3641 3642
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3643 3644 3645
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3646
	mutex_lock(&dev_priv->pcu_lock);
3647 3648

	/* bspec says to keep retrying for at least 1 ms */
3649 3650 3651 3652
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3653
	mutex_unlock(&dev_priv->pcu_lock);
3654 3655 3656 3657 3658

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3659
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3660
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3661
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3662
		return 0;
3663 3664 3665
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3666 3667
	}

3668
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3669 3670 3671
	return 0;
}

3672
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3673 3674 3675 3676
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3677 3678
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3679
	struct intel_crtc_state *cstate;
3680
	enum pipe pipe;
3681
	int level, latency;
3682
	int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3683

3684 3685 3686
	if (!intel_has_sagv(dev_priv))
		return false;

3687
	/*
3688
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3700
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3701
	cstate = to_intel_crtc_state(crtc->base.state);
3702

3703
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3704 3705
		return false;

3706
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3707 3708
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3709

3710
		/* Skip this plane if it's not enabled */
3711
		if (!wm->wm[0].plane_en)
3712 3713 3714
			continue;

		/* Find the highest enabled wm level for this plane */
3715
		for (level = ilk_wm_max_level(dev_priv);
3716
		     !wm->wm[level].plane_en; --level)
3717 3718
		     { }

3719 3720 3721
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3722
		    plane->base.state->fb->modifier ==
3723 3724 3725
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3726
		/*
3727 3728 3729
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3730
		 */
3731
		if (latency < sagv_block_time_us)
3732 3733 3734 3735 3736 3737
			return false;
	}

	return true;
}

3738 3739
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3740
				   const struct intel_crtc_state *cstate,
3741 3742
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3743
{
3744 3745 3746
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3747
	struct drm_crtc *for_crtc = cstate->base.crtc;
3748 3749
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3750

3751
	if (WARN_ON(!state) || !cstate->base.active) {
3752 3753
		alloc->start = 0;
		alloc->end = 0;
3754
		*num_active = hweight32(dev_priv->active_crtcs);
3755 3756 3757
		return;
	}

3758 3759 3760 3761 3762
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3763 3764
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3765 3766 3767

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3768
	/*
3769 3770 3771 3772 3773 3774
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3775
	 */
3776
	if (!intel_state->active_pipe_changes) {
3777 3778 3779 3780 3781
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3782
		return;
3783
	}
3784 3785 3786 3787 3788 3789

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3790 3791
}

3792
static unsigned int skl_cursor_allocation(int num_active)
3793
{
3794
	if (num_active == 1)
3795 3796 3797 3798 3799
		return 32;

	return 8;
}

3800 3801 3802 3803
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3804 3805
	if (entry->end)
		entry->end += 1;
3806 3807
}

3808 3809
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3810
{
3811
	struct intel_crtc *crtc;
3812

3813 3814
	memset(ddb, 0, sizeof(*ddb));

3815
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3816
		enum intel_display_power_domain power_domain;
3817 3818
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3819 3820 3821

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3822 3823
			continue;

3824 3825 3826 3827 3828 3829 3830
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3831

3832 3833
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3834 3835

		intel_display_power_put(dev_priv, power_domain);
3836 3837 3838
	}
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3855
static uint_fixed_16_16_t
3856 3857
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3858
{
3859
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3860
	uint32_t src_w, src_h, dst_w, dst_h;
3861 3862
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3863

3864
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3865
		return u32_to_fixed16(0);
3866 3867

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3868
	if (plane->id == PLANE_CURSOR) {
3869 3870 3871 3872
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3873 3874
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3875 3876 3877
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3878 3879 3880 3881 3882
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3883 3884
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3885 3886 3887 3888
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3889 3890 3891 3892
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3893

3894
	return mul_fixed16(downscale_w, downscale_h);
3895 3896
}

3897 3898 3899
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
3900
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

3919 3920 3921 3922
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
3933
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3934 3935 3936 3937 3938
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
3939
	int crtc_clock, dotclk;
3940 3941
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
3942
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3943 3944 3945 3946 3947 3948

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
3949
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

3967
		max_downscale = max_fixed16(plane_downscale, max_downscale);
3968 3969 3970 3971 3972 3973
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3974 3975
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

3976
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3977 3978 3979
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3980 3981

	if (pipe_max_pixel_rate < crtc_clock) {
3982
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3983 3984 3985 3986 3987 3988
		return -EINVAL;
	}

	return 0;
}

3989
static unsigned int
3990 3991 3992
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3993
{
3994
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3995
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3996
	uint32_t data_rate;
3997
	uint32_t width = 0, height = 0;
3998 3999
	struct drm_framebuffer *fb;
	u32 format;
4000
	uint_fixed_16_16_t down_scale_amount;
4001

4002
	if (!intel_pstate->base.visible)
4003
		return 0;
4004 4005

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4006
	format = fb->format->format;
4007

4008
	if (plane->id == PLANE_CURSOR)
4009 4010 4011
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
4012

4013 4014 4015 4016 4017
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4018 4019
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4020

4021
	/* for planar format */
4022
	if (format == DRM_FORMAT_NV12) {
4023
		if (y)  /* y-plane data rate */
4024
			data_rate = width * height *
4025
				fb->format->cpp[0];
4026
		else    /* uv-plane data rate */
4027
			data_rate = (width / 2) * (height / 2) *
4028
				fb->format->cpp[1];
4029 4030
	} else {
		/* for packed formats */
4031
		data_rate = width * height * fb->format->cpp[0];
4032 4033
	}

4034
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4035

4036
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4037 4038 4039 4040 4041 4042 4043 4044
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4045 4046 4047
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
4048
{
4049 4050
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4051 4052
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4053
	unsigned int total_data_rate = 0;
4054 4055 4056

	if (WARN_ON(!state))
		return 0;
4057

4058
	/* Calculate and cache data rate for each plane */
4059
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4060 4061
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4062 4063 4064 4065

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4066
		plane_data_rate[plane_id] = rate;
4067 4068

		total_data_rate += rate;
4069 4070 4071 4072

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4073
		plane_y_data_rate[plane_id] = rate;
4074

4075
		total_data_rate += rate;
4076 4077 4078 4079 4080
	}

	return total_data_rate;
}

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
4095
	if (y && fb->format->format != DRM_FORMAT_NV12)
4096 4097 4098
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4099
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4100 4101 4102
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4103 4104
		return 8;

4105 4106 4107 4108 4109
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4110 4111
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4112 4113

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
4114
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4115 4116 4117 4118
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
4119
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4120
		plane_bpp = fb->format->cpp[1];
4121
	else
4122
		plane_bpp = fb->format->cpp[0];
4123

4124
	if (drm_rotation_90_or_270(pstate->rotation)) {
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4148 4149 4150 4151 4152 4153 4154 4155
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4156
		enum plane_id plane_id = to_intel_plane(plane)->id;
4157

4158
		if (plane_id == PLANE_CURSOR)
4159 4160 4161 4162 4163
			continue;

		if (!pstate->visible)
			continue;

4164 4165
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4166 4167 4168 4169 4170
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4171
static int
4172
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4173 4174
		      struct skl_ddb_allocation *ddb /* out */)
{
4175
	struct drm_atomic_state *state = cstate->base.state;
4176
	struct drm_crtc *crtc = cstate->base.crtc;
4177 4178 4179
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4180
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4181
	uint16_t alloc_size, start;
4182 4183
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4184
	unsigned int total_data_rate;
4185
	enum plane_id plane_id;
4186
	int num_active;
4187 4188
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4189
	uint16_t total_min_blocks = 0;
4190

4191 4192 4193 4194
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4195 4196 4197
	if (WARN_ON(!state))
		return 0;

4198
	if (!cstate->base.active) {
4199
		alloc->start = alloc->end = 0;
4200 4201 4202
		return 0;
	}

4203
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4204
	alloc_size = skl_ddb_entry_size(alloc);
4205
	if (alloc_size == 0)
4206
		return 0;
4207

4208
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4209

4210 4211 4212 4213 4214
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4215

4216
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4217 4218
		total_min_blocks += minimum[plane_id];
		total_min_blocks += y_minimum[plane_id];
4219 4220
	}

4221 4222 4223 4224 4225 4226 4227
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4228 4229
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4230 4231
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4232
	/*
4233 4234
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4235 4236 4237
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4238 4239 4240
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4241
	if (total_data_rate == 0)
4242
		return 0;
4243

4244
	start = alloc->start;
4245
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4246
		unsigned int data_rate, y_data_rate;
4247
		uint16_t plane_blocks, y_plane_blocks = 0;
4248

4249
		if (plane_id == PLANE_CURSOR)
4250 4251
			continue;

4252
		data_rate = plane_data_rate[plane_id];
4253 4254

		/*
4255
		 * allocation for (packed formats) or (uv-plane part of planar format):
4256 4257 4258
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4259 4260 4261
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4262

4263 4264
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4265 4266
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4267
		}
4268

4269 4270
		start += plane_blocks;

4271 4272 4273
		/*
		 * allocation for y_plane part of planar format:
		 */
4274
		y_data_rate = plane_y_data_rate[plane_id];
4275

4276 4277 4278 4279
		y_plane_blocks = y_minimum[plane_id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);

4280
		if (y_data_rate) {
4281 4282
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4283
		}
4284 4285

		start += y_plane_blocks;
4286 4287
	}

4288
	return 0;
4289 4290
}

4291 4292
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4293
 * for the read latency) and cpp should always be <= 8, so that
4294 4295 4296
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4297 4298 4299
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
	       uint8_t cpp, uint32_t latency)
4300
{
4301 4302
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4303 4304

	if (latency == 0)
4305
		return FP_16_16_MAX;
4306

4307
	wm_intermediate_val = latency * pixel_rate * cpp;
4308
	ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4309 4310 4311 4312

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4313 4314 4315
	return ret;
}

4316 4317 4318 4319
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4320
{
4321
	uint32_t wm_intermediate_val;
4322
	uint_fixed_16_16_t ret;
4323 4324

	if (latency == 0)
4325
		return FP_16_16_MAX;
4326 4327

	wm_intermediate_val = latency * pixel_rate;
4328 4329
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4330
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4331 4332 4333
	return ret;
}

4334 4335 4336 4337 4338 4339 4340 4341
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4342
		return u32_to_fixed16(0);
4343 4344 4345 4346

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4347
		return u32_to_fixed16(0);
4348 4349

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4350
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4351 4352 4353 4354

	return linetime_us;
}

4355 4356 4357
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4358 4359
{
	uint64_t adjusted_pixel_rate;
4360
	uint_fixed_16_16_t downscale_amount;
4361 4362

	/* Shouldn't reach here on disabled planes... */
4363
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4364 4365 4366 4367 4368 4369
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4370
	adjusted_pixel_rate = cstate->pixel_rate;
4371
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4372

4373 4374
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4375 4376
}

4377 4378 4379 4380 4381
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
			    struct skl_wm_params *wp)
4382
{
4383
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4384 4385
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4386
	uint32_t interm_pbpl;
4387 4388 4389
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4390

4391
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4392
		return 0;
4393

4394 4395 4396 4397 4398 4399 4400
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4401

4402
	if (plane->id == PLANE_CURSOR) {
4403
		wp->width = intel_pstate->base.crtc_w;
4404
	} else {
4405 4406 4407 4408 4409
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4410
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4411
	}
4412

4413 4414 4415 4416
	wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
							    fb->format->cpp[0];
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4417

4418
	if (drm_rotation_90_or_270(pstate->rotation)) {
4419

4420
		switch (wp->cpp) {
4421
		case 1:
4422
			wp->y_min_scanlines = 16;
4423 4424
			break;
		case 2:
4425
			wp->y_min_scanlines = 8;
4426 4427
			break;
		case 4:
4428
			wp->y_min_scanlines = 4;
4429
			break;
4430
		default:
4431
			MISSING_CASE(wp->cpp);
4432
			return -EINVAL;
4433 4434
		}
	} else {
4435
		wp->y_min_scanlines = 4;
4436 4437
	}

4438
	if (apply_memory_bw_wa)
4439
		wp->y_min_scanlines *= 2;
4440

4441 4442 4443 4444
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
					   wp->y_min_scanlines, 512);
4445 4446 4447 4448

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4449 4450 4451 4452 4453
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4454
	} else {
4455 4456
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4457 4458
	}

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
		*enabled = false;
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4493 4494
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4495 4496 4497 4498 4499 4500 4501 4502 4503
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
				 wp->cpp, latency);
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4504
				 cstate->base.adjusted_mode.crtc_htotal,
4505
				 latency,
4506
				 wp->plane_blocks_per_line);
4507

4508 4509
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4510
	} else {
4511 4512
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
		     512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
4513
			selected_result = method2;
4514
		else if (ddb_allocation >=
4515
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4516
			selected_result = min_fixed16(method1, method2);
4517
		else if (latency >= wp->linetime_us)
4518
			selected_result = min_fixed16(method1, method2);
4519 4520 4521
		else
			selected_result = method1;
	}
4522

4523
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4524
	res_lines = div_round_up_fixed16(selected_result,
4525
					 wp->plane_blocks_per_line);
4526

4527
	/* Display WA #1125: skl,bxt,kbl,glk */
4528 4529
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4530 4531

	/* Display WA #1126: skl,bxt,kbl,glk */
4532
	if (level >= 1 && level <= 7) {
4533 4534 4535 4536
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4537
		} else {
4538
			res_blocks++;
4539
		}
4540
	}
4541

4542 4543
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
4544

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4560
	}
4561 4562 4563

	*out_blocks = res_blocks;
	*out_lines = res_lines;
4564
	*enabled = true;
4565

4566
	return 0;
4567 4568
}

4569
static int
4570
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4571
		      struct skl_ddb_allocation *ddb,
4572 4573
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4574
		      const struct skl_wm_params *wm_params,
4575
		      struct skl_plane_wm *wm)
4576
{
4577 4578 4579 4580 4581
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4582
	int level, max_level = ilk_wm_max_level(dev_priv);
4583
	int ret;
L
Lyude 已提交
4584

4585 4586
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4587

4588 4589
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);

4590 4591 4592 4593 4594 4595
	for (level = 0; level <= max_level; level++) {
		struct skl_wm_level *result = &wm->wm[level];

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4596
					   ddb_blocks,
4597
					   level,
4598
					   wm_params,
4599
					   &result->plane_res_b,
4600 4601
					   &result->plane_res_l,
					   &result->plane_en);
4602 4603 4604
		if (ret)
			return ret;
	}
4605 4606

	return 0;
4607 4608
}

4609
static uint32_t
4610
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4611
{
M
Mahesh Kumar 已提交
4612 4613
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4614
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4615
	uint32_t linetime_wm;
4616

4617
	linetime_us = intel_get_linetime_us(cstate);
4618

4619
	if (is_fixed16_zero(linetime_us))
4620
		return 0;
4621

4622
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4623

4624 4625 4626 4627
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4628 4629

	return linetime_wm;
4630 4631
}

4632
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4633 4634 4635
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4636
				      struct skl_wm_level *trans_wm /* out */)
4637
{
4638 4639 4640 4641 4642 4643
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4644
	if (!cstate->base.active)
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4679
		return;
4680
	}
4681

4682
exit:
L
Lyude 已提交
4683
	trans_wm->plane_en = false;
4684 4685
}

4686 4687 4688
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4689
{
4690
	struct drm_device *dev = cstate->base.crtc->dev;
4691
	struct drm_crtc_state *crtc_state = &cstate->base;
4692
	const struct drm_i915_private *dev_priv = to_i915(dev);
4693 4694
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4695
	struct skl_plane_wm *wm;
4696
	int ret;
4697

L
Lyude 已提交
4698 4699 4700 4701 4702 4703
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4704 4705 4706 4707
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4708
		struct skl_wm_params wm_params;
4709 4710
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4711 4712

		wm = &pipe_wm->planes[plane_id];
4713
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4714 4715 4716 4717 4718 4719
		memset(&wm_params, 0, sizeof(struct skl_wm_params));

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
						  intel_pstate, &wm_params);
		if (ret)
			return ret;
L
Lyude 已提交
4720

4721
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4722
					    intel_pstate, &wm_params, wm);
4723 4724
		if (ret)
			return ret;
4725 4726
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4727
	}
4728
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4729

4730
	return 0;
4731 4732
}

4733 4734
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4735 4736 4737 4738 4739 4740 4741 4742
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4758 4759 4760
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4761
			       enum plane_id plane_id)
4762 4763 4764 4765
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4766
	int level, max_level = ilk_wm_max_level(dev_priv);
4767 4768 4769
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4770
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4771
				   &wm->wm[level]);
4772
	}
4773
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4774
			   &wm->trans_wm);
4775

4776 4777 4778 4779
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4780 4781
}

4782 4783 4784
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4785 4786 4787 4788
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4789
	int level, max_level = ilk_wm_max_level(dev_priv);
4790 4791 4792
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4793 4794
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4795
	}
4796
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4797

4798
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4799
			    &ddb->plane[pipe][PLANE_CURSOR]);
4800 4801
}

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4816 4817
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4818
{
4819
	return a->start < b->end && b->start < a->end;
4820 4821
}

4822 4823
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
				 const struct skl_ddb_entry **entries,
4824 4825
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4826
{
4827
	enum pipe pipe;
4828

4829 4830 4831
	for_each_pipe(dev_priv, pipe) {
		if (pipe != ignore && entries[pipe] &&
		    skl_ddb_entries_overlap(ddb, entries[pipe]))
4832
			return true;
4833
	}
4834

4835
	return false;
4836 4837
}

4838
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4839
			      const struct skl_pipe_wm *old_pipe_wm,
4840
			      struct skl_pipe_wm *pipe_wm, /* out */
4841
			      struct skl_ddb_allocation *ddb, /* out */
4842
			      bool *changed /* out */)
4843
{
4844
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4845
	int ret;
4846

4847 4848 4849
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4850

4851
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4852 4853 4854
		*changed = false;
	else
		*changed = true;
4855

4856
	return 0;
4857 4858
}

4859 4860 4861 4862 4863 4864 4865
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4866
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4867 4868 4869 4870 4871
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4872
static int
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
4908 4909 4910 4911 4912
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4913
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4914
	uint32_t realloc_pipes = pipes_modified(state);
4915 4916 4917 4918 4919 4920 4921 4922
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4923 4924 4925 4926 4927 4928
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4929 4930
		intel_state->active_pipe_changes = ~0;

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4954
	if (intel_state->active_pipe_changes) {
4955
		realloc_pipes = ~0;
4956 4957
		intel_state->wm_results.dirty_pipes = ~0;
	}
4958

4959 4960 4961 4962 4963 4964
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4965 4966 4967 4968 4969 4970
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
4971 4972 4973 4974 4975 4976 4977 4978

		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
4979 4980 4981 4982 4983
	}

	return 0;
}

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5007
	int i;
5008

5009
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5010 5011
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5012

5013
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5014
			enum plane_id plane_id = intel_plane->id;
5015 5016
			const struct skl_ddb_entry *old, *new;

5017 5018
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5019 5020 5021 5022

			if (skl_ddb_entry_equal(old, new))
				continue;

5023 5024 5025 5026 5027
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5028 5029 5030 5031
		}
	}
}

5032 5033 5034 5035 5036
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
5037 5038
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
5039
	struct drm_device *dev = state->dev;
5040
	struct skl_pipe_wm *pipe_wm;
5041
	bool changed = false;
5042
	int ret, i;
5043

5044 5045 5046 5047 5048 5049 5050
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

5051 5052 5053 5054 5055 5056 5057 5058
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5059
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5060
		changed = true;
5061

5062 5063 5064
	if (!changed)
		return 0;

5065 5066 5067
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5068
	ret = skl_compute_ddb(state);
5069 5070 5071
	if (ret)
		return ret;

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5082
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5083 5084
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5085 5086
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5087 5088

		pipe_wm = &intel_cstate->wm.skl.optimal;
5089 5090
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5104 5105
	skl_print_wm_changes(state);

5106 5107 5108
	return 0;
}

5109 5110 5111 5112 5113 5114
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5115
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5116
	enum pipe pipe = crtc->pipe;
5117
	enum plane_id plane_id;
5118 5119 5120

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5121 5122

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5123

5124 5125 5126 5127 5128 5129 5130 5131
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5132 5133
}

5134 5135
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5136
{
5137
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5138
	struct drm_device *dev = intel_crtc->base.dev;
5139
	struct drm_i915_private *dev_priv = to_i915(dev);
5140
	struct skl_wm_values *results = &state->wm_results;
5141
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5142
	enum pipe pipe = intel_crtc->pipe;
5143

5144
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5145 5146
		return;

5147
	mutex_lock(&dev_priv->wm.wm_mutex);
5148

5149 5150
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5151 5152

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5153 5154

	mutex_unlock(&dev_priv->wm.wm_mutex);
5155 5156
}

5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5175
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5176
{
5177
	struct drm_device *dev = &dev_priv->drm;
5178
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5179
	struct ilk_wm_maximums max;
5180
	struct intel_wm_config config = {};
5181
	struct ilk_wm_values results = {};
5182
	enum intel_ddb_partitioning partitioning;
5183

5184 5185 5186 5187
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5188 5189

	/* 5/6 split only in single pipe config on IVB+ */
5190
	if (INTEL_GEN(dev_priv) >= 7 &&
5191 5192 5193
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5194

5195
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5196
	} else {
5197
		best_lp_wm = &lp_wm_1_2;
5198 5199
	}

5200
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5201
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5202

5203
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5204

5205
	ilk_write_wm_values(dev_priv, &results);
5206 5207
}

5208 5209
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5210
{
5211 5212
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5213

5214
	mutex_lock(&dev_priv->wm.wm_mutex);
5215
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5216 5217 5218
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5219

5220 5221
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5222 5223 5224
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5225

5226 5227
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5228
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5229 5230 5231
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5232 5233
}

5234 5235
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5236
{
5237 5238 5239 5240
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5241 5242
}

5243 5244
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5245
{
5246
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5247 5248
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5249 5250
	int level, max_level;
	enum plane_id plane_id;
5251
	uint32_t val;
5252

5253
	max_level = ilk_wm_max_level(dev_priv);
5254

5255 5256
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5257

5258
		for (level = 0; level <= max_level; level++) {
5259 5260
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5261 5262
			else
				val = I915_READ(CUR_WM(pipe, level));
5263

5264
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5265 5266
		}

5267 5268
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5269 5270 5271 5272
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5273 5274
	}

5275 5276
	if (!intel_crtc->active)
		return;
5277

5278
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5279 5280 5281 5282
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5283
	struct drm_i915_private *dev_priv = to_i915(dev);
5284
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5285
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5286
	struct drm_crtc *crtc;
5287 5288
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5289

5290
	skl_ddb_get_hw_state(dev_priv, ddb);
5291 5292 5293 5294 5295 5296
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5297
		if (intel_crtc->active)
5298 5299
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5300

5301 5302 5303 5304 5305 5306 5307
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5308 5309
}

5310 5311 5312
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5313
	struct drm_i915_private *dev_priv = to_i915(dev);
5314
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5315
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5316
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5317
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5318
	enum pipe pipe = intel_crtc->pipe;
5319
	static const i915_reg_t wm0_pipe_reg[] = {
5320 5321 5322 5323 5324 5325
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5326
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5327
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5328

5329 5330
	memset(active, 0, sizeof(*active));

5331
	active->pipe_enabled = intel_crtc->active;
5332 5333

	if (active->pipe_enabled) {
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5348
		int level, max_level = ilk_wm_max_level(dev_priv);
5349 5350 5351 5352 5353 5354 5355 5356 5357

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5358 5359

	intel_crtc->wm.active.ilk = *active;
5360 5361
}

5362 5363 5364 5365 5366
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5393 5394 5395 5396 5397 5398 5399 5400 5401
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5402
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5403
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5404
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5405
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5406
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5407
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5408
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5409 5410 5411 5412 5413
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5414 5415 5416
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5417 5418

	tmp = I915_READ(DSPFW2);
5419 5420 5421
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5422 5423 5424 5425 5426 5427

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5428 5429
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5430 5431

		tmp = I915_READ(DSPFW8_CHV);
5432 5433
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5434 5435

		tmp = I915_READ(DSPFW9_CHV);
5436 5437
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5438 5439 5440

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5441 5442 5443 5444 5445 5446 5447 5448 5449
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5450 5451
	} else {
		tmp = I915_READ(DSPFW7);
5452 5453
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5454 5455 5456

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5457 5458 5459 5460 5461 5462
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5463 5464 5465 5466 5467 5468
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5610 5611 5612 5613
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5614
	struct intel_crtc *crtc;
5615 5616 5617 5618 5619 5620 5621 5622
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5623
		mutex_lock(&dev_priv->pcu_lock);
5624 5625 5626 5627 5628

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5629 5630 5631 5632 5633 5634 5635 5636 5637
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5638
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5652

5653
		mutex_unlock(&dev_priv->pcu_lock);
5654 5655
	}

5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5672
			struct g4x_pipe_wm *raw =
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5694
		crtc_state->wm.vlv.intermediate = *active;
5695

5696
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5697 5698 5699 5700 5701
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5702
	}
5703 5704 5705 5706 5707

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5732
			struct g4x_pipe_wm *raw =
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5757 5758
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5759
	struct drm_i915_private *dev_priv = to_i915(dev);
5760
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5761 5762
	struct drm_crtc *crtc;

5763
	for_each_crtc(dev, crtc)
5764 5765 5766 5767 5768 5769 5770
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5771
	if (INTEL_GEN(dev_priv) >= 7) {
5772 5773 5774
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5775

5776
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5777 5778
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5779
	else if (IS_IVYBRIDGE(dev_priv))
5780 5781
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5782 5783 5784 5785 5786

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5819
void intel_update_watermarks(struct intel_crtc *crtc)
5820
{
5821
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5822 5823

	if (dev_priv->display.update_wm)
5824
		dev_priv->display.update_wm(crtc);
5825 5826
}

5827 5828 5829 5830
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

5831 5832 5833 5834 5835 5836
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv)) {
		dev_priv->ipc_enabled = false;
		return;
	}

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

5857
/*
5858 5859 5860 5861 5862 5863 5864 5865
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5866
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5867 5868 5869
{
	u16 rgvswctl;

5870
	lockdep_assert_held(&mchdev_lock);
5871

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5889
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5890
{
5891
	u32 rgvmodectl;
5892 5893
	u8 fmax, fmin, fstart, vstart;

5894 5895
	spin_lock_irq(&mchdev_lock);

5896 5897
	rgvmodectl = I915_READ(MEMMODECTL);

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5918
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5919 5920
		PXVFREQ_PX_SHIFT;

5921 5922
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5923

5924 5925 5926
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5943
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5944
		DRM_ERROR("stuck trying to change perf mode\n");
5945
	mdelay(1);
5946

5947
	ironlake_set_drps(dev_priv, fstart);
5948

5949 5950
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5951
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5952
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5953
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5954 5955

	spin_unlock_irq(&mchdev_lock);
5956 5957
}

5958
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5959
{
5960 5961 5962 5963 5964
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5965 5966 5967 5968 5969 5970 5971 5972 5973

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5974
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5975
	mdelay(1);
5976 5977
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5978
	mdelay(1);
5979

5980
	spin_unlock_irq(&mchdev_lock);
5981 5982
}

5983 5984 5985 5986 5987
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5988
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5989
{
5990
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
5991
	u32 limits;
5992

5993 5994 5995 5996 5997 5998
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5999
	if (INTEL_GEN(dev_priv) >= 9) {
6000 6001 6002
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6003
	} else {
6004 6005 6006
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6007
	}
6008 6009 6010 6011

	return limits;
}

6012 6013
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
6014
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6015
	int new_power;
6016 6017
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6018

6019 6020
	new_power = rps->power;
	switch (rps->power) {
6021
	case LOW_POWER:
6022 6023
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
6024 6025 6026 6027
			new_power = BETWEEN;
		break;

	case BETWEEN:
6028 6029
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
6030
			new_power = LOW_POWER;
6031 6032
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
6033 6034 6035 6036
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
6037 6038
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
6039 6040 6041 6042
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
6043
	if (val <= rps->min_freq_softlimit)
6044
		new_power = LOW_POWER;
6045
	if (val >= rps->max_freq_softlimit)
6046
		new_power = HIGH_POWER;
6047
	if (new_power == rps->power)
6048 6049 6050 6051 6052 6053
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6054 6055
		ei_up = 16000;
		threshold_up = 95;
6056 6057

		/* Downclock if less than 85% busy over 32ms */
6058 6059
		ei_down = 32000;
		threshold_down = 85;
6060 6061 6062 6063
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6064 6065
		ei_up = 13000;
		threshold_up = 90;
6066 6067

		/* Downclock if less than 75% busy over 32ms */
6068 6069
		ei_down = 32000;
		threshold_down = 75;
6070 6071 6072 6073
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6074 6075
		ei_up = 10000;
		threshold_up = 85;
6076 6077

		/* Downclock if less than 60% busy over 32ms */
6078 6079
		ei_down = 32000;
		threshold_down = 60;
6080 6081 6082
		break;
	}

6083 6084 6085 6086 6087 6088
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6089
	I915_WRITE(GEN6_RP_UP_EI,
6090
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6091
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6092 6093
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6094 6095

	I915_WRITE(GEN6_RP_DOWN_EI,
6096
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6097
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6108

6109
skip_hw_write:
6110 6111 6112 6113
	rps->power = new_power;
	rps->up_threshold = threshold_up;
	rps->down_threshold = threshold_down;
	rps->last_adj = 0;
6114 6115
}

6116 6117
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6118
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6119 6120
	u32 mask = 0;

6121
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6122
	if (val > rps->min_freq_softlimit)
6123
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6124
	if (val < rps->max_freq_softlimit)
6125
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6126

6127 6128
	mask &= dev_priv->pm_rps_events;

6129
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6130 6131
}

6132 6133 6134
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6135
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6136
{
6137 6138
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6139 6140 6141
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6142
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6143
		gen6_set_rps_thresholds(dev_priv, val);
6144

6145
		if (INTEL_GEN(dev_priv) >= 9)
6146 6147
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6148
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6149 6150 6151 6152 6153 6154 6155
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6156
	}
6157 6158 6159 6160

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6161
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6162
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6163

6164
	rps->cur_freq = val;
6165
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6166 6167

	return 0;
6168 6169
}

6170
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6171
{
6172 6173
	int err;

6174
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6175 6176 6177
		      "Odd GPU freq value\n"))
		val &= ~1;

6178 6179
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6180
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6181 6182 6183 6184
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6185
		gen6_set_rps_thresholds(dev_priv, val);
6186
	}
6187

6188
	dev_priv->gt_pm.rps.cur_freq = val;
6189
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6190 6191

	return 0;
6192 6193
}

6194
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6195 6196
 *
 * * If Gfx is Idle, then
6197 6198 6199
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6200 6201 6202
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6203 6204
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6205
	int err;
6206

6207
	if (rps->cur_freq <= val)
6208 6209
		return;

6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6222
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6223
	err = valleyview_set_rps(dev_priv, val);
6224
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6225 6226 6227

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6228 6229
}

6230 6231
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6232 6233
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6234
	mutex_lock(&dev_priv->pcu_lock);
6235
	if (rps->enabled) {
6236 6237
		u8 freq;

6238
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6239 6240
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6241
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6242

6243 6244
		gen6_enable_rps_interrupts(dev_priv);

6245 6246 6247
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6248 6249
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6250

6251
		if (intel_set_rps(dev_priv,
6252
				  clamp(freq,
6253 6254
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6255
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6256
	}
6257
	mutex_unlock(&dev_priv->pcu_lock);
6258 6259
}

6260 6261
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6262 6263
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6264 6265 6266 6267 6268 6269 6270
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6271
	mutex_lock(&dev_priv->pcu_lock);
6272
	if (rps->enabled) {
6273
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6274
			vlv_set_rps_idle(dev_priv);
6275
		else
6276 6277
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6278 6279
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6280
	}
6281
	mutex_unlock(&dev_priv->pcu_lock);
6282 6283
}

6284
void gen6_rps_boost(struct drm_i915_gem_request *rq,
6285
		    struct intel_rps_client *rps_client)
6286
{
6287
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6288
	unsigned long flags;
6289 6290
	bool boost;

6291 6292 6293
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6294
	if (!rps->enabled)
6295
		return;
6296

6297
	boost = false;
6298
	spin_lock_irqsave(&rq->lock, flags);
6299
	if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6300
		atomic_inc(&rps->num_waiters);
6301 6302
		rq->waitboost = true;
		boost = true;
6303
	}
6304
	spin_unlock_irqrestore(&rq->lock, flags);
6305 6306 6307
	if (!boost)
		return;

6308 6309
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6310

6311
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6312 6313
}

6314
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6315
{
6316
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6317 6318
	int err;

6319
	lockdep_assert_held(&dev_priv->pcu_lock);
6320 6321
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6322

6323 6324
	if (!rps->enabled) {
		rps->cur_freq = val;
6325 6326 6327
		return 0;
	}

6328
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6329
		err = valleyview_set_rps(dev_priv, val);
6330
	else
6331 6332 6333
		err = gen6_set_rps(dev_priv, val);

	return err;
6334 6335
}

6336
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6337 6338
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6339
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6340 6341
}

6342
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6343 6344 6345 6346
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6347
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6348 6349
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6350 6351 6352 6353
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6354
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6355
	I915_WRITE(GEN6_RP_CONTROL, 0);
6356 6357
}

6358
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6359 6360 6361 6362
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6363 6364 6365 6366 6367
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6368
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6369
{
6370
	/* We're doing forcewake before Disabling RC6,
6371
	 * This what the BIOS expects when going into suspend */
6372
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6373

6374
	I915_WRITE(GEN6_RC_CONTROL, 0);
6375

6376
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6377 6378
}

6379 6380 6381 6382 6383
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6384
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
6385
{
6386
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6387 6388 6389 6390 6391
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
6392
	if (HAS_RC6p(dev_priv))
6393 6394 6395 6396 6397
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6398 6399

	else
6400 6401
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
6402 6403
}

6404
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6405
{
6406
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6407 6408
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6420 6421

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6422
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6423 6424 6425 6426 6427 6428 6429 6430
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6431 6432 6433
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
6434
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6435 6436 6437 6438 6439 6440 6441
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6442
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6443 6444 6445
		enable_rc6 = false;
	}

6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6460 6461 6462 6463 6464 6465
		enable_rc6 = false;
	}

	return enable_rc6;
}

6466
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6467
{
6468
	/* No RC6 before Ironlake and code is gone for ilk. */
6469
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
6470 6471
		return 0;

6472 6473 6474
	if (!enable_rc6)
		return 0;

6475
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6476 6477 6478 6479
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

6480
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
6481 6482 6483
	if (enable_rc6 >= 0) {
		int mask;

6484
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
6485 6486 6487 6488 6489 6490
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
6491 6492 6493
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
6494 6495 6496

		return enable_rc6 & mask;
	}
6497

6498
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
6499
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6500 6501

	return INTEL_RC6_ENABLE;
6502 6503
}

6504
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6505
{
6506 6507
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6508
	/* All of these values are in units of 50MHz */
6509

6510
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6511
	if (IS_GEN9_LP(dev_priv)) {
6512
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6513 6514 6515
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6516
	} else {
6517
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6518 6519 6520
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6521
	}
6522
	/* hw_max = RP0 until we check for overclocking */
6523
	rps->max_freq = rps->rp0_freq;
6524

6525
	rps->efficient_freq = rps->rp1_freq;
6526
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6527
	    IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6528 6529 6530 6531 6532
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6533
			rps->efficient_freq =
6534 6535
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6536 6537
					rps->min_freq,
					rps->max_freq);
6538 6539
	}

6540
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6541
		/* Store the frequency values in 16.66 MHZ units, which is
6542 6543
		 * the natural hardware unit for SKL
		 */
6544 6545 6546 6547 6548
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6549
	}
6550 6551
}

6552
static void reset_rps(struct drm_i915_private *dev_priv,
6553
		      int (*set)(struct drm_i915_private *, u8))
6554
{
6555 6556
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6557 6558

	/* force a reset */
6559 6560
	rps->power = -1;
	rps->cur_freq = -1;
6561

6562 6563
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6564 6565
}

J
Jesse Barnes 已提交
6566
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6567
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6568 6569 6570
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6571 6572
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6573
		GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6574 6575 6576 6577 6578

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6579 6580
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6581 6582 6583
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6584
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6585 6586 6587 6588

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6589
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6590
{
6591
	struct intel_engine_cs *engine;
6592
	enum intel_engine_id id;
R
Rodrigo Vivi 已提交
6593
	u32 rc6_mode, rc6_mask = 0;
Z
Zhe Wang 已提交
6594 6595 6596 6597 6598 6599

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6600
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6601 6602 6603 6604 6605

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6606 6607 6608 6609 6610 6611 6612 6613
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6614
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6615
	} else {
6616
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6617 6618
	}

Z
Zhe Wang 已提交
6619 6620
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6621
	for_each_engine(engine, dev_priv, id)
6622
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6623

6624
	if (HAS_GUC(dev_priv))
6625 6626
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6627 6628
	I915_WRITE(GEN6_RC_SLEEP, 0);

6629 6630 6631 6632
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
6633
	/* 3a: Enable RC6 */
6634
	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
6635
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6636
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6637
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6638 6639 6640 6641 6642 6643 6644

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

6645
	I915_WRITE(GEN6_RC_CONTROL,
R
Rodrigo Vivi 已提交
6646
		   GEN6_RC_CTL_HW_ENABLE | rc6_mode | rc6_mask);
Z
Zhe Wang 已提交
6647

6648 6649
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6650
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6651
	 */
6652
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6653 6654 6655 6656
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6657

6658
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6659 6660
}

6661
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6662
{
6663
	struct intel_engine_cs *engine;
6664
	enum intel_engine_id id;
6665
	uint32_t rc6_mask = 0;
6666 6667 6668 6669

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

6670
	/* 1b: Get forcewake during program sequence. Although the driver
6671
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6672
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6673 6674 6675 6676 6677 6678 6679 6680

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6681
	for_each_engine(engine, dev_priv, id)
6682
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6683
	I915_WRITE(GEN6_RC_SLEEP, 0);
6684
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6685 6686

	/* 3: Enable RC6 */
6687
	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
6688
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6689
	intel_print_rc6_info(dev_priv, rc6_mask);
6690 6691 6692 6693

	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			GEN7_RC_CTL_TO_MODE |
			rc6_mask);
6694

6695 6696 6697 6698 6699
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6700 6701
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6702 6703 6704
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
6705
	I915_WRITE(GEN6_RPNSWREQ,
6706
		   HSW_FREQUENCY(rps->rp1_freq));
6707
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6708
		   HSW_FREQUENCY(rps->rp1_freq));
6709 6710 6711 6712 6713
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6714 6715
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
6716 6717 6718 6719 6720 6721 6722

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6723

6724
	/* 2: Enable RPS */
6725 6726 6727 6728 6729 6730 6731 6732
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

6733
	reset_rps(dev_priv, gen6_set_rps);
6734

6735
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6736 6737
}

6738
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6739
{
6740
	struct intel_engine_cs *engine;
6741
	enum intel_engine_id id;
6742
	u32 rc6vids, rc6_mask = 0;
6743 6744
	u32 gtfifodbg;
	int rc6_mode;
6745
	int ret;
6746 6747 6748 6749

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6750 6751
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6752 6753 6754 6755
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6756
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6767
	for_each_engine(engine, dev_priv, id)
6768
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6769 6770 6771

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6772
	if (IS_IVYBRIDGE(dev_priv))
6773 6774 6775
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6776
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6777 6778
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6779
	/* Check if we are enabling RC6 */
6780
	rc6_mode = intel_rc6_enabled();
6781 6782 6783
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

6784
	/* We don't use those on Haswell */
6785
	if (!IS_HASWELL(dev_priv)) {
6786 6787
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6788

6789 6790 6791
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
6792

6793
	intel_print_rc6_info(dev_priv, rc6_mask);
6794 6795 6796 6797 6798 6799

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6800 6801
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6802
	if (IS_GEN6(dev_priv) && ret) {
6803
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6804
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6805 6806 6807 6808 6809 6810 6811 6812 6813
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6814
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6815 6816
}

6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6836
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6837
{
6838
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6839
	int min_freq = 15;
6840 6841
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6842
	unsigned int max_gpu_freq, min_gpu_freq;
6843
	int scaling_factor = 180;
6844
	struct cpufreq_policy *policy;
6845

6846
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6847

6848 6849 6850 6851 6852 6853 6854 6855 6856
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6857
		max_ia_freq = tsc_khz;
6858
	}
6859 6860 6861 6862

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6863
	min_ring_freq = I915_READ(DCLK) & 0xf;
6864 6865
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6866

6867
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6868
		/* Convert GT frequency to 50 HZ units */
6869 6870
		min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6871
	} else {
6872 6873
		min_gpu_freq = rps->min_freq;
		max_gpu_freq = rps->max_freq;
6874 6875
	}

6876 6877 6878 6879 6880
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6881 6882
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6883 6884
		unsigned int ia_freq = 0, ring_freq = 0;

6885
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6886 6887 6888 6889 6890
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6891
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6892 6893
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6894
		} else if (IS_HASWELL(dev_priv)) {
6895
			ring_freq = mult_frac(gpu_freq, 5, 4);
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6912

B
Ben Widawsky 已提交
6913 6914
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6915 6916 6917
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6918 6919 6920
	}
}

6921
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6922 6923 6924
{
	u32 val, rp0;

6925
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6926

6927
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6942
	}
6943 6944 6945

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6959 6960 6961 6962
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6963 6964 6965
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6966 6967 6968
	return rp1;
}

6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6991
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6992 6993 6994
{
	u32 val, rp0;

6995
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7008
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7009
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7010
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7011 7012 7013 7014 7015
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7016
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7017
{
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7029 7030
}

7031 7032 7033 7034 7035 7036 7037 7038 7039
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

7040 7041 7042 7043 7044 7045 7046 7047 7048

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7049
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7050
{
7051
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
7052
	unsigned long pctx_paddr, paddr;
7053 7054 7055 7056 7057
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7058
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7059
		paddr = (dev_priv->mm.stolen_base +
7060
			 (ggtt->stolen_size - pctx_size));
7061 7062 7063 7064

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7065 7066

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7067 7068
}

7069
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
7082
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7083
								      pcbr_offset,
7084
								      I915_GTT_OFFSET_NONE,
7085 7086 7087 7088
								      pctx_size);
		goto out;
	}

7089 7090
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7091 7092 7093 7094 7095 7096 7097 7098
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7099
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7100 7101
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7102
		goto out;
7103 7104 7105 7106 7107 7108
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7109
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7110 7111 7112
	dev_priv->vlv_pctx = pctx;
}

7113
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7114 7115 7116 7117
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
7118
	i915_gem_object_put(dev_priv->vlv_pctx);
7119 7120 7121
	dev_priv->vlv_pctx = NULL;
}

7122 7123
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7124
	dev_priv->gt_pm.rps.gpll_ref_freq =
7125 7126 7127 7128 7129
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7130
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7131 7132
}

7133
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7134
{
7135
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7136
	u32 val;
7137

7138
	valleyview_setup_pctx(dev_priv);
7139

7140 7141
	vlv_init_gpll_ref_freq(dev_priv);

7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7155
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7156

7157 7158
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7159
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7160 7161
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7162

7163
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7164
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7165 7166
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7167

7168
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7169
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7170 7171
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7172

7173
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7174
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7175 7176
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7177 7178
}

7179
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7180
{
7181
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7182
	u32 val;
7183

7184
	cherryview_setup_pctx(dev_priv);
7185

7186 7187
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7188
	mutex_lock(&dev_priv->sb_lock);
7189
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7190
	mutex_unlock(&dev_priv->sb_lock);
7191

7192 7193 7194 7195
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7196
	default:
7197 7198 7199
		dev_priv->mem_freq = 1600;
		break;
	}
7200
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7201

7202 7203
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7204
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7205 7206
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7207

7208
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7209
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7210 7211
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7212

7213
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7214
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7215 7216
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7217

7218
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7219
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7220 7221
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7222

7223 7224
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7225
		  "Odd GPU freq values\n");
7226 7227
}

7228
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7229
{
7230
	valleyview_cleanup_pctx(dev_priv);
7231 7232
}

7233
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7234
{
7235
	struct intel_engine_cs *engine;
7236
	enum intel_engine_id id;
7237
	u32 gtfifodbg, rc6_mode = 0, pcbr;
7238

7239 7240
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7251
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7252

7253 7254 7255
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7256 7257 7258 7259 7260
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7261
	for_each_engine(engine, dev_priv, id)
7262
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7263 7264
	I915_WRITE(GEN6_RC_SLEEP, 0);

7265 7266
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7267

7268
	/* Allows RC6 residency counter to work */
7269 7270 7271 7272 7273 7274 7275 7276 7277
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7278
	if ((intel_rc6_enabled() & INTEL_RC6_ENABLE) &&
7279
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
7280
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7281 7282 7283

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7294
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7295 7296 7297 7298 7299 7300 7301
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7302
	/* 2: Enable RPS */
7303 7304
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7305
		   GEN6_RP_MEDIA_IS_GFX |
7306 7307 7308 7309
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7310 7311 7312 7313 7314 7315
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7316 7317
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7318 7319 7320
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7321
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7322 7323
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7324
	reset_rps(dev_priv, valleyview_set_rps);
7325

7326
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7327 7328
}

7329
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7330
{
7331
	struct intel_engine_cs *engine;
7332
	enum intel_engine_id id;
7333
	u32 gtfifodbg, rc6_mode = 0;
7334

7335 7336
	valleyview_check_pctx(dev_priv);

7337 7338
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7339 7340
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7341 7342 7343
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7344
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7345

7346 7347 7348
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7349 7350 7351 7352
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7353
	for_each_engine(engine, dev_priv, id)
7354
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7355

7356
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7357

7358
	/* Allows RC6 residency counter to work */
7359
	I915_WRITE(VLV_COUNTER_CONTROL,
7360 7361
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7362
				      VLV_RENDER_RC0_COUNT_EN |
7363 7364
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7365

7366
	if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
7367
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
7368

7369
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
7370

7371
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7372

7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7398 7399 7400 7401 7402 7403
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7404
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7405

7406 7407 7408
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7409
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7410 7411
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7412
	reset_rps(dev_priv, valleyview_set_rps);
7413

7414
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7415 7416
}

7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7446
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7447 7448 7449 7450 7451 7452
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7453
	lockdep_assert_held(&mchdev_lock);
7454

7455
	diff1 = now - dev_priv->ips.last_time1;
7456 7457 7458 7459 7460 7461 7462

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7463
		return dev_priv->ips.chipset_power;
7464 7465 7466 7467 7468 7469 7470 7471

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7472 7473
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7474 7475
		diff += total_count;
	} else {
7476
		diff = total_count - dev_priv->ips.last_count1;
7477 7478 7479
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7480 7481
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7492 7493
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7494

7495
	dev_priv->ips.chipset_power = ret;
7496 7497 7498 7499

	return ret;
}

7500 7501 7502 7503
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7504
	if (INTEL_INFO(dev_priv)->gen != 5)
7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7543
{
7544 7545 7546
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7547
	if (INTEL_INFO(dev_priv)->is_mobile)
7548 7549 7550
		return vm > 0 ? vm : 0;

	return vd;
7551 7552
}

7553
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7554
{
7555
	u64 now, diff, diffms;
7556 7557
	u32 count;

7558
	lockdep_assert_held(&mchdev_lock);
7559

7560 7561 7562
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7563 7564 7565 7566 7567 7568 7569

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7570 7571
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7572 7573
		diff += count;
	} else {
7574
		diff = count - dev_priv->ips.last_count2;
7575 7576
	}

7577 7578
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7579 7580 7581 7582

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7583
	dev_priv->ips.gfx_power = diff;
7584 7585
}

7586 7587
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7588
	if (INTEL_INFO(dev_priv)->gen != 5)
7589 7590
		return;

7591
	spin_lock_irq(&mchdev_lock);
7592 7593 7594

	__i915_update_gfx_val(dev_priv);

7595
	spin_unlock_irq(&mchdev_lock);
7596 7597
}

7598
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7599 7600 7601 7602
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7603
	lockdep_assert_held(&mchdev_lock);
7604

7605
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7625
	corr2 = (corr * dev_priv->ips.corr);
7626 7627 7628 7629

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7630
	__i915_update_gfx_val(dev_priv);
7631

7632
	return dev_priv->ips.gfx_power + state2;
7633 7634
}

7635 7636 7637 7638
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7639
	if (INTEL_INFO(dev_priv)->gen != 5)
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7662
	spin_lock_irq(&mchdev_lock);
7663 7664 7665 7666
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7667 7668
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7669 7670 7671 7672

	ret = chipset_val + graphics_val;

out_unlock:
7673
	spin_unlock_irq(&mchdev_lock);
7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7689
	spin_lock_irq(&mchdev_lock);
7690 7691 7692 7693 7694 7695
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7696 7697
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7698 7699

out_unlock:
7700
	spin_unlock_irq(&mchdev_lock);
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7717
	spin_lock_irq(&mchdev_lock);
7718 7719 7720 7721 7722 7723
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7724 7725
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7726 7727

out_unlock:
7728
	spin_unlock_irq(&mchdev_lock);
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7743
	spin_lock_irq(&mchdev_lock);
7744 7745
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7746
	spin_unlock_irq(&mchdev_lock);
7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7763
	spin_lock_irq(&mchdev_lock);
7764 7765 7766 7767 7768 7769
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7770
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7771

7772
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7773 7774 7775
		ret = false;

out_unlock:
7776
	spin_unlock_irq(&mchdev_lock);
7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7804 7805
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7806
	spin_lock_irq(&mchdev_lock);
7807
	i915_mch_dev = dev_priv;
7808
	spin_unlock_irq(&mchdev_lock);
7809 7810 7811 7812 7813 7814

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7815
	spin_lock_irq(&mchdev_lock);
7816
	i915_mch_dev = NULL;
7817
	spin_unlock_irq(&mchdev_lock);
7818
}
7819

7820
static void intel_init_emon(struct drm_i915_private *dev_priv)
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7837
		I915_WRITE(PEW(i), 0);
7838
	for (i = 0; i < 3; i++)
7839
		I915_WRITE(DEW(i), 0);
7840 7841 7842

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7843
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7864
		I915_WRITE(PXW(i), val);
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7880
		I915_WRITE(PXWL(i), 0);
7881 7882 7883 7884 7885 7886

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7887
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7888 7889
}

7890
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7891
{
7892 7893
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7894 7895 7896 7897
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
7898
	if (!i915_modparams.enable_rc6) {
7899 7900 7901
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7902

7903
	mutex_lock(&dev_priv->drm.struct_mutex);
7904
	mutex_lock(&dev_priv->pcu_lock);
7905 7906

	/* Initialize RPS limits (for userspace) */
7907 7908 7909 7910
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7911
	else if (INTEL_GEN(dev_priv) >= 6)
7912 7913 7914
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
7915 7916
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
7917

7918 7919
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
7920 7921

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7922
		rps->min_freq_softlimit =
7923
			max_t(int,
7924
			      rps->efficient_freq,
7925 7926
			      intel_freq_opcode(dev_priv, 450));

7927 7928 7929 7930 7931 7932 7933 7934
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7935
					 (rps->max_freq & 0xff) * 50,
7936
					 (params & 0xff) * 50);
7937
			rps->max_freq = params & 0xff;
7938 7939 7940
		}
	}

7941
	/* Finally allow us to boost to max by default */
7942
	rps->boost_freq = rps->max_freq;
7943

7944
	mutex_unlock(&dev_priv->pcu_lock);
7945
	mutex_unlock(&dev_priv->drm.struct_mutex);
7946 7947

	intel_autoenable_gt_powersave(dev_priv);
7948 7949
}

7950
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7951
{
7952
	if (IS_VALLEYVIEW(dev_priv))
7953
		valleyview_cleanup_gt_powersave(dev_priv);
7954

7955
	if (!i915_modparams.enable_rc6)
7956
		intel_runtime_pm_put(dev_priv);
7957 7958
}

7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

7972
	if (cancel_delayed_work_sync(&dev_priv->gt_pm.autoenable_work))
7973 7974 7975 7976 7977
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7978 7979
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
7980 7981
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
7982
	intel_disable_gt_powersave(dev_priv);
7983 7984

	gen6_reset_rps_interrupts(dev_priv);
7985 7986
}

7987 7988 7989 7990
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

7991 7992 7993
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

7994
	/* Currently there is no HW configuration to be done to disable. */
7995 7996

	i915->gt_pm.llc_pstate.enabled = false;
7997 7998
}

7999
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8000
{
8001
	lockdep_assert_held(&dev_priv->pcu_lock);
8002

8003 8004 8005
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8006 8007 8008 8009 8010 8011 8012 8013
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8014 8015

	dev_priv->gt_pm.rc6.enabled = false;
8016
}
8017

8018 8019 8020
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8021

8022 8023 8024
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8025
	if (INTEL_GEN(dev_priv) >= 9)
8026
		gen9_disable_rps(dev_priv);
8027
	else if (IS_CHERRYVIEW(dev_priv))
8028
		cherryview_disable_rps(dev_priv);
8029
	else if (IS_VALLEYVIEW(dev_priv))
8030
		valleyview_disable_rps(dev_priv);
8031
	else if (INTEL_GEN(dev_priv) >= 6)
8032
		gen6_disable_rps(dev_priv);
8033
	else if (IS_IRONLAKE_M(dev_priv))
8034
		ironlake_disable_drps(dev_priv);
8035 8036

	dev_priv->gt_pm.rps.enabled = false;
8037 8038 8039 8040 8041
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8042

8043 8044
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8045 8046 8047
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8048
	mutex_unlock(&dev_priv->pcu_lock);
8049 8050
}

8051 8052 8053 8054
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8055 8056 8057
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8058
	gen6_update_ring_freq(i915);
8059 8060

	i915->gt_pm.llc_pstate.enabled = true;
8061 8062
}

8063
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8064
{
8065
	lockdep_assert_held(&dev_priv->pcu_lock);
8066

8067 8068 8069
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8080 8081

	dev_priv->gt_pm.rc6.enabled = true;
8082
}
8083

8084 8085 8086
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8087

8088
	lockdep_assert_held(&dev_priv->pcu_lock);
8089

8090 8091 8092
	if (rps->enabled)
		return;

8093 8094 8095 8096
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8097
	} else if (INTEL_GEN(dev_priv) >= 9) {
8098 8099 8100
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8101
	} else if (INTEL_GEN(dev_priv) >= 6) {
8102
		gen6_enable_rps(dev_priv);
8103 8104 8105
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8106
	}
8107

8108 8109
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8110

8111 8112
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8113 8114

	rps->enabled = true;
8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

	intel_enable_rc6(dev_priv);
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8129

8130
	mutex_unlock(&dev_priv->pcu_lock);
8131
}
I
Imre Deak 已提交
8132

8133 8134 8135
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
8136 8137 8138
		container_of(work,
			     typeof(*dev_priv),
			     gt_pm.autoenable_work.work);
8139 8140 8141
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

8142
	rcs = dev_priv->engine[RCS];
8143
	if (rcs->last_retired_context)
8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

8155
	if (!i915_modparams.enable_execlists && i915_switch_context(req) == 0)
8156 8157 8158
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
8159
	i915_add_request(req);
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
8186
				       &dev_priv->gt_pm.autoenable_work,
8187 8188 8189 8190 8191
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

8192
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8193 8194 8195 8196 8197 8198 8199 8200 8201
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8202
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8203
{
8204
	enum pipe pipe;
8205

8206
	for_each_pipe(dev_priv, pipe) {
8207 8208 8209
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8210 8211 8212

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8213 8214 8215
	}
}

8216
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

8228
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8229
{
8230
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8231

8232 8233 8234 8235
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8236 8237 8238
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8256
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8257 8258 8259
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8260

8261
	ilk_init_lp_watermarks(dev_priv);
8262 8263 8264 8265 8266 8267 8268 8269

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8270
	if (IS_IRONLAKE_M(dev_priv)) {
8271
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8272 8273 8274 8275 8276 8277 8278 8279
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8280 8281
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8282 8283 8284 8285 8286 8287
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8288

8289
	/* WaDisableRenderCachePipelinedFlush:ilk */
8290 8291
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8292

8293 8294 8295
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8296
	g4x_disable_trickle_feed(dev_priv);
8297

8298
	ibx_init_clock_gating(dev_priv);
8299 8300
}

8301
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8302 8303
{
	int pipe;
8304
	uint32_t val;
8305 8306 8307 8308 8309 8310

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8311 8312 8313
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8314 8315
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8316 8317 8318
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8319
	for_each_pipe(dev_priv, pipe) {
8320 8321 8322
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8323
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8324
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8325 8326 8327
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8328 8329
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8330
	/* WADP0ClockGatingDisable */
8331
	for_each_pipe(dev_priv, pipe) {
8332 8333 8334
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8335 8336
}

8337
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8338 8339 8340 8341
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8342 8343 8344
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8345 8346
}

8347
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8348
{
8349
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8350

8351
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8352 8353 8354 8355 8356

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8357
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8358 8359 8360
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8361 8362 8363
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8364 8365 8366
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8367 8368 8369 8370
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8371 8372
	 */
	I915_WRITE(GEN6_GT_MODE,
8373
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8374

8375
	ilk_init_lp_watermarks(dev_priv);
8376 8377

	I915_WRITE(CACHE_MODE_0,
8378
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8394
	 *
8395 8396
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8397 8398 8399 8400 8401
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8402
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8403 8404
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8405

8406 8407 8408 8409 8410 8411 8412 8413
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8414 8415 8416 8417 8418 8419 8420 8421
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8422 8423
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8424 8425 8426 8427 8428 8429 8430
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8431 8432 8433 8434
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8435

8436
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8437

8438
	cpt_init_clock_gating(dev_priv);
8439

8440
	gen6_check_mch_setup(dev_priv);
8441 8442 8443 8444 8445 8446
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8447
	/*
8448
	 * WaVSThreadDispatchOverride:ivb,vlv
8449 8450 8451 8452
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8453 8454 8455 8456 8457 8458 8459 8460
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8461
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8462 8463 8464 8465 8466
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8467
	if (HAS_PCH_LPT_LP(dev_priv))
8468 8469 8470
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8471 8472

	/* WADPOClockGatingDisable:hsw */
8473 8474
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8475
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8476 8477
}

8478
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8479
{
8480
	if (HAS_PCH_LPT_LP(dev_priv)) {
8481 8482 8483 8484 8485 8486 8487
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8488 8489 8490 8491 8492
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8493
	u32 val;
8494 8495 8496 8497 8498

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8499 8500 8501 8502 8503
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8514 8515 8516 8517 8518 8519
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

	/* Wa #1181 */
8520 8521
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8522 8523
}

8524
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8525
{
8526
	u32 val;
8527 8528
	cnp_init_clock_gating(dev_priv);

8529 8530 8531 8532
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
		I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
			   I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
			   SARBUNIT_CLKGATE_DIS);
8546 8547 8548 8549 8550 8551

	/* Display WA #1133: WaFbcSkipSegments:cnl */
	val = I915_READ(ILK_DPFC_CHICKEN);
	val &= ~GLK_SKIP_SEG_COUNT_MASK;
	val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
	I915_WRITE(ILK_DPFC_CHICKEN, val);
8552 8553
}

8554 8555 8556 8557 8558 8559 8560 8561 8562 8563
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8564
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8565
{
8566
	gen9_init_clock_gating(dev_priv);
8567 8568 8569 8570 8571

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8572 8573 8574 8575 8576

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8577

8578
	/* WaFbcNukeOnHostModify:kbl */
8579 8580
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8581 8582
}

8583
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8584
{
8585
	gen9_init_clock_gating(dev_priv);
8586 8587 8588 8589

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8590 8591 8592 8593

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8594 8595
}

8596
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8597
{
8598 8599 8600
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8601
	enum pipe pipe;
B
Ben Widawsky 已提交
8602

8603
	ilk_init_lp_watermarks(dev_priv);
8604

8605
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8606
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8607

8608
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8609 8610 8611
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8612
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8613
	for_each_pipe(dev_priv, pipe) {
8614
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8615
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8616
			   BDW_DPRS_MASK_VBLANK_SRD);
8617
	}
8618

8619 8620 8621 8622 8623
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8624

8625 8626
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8627 8628 8629 8630

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8631

8632 8633
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8634

8635 8636
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8637

8638 8639 8640 8641
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8642
	lpt_init_clock_gating(dev_priv);
8643 8644 8645 8646 8647 8648 8649 8650

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8651 8652
}

8653
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8654
{
8655
	ilk_init_lp_watermarks(dev_priv);
8656

8657 8658 8659 8660 8661
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8662
	/* This is required by WaCatErrorRejectionIssue:hsw */
8663 8664 8665 8666
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8667 8668 8669
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8670

8671 8672 8673
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8674 8675 8676 8677
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8678
	/* WaDisable4x2SubspanOptimization:hsw */
8679 8680
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8681

8682 8683 8684
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8685 8686 8687 8688
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8689 8690
	 */
	I915_WRITE(GEN7_GT_MODE,
8691
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8692

8693 8694 8695 8696
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8697
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8698 8699
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8700 8701 8702
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8703

8704
	lpt_init_clock_gating(dev_priv);
8705 8706
}

8707
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8708
{
8709
	uint32_t snpcr;
8710

8711
	ilk_init_lp_watermarks(dev_priv);
8712

8713
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8714

8715
	/* WaDisableEarlyCull:ivb */
8716 8717 8718
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8719
	/* WaDisableBackToBackFlipFix:ivb */
8720 8721 8722 8723
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8724
	/* WaDisablePSDDualDispatchEnable:ivb */
8725
	if (IS_IVB_GT1(dev_priv))
8726 8727 8728
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8729 8730 8731
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8732
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8733 8734 8735
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8736
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8737 8738 8739
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8740
		   GEN7_WA_L3_CHICKEN_MODE);
8741
	if (IS_IVB_GT1(dev_priv))
8742 8743
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8744 8745 8746 8747
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8748 8749
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8750
	}
8751

8752
	/* WaForceL3Serialization:ivb */
8753 8754 8755
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8756
	/*
8757
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8758
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8759 8760
	 */
	I915_WRITE(GEN6_UCGCTL2,
8761
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8762

8763
	/* This is required by WaCatErrorRejectionIssue:ivb */
8764 8765 8766 8767
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8768
	g4x_disable_trickle_feed(dev_priv);
8769 8770

	gen7_setup_fixed_func_scheduler(dev_priv);
8771

8772 8773 8774 8775 8776
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8777

8778
	/* WaDisable4x2SubspanOptimization:ivb */
8779 8780
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8781

8782 8783 8784
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8785 8786 8787 8788
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8789 8790
	 */
	I915_WRITE(GEN7_GT_MODE,
8791
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8792

8793 8794 8795 8796
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8797

8798
	if (!HAS_PCH_NOP(dev_priv))
8799
		cpt_init_clock_gating(dev_priv);
8800

8801
	gen6_check_mch_setup(dev_priv);
8802 8803
}

8804
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8805
{
8806
	/* WaDisableEarlyCull:vlv */
8807 8808 8809
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8810
	/* WaDisableBackToBackFlipFix:vlv */
8811 8812 8813 8814
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8815
	/* WaPsdDispatchEnable:vlv */
8816
	/* WaDisablePSDDualDispatchEnable:vlv */
8817
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8818 8819
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8820

8821 8822 8823
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8824
	/* WaForceL3Serialization:vlv */
8825 8826 8827
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8828
	/* WaDisableDopClockGating:vlv */
8829 8830 8831
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8832
	/* This is required by WaCatErrorRejectionIssue:vlv */
8833 8834 8835 8836
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8837 8838
	gen7_setup_fixed_func_scheduler(dev_priv);

8839
	/*
8840
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8841
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8842 8843
	 */
	I915_WRITE(GEN6_UCGCTL2,
8844
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8845

8846 8847 8848 8849 8850
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8851

8852 8853 8854 8855
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8856 8857
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8858

8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8870 8871 8872 8873 8874 8875
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8876
	/*
8877
	 * WaDisableVLVClockGating_VBIIssue:vlv
8878 8879 8880
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8881
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8882 8883
}

8884
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8885
{
8886 8887 8888 8889 8890
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8891 8892 8893 8894

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8895 8896 8897 8898

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8899 8900 8901 8902

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8903

8904 8905 8906 8907 8908 8909 8910
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8911 8912 8913 8914 8915
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8916 8917
}

8918
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8930
	if (IS_GM45(dev_priv))
8931 8932
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8933 8934 8935 8936

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8937

8938 8939 8940
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8941
	g4x_disable_trickle_feed(dev_priv);
8942 8943
}

8944
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8945 8946 8947 8948 8949 8950
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8951 8952
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8953 8954 8955

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8956 8957
}

8958
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8959 8960 8961 8962 8963 8964 8965
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8966 8967
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8968 8969 8970

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8971 8972
}

8973
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8974 8975 8976 8977 8978 8979
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8980

8981
	if (IS_PINEVIEW(dev_priv))
8982
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8983 8984 8985

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8986 8987

	/* interrupts should cause a wake up from C3 */
8988
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8989 8990 8991

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8992 8993 8994

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8995 8996
}

8997
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8998 8999
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9000 9001 9002 9003

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9004 9005 9006

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9007 9008
}

9009
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9010
{
9011 9012 9013
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9014 9015
}

9016
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9017
{
9018
	dev_priv->display.init_clock_gating(dev_priv);
9019 9020
}

9021
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9022
{
9023 9024
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9025 9026
}

9027
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9043
	if (IS_CANNONLAKE(dev_priv))
9044
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9045 9046
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9047
	else if (IS_SKYLAKE(dev_priv))
9048
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9049
	else if (IS_KABYLAKE(dev_priv))
9050
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9051
	else if (IS_BROXTON(dev_priv))
9052
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9053 9054
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9055
	else if (IS_BROADWELL(dev_priv))
9056
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9057
	else if (IS_CHERRYVIEW(dev_priv))
9058
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9059
	else if (IS_HASWELL(dev_priv))
9060
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9061
	else if (IS_IVYBRIDGE(dev_priv))
9062
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9063
	else if (IS_VALLEYVIEW(dev_priv))
9064
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9065 9066 9067
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
9068
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9069 9070
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9071
	else if (IS_I965GM(dev_priv))
9072
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9073
	else if (IS_I965G(dev_priv))
9074
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9087
/* Set up chip specific power management-related functions */
9088
void intel_init_pm(struct drm_i915_private *dev_priv)
9089
{
9090
	intel_fbc_init(dev_priv);
9091

9092
	/* For cxsr */
9093
	if (IS_PINEVIEW(dev_priv))
9094
		i915_pineview_get_mem_freq(dev_priv);
9095
	else if (IS_GEN5(dev_priv))
9096
		i915_ironlake_get_mem_freq(dev_priv);
9097

9098
	/* For FIFO watermark updates */
9099
	if (INTEL_GEN(dev_priv) >= 9) {
9100
		skl_setup_wm_latency(dev_priv);
9101
		dev_priv->display.initial_watermarks = skl_initial_wm;
9102
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9103
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9104
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9105
		ilk_setup_wm_latency(dev_priv);
9106

9107
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9108
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9109
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9110
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9111
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9112 9113 9114 9115 9116 9117
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9118 9119 9120 9121
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9122
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9123
		vlv_setup_wm_latency(dev_priv);
9124
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9125
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9126
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9127
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9128
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9129 9130 9131 9132 9133 9134
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9135
	} else if (IS_PINEVIEW(dev_priv)) {
9136
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9137 9138 9139 9140 9141 9142 9143 9144 9145
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9146
			intel_set_memory_cxsr(dev_priv, false);
9147 9148 9149
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9150
	} else if (IS_GEN4(dev_priv)) {
9151
		dev_priv->display.update_wm = i965_update_wm;
9152
	} else if (IS_GEN3(dev_priv)) {
9153 9154
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9155
	} else if (IS_GEN2(dev_priv)) {
9156
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9157
			dev_priv->display.update_wm = i845_update_wm;
9158
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9159 9160
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9161
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9162 9163 9164
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9165 9166 9167
	}
}

9168 9169 9170 9171 9172 9173 9174 9175 9176
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9177
		return -ENODEV;
9178 9179 9180
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9181
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9182 9183 9184 9185
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9186
		MISSING_CASE(flags);
9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9213
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9214
{
9215 9216
	int status;

9217
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9218

9219 9220 9221 9222 9223 9224
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9225 9226
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9227 9228 9229
		return -EAGAIN;
	}

9230 9231 9232
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9233

9234 9235 9236
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9237 9238
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9239 9240 9241
		return -ETIMEDOUT;
	}

9242 9243
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9244

9245 9246 9247 9248 9249 9250
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9251 9252
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9253 9254 9255
		return status;
	}

B
Ben Widawsky 已提交
9256 9257 9258
	return 0;
}

9259
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
9260
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
9261
{
9262 9263
	int status;

9264
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9265

9266 9267 9268 9269 9270 9271
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9272 9273
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9274 9275 9276
		return -EAGAIN;
	}

9277
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9278
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9279
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9280

9281 9282 9283
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9284 9285
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9286 9287 9288
		return -ETIMEDOUT;
	}

9289
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9290

9291 9292 9293 9294 9295 9296
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9297 9298
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9299 9300 9301
		return status;
	}

B
Ben Widawsky 已提交
9302 9303
	return 0;
}
9304

9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9326
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9327 9328
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9329
 * for @timeout_base_ms and if this times out for another 50 ms with
9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9341
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9365
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9366
	 * account for interrupts that could reduce the number of these
9367 9368
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9369 9370 9371 9372
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9373
	ret = wait_for_atomic(COND, 50);
9374 9375 9376 9377 9378 9379 9380
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9381 9382
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9383 9384
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9385 9386 9387 9388
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9389
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9390 9391
}

9392
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9393
{
9394 9395 9396
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9397 9398
}

9399
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9400
{
9401 9402
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9403 9404 9405 9406
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9407
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9408 9409
}

9410
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9411
{
9412 9413
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9414
	/* CHV needs even values */
9415
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9416 9417
}

9418
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9419
{
9420
	if (INTEL_GEN(dev_priv) >= 9)
9421 9422
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9423
	else if (IS_CHERRYVIEW(dev_priv))
9424
		return chv_gpu_freq(dev_priv, val);
9425
	else if (IS_VALLEYVIEW(dev_priv))
9426 9427 9428
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9429 9430
}

9431 9432
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9433
	if (INTEL_GEN(dev_priv) >= 9)
9434 9435
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9436
	else if (IS_CHERRYVIEW(dev_priv))
9437
		return chv_freq_opcode(dev_priv, val);
9438
	else if (IS_VALLEYVIEW(dev_priv))
9439 9440
		return byt_freq_opcode(dev_priv, val);
	else
9441
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9442
}
9443

9444
void intel_pm_setup(struct drm_i915_private *dev_priv)
9445
{
9446
	mutex_init(&dev_priv->pcu_lock);
D
Daniel Vetter 已提交
9447

9448
	INIT_DELAYED_WORK(&dev_priv->gt_pm.autoenable_work,
9449
			  __intel_autoenable_gt_powersave);
9450
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9451

9452 9453
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9454
}
9455

9456 9457 9458
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9459
	u32 lower, upper, tmp;
9460
	int loop = 2;
9461 9462 9463 9464 9465 9466 9467 9468 9469

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9470 9471 9472 9473 9474
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9475
	 */
9476 9477
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9489
	} while (upper != tmp && --loop);
9490

9491 9492 9493 9494 9495
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9496 9497 9498 9499 9500
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

9501 9502
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
9503
{
9504
	u64 time_hw, units, div;
9505

9506
	if (!intel_rc6_enabled())
9507 9508 9509 9510 9511 9512
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9513
		units = 1000;
9514 9515
		div = dev_priv->czclk_freq;

9516
		time_hw = vlv_residency_raw(dev_priv, reg);
9517
	} else if (IS_GEN9_LP(dev_priv)) {
9518
		units = 1000;
9519 9520
		div = 1200;		/* 833.33ns */

9521 9522 9523 9524 9525 9526 9527
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
9528 9529

	intel_runtime_pm_put(dev_priv);
9530
	return DIV_ROUND_UP_ULL(time_hw * units, div);
9531
}