intel_pm.c 212.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_irq.h"
44
#include "i915_trace.h"
45
#include "intel_pm.h"
46
#include "intel_sideband.h"
47
#include "../../../platform/x86/intel_ips.h"
48

49
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
50
{
51 52 53
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
54
		 * Display WA #0390: skl,kbl
55 56 57 58 59 60 61 62 63
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

64
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
65 66 67
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71

72 73
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77

78
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79 80
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82 83 84 85 86

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
87 88
}

89
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
90
{
91
	gen9_init_clock_gating(dev_priv);
92

93 94 95 96
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

97 98
	/*
	 * FIXME:
99
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
100 101
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
108 109
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
110 111 112 113 114 115 116 117

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
118 119
}

120 121 122 123 124 125 126 127 128 129 130
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
131 132 133 134 135 136 137 138 139 140

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

141 142
}

143
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

181
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
182 183 184
{
	u16 ddrpll, csipll;

185 186
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

276 277
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

300 301 302 303
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

304
	vlv_punit_get(dev_priv);
305 306 307 308 309 310 311 312 313 314 315 316 317 318

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

319
	vlv_punit_put(dev_priv);
320 321
}

322 323 324 325
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

326
	vlv_punit_get(dev_priv);
327

328
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
329 330 331 332
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
333
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
334

335
	vlv_punit_put(dev_priv);
336 337
}

338 339 340
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

341
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
342
{
343
	bool was_enabled;
344
	u32 val;
345

346
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
348
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
349
		POSTING_READ(FW_BLC_SELF_VLV);
350
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
351
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
352
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
353
		POSTING_READ(FW_BLC_SELF);
354
	} else if (IS_PINEVIEW(dev_priv)) {
355 356 357 358 359 360
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
361
		I915_WRITE(DSPFW3, val);
362
		POSTING_READ(DSPFW3);
363
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
364
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
365 366 367
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
368
		POSTING_READ(FW_BLC_SELF);
369
	} else if (IS_I915GM(dev_priv)) {
370 371 372 373 374
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
375
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
376 377 378
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
379
		POSTING_READ(INSTPM);
380
	} else {
381
		return false;
382
	}
383

384 385
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

386 387 388 389 390
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
391 392
}

V
Ville Syrjälä 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
430
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
431
{
432 433
	bool ret;

434
	mutex_lock(&dev_priv->wm.wm_mutex);
435
	ret = _intel_set_memory_cxsr(dev_priv, enable);
436 437 438 439
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
440
	mutex_unlock(&dev_priv->wm.wm_mutex);
441 442

	return ret;
443
}
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
459
static const int pessimal_latency_ns = 5000;
460

461 462 463
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

464
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
465
{
466
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
467
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
468
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
469 470
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
471

472
	switch (pipe) {
473
		u32 dsparb, dsparb2, dsparb3;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
493 494
		MISSING_CASE(pipe);
		return;
495 496
	}

497 498 499 500
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
501 502
}

503 504
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
505
{
506
	u32 dsparb = I915_READ(DSPARB);
507 508 509
	int size;

	size = dsparb & 0x7f;
510
	if (i9xx_plane == PLANE_B)
511 512
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

513 514
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
515 516 517 518

	return size;
}

519 520
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
521
{
522
	u32 dsparb = I915_READ(DSPARB);
523 524 525
	int size;

	size = dsparb & 0x1ff;
526
	if (i9xx_plane == PLANE_B)
527 528 529
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

530 531
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
532 533 534 535

	return size;
}

536 537
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
538
{
539
	u32 dsparb = I915_READ(DSPARB);
540 541 542 543 544
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

545 546
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
547 548 549 550 551 552

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
553 554 555 556 557
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
558 559
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
560 561 562 563 564
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
565 566
};
static const struct intel_watermark_params pineview_cursor_wm = {
567 568 569 570 571
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
572 573
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
574 575 576 577 578
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
579 580
};
static const struct intel_watermark_params i965_cursor_wm_info = {
581 582 583 584 585
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
586 587
};
static const struct intel_watermark_params i945_wm_info = {
588 589 590 591 592
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
593 594
};
static const struct intel_watermark_params i915_wm_info = {
595 596 597 598 599
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
600
};
601
static const struct intel_watermark_params i830_a_wm_info = {
602 603 604 605 606
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
607
};
608 609 610 611 612 613 614
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
615
static const struct intel_watermark_params i845_wm_info = {
616 617 618 619 620
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
621 622
};

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
660
	u64 ret;
661

662
	ret = mul_u32_u32(pixel_rate, cpp * latency);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

719 720
/**
 * intel_calculate_wm - calculate watermark level
721
 * @pixel_rate: pixel clock
722
 * @wm: chip FIFO params
723
 * @fifo_size: size of the FIFO buffer
724
 * @cpp: bytes per pixel
725 726 727 728 729 730 731 732 733 734 735 736 737
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
738 739 740 741
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
742
{
743
	int entries, wm_size;
744 745 746 747 748 749 750

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
751 752 753 754 755
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
756

757 758
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
759 760

	/* Don't promote wm_size to unsigned... */
761
	if (wm_size > wm->max_wm)
762 763 764
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
765 766 767 768 769 770 771 772 773 774 775

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

776 777 778
	return wm_size;
}

779 780 781 782 783 784 785 786 787 788
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

789 790 791 792 793
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

794 795 796
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
797
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
798 799

	/* FIXME check the 'enable' instead */
800
	if (!crtc_state->hw.active)
801 802 803 804 805 806 807 808 809 810 811
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
812
		return plane_state->hw.fb != NULL;
813
	else
814
		return plane_state->uapi.visible;
815 816
}

817
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
818
{
819
	struct intel_crtc *crtc, *enabled = NULL;
820

821
	for_each_intel_crtc(&dev_priv->drm, crtc) {
822
		if (intel_crtc_active(crtc)) {
823 824 825 826 827 828 829 830 831
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

832
static void pineview_update_wm(struct intel_crtc *unused_crtc)
833
{
834
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
835
	struct intel_crtc *crtc;
836 837
	const struct cxsr_latency *latency;
	u32 reg;
838
	unsigned int wm;
839

840
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
841 842 843
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
844 845
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
846
		intel_set_memory_cxsr(dev_priv, false);
847 848 849
		return;
	}

850
	crtc = single_enabled_crtc(dev_priv);
851
	if (crtc) {
852
		const struct drm_display_mode *adjusted_mode =
853
			&crtc->config->hw.adjusted_mode;
854 855
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
856
		int cpp = fb->format->cpp[0];
857
		int clock = adjusted_mode->crtc_clock;
858 859 860 861

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
862
					cpp, latency->display_sr);
863 864
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
865
		reg |= FW_WM(wm, SR);
866 867 868 869 870 871
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
872
					4, latency->cursor_sr);
873 874
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
875
		reg |= FW_WM(wm, CURSOR_SR);
876 877 878 879 880
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
881
					cpp, latency->display_hpll_disable);
882 883
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
884
		reg |= FW_WM(wm, HPLL_SR);
885 886 887 888 889
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
890
					4, latency->cursor_hpll_disable);
891 892
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
893
		reg |= FW_WM(wm, HPLL_CURSOR);
894 895 896
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

897
		intel_set_memory_cxsr(dev_priv, true);
898
	} else {
899
		intel_set_memory_cxsr(dev_priv, false);
900 901 902
	}
}

903 904 905 906 907 908 909 910 911 912
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
913
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
914 915 916 917 918 919
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

920 921
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
922
{
923 924 925 926 927
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
945

946
	POSTING_READ(DSPFW1);
947 948
}

949 950 951
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

952
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
953 954
				const struct vlv_wm_values *wm)
{
955 956 957
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
958 959
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

960 961 962 963 964 965
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
966

967 968 969 970 971 972 973 974 975 976 977
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

978
	I915_WRITE(DSPFW1,
979
		   FW_WM(wm->sr.plane, SR) |
980 981 982
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
983
	I915_WRITE(DSPFW2,
984 985 986
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
987
	I915_WRITE(DSPFW3,
988
		   FW_WM(wm->sr.cursor, CURSOR_SR));
989 990 991

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
992 993
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
994
		I915_WRITE(DSPFW8_CHV,
995 996
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
997
		I915_WRITE(DSPFW9_CHV,
998 999
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1000
		I915_WRITE(DSPHOWM,
1001
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1002 1003 1004 1005 1006 1007 1008 1009 1010
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1011 1012
	} else {
		I915_WRITE(DSPFW7,
1013 1014
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1015
		I915_WRITE(DSPHOWM,
1016
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1017 1018 1019 1020 1021 1022
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1023 1024 1025
	}

	POSTING_READ(DSPFW1);
1026 1027
}

1028 1029
#undef FW_WM_VLV

1030 1031 1032 1033 1034
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1035
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1036

1037
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1082 1083 1084
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1085
{
1086
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1087 1088
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1089
		&crtc_state->hw.adjusted_mode;
1090 1091
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1092 1093 1094 1095 1096 1097 1098

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1099
	cpp = plane_state->hw.fb->format->cpp[0];
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1114
		cpp = max(cpp, 4u);
1115 1116 1117 1118

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1119
	width = drm_rect_width(&plane_state->uapi.dst);
1120 1121 1122 1123 1124 1125 1126

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1127
		unsigned int small, large;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1140
	return min_t(unsigned int, wm, USHRT_MAX);
1141 1142 1143 1144 1145
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1146
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1162
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1178 1179
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1180
			      u32 pri_val);
1181 1182 1183 1184

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1185
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1264
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1302
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1303
	struct intel_atomic_state *state =
1304
		to_intel_atomic_state(crtc_state->uapi.state);
1305
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1306 1307
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1308
	const struct g4x_pipe_wm *raw;
1309 1310
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1311 1312 1313 1314 1315
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1316 1317 1318
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1319 1320
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1321 1322
			continue;

1323
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1389
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1390
{
1391
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1392 1393 1394
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1395
		to_intel_atomic_state(new_crtc_state->uapi.state);
1396 1397 1398
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1399 1400
	enum plane_id plane_id;

1401
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1402 1403 1404 1405 1406 1407 1408
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1409
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1410
		!new_crtc_state->disable_cxsr;
1411
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1412
		!new_crtc_state->disable_cxsr;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1454
out:
1455 1456 1457 1458 1459
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1460
		new_crtc_state->wm.need_postvbl_update = true;
1461 1462 1463 1464 1465 1466 1467 1468

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1469
	int num_active_pipes = 0;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1488
		num_active_pipes++;
1489 1490
	}

1491
	if (num_active_pipes != 1) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
1533 1534
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
1545 1546
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1547 1548 1549 1550 1551

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1552
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1553 1554 1555 1556
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1557 1558
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1559 1560
				   unsigned int htotal,
				   unsigned int width,
1561
				   unsigned int cpp,
1562 1563 1564 1565
				   unsigned int latency)
{
	unsigned int ret;

1566 1567
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1568 1569 1570 1571 1572
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1573
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1574 1575 1576 1577
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1578 1579
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1580 1581 1582
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1583 1584

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1585 1586 1587
	}
}

1588 1589 1590
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1591
{
1592
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1593
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1594
	const struct drm_display_mode *adjusted_mode =
1595
		&crtc_state->hw.adjusted_mode;
1596
	unsigned int clock, htotal, cpp, width, wm;
1597 1598 1599 1600

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1601
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1602 1603
		return 0;

1604
	cpp = plane_state->hw.fb->format->cpp[0];
1605 1606 1607
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1608

1609
	if (plane->id == PLANE_CURSOR) {
1610 1611 1612 1613 1614 1615 1616 1617
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1618
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1619 1620 1621
				    dev_priv->wm.pri_latency[level] * 10);
	}

1622
	return min_t(unsigned int, wm, USHRT_MAX);
1623 1624
}

1625 1626 1627 1628 1629 1630
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1631
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1632
{
1633
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1634
	const struct g4x_pipe_wm *raw =
1635
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1636
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1637
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1638
	int num_active_planes = hweight8(active_planes);
1639
	const int fifo_size = 511;
1640
	int fifo_extra, fifo_left = fifo_size;
1641
	int sprite0_fifo_extra = 0;
1642 1643
	unsigned int total_rate;
	enum plane_id plane_id;
1644

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1656 1657
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1658 1659
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1660

1661 1662
	if (total_rate > fifo_size)
		return -EINVAL;
1663

1664 1665
	if (total_rate == 0)
		total_rate = 1;
1666

1667
	for_each_plane_id_on_crtc(crtc, plane_id) {
1668 1669
		unsigned int rate;

1670 1671
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1672 1673 1674
			continue;
		}

1675 1676 1677
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1678 1679
	}

1680 1681 1682
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1683 1684 1685
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1686 1687

	/* spread the remainder evenly */
1688
	for_each_plane_id_on_crtc(crtc, plane_id) {
1689 1690 1691 1692 1693
		int plane_extra;

		if (fifo_left == 0)
			break;

1694
		if ((active_planes & BIT(plane_id)) == 0)
1695 1696 1697
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1698
		fifo_state->plane[plane_id] += plane_extra;
1699 1700 1701
		fifo_left -= plane_extra;
	}

1702 1703 1704 1705 1706 1707 1708 1709 1710
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1711 1712
}

1713 1714 1715 1716 1717 1718
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1719
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1730 1731 1732 1733 1734 1735 1736 1737
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1738 1739 1740 1741
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1742
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1743
				 int level, enum plane_id plane_id, u16 value)
1744
{
1745
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1746
	int num_levels = intel_wm_num_levels(dev_priv);
1747
	bool dirty = false;
1748

1749
	for (; level < num_levels; level++) {
1750
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1751

1752
		dirty |= raw->plane[plane_id] != value;
1753
		raw->plane[plane_id] = value;
1754
	}
1755 1756

	return dirty;
1757 1758
}

1759 1760
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1761
{
1762
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1763
	enum plane_id plane_id = plane->id;
1764
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1765
	int level;
1766
	bool dirty = false;
1767

1768
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1769 1770
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1771
	}
1772

1773
	for (level = 0; level < num_levels; level++) {
1774
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1775 1776
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1777

1778 1779
		if (wm > max_wm)
			break;
1780

1781
		dirty |= raw->plane[plane_id] != wm;
1782 1783
		raw->plane[plane_id] = wm;
	}
1784

1785
	/* mark all higher levels as invalid */
1786
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1787

1788 1789
out:
	if (dirty)
1790
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1791 1792 1793 1794 1795 1796
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1797
}
1798

1799 1800
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1801
{
1802
	const struct g4x_pipe_wm *raw =
1803 1804 1805
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1806

1807 1808
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1809

1810
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1811
{
1812 1813 1814 1815
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1816 1817 1818 1819
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1820
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1821 1822
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1823
		to_intel_atomic_state(crtc_state->uapi.state);
1824 1825 1826
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1827 1828
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1829
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1830 1831
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1832 1833 1834
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1835
	unsigned int dirty = 0;
1836

1837 1838 1839
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1840 1841
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1842
			continue;
1843

1844
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1863
			intel_atomic_get_old_crtc_state(state, crtc);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1875
	}
1876

1877
	/* initially allow all levels */
1878
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1879 1880 1881 1882 1883
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1884
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1885

1886
	for (level = 0; level < wm_state->num_levels; level++) {
1887
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1888
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1889

1890
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1891
			break;
1892

1893 1894 1895 1896 1897 1898 1899 1900
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1901
						 raw->plane[PLANE_SPRITE0],
1902 1903
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1904

1905 1906 1907
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1908 1909
	}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1920 1921
}

1922 1923 1924
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1925 1926
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1927
{
1928
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1929
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1930
	struct intel_uncore *uncore = &dev_priv->uncore;
1931 1932
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1933
	int sprite0_start, sprite1_start, fifo_size;
1934

1935 1936 1937
	if (!crtc_state->fifo_changed)
		return;

1938 1939 1940
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1941

1942 1943
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1944

1945 1946
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1947 1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1956
	spin_lock(&uncore->lock);
1957

1958
	switch (crtc->pipe) {
1959
		u32 dsparb, dsparb2, dsparb3;
1960
	case PIPE_A:
1961 1962
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1974 1975
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1976 1977
		break;
	case PIPE_B:
1978 1979
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1991 1992
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1993 1994
		break;
	case PIPE_C:
1995 1996
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2008 2009
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2010 2011 2012 2013
		break;
	default:
		break;
	}
2014

2015
	intel_uncore_posting_read_fw(uncore, DSPARB);
2016

2017
	spin_unlock(&uncore->lock);
2018 2019 2020 2021
}

#undef VLV_FIFO

2022
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2023
{
2024
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2025 2026 2027
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2028
		to_intel_atomic_state(new_crtc_state->uapi.state);
2029 2030 2031
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2032 2033
	int level;

2034
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2035 2036 2037 2038 2039 2040
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2041
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2042
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2043
		!new_crtc_state->disable_cxsr;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2062
out:
2063 2064 2065 2066
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2067
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2068
		new_crtc_state->wm.need_postvbl_update = true;
2069 2070 2071 2072

	return 0;
}

2073
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2074 2075 2076
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2077
	int num_active_pipes = 0;
2078

2079
	wm->level = dev_priv->wm.max_level;
2080 2081
	wm->cxsr = true;

2082
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2083
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2084 2085 2086 2087 2088 2089 2090

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2091
		num_active_pipes++;
2092 2093 2094
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2095
	if (num_active_pipes != 1)
2096 2097
		wm->cxsr = false;

2098
	if (num_active_pipes > 1)
2099 2100
		wm->level = VLV_WM_LEVEL_PM2;

2101
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2102
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2103 2104 2105
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2106
		if (crtc->active && wm->cxsr)
2107 2108
			wm->sr = wm_state->sr[wm->level];

2109 2110 2111 2112
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2113 2114 2115
	}
}

2116
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2117
{
2118 2119
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2120

2121
	vlv_merge_wm(dev_priv, &new_wm);
2122

2123
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2124 2125
		return;

2126
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2127 2128
		chv_set_memory_dvfs(dev_priv, false);

2129
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2130 2131
		chv_set_memory_pm5(dev_priv, false);

2132
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2133
		_intel_set_memory_cxsr(dev_priv, false);
2134

2135
	vlv_write_wm_values(dev_priv, &new_wm);
2136

2137
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2138
		_intel_set_memory_cxsr(dev_priv, true);
2139

2140
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2141 2142
		chv_set_memory_pm5(dev_priv, true);

2143
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2144 2145
		chv_set_memory_dvfs(dev_priv, true);

2146
	*old_wm = new_wm;
2147 2148
}

2149 2150 2151
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
2152 2153
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2154 2155

	mutex_lock(&dev_priv->wm.wm_mutex);
2156 2157 2158 2159 2160 2161 2162 2163
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
2164 2165
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2166 2167 2168 2169 2170

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2171
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2172 2173 2174 2175
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2176
static void i965_update_wm(struct intel_crtc *unused_crtc)
2177
{
2178
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2179
	struct intel_crtc *crtc;
2180 2181
	int srwm = 1;
	int cursor_sr = 16;
2182
	bool cxsr_enabled;
2183 2184

	/* Calc sr entries for one plane configs */
2185
	crtc = single_enabled_crtc(dev_priv);
2186 2187 2188
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2189
		const struct drm_display_mode *adjusted_mode =
2190
			&crtc->config->hw.adjusted_mode;
2191 2192
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2193
		int clock = adjusted_mode->crtc_clock;
2194
		int htotal = adjusted_mode->crtc_htotal;
2195
		int hdisplay = crtc->config->pipe_src_w;
2196
		int cpp = fb->format->cpp[0];
2197 2198
		int entries;

2199 2200
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2201 2202 2203 2204 2205 2206 2207 2208
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2209 2210 2211
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2212
		entries = DIV_ROUND_UP(entries,
2213 2214
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2215

2216
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2217 2218 2219 2220 2221 2222
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2223
		cxsr_enabled = true;
2224
	} else {
2225
		cxsr_enabled = false;
2226
		/* Turn off self refresh if both pipes are enabled */
2227
		intel_set_memory_cxsr(dev_priv, false);
2228 2229 2230 2231 2232 2233
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2234 2235 2236 2237 2238 2239
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2240
	/* update cursor SR watermark */
2241
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2242 2243 2244

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2245 2246
}

2247 2248
#undef FW_WM

2249
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2250
{
2251
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2252
	const struct intel_watermark_params *wm_info;
2253 2254
	u32 fwater_lo;
	u32 fwater_hi;
2255 2256 2257
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2258
	struct intel_crtc *crtc, *enabled = NULL;
2259

2260
	if (IS_I945GM(dev_priv))
2261
		wm_info = &i945_wm_info;
2262
	else if (!IS_GEN(dev_priv, 2))
2263 2264
		wm_info = &i915_wm_info;
	else
2265
		wm_info = &i830_a_wm_info;
2266

2267 2268
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2269 2270
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2271
			&crtc->config->hw.adjusted_mode;
2272 2273 2274 2275
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2276
		if (IS_GEN(dev_priv, 2))
2277
			cpp = 4;
2278
		else
2279
			cpp = fb->format->cpp[0];
2280

2281
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2282
					       wm_info, fifo_size, cpp,
2283
					       pessimal_latency_ns);
2284
		enabled = crtc;
2285
	} else {
2286
		planea_wm = fifo_size - wm_info->guard_size;
2287 2288 2289 2290
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2291
	if (IS_GEN(dev_priv, 2))
2292
		wm_info = &i830_bc_wm_info;
2293

2294 2295
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2296 2297
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2298
			&crtc->config->hw.adjusted_mode;
2299 2300 2301 2302
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2303
		if (IS_GEN(dev_priv, 2))
2304
			cpp = 4;
2305
		else
2306
			cpp = fb->format->cpp[0];
2307

2308
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2309
					       wm_info, fifo_size, cpp,
2310
					       pessimal_latency_ns);
2311 2312 2313 2314
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2315
	} else {
2316
		planeb_wm = fifo_size - wm_info->guard_size;
2317 2318 2319
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2320 2321 2322

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2323
	if (IS_I915GM(dev_priv) && enabled) {
2324
		struct drm_i915_gem_object *obj;
2325

2326
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2327 2328

		/* self-refresh seems busted with untiled */
2329
		if (!i915_gem_object_is_tiled(obj))
2330 2331 2332
			enabled = NULL;
	}

2333 2334 2335 2336 2337 2338
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2339
	intel_set_memory_cxsr(dev_priv, false);
2340 2341

	/* Calc sr entries for one plane configs */
2342
	if (HAS_FW_BLC(dev_priv) && enabled) {
2343 2344
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2345
		const struct drm_display_mode *adjusted_mode =
2346
			&enabled->config->hw.adjusted_mode;
2347 2348
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2349
		int clock = adjusted_mode->crtc_clock;
2350
		int htotal = adjusted_mode->crtc_htotal;
2351 2352
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2353 2354
		int entries;

2355
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2356
			cpp = 4;
2357
		else
2358
			cpp = fb->format->cpp[0];
2359

2360 2361
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2362 2363 2364 2365 2366 2367
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2368
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2369 2370
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2371
		else
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2388 2389
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2390 2391
}

2392
static void i845_update_wm(struct intel_crtc *unused_crtc)
2393
{
2394
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2395
	struct intel_crtc *crtc;
2396
	const struct drm_display_mode *adjusted_mode;
2397
	u32 fwater_lo;
2398 2399
	int planea_wm;

2400
	crtc = single_enabled_crtc(dev_priv);
2401 2402 2403
	if (crtc == NULL)
		return;

2404
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2405
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2406
				       &i845_wm_info,
2407
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2408
				       4, pessimal_latency_ns);
2409 2410 2411 2412 2413 2414 2415 2416
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2417
/* latency must be in 0.1us units. */
2418 2419 2420
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2421
{
2422
	unsigned int ret;
2423

2424 2425
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2426 2427 2428 2429

	return ret;
}

2430
/* latency must be in 0.1us units. */
2431 2432 2433 2434 2435
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2436
{
2437
	unsigned int ret;
2438

2439 2440
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2441
	ret = DIV_ROUND_UP(ret, 64) + 2;
2442

2443 2444 2445
	return ret;
}

2446
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2447
{
2448 2449 2450 2451 2452 2453
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2454
	if (WARN_ON(!cpp))
2455 2456 2457 2458
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2459
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2460 2461
}

2462
struct ilk_wm_maximums {
2463 2464 2465 2466
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2467 2468
};

2469 2470 2471 2472
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2473 2474
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2475
			      u32 mem_value, bool is_lp)
2476
{
2477
	u32 method1, method2;
2478
	int cpp;
2479

2480 2481 2482
	if (mem_value == 0)
		return U32_MAX;

2483
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2484 2485
		return 0;

2486
	cpp = plane_state->hw.fb->format->cpp[0];
2487

2488
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2489 2490 2491 2492

	if (!is_lp)
		return method1;

2493
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2494
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2495
				 drm_rect_width(&plane_state->uapi.dst),
2496
				 cpp, mem_value);
2497 2498

	return min(method1, method2);
2499 2500
}

2501 2502 2503 2504
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2505 2506
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2507
			      u32 mem_value)
2508
{
2509
	u32 method1, method2;
2510
	int cpp;
2511

2512 2513 2514
	if (mem_value == 0)
		return U32_MAX;

2515
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2516 2517
		return 0;

2518
	cpp = plane_state->hw.fb->format->cpp[0];
2519

2520 2521
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2522
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2523
				 drm_rect_width(&plane_state->uapi.dst),
2524
				 cpp, mem_value);
2525 2526 2527
	return min(method1, method2);
}

2528 2529 2530 2531
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2532 2533
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2534
			      u32 mem_value)
2535
{
2536 2537
	int cpp;

2538 2539 2540
	if (mem_value == 0)
		return U32_MAX;

2541
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2542 2543
		return 0;

2544
	cpp = plane_state->hw.fb->format->cpp[0];
2545

2546
	return ilk_wm_method2(crtc_state->pixel_rate,
2547
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2548
			      drm_rect_width(&plane_state->uapi.dst),
2549
			      cpp, mem_value);
2550 2551
}

2552
/* Only for WM_LP. */
2553 2554
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2555
			      u32 pri_val)
2556
{
2557
	int cpp;
2558

2559
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2560 2561
		return 0;

2562
	cpp = plane_state->hw.fb->format->cpp[0];
2563

2564 2565
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2566 2567
}

2568 2569
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2570
{
2571
	if (INTEL_GEN(dev_priv) >= 8)
2572
		return 3072;
2573
	else if (INTEL_GEN(dev_priv) >= 7)
2574 2575 2576 2577 2578
		return 768;
	else
		return 512;
}

2579 2580 2581
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2582
{
2583
	if (INTEL_GEN(dev_priv) >= 8)
2584 2585
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2586
	else if (INTEL_GEN(dev_priv) >= 7)
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2597 2598
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2599
{
2600
	if (INTEL_GEN(dev_priv) >= 7)
2601 2602 2603 2604 2605
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2606
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2607
{
2608
	if (INTEL_GEN(dev_priv) >= 8)
2609 2610 2611 2612 2613
		return 31;
	else
		return 15;
}

2614
/* Calculate the maximum primary/sprite plane watermark */
2615
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2616
				     int level,
2617
				     const struct intel_wm_config *config,
2618 2619 2620
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2621
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2622 2623

	/* if sprites aren't enabled, sprites get nothing */
2624
	if (is_sprite && !config->sprites_enabled)
2625 2626 2627
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2628
	if (level == 0 || config->num_pipes_active > 1) {
2629
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2630 2631 2632 2633 2634 2635

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2636
		if (INTEL_GEN(dev_priv) <= 6)
2637 2638 2639
			fifo_size /= 2;
	}

2640
	if (config->sprites_enabled) {
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2652
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2653 2654 2655
}

/* Calculate the maximum cursor plane watermark */
2656
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2657 2658
				      int level,
				      const struct intel_wm_config *config)
2659 2660
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2661
	if (level > 0 && config->num_pipes_active > 1)
2662 2663 2664
		return 64;

	/* otherwise just report max that registers can hold */
2665
	return ilk_cursor_wm_reg_max(dev_priv, level);
2666 2667
}

2668
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2669 2670 2671
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2672
				    struct ilk_wm_maximums *max)
2673
{
2674 2675 2676 2677
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2678 2679
}

2680
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2681 2682 2683
					int level,
					struct ilk_wm_maximums *max)
{
2684 2685 2686 2687
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2688 2689
}

2690
static bool ilk_validate_wm_level(int level,
2691
				  const struct ilk_wm_maximums *max,
2692
				  struct intel_wm_level *result)
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2722 2723 2724
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2725 2726 2727 2728 2729 2730
		result->enable = true;
	}

	return ret;
}

2731
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2732
				 const struct intel_crtc *intel_crtc,
2733
				 int level,
2734
				 struct intel_crtc_state *crtc_state,
2735 2736 2737
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2738
				 struct intel_wm_level *result)
2739
{
2740 2741 2742
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2743 2744 2745 2746 2747 2748 2749 2750

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2751
	if (pristate) {
2752
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2753
						     pri_latency, level);
2754
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2755 2756 2757
	}

	if (sprstate)
2758
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2759 2760

	if (curstate)
2761
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2762

2763 2764 2765
	result->enable = true;
}

2766
static u32
2767
hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2768
{
2769
	const struct intel_atomic_state *intel_state =
2770
		to_intel_atomic_state(crtc_state->uapi.state);
2771
	const struct drm_display_mode *adjusted_mode =
2772
		&crtc_state->hw.adjusted_mode;
2773
	u32 linetime, ips_linetime;
2774

2775
	if (!crtc_state->hw.active)
2776 2777 2778
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2779
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2780
		return 0;
2781

2782 2783 2784
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2785 2786 2787
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2788
					 intel_state->cdclk.logical.cdclk);
2789

2790 2791
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2792 2793
}

2794
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2795
				  u16 wm[8])
2796
{
2797 2798
	struct intel_uncore *uncore = &dev_priv->uncore;

2799
	if (INTEL_GEN(dev_priv) >= 9) {
2800
		u32 val;
2801
		int ret, i;
2802
		int level, max_level = ilk_wm_max_level(dev_priv);
2803 2804 2805 2806 2807

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2808
					     &val, NULL);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2827
					     &val, NULL);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2854
		/*
2855
		 * WaWmMemoryReadLatency:skl+,glk
2856
		 *
2857
		 * punit doesn't take into account the read latency so we need
2858 2859
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2860
		 */
2861 2862 2863 2864 2865
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2866
				wm[level] += 2;
2867
			}
2868 2869
		}

2870 2871 2872 2873 2874 2875
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2876
		if (dev_priv->dram_info.is_16gb_dimm)
2877 2878
			wm[0] += 1;

2879
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2880
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2881 2882 2883 2884

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2885 2886 2887 2888
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2889
	} else if (INTEL_GEN(dev_priv) >= 6) {
2890
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2891 2892 2893 2894 2895

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2896
	} else if (INTEL_GEN(dev_priv) >= 5) {
2897
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2898 2899 2900 2901 2902

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2903 2904
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2905 2906 2907
	}
}

2908
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2909
				       u16 wm[5])
2910 2911
{
	/* ILK sprite LP0 latency is 1300 ns */
2912
	if (IS_GEN(dev_priv, 5))
2913 2914 2915
		wm[0] = 13;
}

2916
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2917
				       u16 wm[5])
2918 2919
{
	/* ILK cursor LP0 latency is 1300 ns */
2920
	if (IS_GEN(dev_priv, 5))
2921 2922 2923
		wm[0] = 13;
}

2924
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2925 2926
{
	/* how many WM levels are we expecting */
2927
	if (INTEL_GEN(dev_priv) >= 9)
2928
		return 7;
2929
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2930
		return 4;
2931
	else if (INTEL_GEN(dev_priv) >= 6)
2932
		return 3;
2933
	else
2934 2935
		return 2;
}
2936

2937
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2938
				   const char *name,
2939
				   const u16 wm[8])
2940
{
2941
	int level, max_level = ilk_wm_max_level(dev_priv);
2942 2943 2944 2945 2946

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2947 2948
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2949 2950 2951
			continue;
		}

2952 2953 2954 2955
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2956
		if (INTEL_GEN(dev_priv) >= 9)
2957 2958
			latency *= 10;
		else if (level > 0)
2959 2960 2961 2962 2963 2964 2965 2966
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2967
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2968
				    u16 wm[5], u16 min)
2969
{
2970
	int level, max_level = ilk_wm_max_level(dev_priv);
2971 2972 2973 2974 2975 2976

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2977
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2978 2979 2980 2981

	return true;
}

2982
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2998 2999 3000
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3031
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3032
{
3033
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3034 3035 3036 3037 3038 3039

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3040
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3041
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3042

3043 3044 3045
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3046

3047
	if (IS_GEN(dev_priv, 6)) {
3048
		snb_wm_latency_quirk(dev_priv);
3049 3050
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3051 3052
}

3053
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3054
{
3055
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3056
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3057 3058
}

3059
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3071
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3082
/* Compute new watermarks for the pipe */
3083
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3084
{
3085 3086
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
3087
	struct intel_pipe_wm *pipe_wm;
3088 3089
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3090 3091 3092
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3093
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3094
	struct ilk_wm_maximums max;
3095

3096
	pipe_wm = &crtc_state->wm.ilk.optimal;
3097

3098 3099 3100 3101 3102 3103 3104
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3105 3106
	}

3107
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3108
	if (sprstate) {
3109 3110 3111 3112
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3113 3114
	}

3115 3116
	usable_level = max_level;

3117
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3118
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3119
		usable_level = 1;
3120 3121

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3122
	if (pipe_wm->sprites_scaled)
3123
		usable_level = 0;
3124

3125
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3126
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3127
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3128

3129
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3130
		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3131

3132
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3133
		return -EINVAL;
3134

3135
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3136

3137 3138
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3139

3140
		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3141
				     pristate, sprstate, curstate, wm);
3142 3143 3144 3145 3146 3147

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3148 3149 3150 3151
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3152 3153
	}

3154
	return 0;
3155 3156
}

3157 3158 3159 3160 3161
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3162
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3163
{
3164
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3165
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3166
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3167
	struct intel_atomic_state *intel_state =
3168
		to_intel_atomic_state(newstate->uapi.state);
3169 3170 3171
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3172
	int level, max_level = ilk_wm_max_level(dev_priv);
3173 3174 3175 3176 3177 3178

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3179
	*a = newstate->wm.ilk.optimal;
3180
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3181
	    intel_state->skip_intermediate_wm)
3182 3183
		return 0;

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3205
	if (!ilk_validate_pipe_wm(dev_priv, a))
3206 3207 3208 3209 3210 3211
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3212 3213
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3214 3215 3216 3217

	return 0;
}

3218 3219 3220
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3221
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3222 3223 3224 3225 3226
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3227 3228
	ret_wm->enable = true;

3229
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3230
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3231 3232 3233 3234
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3235

3236 3237 3238 3239 3240
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3241
		if (!wm->enable)
3242
			ret_wm->enable = false;
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3254
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3255
			 const struct intel_wm_config *config,
3256
			 const struct ilk_wm_maximums *max,
3257 3258
			 struct intel_pipe_wm *merged)
{
3259
	int level, max_level = ilk_wm_max_level(dev_priv);
3260
	int last_enabled_level = max_level;
3261

3262
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3263
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3264
	    config->num_pipes_active > 1)
3265
		last_enabled_level = 0;
3266

3267
	/* ILK: FBC WM must be disabled always */
3268
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3269 3270 3271 3272 3273

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3274
		ilk_merge_wm_level(dev_priv, level, wm);
3275

3276 3277 3278 3279 3280
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3281 3282 3283 3284 3285 3286

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3287 3288
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3289 3290 3291
			wm->fbc_val = 0;
		}
	}
3292 3293 3294 3295 3296 3297 3298

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3299
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3300
	    intel_fbc_is_active(dev_priv)) {
3301 3302 3303 3304 3305 3306
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3307 3308
}

3309 3310 3311 3312 3313 3314
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3315
/* The value we need to program into the WM_LPx latency field */
3316 3317
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3318
{
3319
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3320 3321 3322 3323 3324
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3325
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3326
				   const struct intel_pipe_wm *merged,
3327
				   enum intel_ddb_partitioning partitioning,
3328
				   struct ilk_wm_values *results)
3329
{
3330 3331
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3332

3333
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3334
	results->partitioning = partitioning;
3335

3336
	/* LP1+ register values */
3337
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3338
		const struct intel_wm_level *r;
3339

3340
		level = ilk_wm_lp_to_level(wm_lp, merged);
3341

3342
		r = &merged->wm[level];
3343

3344 3345 3346 3347 3348
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3349
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3350 3351 3352
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3353 3354 3355
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3356
		if (INTEL_GEN(dev_priv) >= 8)
3357 3358 3359 3360 3361 3362
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3363 3364 3365 3366
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3367
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3368 3369 3370 3371
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3372
	}
3373

3374
	/* LP0 register values */
3375
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3376
		enum pipe pipe = intel_crtc->pipe;
3377 3378
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3379 3380 3381 3382

		if (WARN_ON(!r->enable))
			continue;

3383
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3384

3385 3386 3387 3388
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3389 3390 3391
	}
}

3392 3393
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3394 3395 3396 3397
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3398
{
3399
	int level, max_level = ilk_wm_max_level(dev_priv);
3400
	int level1 = 0, level2 = 0;
3401

3402 3403 3404 3405 3406
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3407 3408
	}

3409 3410
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3411 3412 3413
			return r2;
		else
			return r1;
3414
	} else if (level1 > level2) {
3415 3416 3417 3418 3419 3420
		return r1;
	} else {
		return r2;
	}
}

3421 3422 3423 3424 3425 3426 3427 3428
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3429
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3430 3431
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3432 3433 3434 3435 3436
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3437
	for_each_pipe(dev_priv, pipe) {
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3481 3482
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3483
{
3484
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3485
	bool changed = false;
3486

3487 3488 3489
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3490
		changed = true;
3491 3492 3493 3494
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3495
		changed = true;
3496 3497 3498 3499
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3500
		changed = true;
3501
	}
3502

3503 3504 3505 3506
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3507

3508 3509 3510 3511 3512 3513 3514
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3515 3516
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3517
{
3518
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3519
	unsigned int dirty;
3520
	u32 val;
3521

3522
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3523 3524 3525 3526 3527
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3528
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3529
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3530
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3531
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3532
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3533 3534
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3535
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3536
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3537
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3538
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3539
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3540 3541
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3542
	if (dirty & WM_DIRTY_DDB) {
3543
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3558 3559
	}

3560
	if (dirty & WM_DIRTY_FBC) {
3561 3562 3563 3564 3565 3566 3567 3568
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3569 3570 3571 3572
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3573
	if (INTEL_GEN(dev_priv) >= 7) {
3574 3575 3576 3577 3578
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3579

3580
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3581
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3582
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3583
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3584
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3585
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3586 3587

	dev_priv->wm.hw = *results;
3588 3589
}

3590
bool ilk_disable_lp_wm(struct drm_device *dev)
3591
{
3592
	struct drm_i915_private *dev_priv = to_i915(dev);
3593 3594 3595 3596

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3608 3609 3610 3611 3612 3613
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3614 3615 3616 3617 3618
		enabled_slices++;

	return enabled_slices;
}

3619 3620 3621 3622
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3623
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3624
{
3625
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3626 3627
}

3628 3629 3630
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3631 3632 3633 3634
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3635 3636
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3637 3638
}

3639 3640 3641
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

		DRM_DEBUG_DRIVER("Couldn't read SAGV block time!\n");
	} else if (IS_GEN(dev_priv, 11)) {
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3684
intel_enable_sagv(struct drm_i915_private *dev_priv)
3685 3686 3687
{
	int ret;

3688 3689 3690 3691
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3692 3693
		return 0;

3694
	DRM_DEBUG_KMS("Enabling SAGV\n");
3695 3696 3697
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3698
	/* We don't need to wait for SAGV when enabling */
3699 3700 3701

	/*
	 * Some skl systems, pre-release machines in particular,
3702
	 * don't actually have SAGV.
3703
	 */
3704
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3705
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3706
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3707 3708
		return 0;
	} else if (ret < 0) {
3709
		DRM_ERROR("Failed to enable SAGV\n");
3710 3711 3712
		return ret;
	}

3713
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3714 3715 3716 3717
	return 0;
}

int
3718
intel_disable_sagv(struct drm_i915_private *dev_priv)
3719
{
3720
	int ret;
3721

3722 3723 3724 3725
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3726 3727
		return 0;

3728
	DRM_DEBUG_KMS("Disabling SAGV\n");
3729
	/* bspec says to keep retrying for at least 1 ms */
3730 3731 3732 3733
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3734 3735
	/*
	 * Some skl systems, pre-release machines in particular,
3736
	 * don't actually have SAGV.
3737
	 */
3738
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3739
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3740
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3741
		return 0;
3742
	} else if (ret < 0) {
3743
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3744
		return ret;
3745 3746
	}

3747
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3748 3749 3750
	return 0;
}

3751
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3752
{
3753
	struct drm_device *dev = state->base.dev;
3754
	struct drm_i915_private *dev_priv = to_i915(dev);
3755 3756
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3757
	struct intel_crtc_state *crtc_state;
3758
	enum pipe pipe;
3759
	int level, latency;
3760

3761 3762 3763
	if (!intel_has_sagv(dev_priv))
		return false;

3764 3765 3766
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3767
	if (hweight8(state->active_pipes) == 0)
3768
		return true;
3769 3770 3771 3772 3773

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3774
	if (hweight8(state->active_pipes) > 1)
3775 3776 3777
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3778
	pipe = ffs(state->active_pipes) - 1;
3779
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3780
	crtc_state = to_intel_crtc_state(crtc->base.state);
3781

3782
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3783 3784
		return false;

3785
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3786
		struct skl_plane_wm *wm =
3787
			&crtc_state->wm.skl.optimal.planes[plane->id];
3788

3789
		/* Skip this plane if it's not enabled */
3790
		if (!wm->wm[0].plane_en)
3791 3792 3793
			continue;

		/* Find the highest enabled wm level for this plane */
3794
		for (level = ilk_wm_max_level(dev_priv);
3795
		     !wm->wm[level].plane_en; --level)
3796 3797
		     { }

3798 3799
		latency = dev_priv->wm.skl_latency[level];

3800
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3801
		    plane->base.state->fb->modifier ==
3802 3803 3804
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3805
		/*
3806 3807
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3808
		 * can't enable SAGV.
3809
		 */
3810
		if (latency < dev_priv->sagv_block_time_us)
3811 3812 3813 3814 3815 3816
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3817
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3818
			      const struct intel_crtc_state *crtc_state,
3819
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3820 3821
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

3832
	adjusted_mode = &crtc_state->hw.adjusted_mode;
3833
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3834 3835 3836

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3837 3838 3839 3840 3841
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3842
	 */
3843
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3844 3845 3846 3847 3848 3849 3850 3851 3852
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3853
static void
3854
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3855
				   const struct intel_crtc_state *crtc_state,
3856
				   const u64 total_data_rate,
3857
				   struct skl_ddb_allocation *ddb,
3858 3859
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3860
{
3861
	struct drm_atomic_state *state = crtc_state->uapi.state;
3862
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3863
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3864
	const struct intel_crtc *crtc;
3865 3866 3867 3868
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3869

3870
	if (WARN_ON(!state) || !crtc_state->hw.active) {
3871 3872
		alloc->start = 0;
		alloc->end = 0;
3873
		*num_active = hweight8(dev_priv->active_pipes);
3874 3875 3876
		return;
	}

3877
	if (intel_state->active_pipe_changes)
3878
		*num_active = hweight8(intel_state->active_pipes);
3879
	else
3880
		*num_active = hweight8(dev_priv->active_pipes);
3881

3882
	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3883
				      *num_active, ddb);
3884

3885
	/*
3886 3887 3888 3889 3890 3891
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3892
	 */
3893
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3894 3895 3896 3897 3898
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3899
		return;
3900
	}
3901

3902 3903 3904 3905 3906
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3907 3908
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
3909
			&crtc_state->hw.adjusted_mode;
3910
		enum pipe pipe = crtc->pipe;
3911 3912
		int hdisplay, vdisplay;

3913
		if (!crtc_state->hw.enable)
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3927 3928
}

3929 3930 3931 3932 3933
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3934
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3935 3936 3937 3938 3939 3940 3941 3942
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3943
{
3944
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3958
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3959 3960 3961 3962 3963
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3964

3965
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3966 3967
}

3968 3969
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3970
{
3971

3972 3973
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3974

3975 3976
	if (entry->end)
		entry->end += 1;
3977 3978
}

3979 3980 3981 3982
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3983 3984
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3985
{
3986 3987
	u32 val, val2;
	u32 fourcc = 0;
3988 3989 3990 3991

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3992
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3993 3994 3995 3996 3997 3998
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3999 4000 4001 4002
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4003

4004 4005 4006 4007 4008
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4009
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4010

4011 4012
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4013 4014 4015 4016
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4017 4018 4019
	}
}

4020 4021 4022
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4023
{
4024 4025 4026
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4027
	intel_wakeref_t wakeref;
4028
	enum plane_id plane_id;
4029

4030
	power_domain = POWER_DOMAIN_PIPE(pipe);
4031 4032
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4033
		return;
4034

4035 4036 4037 4038 4039
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4040

4041
	intel_display_power_put(dev_priv, power_domain, wakeref);
4042
}
4043

4044 4045 4046 4047
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4048 4049
}

4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4066
static uint_fixed_16_16_t
4067 4068
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4069
{
4070
	u32 src_w, src_h, dst_w, dst_h;
4071 4072
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4073

4074
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4075
		return u32_to_fixed16(0);
4076

4077 4078 4079 4080 4081 4082 4083
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4084 4085 4086 4087
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4088

4089 4090 4091 4092
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4093

4094
	return mul_fixed16(downscale_w, downscale_h);
4095 4096
}

4097
static u64
4098 4099
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4100
			     int color_plane)
4101
{
4102
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4103
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4104 4105
	u32 data_rate;
	u32 width = 0, height = 0;
4106
	uint_fixed_16_16_t down_scale_amount;
4107
	u64 rate;
4108

4109
	if (!plane_state->uapi.visible)
4110
		return 0;
4111

4112
	if (plane->id == PLANE_CURSOR)
4113
		return 0;
4114 4115 4116

	if (color_plane == 1 &&
	    !drm_format_info_is_yuv_semiplanar(fb->format))
4117
		return 0;
4118

4119 4120 4121 4122 4123
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4124 4125
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4126

4127
	/* UV plane does 1/2 pixel sub-sampling */
4128
	if (color_plane == 1) {
4129 4130
		width /= 2;
		height /= 2;
4131 4132
	}

4133
	data_rate = width * height;
4134

4135
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4136

4137 4138
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4139
	rate *= fb->format->cpp[color_plane];
4140
	return rate;
4141 4142
}

4143
static u64
4144
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4145 4146
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4147
{
4148
	struct drm_atomic_state *state = crtc_state->uapi.state;
4149 4150
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4151
	u64 total_data_rate = 0;
4152 4153 4154

	if (WARN_ON(!state))
		return 0;
4155

4156
	/* Calculate and cache data rate for each plane */
4157 4158
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4159
		u64 rate;
4160

4161
		/* packed/y */
4162
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4163
		plane_data_rate[plane_id] = rate;
4164
		total_data_rate += rate;
4165

4166
		/* uv-plane */
4167
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4168
		uv_plane_data_rate[plane_id] = rate;
4169
		total_data_rate += rate;
4170 4171 4172 4173 4174
	}

	return total_data_rate;
}

4175
static u64
4176
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4177 4178
				 u64 *plane_data_rate)
{
4179 4180
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4181 4182
	u64 total_data_rate = 0;

4183
	if (WARN_ON(!crtc_state->uapi.state))
4184 4185 4186
		return 0;

	/* Calculate and cache data rate for each plane */
4187 4188
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4189 4190
		u64 rate;

4191
		if (!plane_state->planar_linked_plane) {
4192
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4193 4194 4195 4196 4197 4198 4199
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4200
			 * intel_atomic_crtc_state_for_each_plane_state(),
4201 4202 4203 4204
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4205
			if (plane_state->planar_slave)
4206 4207 4208
				continue;

			/* Y plane rate is calculated on the slave */
4209
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4210
			y_plane_id = plane_state->planar_linked_plane->id;
4211 4212 4213
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4214
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4215 4216 4217 4218 4219 4220 4221 4222
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4223
static int
4224
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4225 4226
		      struct skl_ddb_allocation *ddb /* out */)
{
4227 4228
	struct drm_atomic_state *state = crtc_state->uapi.state;
	struct drm_crtc *crtc = crtc_state->uapi.crtc;
4229
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4230
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4231
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4232 4233 4234
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4235
	u64 total_data_rate;
4236
	enum plane_id plane_id;
4237
	int num_active;
4238 4239
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4240
	u32 blocks;
4241
	int level;
4242

4243
	/* Clear the partitioning for disabled planes. */
4244 4245
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4246

4247 4248 4249
	if (WARN_ON(!state))
		return 0;

4250
	if (!crtc_state->hw.active) {
4251
		alloc->start = alloc->end = 0;
4252 4253 4254
		return 0;
	}

4255 4256
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4257
			icl_get_total_relative_data_rate(crtc_state,
4258 4259
							 plane_data_rate);
	else
4260
		total_data_rate =
4261
			skl_get_total_relative_data_rate(crtc_state,
4262 4263
							 plane_data_rate,
							 uv_plane_data_rate);
4264

4265

4266
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4267
					   ddb, alloc, &num_active);
4268
	alloc_size = skl_ddb_entry_size(alloc);
4269
	if (alloc_size == 0)
4270
		return 0;
4271

4272
	/* Allocate fixed number of blocks for cursor. */
4273
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4274
	alloc_size -= total[PLANE_CURSOR];
4275
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4276
		alloc->end - total[PLANE_CURSOR];
4277
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4278 4279 4280

	if (total_data_rate == 0)
		return 0;
4281

4282
	/*
4283 4284
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4285
	 */
4286
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4287
		blocks = 0;
4288
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4289
			const struct skl_plane_wm *wm =
4290
				&crtc_state->wm.skl.optimal.planes[plane_id];
4291 4292 4293 4294 4295 4296 4297

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4298
				continue;
4299
			}
4300

4301 4302
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4303 4304
		}

4305
		if (blocks <= alloc_size) {
4306 4307 4308
			alloc_size -= blocks;
			break;
		}
4309 4310
	}

4311
	if (level < 0) {
4312
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4313 4314
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4315 4316 4317
		return -EINVAL;
	}

4318
	/*
4319 4320 4321
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4322
	 */
4323
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4324
		const struct skl_plane_wm *wm =
4325
			&crtc_state->wm.skl.optimal.planes[plane_id];
4326 4327
		u64 rate;
		u16 extra;
4328

4329
		if (plane_id == PLANE_CURSOR)
4330 4331
			continue;

4332
		/*
4333 4334
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4335
		 */
4336 4337
		if (total_data_rate == 0)
			break;
4338

4339 4340 4341 4342
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4343
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4344 4345
		alloc_size -= extra;
		total_data_rate -= rate;
4346

4347 4348
		if (total_data_rate == 0)
			break;
4349

4350 4351 4352 4353
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4354
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4355 4356 4357 4358 4359 4360 4361 4362
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4363
		struct skl_ddb_entry *plane_alloc =
4364
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4365
		struct skl_ddb_entry *uv_plane_alloc =
4366
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4367 4368 4369 4370

		if (plane_id == PLANE_CURSOR)
			continue;

4371
		/* Gen11+ uses a separate plane for UV watermarks */
4372 4373 4374 4375 4376 4377 4378 4379
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4380

4381 4382 4383 4384
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4385
		}
4386
	}
4387

4388 4389 4390 4391 4392 4393 4394 4395
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4396
			struct skl_plane_wm *wm =
4397
				&crtc_state->wm.skl.optimal.planes[plane_id];
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4414

4415
			/*
4416
			 * Wa_1408961008:icl, ehl
4417 4418
			 * Underruns with WM1+ disabled
			 */
4419
			if (IS_GEN(dev_priv, 11) &&
4420 4421
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4422 4423
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4424
			}
4425 4426 4427 4428 4429 4430 4431 4432
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4433
		struct skl_plane_wm *wm =
4434
			&crtc_state->wm.skl.optimal.planes[plane_id];
4435

4436
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4437
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4438 4439
	}

4440
	return 0;
4441 4442
}

4443 4444
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4445
 * for the read latency) and cpp should always be <= 8, so that
4446 4447 4448
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4449
static uint_fixed_16_16_t
4450 4451
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4452
{
4453
	u32 wm_intermediate_val;
4454
	uint_fixed_16_16_t ret;
4455 4456

	if (latency == 0)
4457
		return FP_16_16_MAX;
4458

4459
	wm_intermediate_val = latency * pixel_rate * cpp;
4460
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4461 4462 4463 4464

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4465 4466 4467
	return ret;
}

4468 4469 4470
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4471
{
4472
	u32 wm_intermediate_val;
4473
	uint_fixed_16_16_t ret;
4474 4475

	if (latency == 0)
4476
		return FP_16_16_MAX;
4477 4478

	wm_intermediate_val = latency * pixel_rate;
4479 4480
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4481
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4482 4483 4484
	return ret;
}

4485
static uint_fixed_16_16_t
4486
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4487
{
4488 4489
	u32 pixel_rate;
	u32 crtc_htotal;
4490 4491
	uint_fixed_16_16_t linetime_us;

4492
	if (!crtc_state->hw.active)
4493
		return u32_to_fixed16(0);
4494

4495
	pixel_rate = crtc_state->pixel_rate;
4496 4497

	if (WARN_ON(pixel_rate == 0))
4498
		return u32_to_fixed16(0);
4499

4500
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4501
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4502 4503 4504 4505

	return linetime_us;
}

4506
static u32
4507 4508
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4509
{
4510
	u64 adjusted_pixel_rate;
4511
	uint_fixed_16_16_t downscale_amount;
4512 4513

	/* Shouldn't reach here on disabled planes... */
4514
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4515 4516 4517 4518 4519 4520
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4521 4522
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4523

4524 4525
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4526 4527
}

4528
static int
4529 4530 4531 4532 4533
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4534
{
4535
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4536
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4537
	u32 interm_pbpl;
4538

4539
	/* only planar format has two planes */
4540
	if (color_plane == 1 && !drm_format_info_is_yuv_semiplanar(format)) {
4541
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4542 4543 4544
		return -EINVAL;
	}

4545 4546 4547 4548 4549 4550 4551
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4552
	wp->is_planar = drm_format_info_is_yuv_semiplanar(format);
4553

4554
	wp->width = width;
4555
	if (color_plane == 1 && wp->is_planar)
4556 4557
		wp->width /= 2;

4558 4559
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4560

4561
	if (INTEL_GEN(dev_priv) >= 11 &&
4562
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4563 4564 4565 4566
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4567
	if (drm_rotation_90_or_270(rotation)) {
4568
		switch (wp->cpp) {
4569
		case 1:
4570
			wp->y_min_scanlines = 16;
4571 4572
			break;
		case 2:
4573
			wp->y_min_scanlines = 8;
4574 4575
			break;
		case 4:
4576
			wp->y_min_scanlines = 4;
4577
			break;
4578
		default:
4579
			MISSING_CASE(wp->cpp);
4580
			return -EINVAL;
4581 4582
		}
	} else {
4583
		wp->y_min_scanlines = 4;
4584 4585
	}

4586
	if (skl_needs_memory_bw_wa(dev_priv))
4587
		wp->y_min_scanlines *= 2;
4588

4589 4590 4591
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4592 4593
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4594 4595 4596 4597

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4598 4599
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4600
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4601 4602
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4603
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4604
	} else {
4605 4606
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4607
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4608 4609
	}

4610 4611
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4612

4613
	wp->linetime_us = fixed16_to_u32_round_up(
4614
					intel_get_linetime_us(crtc_state));
4615 4616 4617 4618

	return 0;
}

4619 4620 4621 4622 4623
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
4624
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4625 4626
	int width;

4627 4628 4629 4630 4631
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4632
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4633 4634 4635

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
4636
				     plane_state->hw.rotation,
4637 4638 4639 4640
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4641 4642 4643 4644 4645 4646 4647 4648 4649
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4650
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4651 4652 4653 4654
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4655
{
4656
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4657
	u32 latency = dev_priv->wm.skl_latency[level];
4658 4659
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4660
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4661

4662 4663 4664
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4665
		return;
4666
	}
4667

4668 4669 4670 4671
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4672
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4673 4674 4675
	    dev_priv->ipc_enabled)
		latency += 4;

4676
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4677 4678 4679
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4680
				 wp->cpp, latency, wp->dbuf_block_size);
4681
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4682
				 crtc_state->hw.adjusted_mode.crtc_htotal,
4683
				 latency,
4684
				 wp->plane_blocks_per_line);
4685

4686 4687
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4688
	} else {
4689
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
4690
		     wp->dbuf_block_size < 1) &&
4691
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4692
			selected_result = method2;
4693
		} else if (latency >= wp->linetime_us) {
4694
			if (IS_GEN(dev_priv, 9) &&
4695 4696 4697 4698 4699
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4700
			selected_result = method1;
4701
		}
4702
	}
4703

4704
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4705
	res_lines = div_round_up_fixed16(selected_result,
4706
					 wp->plane_blocks_per_line);
4707

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4723

4724 4725 4726 4727 4728 4729 4730 4731 4732
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4733
	}
4734

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4753 4754 4755
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4756 4757 4758
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4759
		return;
4760
	}
4761 4762 4763 4764 4765 4766 4767

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4768 4769
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4770 4771
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4772
	result->plane_en = true;
4773 4774
}

4775
static void
4776
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4777
		      const struct skl_wm_params *wm_params,
4778
		      struct skl_wm_level *levels)
4779
{
4780
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4781
	int level, max_level = ilk_wm_max_level(dev_priv);
4782
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4783

4784
	for (level = 0; level <= max_level; level++) {
4785
		struct skl_wm_level *result = &levels[level];
4786

4787
		skl_compute_plane_wm(crtc_state, level, wm_params,
4788
				     result_prev, result);
4789 4790

		result_prev = result;
4791
	}
4792 4793
}

4794
static u32
4795
skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4796
{
4797
	struct drm_atomic_state *state = crtc_state->uapi.state;
M
Mahesh Kumar 已提交
4798
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4799
	uint_fixed_16_16_t linetime_us;
4800
	u32 linetime_wm;
4801

4802
	linetime_us = intel_get_linetime_us(crtc_state);
4803
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4804

4805 4806
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4807
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4808 4809

	return linetime_wm;
4810 4811
}

4812
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4813
				      const struct skl_wm_params *wp,
4814
				      struct skl_plane_wm *wm)
4815
{
4816
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
4817
	const struct drm_i915_private *dev_priv = to_i915(dev);
4818 4819 4820
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4821 4822 4823

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4824
		return;
4825 4826 4827

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4828
		return;
4829

4830 4831
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4832 4833 4834 4835
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4846
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4847

4848
	if (wp->y_tiled) {
4849 4850
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4851
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4852 4853
				trans_offset_b;
	} else {
4854
		res_blocks = wm0_sel_res_b + trans_offset_b;
4855 4856 4857 4858 4859 4860 4861

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4862 4863 4864 4865 4866 4867 4868
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4869 4870
}

4871
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4872 4873
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4874
{
4875
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4876 4877 4878
	struct skl_wm_params wm_params;
	int ret;

4879
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4880 4881 4882 4883
					  &wm_params, color_plane);
	if (ret)
		return ret;

4884
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4885
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4886 4887 4888 4889

	return 0;
}

4890
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4891 4892
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4893
{
4894
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4895 4896 4897
	struct skl_wm_params wm_params;
	int ret;

4898
	wm->is_planar = true;
4899 4900

	/* uv plane watermarks must also be validated for NV12/Planar */
4901
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4902 4903 4904
					  &wm_params, 1);
	if (ret)
		return ret;
4905

4906
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4907

4908
	return 0;
4909 4910
}

4911
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
4912
			      const struct intel_plane_state *plane_state)
4913
{
4914
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4915
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4916
	enum plane_id plane_id = plane->id;
4917 4918
	int ret;

4919 4920 4921
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4922
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4923
					plane_id, 0);
4924 4925 4926
	if (ret)
		return ret;

4927
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
4928
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
4929 4930 4931 4932 4933 4934 4935 4936
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

4937
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
4938 4939
			      const struct intel_plane_state *plane_state)
{
4940
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
4941 4942 4943
	int ret;

	/* Watermarks calculated in master */
4944
	if (plane_state->planar_slave)
4945 4946
		return 0;

4947
	if (plane_state->planar_linked_plane) {
4948
		const struct drm_framebuffer *fb = plane_state->hw.fb;
4949
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
4950 4951 4952 4953 4954

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

4955
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4956 4957 4958 4959
						y_plane_id, 0);
		if (ret)
			return ret;

4960
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4961 4962 4963 4964
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
4965
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
4966 4967 4968 4969 4970 4971
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
4972 4973
}

4974
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
4975
{
4976
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4977
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
4978 4979
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4980
	int ret;
4981

L
Lyude 已提交
4982 4983 4984 4985 4986 4987
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4988 4989
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
4990

4991
		if (INTEL_GEN(dev_priv) >= 11)
4992
			ret = icl_build_plane_wm(crtc_state, plane_state);
4993
		else
4994
			ret = skl_build_plane_wm(crtc_state, plane_state);
4995 4996
		if (ret)
			return ret;
4997
	}
4998

4999
	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5000

5001
	return 0;
5002 5003
}

5004 5005
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5006 5007 5008
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5009
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5010
	else
5011
		I915_WRITE_FW(reg, 0);
5012 5013
}

5014 5015 5016 5017
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5018
	u32 val = 0;
5019

5020
	if (level->plane_en)
5021
		val |= PLANE_WM_EN;
5022 5023 5024 5025
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5026

5027
	I915_WRITE_FW(reg, val);
5028 5029
}

5030 5031
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5032
{
5033
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5034
	int level, max_level = ilk_wm_max_level(dev_priv);
5035 5036 5037 5038 5039 5040 5041 5042
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5043 5044

	for (level = 0; level <= max_level; level++) {
5045
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5046
				   &wm->wm[level]);
5047
	}
5048
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5049
			   &wm->trans_wm);
5050

5051
	if (INTEL_GEN(dev_priv) >= 11) {
5052
		skl_ddb_entry_write(dev_priv,
5053 5054
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5055
	}
5056 5057 5058 5059 5060 5061 5062 5063

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5064 5065
}

5066 5067
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5068
{
5069
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5070
	int level, max_level = ilk_wm_max_level(dev_priv);
5071 5072 5073 5074 5075 5076
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5077 5078

	for (level = 0; level <= max_level; level++) {
5079 5080
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5081
	}
5082
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5083

5084
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5085 5086
}

5087 5088 5089
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5090
	return l1->plane_en == l2->plane_en &&
5091
		l1->ignore_lines == l2->ignore_lines &&
5092 5093 5094
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5095

5096 5097 5098 5099 5100
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5101

5102 5103 5104 5105 5106 5107 5108
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5109 5110
}

5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5128 5129
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5130
{
5131
	return a->start < b->end && b->start < a->end;
5132 5133
}

5134
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5135
				 const struct skl_ddb_entry *entries,
5136
				 int num_entries, int ignore_idx)
5137
{
5138
	int i;
5139

5140 5141 5142
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5143
			return true;
5144
	}
5145

5146
	return false;
5147 5148
}

5149
static int
5150 5151
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5152
{
5153 5154
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5155 5156
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5157

5158 5159 5160
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5161

5162 5163 5164 5165
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5166 5167
			continue;

5168
		plane_state = intel_atomic_get_plane_state(state, plane);
5169 5170
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5171

5172
		new_crtc_state->update_planes |= BIT(plane_id);
5173 5174 5175 5176 5177 5178
	}

	return 0;
}

static int
5179
skl_compute_ddb(struct intel_atomic_state *state)
5180
{
5181 5182
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5183 5184
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5185 5186
	struct intel_crtc *crtc;
	int ret, i;
5187

5188 5189
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5190
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5191 5192
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5193 5194 5195
		if (ret)
			return ret;

5196 5197
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5198 5199
		if (ret)
			return ret;
5200 5201 5202 5203 5204
	}

	return 0;
}

5205 5206 5207 5208 5209
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5210
static void
5211
skl_print_wm_changes(struct intel_atomic_state *state)
5212
{
5213 5214 5215 5216 5217
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5218
	int i;
5219

5220 5221 5222
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5223 5224
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5225 5226 5227 5228 5229
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5230 5231
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5232 5233
			const struct skl_ddb_entry *old, *new;

5234 5235
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5236 5237 5238 5239

			if (skl_ddb_entry_equal(old, new))
				continue;

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5270 5271
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5272
				      plane->base.base.id, plane->base.name,
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5309
				      plane->base.base.id, plane->base.name,
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5320 5321 5322 5323
		}
	}
}

V
Ville Syrjälä 已提交
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5340
static int
5341
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5342
{
V
Ville Syrjälä 已提交
5343
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5344
	int ret;
5345

5346 5347 5348 5349 5350 5351 5352
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5353
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5354
				       state->base.acquire_ctx);
5355 5356 5357
		if (ret)
			return ret;

5358
		state->active_pipe_changes = ~0;
5359 5360

		/*
5361
		 * We usually only initialize state->active_pipes if we
5362 5363 5364 5365
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5366
		if (!state->modeset)
5367
			state->active_pipes = dev_priv->active_pipes;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5383 5384
	if (state->active_pipe_changes || state->modeset) {
		state->wm_results.dirty_pipes = ~0;
5385

V
Ville Syrjälä 已提交
5386 5387 5388
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5389 5390 5391 5392 5393
	}

	return 0;
}

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5438
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5454
static int
5455
skl_compute_wm(struct intel_atomic_state *state)
5456
{
5457
	struct intel_crtc *crtc;
5458
	struct intel_crtc_state *new_crtc_state;
5459 5460
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5461 5462
	int ret, i;

5463 5464 5465
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5466 5467
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5468 5469
		return ret;

5470 5471
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5472
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5473 5474 5475
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5476
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5477 5478
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5479 5480 5481
		if (ret)
			return ret;

5482
		ret = skl_wm_add_affected_planes(state, crtc);
5483 5484 5485
		if (ret)
			return ret;

5486 5487 5488
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5489
			results->dirty_pipes |= BIT(crtc->pipe);
5490 5491
	}

5492 5493 5494 5495
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5496
	skl_print_wm_changes(state);
5497

5498 5499 5500
	return 0;
}

5501
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5502
				      struct intel_crtc_state *crtc_state)
5503
{
5504
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5505
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5506
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5507
	enum pipe pipe = crtc->pipe;
5508

5509
	if ((state->wm_results.dirty_pipes & BIT(crtc->pipe)) == 0)
5510
		return;
5511 5512 5513 5514

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5515
static void skl_initial_wm(struct intel_atomic_state *state,
5516
			   struct intel_crtc_state *crtc_state)
5517
{
5518
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5519
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5520
	struct skl_ddb_values *results = &state->wm_results;
5521

5522
	if ((results->dirty_pipes & BIT(crtc->pipe)) == 0)
5523 5524
		return;

5525
	mutex_lock(&dev_priv->wm.wm_mutex);
5526

5527
	if (crtc_state->uapi.active_changed)
5528
		skl_atomic_update_crtc_wm(state, crtc_state);
5529

5530
	mutex_unlock(&dev_priv->wm.wm_mutex);
5531 5532
}

5533
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5534 5535 5536 5537 5538
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5539
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5551
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5552
{
5553
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5554
	struct ilk_wm_maximums max;
5555
	struct intel_wm_config config = {};
5556
	struct ilk_wm_values results = {};
5557
	enum intel_ddb_partitioning partitioning;
5558

5559
	ilk_compute_wm_config(dev_priv, &config);
5560

5561 5562
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5563 5564

	/* 5/6 split only in single pipe config on IVB+ */
5565
	if (INTEL_GEN(dev_priv) >= 7 &&
5566
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5567 5568
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5569

5570
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5571
	} else {
5572
		best_lp_wm = &lp_wm_1_2;
5573 5574
	}

5575
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5576
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5577

5578
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5579

5580
	ilk_write_wm_values(dev_priv, &results);
5581 5582
}

5583
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5584
				   struct intel_crtc_state *crtc_state)
5585
{
5586 5587
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5588

5589
	mutex_lock(&dev_priv->wm.wm_mutex);
5590
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5591 5592 5593
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5594

5595
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5596
				    struct intel_crtc_state *crtc_state)
5597
{
5598 5599
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5600 5601 5602

	if (!crtc_state->wm.need_postvbl_update)
		return;
5603

5604
	mutex_lock(&dev_priv->wm.wm_mutex);
5605 5606
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5607
	mutex_unlock(&dev_priv->wm.wm_mutex);
5608 5609
}

5610
static inline void skl_wm_level_from_reg_val(u32 val,
5611
					     struct skl_wm_level *level)
5612
{
5613
	level->plane_en = val & PLANE_WM_EN;
5614
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5615 5616 5617
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5618 5619
}

5620
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5621
			      struct skl_pipe_wm *out)
5622
{
5623 5624
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5625 5626
	int level, max_level;
	enum plane_id plane_id;
5627
	u32 val;
5628

5629
	max_level = ilk_wm_max_level(dev_priv);
5630

5631
	for_each_plane_id_on_crtc(crtc, plane_id) {
5632
		struct skl_plane_wm *wm = &out->planes[plane_id];
5633

5634
		for (level = 0; level <= max_level; level++) {
5635 5636
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5637 5638
			else
				val = I915_READ(CUR_WM(pipe, level));
5639

5640
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5641 5642
		}

5643 5644
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5645 5646 5647 5648
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5649 5650
	}

5651
	if (!crtc->active)
5652
		return;
5653

5654
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5655 5656
}

5657
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5658
{
5659
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5660
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5661
	struct intel_crtc *crtc;
5662
	struct intel_crtc_state *crtc_state;
5663

5664
	skl_ddb_get_hw_state(dev_priv, ddb);
5665
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5666
		crtc_state = to_intel_crtc_state(crtc->base.state);
5667

5668
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5669

5670
		if (crtc->active)
5671
			hw->dirty_pipes |= BIT(crtc->pipe);
5672
	}
5673

5674
	if (dev_priv->active_pipes) {
5675 5676 5677
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5678 5679
}

5680
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5681
{
5682
	struct drm_device *dev = crtc->base.dev;
5683
	struct drm_i915_private *dev_priv = to_i915(dev);
5684
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5685 5686
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5687
	enum pipe pipe = crtc->pipe;
5688
	static const i915_reg_t wm0_pipe_reg[] = {
5689 5690 5691 5692 5693 5694
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5695
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5696
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5697

5698 5699
	memset(active, 0, sizeof(*active));

5700
	active->pipe_enabled = crtc->active;
5701 5702

	if (active->pipe_enabled) {
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5717
		int level, max_level = ilk_wm_max_level(dev_priv);
5718 5719 5720 5721 5722 5723 5724 5725 5726

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5727

5728
	crtc->wm.active.ilk = *active;
5729 5730
}

5731 5732 5733 5734 5735
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5736 5737 5738
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5739
	u32 tmp;
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5762 5763 5764 5765
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5766
	u32 tmp;
5767 5768 5769 5770

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5771
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5772
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5773
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5774
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5775
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5776
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5777
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5778 5779 5780 5781 5782
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5783 5784 5785
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5786 5787

	tmp = I915_READ(DSPFW2);
5788 5789 5790
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5791 5792 5793 5794 5795 5796

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5797 5798
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5799 5800

		tmp = I915_READ(DSPFW8_CHV);
5801 5802
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5803 5804

		tmp = I915_READ(DSPFW9_CHV);
5805 5806
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5807 5808 5809

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5810 5811 5812 5813 5814 5815 5816 5817 5818
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5819 5820
	} else {
		tmp = I915_READ(DSPFW7);
5821 5822
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5823 5824 5825

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5826 5827 5828 5829 5830 5831
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5832 5833 5834 5835 5836 5837
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5838
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5839 5840 5841 5842 5843 5844 5845 5846
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5847
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

5940
		if (plane_state->uapi.visible)
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5978
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
5979 5980
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5981
	struct intel_crtc *crtc;
5982 5983 5984 5985 5986 5987 5988 5989
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5990
		vlv_punit_get(dev_priv);
5991

5992
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
5993 5994 5995
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5996 5997 5998 5999 6000 6001 6002 6003 6004
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6005
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6019

6020
		vlv_punit_put(dev_priv);
6021 6022
	}

6023
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6039
			struct g4x_pipe_wm *raw =
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6061
		crtc_state->wm.vlv.intermediate = *active;
6062

6063
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6064 6065 6066 6067 6068
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6069
	}
6070 6071 6072 6073 6074

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6095
		if (plane_state->uapi.visible)
6096 6097 6098
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6099
			struct g4x_pipe_wm *raw =
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6140
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6141
{
6142
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6143
	struct intel_crtc *crtc;
6144

6145 6146
	ilk_init_lp_watermarks(dev_priv);

6147
	for_each_intel_crtc(&dev_priv->drm, crtc)
6148 6149 6150 6151 6152 6153 6154
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6155
	if (INTEL_GEN(dev_priv) >= 7) {
6156 6157 6158
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6159

6160
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6161 6162
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6163
	else if (IS_IVYBRIDGE(dev_priv))
6164 6165
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6166 6167 6168 6169 6170

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6171 6172
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6173
 * @crtc: the #intel_crtc on which to compute the WM
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6204
void intel_update_watermarks(struct intel_crtc *crtc)
6205
{
6206
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6207 6208

	if (dev_priv->display.update_wm)
6209
		dev_priv->display.update_wm(crtc);
6210 6211
}

6212 6213 6214 6215
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6216 6217 6218
	if (!HAS_IPC(dev_priv))
		return;

6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6242 6243 6244 6245 6246
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6247
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6248

6249 6250 6251
	intel_enable_ipc(dev_priv);
}

6252 6253 6254 6255 6256 6257 6258 6259 6260
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6261

6262
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6263
{
6264
	enum pipe pipe;
6265

6266 6267 6268 6269
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6270

6271 6272
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6273 6274 6275
	}
}

6276
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6277
{
6278
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6279

6280 6281 6282 6283 6284 6285 6286
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6287

6288 6289 6290 6291 6292
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6293

6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6308 6309

	/*
6310 6311 6312 6313 6314
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6315
	 */
6316 6317 6318 6319 6320 6321 6322 6323 6324
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6325

6326
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6327

6328 6329 6330 6331 6332 6333
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6334

6335 6336 6337
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6338

6339 6340
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6341

6342
	g4x_disable_trickle_feed(dev_priv);
6343

6344
	ibx_init_clock_gating(dev_priv);
6345 6346
}

6347
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6348
{
6349 6350
	enum pipe pipe;
	u32 val;
6351

6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6380 6381
}

6382
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6383
{
6384
	u32 tmp;
6385

6386 6387 6388 6389
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6390 6391
}

6392
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6393
{
6394
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6395

6396
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6397

6398 6399 6400
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6401

6402 6403 6404
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6405

6406 6407
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6408

6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6419

6420 6421
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6422

6423 6424 6425 6426
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6427

6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6440
	 */
6441 6442 6443
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6444

6445 6446 6447
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6448

6449 6450 6451 6452 6453 6454 6455
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6456

6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6478

6479
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6480

6481
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6482

6483
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6484 6485
}

6486
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6487
{
6488
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6489

6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6500

6501
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6502 6503
}

6504
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6505
{
6506 6507 6508
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6509
	 */
6510
	if (HAS_PCH_LPT_LP(dev_priv))
6511 6512 6513
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6514 6515

	/* WADPOClockGatingDisable:hsw */
6516 6517
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6518
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6519 6520
}

6521
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6522
{
6523
	if (HAS_PCH_LPT_LP(dev_priv)) {
6524
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6525 6526 6527 6528 6529 6530

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6531 6532 6533 6534 6535
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6536
	u32 val;
6537 6538 6539 6540 6541

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6542 6543 6544 6545 6546
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6557 6558 6559 6560 6561
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6562 6563 6564 6565

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
6566 6567
}

6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
}

6584 6585 6586 6587 6588
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6589
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6590 6591
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6592 6593
}

6594
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6595
{
6596
	u32 val;
6597 6598
	cnp_init_clock_gating(dev_priv);

6599 6600 6601 6602
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6603 6604 6605 6606 6607 6608 6609 6610
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6611 6612 6613
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
6614 6615
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6616 6617
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6618

R
Rodrigo Vivi 已提交
6619 6620 6621 6622 6623
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6624
	/* WaDisableVFclkgate:cnl */
6625
	/* WaVFUnitClockGatingDisable:cnl */
6626 6627 6628
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6629 6630
}

6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

6641
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6642
{
6643
	gen9_init_clock_gating(dev_priv);
6644 6645 6646 6647 6648

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6649 6650 6651 6652 6653

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6654

6655
	/* WaFbcNukeOnHostModify:kbl */
6656 6657
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6658 6659
}

6660
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6661
{
6662
	gen9_init_clock_gating(dev_priv);
6663 6664 6665 6666

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
6667 6668 6669 6670

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6671 6672
}

6673
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
6674
{
6675
	enum pipe pipe;
B
Ben Widawsky 已提交
6676

6677
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6678
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6679

6680
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6681 6682 6683
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6684
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6685
	for_each_pipe(dev_priv, pipe) {
6686
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6687
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6688
			   BDW_DPRS_MASK_VBLANK_SRD);
6689
	}
6690

6691 6692 6693 6694 6695
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6696

6697 6698
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6699 6700 6701 6702

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6703

6704 6705
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6706

6707 6708 6709 6710
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

6711
	lpt_init_clock_gating(dev_priv);
6712 6713 6714 6715 6716 6717 6718 6719

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
6720 6721
}

6722
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6723
{
6724 6725 6726 6727 6728
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6729
	/* This is required by WaCatErrorRejectionIssue:hsw */
6730 6731 6732 6733
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6734 6735 6736
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6737

6738 6739 6740
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6741 6742 6743 6744
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6745
	/* WaDisable4x2SubspanOptimization:hsw */
6746 6747
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6748

6749 6750 6751
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6752 6753 6754 6755
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6756 6757
	 */
	I915_WRITE(GEN7_GT_MODE,
6758
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6759

6760 6761 6762 6763
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6764
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6765 6766
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6767
	lpt_init_clock_gating(dev_priv);
6768 6769
}

6770
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
6771
{
6772
	u32 snpcr;
6773

6774
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6775

6776
	/* WaDisableEarlyCull:ivb */
6777 6778 6779
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6780
	/* WaDisableBackToBackFlipFix:ivb */
6781 6782 6783 6784
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6785
	/* WaDisablePSDDualDispatchEnable:ivb */
6786
	if (IS_IVB_GT1(dev_priv))
6787 6788 6789
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6790 6791 6792
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6793
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6794 6795 6796
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6797
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6798 6799 6800
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6801
		   GEN7_WA_L3_CHICKEN_MODE);
6802
	if (IS_IVB_GT1(dev_priv))
6803 6804
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6805 6806 6807 6808
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6809 6810
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6811
	}
6812

6813
	/* WaForceL3Serialization:ivb */
6814 6815 6816
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6817
	/*
6818
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6819
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6820 6821
	 */
	I915_WRITE(GEN6_UCGCTL2,
6822
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6823

6824
	/* This is required by WaCatErrorRejectionIssue:ivb */
6825 6826 6827 6828
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6829
	g4x_disable_trickle_feed(dev_priv);
6830 6831

	gen7_setup_fixed_func_scheduler(dev_priv);
6832

6833 6834 6835 6836 6837
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6838

6839
	/* WaDisable4x2SubspanOptimization:ivb */
6840 6841
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6842

6843 6844 6845
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6846 6847 6848 6849
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6850 6851
	 */
	I915_WRITE(GEN7_GT_MODE,
6852
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6853

6854 6855 6856 6857
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6858

6859
	if (!HAS_PCH_NOP(dev_priv))
6860
		cpt_init_clock_gating(dev_priv);
6861

6862
	gen6_check_mch_setup(dev_priv);
6863 6864
}

6865
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
6866
{
6867
	/* WaDisableEarlyCull:vlv */
6868 6869 6870
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6871
	/* WaDisableBackToBackFlipFix:vlv */
6872 6873 6874 6875
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6876
	/* WaPsdDispatchEnable:vlv */
6877
	/* WaDisablePSDDualDispatchEnable:vlv */
6878
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6879 6880
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6881

6882 6883 6884
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6885
	/* WaForceL3Serialization:vlv */
6886 6887 6888
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6889
	/* WaDisableDopClockGating:vlv */
6890 6891 6892
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6893
	/* This is required by WaCatErrorRejectionIssue:vlv */
6894 6895 6896 6897
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6898 6899
	gen7_setup_fixed_func_scheduler(dev_priv);

6900
	/*
6901
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6902
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6903 6904
	 */
	I915_WRITE(GEN6_UCGCTL2,
6905
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6906

6907 6908 6909 6910 6911
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6912

6913 6914 6915 6916
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6917 6918
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6919

6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6931 6932 6933 6934 6935 6936
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6937
	/*
6938
	 * WaDisableVLVClockGating_VBIIssue:vlv
6939 6940 6941
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6942
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6943 6944
}

6945
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
6946
{
6947 6948 6949 6950 6951
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6952 6953 6954 6955

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6956 6957 6958 6959

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6960 6961 6962 6963

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6964

6965 6966 6967 6968 6969 6970
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
6971 6972
}

6973
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
6974
{
6975
	u32 dspclk_gate;
6976 6977 6978 6979 6980 6981 6982 6983 6984

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
6985
	if (IS_GM45(dev_priv))
6986 6987
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6988 6989 6990 6991

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6992

6993 6994 6995
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6996
	g4x_disable_trickle_feed(dev_priv);
6997 6998
}

6999
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7000
{
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7011 7012

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7013 7014 7015
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7016 7017
}

7018
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7019 7020 7021 7022 7023 7024 7025
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7026 7027
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7028 7029 7030

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7031 7032
}

7033
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7034 7035 7036 7037 7038 7039
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7040

7041
	if (IS_PINEVIEW(dev_priv))
7042
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7043 7044 7045

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7046 7047

	/* interrupts should cause a wake up from C3 */
7048
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7049 7050 7051

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7052 7053 7054

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7055 7056
}

7057
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7058 7059
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7060 7061 7062 7063

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7064 7065 7066

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7067 7068
}

7069
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7070
{
7071 7072 7073
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7074 7075
}

7076
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7077
{
7078
	dev_priv->display.init_clock_gating(dev_priv);
7079 7080
}

7081
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7082
{
7083 7084
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7085 7086
}

7087
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7103
	if (IS_GEN(dev_priv, 12))
7104
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7105
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7106
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7107
	else if (IS_CANNONLAKE(dev_priv))
7108
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7109 7110
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7111
	else if (IS_SKYLAKE(dev_priv))
7112
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7113
	else if (IS_KABYLAKE(dev_priv))
7114
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7115
	else if (IS_BROXTON(dev_priv))
7116
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7117 7118
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7119
	else if (IS_BROADWELL(dev_priv))
7120
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7121
	else if (IS_CHERRYVIEW(dev_priv))
7122
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7123
	else if (IS_HASWELL(dev_priv))
7124
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7125
	else if (IS_IVYBRIDGE(dev_priv))
7126
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7127
	else if (IS_VALLEYVIEW(dev_priv))
7128
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7129
	else if (IS_GEN(dev_priv, 6))
7130
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7131
	else if (IS_GEN(dev_priv, 5))
7132
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7133 7134
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7135
	else if (IS_I965GM(dev_priv))
7136
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7137
	else if (IS_I965G(dev_priv))
7138
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7139
	else if (IS_GEN(dev_priv, 3))
7140 7141 7142
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7143
	else if (IS_GEN(dev_priv, 2))
7144 7145 7146 7147 7148 7149 7150
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7151
/* Set up chip specific power management-related functions */
7152
void intel_init_pm(struct drm_i915_private *dev_priv)
7153
{
7154
	/* For cxsr */
7155
	if (IS_PINEVIEW(dev_priv))
7156
		i915_pineview_get_mem_freq(dev_priv);
7157
	else if (IS_GEN(dev_priv, 5))
7158
		i915_ironlake_get_mem_freq(dev_priv);
7159

7160 7161 7162
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7163
	/* For FIFO watermark updates */
7164
	if (INTEL_GEN(dev_priv) >= 9) {
7165
		skl_setup_wm_latency(dev_priv);
7166
		dev_priv->display.initial_watermarks = skl_initial_wm;
7167
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7168
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7169
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7170
		ilk_setup_wm_latency(dev_priv);
7171

7172
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7173
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7174
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7175
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7176
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7177 7178 7179 7180 7181 7182
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7183 7184 7185 7186
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7187
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7188
		vlv_setup_wm_latency(dev_priv);
7189
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7190
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7191
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7192
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7193
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7194 7195 7196 7197 7198 7199
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7200
	} else if (IS_PINEVIEW(dev_priv)) {
7201
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7202 7203 7204 7205 7206 7207 7208 7209 7210
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7211
			intel_set_memory_cxsr(dev_priv, false);
7212 7213 7214
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7215
	} else if (IS_GEN(dev_priv, 4)) {
7216
		dev_priv->display.update_wm = i965_update_wm;
7217
	} else if (IS_GEN(dev_priv, 3)) {
7218 7219
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7220
	} else if (IS_GEN(dev_priv, 2)) {
7221
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7222
			dev_priv->display.update_wm = i845_update_wm;
7223
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7224 7225
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7226
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7227 7228 7229
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7230 7231 7232
	}
}

7233
void intel_pm_setup(struct drm_i915_private *dev_priv)
7234
{
7235 7236
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7237
}