intel_pm.c 226.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_bw.h"
37
#include "display/intel_display_types.h"
38 39 40
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
41 42
#include "gt/intel_llc.h"

43
#include "i915_drv.h"
44
#include "i915_fixed.h"
45
#include "i915_irq.h"
46
#include "i915_trace.h"
47
#include "intel_pm.h"
48
#include "intel_sideband.h"
49
#include "../../../platform/x86/intel_ips.h"
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

74
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
75
{
76 77 78
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
79
		 * Display WA #0390: skl,kbl
80 81 82 83 84 85 86 87 88
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

89
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90 91 92
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

93
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94 95
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
96

97 98 99 100
	/*
	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
	 * Display WA #0859: skl,bxt,kbl,glk,cfl
	 */
101 102
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);
103 104
}

105
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
106
{
107
	gen9_init_clock_gating(dev_priv);
108

109 110 111 112
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

113 114
	/*
	 * FIXME:
115
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
116 117
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
118
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
119 120 121 122 123

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
124 125
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
126 127 128 129 130 131 132 133

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
134

135 136 137 138
	/*
	 * WaFbcTurnOffFbcWatermark:bxt
	 * Display WA #0562: bxt
	 */
139 140
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS);
141

142 143 144 145
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:bxt
	 * Display WA #0883: bxt
	 */
146 147
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

163
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

201
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
202 203 204
{
	u16 ddrpll, csipll;

205 206
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
222 223
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
251 252
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
253 254 255 256 257
		dev_priv->fsb_freq = 0;
		break;
	}
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

296 297
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

320 321 322 323
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

324
	vlv_punit_get(dev_priv);
325 326 327 328 329 330 331 332 333 334 335 336

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
337 338
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
339

340
	vlv_punit_put(dev_priv);
341 342
}

343 344 345 346
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

347
	vlv_punit_get(dev_priv);
348

349
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
350 351 352 353
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
354
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
355

356
	vlv_punit_put(dev_priv);
357 358
}

359 360 361
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

362
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
363
{
364
	bool was_enabled;
365
	u32 val;
366

367
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
368
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
369
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
370
		POSTING_READ(FW_BLC_SELF_VLV);
371
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
372
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
373
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
374
		POSTING_READ(FW_BLC_SELF);
375
	} else if (IS_PINEVIEW(dev_priv)) {
376 377 378 379 380 381
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
382
		I915_WRITE(DSPFW3, val);
383
		POSTING_READ(DSPFW3);
384
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
385
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
389
		POSTING_READ(FW_BLC_SELF);
390
	} else if (IS_I915GM(dev_priv)) {
391 392 393 394 395
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
396
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
397 398 399
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
400
		POSTING_READ(INSTPM);
401
	} else {
402
		return false;
403
	}
404

405 406
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

407 408 409
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
410 411

	return was_enabled;
412 413
}

V
Ville Syrjälä 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
451
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
452
{
453 454
	bool ret;

455
	mutex_lock(&dev_priv->wm.wm_mutex);
456
	ret = _intel_set_memory_cxsr(dev_priv, enable);
457 458 459 460
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
461
	mutex_unlock(&dev_priv->wm.wm_mutex);
462 463

	return ret;
464
}
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
480
static const int pessimal_latency_ns = 5000;
481

482 483 484
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

485
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
486
{
487
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
488
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
489
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
490 491
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
492
	u32 dsparb, dsparb2, dsparb3;
493

494
	switch (pipe) {
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
514 515
		MISSING_CASE(pipe);
		return;
516 517
	}

518 519 520 521
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
522 523
}

524 525
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
526
{
527
	u32 dsparb = I915_READ(DSPARB);
528 529 530
	int size;

	size = dsparb & 0x7f;
531
	if (i9xx_plane == PLANE_B)
532 533
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

534 535
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
536 537 538 539

	return size;
}

540 541
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
542
{
543
	u32 dsparb = I915_READ(DSPARB);
544 545 546
	int size;

	size = dsparb & 0x1ff;
547
	if (i9xx_plane == PLANE_B)
548 549 550
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

551 552
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
553 554 555 556

	return size;
}

557 558
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
559
{
560
	u32 dsparb = I915_READ(DSPARB);
561 562 563 564 565
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

566 567
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
568 569 570 571 572

	return size;
}

/* Pineview has different values for various configs */
573
static const struct intel_watermark_params pnv_display_wm = {
574 575 576 577 578
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
579
};
580 581

static const struct intel_watermark_params pnv_display_hplloff_wm = {
582 583 584 585 586
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
587
};
588 589

static const struct intel_watermark_params pnv_cursor_wm = {
590 591 592 593 594
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595
};
596 597

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
598 599 600 601 602
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
603
};
604

605
static const struct intel_watermark_params i965_cursor_wm_info = {
606 607 608 609 610
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
611
};
612

613
static const struct intel_watermark_params i945_wm_info = {
614 615 616 617 618
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
619
};
620

621
static const struct intel_watermark_params i915_wm_info = {
622 623 624 625 626
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
627
};
628

629
static const struct intel_watermark_params i830_a_wm_info = {
630 631 632 633 634
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
635
};
636

637 638 639 640 641 642 643
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
644

645
static const struct intel_watermark_params i845_wm_info = {
646 647 648 649 650
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
651 652
};

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
690
	u64 ret;
691

692
	ret = mul_u32_u32(pixel_rate, cpp * latency);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

749 750
/**
 * intel_calculate_wm - calculate watermark level
751
 * @pixel_rate: pixel clock
752
 * @wm: chip FIFO params
753
 * @fifo_size: size of the FIFO buffer
754
 * @cpp: bytes per pixel
755 756 757 758 759 760 761 762 763 764 765 766 767
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
768 769 770 771
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
772
{
773
	int entries, wm_size;
774 775 776 777 778 779 780

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
781 782 783 784 785
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
786

787 788
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
789 790

	/* Don't promote wm_size to unsigned... */
791
	if (wm_size > wm->max_wm)
792 793 794
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
795 796 797 798 799 800 801 802 803 804 805

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

806 807 808
	return wm_size;
}

809 810 811 812 813 814 815 816 817 818
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

819 820 821 822 823
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

824 825 826
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
827
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
828 829

	/* FIXME check the 'enable' instead */
830
	if (!crtc_state->hw.active)
831 832 833 834 835 836 837 838 839 840 841
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
842
		return plane_state->hw.fb != NULL;
843
	else
844
		return plane_state->uapi.visible;
845 846
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

866
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
867
{
868
	struct intel_crtc *crtc, *enabled = NULL;
869

870
	for_each_intel_crtc(&dev_priv->drm, crtc) {
871
		if (intel_crtc_active(crtc)) {
872 873 874 875 876 877 878 879 880
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

881
static void pnv_update_wm(struct intel_crtc *unused_crtc)
882
{
883
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
884
	struct intel_crtc *crtc;
885 886
	const struct cxsr_latency *latency;
	u32 reg;
887
	unsigned int wm;
888

889
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
890 891 892
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
893
	if (!latency) {
894 895
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
896
		intel_set_memory_cxsr(dev_priv, false);
897 898 899
		return;
	}

900
	crtc = single_enabled_crtc(dev_priv);
901
	if (crtc) {
902 903
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
904 905
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
906
		int cpp = fb->format->cpp[0];
907
		int clock = pipe_mode->crtc_clock;
908 909

		/* Display SR */
910 911
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
912
					cpp, latency->display_sr);
913 914
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
915
		reg |= FW_WM(wm, SR);
916
		I915_WRITE(DSPFW1, reg);
917
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
918 919

		/* cursor SR */
920 921
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
922
					4, latency->cursor_sr);
923 924
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
925
		reg |= FW_WM(wm, CURSOR_SR);
926 927 928
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
929 930
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
931
					cpp, latency->display_hpll_disable);
932 933
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
934
		reg |= FW_WM(wm, HPLL_SR);
935 936 937
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
938 939
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
940
					4, latency->cursor_hpll_disable);
941 942
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
943
		reg |= FW_WM(wm, HPLL_CURSOR);
944
		I915_WRITE(DSPFW3, reg);
945
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
946

947
		intel_set_memory_cxsr(dev_priv, true);
948
	} else {
949
		intel_set_memory_cxsr(dev_priv, false);
950 951 952
	}
}

953 954 955 956 957 958 959 960 961 962
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
963
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
964 965 966 967 968 969
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

970 971
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
972
{
973 974 975 976 977
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
995

996
	POSTING_READ(DSPFW1);
997 998
}

999 1000 1001
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

1002
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1003 1004
				const struct vlv_wm_values *wm)
{
1005 1006 1007
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1008 1009
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1010 1011 1012 1013 1014 1015
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

1028
	I915_WRITE(DSPFW1,
1029
		   FW_WM(wm->sr.plane, SR) |
1030 1031 1032
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1033
	I915_WRITE(DSPFW2,
1034 1035 1036
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1037
	I915_WRITE(DSPFW3,
1038
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1039 1040 1041

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1042 1043
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1044
		I915_WRITE(DSPFW8_CHV,
1045 1046
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1047
		I915_WRITE(DSPFW9_CHV,
1048 1049
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1050
		I915_WRITE(DSPHOWM,
1051
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1052 1053 1054 1055 1056 1057 1058 1059 1060
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1061 1062
	} else {
		I915_WRITE(DSPFW7,
1063 1064
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1065
		I915_WRITE(DSPHOWM,
1066
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1067 1068 1069 1070 1071 1072
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1073 1074 1075
	}

	POSTING_READ(DSPFW1);
1076 1077
}

1078 1079
#undef FW_WM_VLV

1080 1081 1082 1083 1084
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1085
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1086

1087
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1132 1133 1134
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1135
{
1136
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1137
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1138 1139
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1140 1141
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1142 1143 1144 1145 1146 1147 1148

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1149
	cpp = plane_state->hw.fb->format->cpp[0];
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1164
		cpp = max(cpp, 4u);
1165

1166 1167
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1168

1169
	width = drm_rect_width(&plane_state->uapi.dst);
1170 1171 1172 1173 1174 1175 1176

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1177
		unsigned int small, large;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1190
	return min_t(unsigned int, wm, USHRT_MAX);
1191 1192 1193 1194 1195
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1196
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1212
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1228 1229
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1230
			      u32 pri_val);
1231 1232 1233 1234

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1235
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1236
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1289 1290 1291 1292 1293 1294
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1295 1296

		if (plane_id == PLANE_PRIMARY)
1297 1298 1299 1300
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1317
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
			       int level)
{
	if (level < G4X_WM_LEVEL_SR)
		return false;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		return false;

	if (level >= G4X_WM_LEVEL_HPLL &&
	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		return false;

	return true;
}

1370 1371
static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1372
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1373
	struct intel_atomic_state *state =
1374
		to_intel_atomic_state(crtc_state->uapi.state);
1375
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1376 1377
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1378
	const struct g4x_pipe_wm *raw;
1379 1380
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1381 1382 1383 1384 1385
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1386 1387 1388
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1389 1390
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1391 1392
			continue;

1393
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
1442 1443 1444
	 * watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely. 'level-1' is the highest valid
	 * level here.
1445
	 */
1446
	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1447 1448 1449 1450

	return 0;
}

1451
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1452
{
1453
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1454
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1455 1456 1457
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1458
		to_intel_atomic_state(new_crtc_state->uapi.state);
1459 1460 1461
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1462 1463
	enum plane_id plane_id;

1464
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1465 1466 1467 1468 1469 1470 1471
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1472
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1473
		!new_crtc_state->disable_cxsr;
1474
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1475
		!new_crtc_state->disable_cxsr;
1476 1477 1478 1479 1480 1481 1482
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

1483 1484
		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		    intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		    intermediate->hpll_en);

	drm_WARN_ON(&dev_priv->drm,
		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		    intermediate->fbc_en && intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		    intermediate->fbc_en && intermediate->hpll_en);
1520

1521
out:
1522 1523 1524 1525 1526
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1527
		new_crtc_state->wm.need_postvbl_update = true;
1528 1529 1530 1531 1532 1533 1534 1535

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1536
	int num_active_pipes = 0;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1555
		num_active_pipes++;
1556 1557
	}

1558
	if (num_active_pipes != 1) {
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1598
				   struct intel_crtc *crtc)
1599
{
1600 1601 1602
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1603 1604 1605 1606 1607 1608 1609 1610

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1611
				    struct intel_crtc *crtc)
1612
{
1613 1614 1615
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1616 1617 1618 1619 1620

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1621
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1622 1623 1624 1625
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1626 1627
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1628 1629
				   unsigned int htotal,
				   unsigned int width,
1630
				   unsigned int cpp,
1631 1632 1633 1634
				   unsigned int latency)
{
	unsigned int ret;

1635 1636
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1637 1638 1639 1640 1641
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1642
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1643 1644 1645 1646
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1647 1648
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1649 1650 1651
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1652 1653

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1654 1655 1656
	}
}

1657 1658 1659
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1660
{
1661
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1662
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1663 1664
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1665
	unsigned int clock, htotal, cpp, width, wm;
1666 1667 1668 1669

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1670
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1671 1672
		return 0;

1673
	cpp = plane_state->hw.fb->format->cpp[0];
1674 1675
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1676
	width = crtc_state->pipe_src_w;
1677

1678
	if (plane->id == PLANE_CURSOR) {
1679 1680 1681 1682 1683 1684 1685 1686
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1687
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1688 1689 1690
				    dev_priv->wm.pri_latency[level] * 10);
	}

1691
	return min_t(unsigned int, wm, USHRT_MAX);
1692 1693
}

1694 1695 1696 1697 1698 1699
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1700
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1701
{
1702
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1703
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1704
	const struct g4x_pipe_wm *raw =
1705
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1706
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1707
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1708
	int num_active_planes = hweight8(active_planes);
1709
	const int fifo_size = 511;
1710
	int fifo_extra, fifo_left = fifo_size;
1711
	int sprite0_fifo_extra = 0;
1712 1713
	unsigned int total_rate;
	enum plane_id plane_id;
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1726 1727
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1728 1729
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1730

1731 1732
	if (total_rate > fifo_size)
		return -EINVAL;
1733

1734 1735
	if (total_rate == 0)
		total_rate = 1;
1736

1737
	for_each_plane_id_on_crtc(crtc, plane_id) {
1738 1739
		unsigned int rate;

1740 1741
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1742 1743 1744
			continue;
		}

1745 1746 1747
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1748 1749
	}

1750 1751 1752
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1753 1754 1755
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1756 1757

	/* spread the remainder evenly */
1758
	for_each_plane_id_on_crtc(crtc, plane_id) {
1759 1760 1761 1762 1763
		int plane_extra;

		if (fifo_left == 0)
			break;

1764
		if ((active_planes & BIT(plane_id)) == 0)
1765 1766 1767
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1768
		fifo_state->plane[plane_id] += plane_extra;
1769 1770 1771
		fifo_left -= plane_extra;
	}

1772
	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1773 1774 1775

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
1776
		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1777 1778 1779 1780
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1781 1782
}

1783 1784 1785 1786 1787 1788
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1789
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1800 1801 1802 1803 1804 1805 1806 1807
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1808 1809 1810 1811
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1812
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1813
				 int level, enum plane_id plane_id, u16 value)
1814
{
1815
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1816
	int num_levels = intel_wm_num_levels(dev_priv);
1817
	bool dirty = false;
1818

1819
	for (; level < num_levels; level++) {
1820
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1821

1822
		dirty |= raw->plane[plane_id] != value;
1823
		raw->plane[plane_id] = value;
1824
	}
1825 1826

	return dirty;
1827 1828
}

1829 1830
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1831
{
1832
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1833
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1834
	enum plane_id plane_id = plane->id;
1835
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1836
	int level;
1837
	bool dirty = false;
1838

1839
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1840 1841
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1842
	}
1843

1844
	for (level = 0; level < num_levels; level++) {
1845
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1846 1847
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1848

1849 1850
		if (wm > max_wm)
			break;
1851

1852
		dirty |= raw->plane[plane_id] != wm;
1853 1854
		raw->plane[plane_id] = wm;
	}
1855

1856
	/* mark all higher levels as invalid */
1857
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1858

1859 1860
out:
	if (dirty)
1861 1862 1863 1864 1865 1866
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1867 1868

	return dirty;
1869
}
1870

1871 1872
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1873
{
1874
	const struct g4x_pipe_wm *raw =
1875 1876 1877
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1878

1879 1880
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1881

1882
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1883
{
1884 1885 1886 1887
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1888 1889 1890 1891
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1892
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1893 1894
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1895
		to_intel_atomic_state(crtc_state->uapi.state);
1896 1897 1898
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1899 1900
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1901
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1902 1903
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1904 1905 1906
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1907
	unsigned int dirty = 0;
1908

1909 1910 1911
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1912 1913
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1914
			continue;
1915

1916
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1935
			intel_atomic_get_old_crtc_state(state, crtc);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1947
	}
1948

1949
	/* initially allow all levels */
1950
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1951 1952 1953 1954 1955
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1956
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1957

1958
	for (level = 0; level < wm_state->num_levels; level++) {
1959
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1960
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1961

1962
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1963
			break;
1964

1965 1966 1967 1968 1969 1970 1971 1972
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1973
						 raw->plane[PLANE_SPRITE0],
1974 1975
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1976

1977 1978 1979
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1980 1981
	}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1992 1993
}

1994 1995 1996
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1997
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1998
				   struct intel_crtc *crtc)
1999
{
2000
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2001
	struct intel_uncore *uncore = &dev_priv->uncore;
2002 2003
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2004 2005
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
2006
	int sprite0_start, sprite1_start, fifo_size;
2007
	u32 dsparb, dsparb2, dsparb3;
2008

2009 2010 2011
	if (!crtc_state->fifo_changed)
		return;

2012 2013 2014
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2015

2016 2017
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2018

2019 2020
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2021 2022 2023 2024 2025 2026 2027 2028 2029
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2030
	spin_lock(&uncore->lock);
2031

2032 2033
	switch (crtc->pipe) {
	case PIPE_A:
2034 2035
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2047 2048
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2049 2050
		break;
	case PIPE_B:
2051 2052
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2064 2065
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2066 2067
		break;
	case PIPE_C:
2068 2069
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2081 2082
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2083 2084 2085 2086
		break;
	default:
		break;
	}
2087

2088
	intel_uncore_posting_read_fw(uncore, DSPARB);
2089

2090
	spin_unlock(&uncore->lock);
2091 2092 2093 2094
}

#undef VLV_FIFO

2095
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2096
{
2097
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2098 2099 2100
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2101
		to_intel_atomic_state(new_crtc_state->uapi.state);
2102 2103 2104
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2105 2106
	int level;

2107
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2108 2109 2110 2111 2112 2113
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2114
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2115
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2116
		!new_crtc_state->disable_cxsr;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2135
out:
2136 2137 2138 2139
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2140
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2141
		new_crtc_state->wm.need_postvbl_update = true;
2142 2143 2144 2145

	return 0;
}

2146
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2147 2148 2149
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2150
	int num_active_pipes = 0;
2151

2152
	wm->level = dev_priv->wm.max_level;
2153 2154
	wm->cxsr = true;

2155
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2156
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2157 2158 2159 2160 2161 2162 2163

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2164
		num_active_pipes++;
2165 2166 2167
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2168
	if (num_active_pipes != 1)
2169 2170
		wm->cxsr = false;

2171
	if (num_active_pipes > 1)
2172 2173
		wm->level = VLV_WM_LEVEL_PM2;

2174
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2175
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2176 2177 2178
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2179
		if (crtc->active && wm->cxsr)
2180 2181
			wm->sr = wm_state->sr[wm->level];

2182 2183 2184 2185
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2186 2187 2188
	}
}

2189
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2190
{
2191 2192
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2193

2194
	vlv_merge_wm(dev_priv, &new_wm);
2195

2196
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2197 2198
		return;

2199
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2200 2201
		chv_set_memory_dvfs(dev_priv, false);

2202
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2203 2204
		chv_set_memory_pm5(dev_priv, false);

2205
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2206
		_intel_set_memory_cxsr(dev_priv, false);
2207

2208
	vlv_write_wm_values(dev_priv, &new_wm);
2209

2210
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2211
		_intel_set_memory_cxsr(dev_priv, true);
2212

2213
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2214 2215
		chv_set_memory_pm5(dev_priv, true);

2216
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2217 2218
		chv_set_memory_dvfs(dev_priv, true);

2219
	*old_wm = new_wm;
2220 2221
}

2222
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2223
				   struct intel_crtc *crtc)
2224
{
2225 2226 2227
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2228 2229

	mutex_lock(&dev_priv->wm.wm_mutex);
2230 2231 2232 2233 2234 2235
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2236
				    struct intel_crtc *crtc)
2237
{
2238 2239 2240
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2241 2242 2243 2244 2245

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2246
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2247 2248 2249 2250
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2251
static void i965_update_wm(struct intel_crtc *unused_crtc)
2252
{
2253
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2254
	struct intel_crtc *crtc;
2255 2256
	int srwm = 1;
	int cursor_sr = 16;
2257
	bool cxsr_enabled;
2258 2259

	/* Calc sr entries for one plane configs */
2260
	crtc = single_enabled_crtc(dev_priv);
2261 2262 2263
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2264 2265
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2266 2267
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2268 2269
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2270
		int hdisplay = crtc->config->pipe_src_w;
2271
		int cpp = fb->format->cpp[0];
2272 2273
		int entries;

2274 2275
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2276 2277 2278 2279 2280
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2281 2282 2283
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2284

2285 2286 2287
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2288
		entries = DIV_ROUND_UP(entries,
2289 2290
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2291

2292
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2293 2294 2295
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2296 2297 2298
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2299

2300
		cxsr_enabled = true;
2301
	} else {
2302
		cxsr_enabled = false;
2303
		/* Turn off self refresh if both pipes are enabled */
2304
		intel_set_memory_cxsr(dev_priv, false);
2305 2306
	}

2307 2308 2309
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2310 2311

	/* 965 has limitations... */
2312 2313 2314 2315 2316 2317
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2318
	/* update cursor SR watermark */
2319
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2320 2321 2322

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2323 2324
}

2325 2326
#undef FW_WM

2327
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2328
{
2329
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2330
	const struct intel_watermark_params *wm_info;
2331 2332
	u32 fwater_lo;
	u32 fwater_hi;
2333 2334 2335
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2336
	struct intel_crtc *crtc, *enabled = NULL;
2337

2338
	if (IS_I945GM(dev_priv))
2339
		wm_info = &i945_wm_info;
2340
	else if (!IS_GEN(dev_priv, 2))
2341 2342
		wm_info = &i915_wm_info;
	else
2343
		wm_info = &i830_a_wm_info;
2344

2345 2346
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2347
	if (intel_crtc_active(crtc)) {
2348 2349
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2350 2351 2352 2353
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2354
		if (IS_GEN(dev_priv, 2))
2355
			cpp = 4;
2356
		else
2357
			cpp = fb->format->cpp[0];
2358

2359
		planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2360
					       wm_info, fifo_size, cpp,
2361
					       pessimal_latency_ns);
2362
		enabled = crtc;
2363
	} else {
2364
		planea_wm = fifo_size - wm_info->guard_size;
2365 2366 2367 2368
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2369
	if (IS_GEN(dev_priv, 2))
2370
		wm_info = &i830_bc_wm_info;
2371

2372 2373
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2374
	if (intel_crtc_active(crtc)) {
2375 2376
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2377 2378 2379 2380
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2381
		if (IS_GEN(dev_priv, 2))
2382
			cpp = 4;
2383
		else
2384
			cpp = fb->format->cpp[0];
2385

2386
		planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2387
					       wm_info, fifo_size, cpp,
2388
					       pessimal_latency_ns);
2389 2390 2391 2392
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2393
	} else {
2394
		planeb_wm = fifo_size - wm_info->guard_size;
2395 2396 2397
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2398

2399 2400
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2401

2402
	if (IS_I915GM(dev_priv) && enabled) {
2403
		struct drm_i915_gem_object *obj;
2404

2405
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2406 2407

		/* self-refresh seems busted with untiled */
2408
		if (!i915_gem_object_is_tiled(obj))
2409 2410 2411
			enabled = NULL;
	}

2412 2413 2414 2415 2416 2417
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2418
	intel_set_memory_cxsr(dev_priv, false);
2419 2420

	/* Calc sr entries for one plane configs */
2421
	if (HAS_FW_BLC(dev_priv) && enabled) {
2422 2423
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2424 2425
		const struct drm_display_mode *pipe_mode =
			&enabled->config->hw.pipe_mode;
2426 2427
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2428 2429
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2430 2431
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2432 2433
		int entries;

2434
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2435
			cpp = 4;
2436
		else
2437
			cpp = fb->format->cpp[0];
2438

2439 2440
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2441
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2442 2443
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2444 2445 2446 2447
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2448
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2449 2450
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2451
		else
2452 2453 2454
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

2455 2456 2457
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2469 2470
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2471 2472
}

2473
static void i845_update_wm(struct intel_crtc *unused_crtc)
2474
{
2475
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2476
	struct intel_crtc *crtc;
2477
	const struct drm_display_mode *pipe_mode;
2478
	u32 fwater_lo;
2479 2480
	int planea_wm;

2481
	crtc = single_enabled_crtc(dev_priv);
2482 2483 2484
	if (crtc == NULL)
		return;

2485 2486
	pipe_mode = &crtc->config->hw.pipe_mode;
	planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2487
				       &i845_wm_info,
2488
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2489
				       4, pessimal_latency_ns);
2490 2491 2492
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

2493 2494
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2495 2496 2497 2498

	I915_WRITE(FW_BLC, fwater_lo);
}

2499
/* latency must be in 0.1us units. */
2500 2501 2502
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2503
{
2504
	unsigned int ret;
2505

2506 2507
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2508 2509 2510 2511

	return ret;
}

2512
/* latency must be in 0.1us units. */
2513 2514 2515 2516 2517
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2518
{
2519
	unsigned int ret;
2520

2521 2522
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2523
	ret = DIV_ROUND_UP(ret, 64) + 2;
2524

2525 2526 2527
	return ret;
}

2528
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2529
{
2530 2531 2532 2533 2534 2535
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2536
	if (WARN_ON(!cpp))
2537 2538 2539 2540
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2541
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2542 2543
}

2544
struct ilk_wm_maximums {
2545 2546 2547 2548
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2549 2550
};

2551 2552 2553 2554
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2555 2556
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2557
			      u32 mem_value, bool is_lp)
2558
{
2559
	u32 method1, method2;
2560
	int cpp;
2561

2562 2563 2564
	if (mem_value == 0)
		return U32_MAX;

2565
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2566 2567
		return 0;

2568
	cpp = plane_state->hw.fb->format->cpp[0];
2569

2570
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2571 2572 2573 2574

	if (!is_lp)
		return method1;

2575
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2576
				 crtc_state->hw.pipe_mode.crtc_htotal,
2577
				 drm_rect_width(&plane_state->uapi.dst),
2578
				 cpp, mem_value);
2579 2580

	return min(method1, method2);
2581 2582
}

2583 2584 2585 2586
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2587 2588
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2589
			      u32 mem_value)
2590
{
2591
	u32 method1, method2;
2592
	int cpp;
2593

2594 2595 2596
	if (mem_value == 0)
		return U32_MAX;

2597
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2598 2599
		return 0;

2600
	cpp = plane_state->hw.fb->format->cpp[0];
2601

2602 2603
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2604
				 crtc_state->hw.pipe_mode.crtc_htotal,
2605
				 drm_rect_width(&plane_state->uapi.dst),
2606
				 cpp, mem_value);
2607 2608 2609
	return min(method1, method2);
}

2610 2611 2612 2613
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2614 2615
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2616
			      u32 mem_value)
2617
{
2618 2619
	int cpp;

2620 2621 2622
	if (mem_value == 0)
		return U32_MAX;

2623
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2624 2625
		return 0;

2626
	cpp = plane_state->hw.fb->format->cpp[0];
2627

2628
	return ilk_wm_method2(crtc_state->pixel_rate,
2629
			      crtc_state->hw.pipe_mode.crtc_htotal,
2630
			      drm_rect_width(&plane_state->uapi.dst),
2631
			      cpp, mem_value);
2632 2633
}

2634
/* Only for WM_LP. */
2635 2636
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2637
			      u32 pri_val)
2638
{
2639
	int cpp;
2640

2641
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2642 2643
		return 0;

2644
	cpp = plane_state->hw.fb->format->cpp[0];
2645

2646 2647
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2648 2649
}

2650 2651
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2652
{
2653
	if (INTEL_GEN(dev_priv) >= 8)
2654
		return 3072;
2655
	else if (INTEL_GEN(dev_priv) >= 7)
2656 2657 2658 2659 2660
		return 768;
	else
		return 512;
}

2661 2662 2663
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2664
{
2665
	if (INTEL_GEN(dev_priv) >= 8)
2666 2667
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2668
	else if (INTEL_GEN(dev_priv) >= 7)
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2679 2680
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2681
{
2682
	if (INTEL_GEN(dev_priv) >= 7)
2683 2684 2685 2686 2687
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2688
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2689
{
2690
	if (INTEL_GEN(dev_priv) >= 8)
2691 2692 2693 2694 2695
		return 31;
	else
		return 15;
}

2696
/* Calculate the maximum primary/sprite plane watermark */
2697
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2698
				     int level,
2699
				     const struct intel_wm_config *config,
2700 2701 2702
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2703
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2704 2705

	/* if sprites aren't enabled, sprites get nothing */
2706
	if (is_sprite && !config->sprites_enabled)
2707 2708 2709
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2710
	if (level == 0 || config->num_pipes_active > 1) {
2711
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2712 2713 2714 2715 2716 2717

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2718
		if (INTEL_GEN(dev_priv) <= 6)
2719 2720 2721
			fifo_size /= 2;
	}

2722
	if (config->sprites_enabled) {
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2734
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2735 2736 2737
}

/* Calculate the maximum cursor plane watermark */
2738
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2739 2740
				      int level,
				      const struct intel_wm_config *config)
2741 2742
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2743
	if (level > 0 && config->num_pipes_active > 1)
2744 2745 2746
		return 64;

	/* otherwise just report max that registers can hold */
2747
	return ilk_cursor_wm_reg_max(dev_priv, level);
2748 2749
}

2750
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2751 2752 2753
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2754
				    struct ilk_wm_maximums *max)
2755
{
2756 2757 2758 2759
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2760 2761
}

2762
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2763 2764 2765
					int level,
					struct ilk_wm_maximums *max)
{
2766 2767 2768 2769
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2770 2771
}

2772
static bool ilk_validate_wm_level(int level,
2773
				  const struct ilk_wm_maximums *max,
2774
				  struct intel_wm_level *result)
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2804 2805 2806
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2807 2808 2809 2810 2811 2812
		result->enable = true;
	}

	return ret;
}

2813
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2814
				 const struct intel_crtc *crtc,
2815
				 int level,
2816
				 struct intel_crtc_state *crtc_state,
2817 2818 2819
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2820
				 struct intel_wm_level *result)
2821
{
2822 2823 2824
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2825 2826 2827 2828 2829 2830 2831 2832

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2833
	if (pristate) {
2834
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2835
						     pri_latency, level);
2836
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2837 2838 2839
	}

	if (sprstate)
2840
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2841 2842

	if (curstate)
2843
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2844

2845 2846 2847
	result->enable = true;
}

2848
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2849
				  u16 wm[8])
2850
{
2851 2852
	struct intel_uncore *uncore = &dev_priv->uncore;

2853
	if (INTEL_GEN(dev_priv) >= 9) {
2854
		u32 val;
2855
		int ret, i;
2856
		int level, max_level = ilk_wm_max_level(dev_priv);
2857 2858 2859 2860 2861

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2862
					     &val, NULL);
2863 2864

		if (ret) {
2865 2866
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2882
					     &val, NULL);
2883
		if (ret) {
2884 2885
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2910
		/*
2911
		 * WaWmMemoryReadLatency:skl+,glk
2912
		 *
2913
		 * punit doesn't take into account the read latency so we need
2914 2915
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2916
		 */
2917 2918 2919 2920 2921
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2922
				wm[level] += 2;
2923
			}
2924 2925
		}

2926 2927 2928 2929 2930 2931
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2932
		if (dev_priv->dram_info.is_16gb_dimm)
2933 2934
			wm[0] += 1;

2935
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2936
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2937 2938 2939 2940

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2941 2942 2943 2944
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2945
	} else if (INTEL_GEN(dev_priv) >= 6) {
2946
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2947 2948 2949 2950 2951

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2952
	} else if (INTEL_GEN(dev_priv) >= 5) {
2953
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2954 2955 2956 2957 2958

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2959 2960
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2961 2962 2963
	}
}

2964
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2965
				       u16 wm[5])
2966 2967
{
	/* ILK sprite LP0 latency is 1300 ns */
2968
	if (IS_GEN(dev_priv, 5))
2969 2970 2971
		wm[0] = 13;
}

2972
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2973
				       u16 wm[5])
2974 2975
{
	/* ILK cursor LP0 latency is 1300 ns */
2976
	if (IS_GEN(dev_priv, 5))
2977 2978 2979
		wm[0] = 13;
}

2980
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2981 2982
{
	/* how many WM levels are we expecting */
2983
	if (INTEL_GEN(dev_priv) >= 9)
2984
		return 7;
2985
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2986
		return 4;
2987
	else if (INTEL_GEN(dev_priv) >= 6)
2988
		return 3;
2989
	else
2990 2991
		return 2;
}
2992

2993
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2994
				   const char *name,
2995
				   const u16 wm[8])
2996
{
2997
	int level, max_level = ilk_wm_max_level(dev_priv);
2998 2999 3000 3001 3002

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
3003 3004 3005
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
3006 3007 3008
			continue;
		}

3009 3010 3011 3012
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
3013
		if (INTEL_GEN(dev_priv) >= 9)
3014 3015
			latency *= 10;
		else if (level > 0)
3016 3017
			latency *= 5;

3018 3019 3020
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3021 3022 3023
	}
}

3024
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3025
				    u16 wm[5], u16 min)
3026
{
3027
	int level, max_level = ilk_wm_max_level(dev_priv);
3028 3029 3030 3031 3032 3033

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3034
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3035 3036 3037 3038

	return true;
}

3039
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3054 3055
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3056 3057 3058
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3059 3060
}

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3083 3084
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3085 3086 3087 3088 3089
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3090
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3091
{
3092
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3093 3094 3095 3096 3097 3098

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3099
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3100
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3101

3102 3103 3104
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3105

3106
	if (IS_GEN(dev_priv, 6)) {
3107
		snb_wm_latency_quirk(dev_priv);
3108 3109
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3110 3111
}

3112
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3113
{
3114
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3115
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3116 3117
}

3118
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3130
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3131 3132 3133

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3134
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3135 3136 3137 3138 3139 3140
		return false;
	}

	return true;
}

3141
/* Compute new watermarks for the pipe */
3142
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3143
{
3144
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3145
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3146
	struct intel_pipe_wm *pipe_wm;
3147 3148
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3149 3150 3151
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3152
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3153
	struct ilk_wm_maximums max;
3154

3155
	pipe_wm = &crtc_state->wm.ilk.optimal;
3156

3157 3158 3159 3160 3161 3162 3163
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3164 3165
	}

3166
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3167
	if (sprstate) {
3168 3169 3170 3171
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3172 3173
	}

3174 3175
	usable_level = max_level;

3176
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3177
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3178
		usable_level = 1;
3179 3180

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3181
	if (pipe_wm->sprites_scaled)
3182
		usable_level = 0;
3183

3184
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3185
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3186
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3187

3188
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3189
		return -EINVAL;
3190

3191
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3192

3193 3194
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3195

3196
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3197
				     pristate, sprstate, curstate, wm);
3198 3199 3200 3201 3202 3203

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3204 3205 3206 3207
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3208 3209
	}

3210
	return 0;
3211 3212
}

3213 3214 3215 3216 3217
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3218
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3219
{
3220
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3221
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3222
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3223
	struct intel_atomic_state *intel_state =
3224
		to_intel_atomic_state(newstate->uapi.state);
3225 3226 3227
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3228
	int level, max_level = ilk_wm_max_level(dev_priv);
3229 3230 3231 3232 3233 3234

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3235
	*a = newstate->wm.ilk.optimal;
3236
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3237
	    intel_state->skip_intermediate_wm)
3238 3239
		return 0;

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3261
	if (!ilk_validate_pipe_wm(dev_priv, a))
3262 3263 3264 3265 3266 3267
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3268 3269
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3270 3271 3272 3273

	return 0;
}

3274 3275 3276
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3277
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3278 3279 3280 3281 3282
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3283 3284
	ret_wm->enable = true;

3285
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3286
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3287 3288 3289 3290
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3291

3292 3293 3294 3295 3296
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3297
		if (!wm->enable)
3298
			ret_wm->enable = false;
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3310
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3311
			 const struct intel_wm_config *config,
3312
			 const struct ilk_wm_maximums *max,
3313 3314
			 struct intel_pipe_wm *merged)
{
3315
	int level, max_level = ilk_wm_max_level(dev_priv);
3316
	int last_enabled_level = max_level;
3317

3318
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3319
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3320
	    config->num_pipes_active > 1)
3321
		last_enabled_level = 0;
3322

3323
	/* ILK: FBC WM must be disabled always */
3324
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3325 3326 3327 3328 3329

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3330
		ilk_merge_wm_level(dev_priv, level, wm);
3331

3332 3333 3334 3335 3336
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3337 3338 3339 3340 3341 3342

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3343 3344
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3345 3346 3347
			wm->fbc_val = 0;
		}
	}
3348 3349 3350 3351 3352 3353 3354

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3355
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3356
	    intel_fbc_is_active(dev_priv)) {
3357 3358 3359 3360 3361 3362
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3363 3364
}

3365 3366 3367 3368 3369 3370
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3371
/* The value we need to program into the WM_LPx latency field */
3372 3373
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3374
{
3375
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3376 3377 3378 3379 3380
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3381
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3382
				   const struct intel_pipe_wm *merged,
3383
				   enum intel_ddb_partitioning partitioning,
3384
				   struct ilk_wm_values *results)
3385
{
3386 3387
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3388

3389
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3390
	results->partitioning = partitioning;
3391

3392
	/* LP1+ register values */
3393
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3394
		const struct intel_wm_level *r;
3395

3396
		level = ilk_wm_lp_to_level(wm_lp, merged);
3397

3398
		r = &merged->wm[level];
3399

3400 3401 3402 3403 3404
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3405
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3406 3407 3408
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3409 3410 3411
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3412
		if (INTEL_GEN(dev_priv) >= 8)
3413 3414 3415 3416 3417 3418
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3419 3420 3421 3422
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3423
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3424
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3425 3426 3427
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3428
	}
3429

3430
	/* LP0 register values */
3431
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3432
		enum pipe pipe = intel_crtc->pipe;
3433 3434
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3435

3436
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3437
			continue;
3438

3439 3440 3441 3442
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3443 3444 3445
	}
}

3446 3447
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3448 3449 3450 3451
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3452
{
3453
	int level, max_level = ilk_wm_max_level(dev_priv);
3454
	int level1 = 0, level2 = 0;
3455

3456 3457 3458 3459 3460
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3461 3462
	}

3463 3464
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3465 3466 3467
			return r2;
		else
			return r1;
3468
	} else if (level1 > level2) {
3469 3470 3471 3472 3473 3474
		return r1;
	} else {
		return r2;
	}
}

3475 3476 3477 3478 3479 3480 3481
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3482
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3483 3484
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3485 3486 3487 3488 3489
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3490
	for_each_pipe(dev_priv, pipe) {
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3528 3529
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3530
{
3531
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3532
	bool changed = false;
3533

3534 3535 3536
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3537
		changed = true;
3538 3539 3540 3541
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3542
		changed = true;
3543 3544 3545 3546
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3547
		changed = true;
3548
	}
3549

3550 3551 3552 3553
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3554

3555 3556 3557 3558 3559 3560 3561
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3562 3563
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3564
{
3565
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3566
	unsigned int dirty;
3567
	u32 val;
3568

3569
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3570 3571 3572 3573 3574
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3575
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3576
		I915_WRITE(WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3577
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3578
		I915_WRITE(WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3579
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3580
		I915_WRITE(WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3581

3582
	if (dirty & WM_DIRTY_DDB) {
3583
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3598 3599
	}

3600
	if (dirty & WM_DIRTY_FBC) {
3601 3602 3603 3604 3605 3606 3607 3608
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3609 3610 3611 3612
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3613
	if (INTEL_GEN(dev_priv) >= 7) {
3614 3615 3616 3617 3618
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3619

3620
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3621
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3622
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3623
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3624
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3625
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3626 3627

	dev_priv->wm.hw = *results;
3628 3629
}

3630
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3631 3632 3633 3634
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3635
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3636
{
3637 3638 3639
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3640

3641 3642 3643 3644
	for (i = 0; i < max_slices; i++) {
		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
			enabled_slices_mask |= BIT(i);
	}
3645

3646
	return enabled_slices_mask;
3647 3648
}

3649 3650 3651 3652
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3653
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3654
{
3655
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3656 3657
}

3658 3659 3660
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3661 3662
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3663 3664
}

3665 3666 3667
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3680
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3681
	} else if (IS_GEN(dev_priv, 11)) {
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
3709
static int
3710
intel_enable_sagv(struct drm_i915_private *dev_priv)
3711 3712 3713
{
	int ret;

3714 3715 3716 3717
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3718 3719
		return 0;

3720
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3721 3722 3723
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3724
	/* We don't need to wait for SAGV when enabling */
3725 3726 3727

	/*
	 * Some skl systems, pre-release machines in particular,
3728
	 * don't actually have SAGV.
3729
	 */
3730
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3731
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3732
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3733 3734
		return 0;
	} else if (ret < 0) {
3735
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3736 3737 3738
		return ret;
	}

3739
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3740 3741 3742
	return 0;
}

3743
static int
3744
intel_disable_sagv(struct drm_i915_private *dev_priv)
3745
{
3746
	int ret;
3747

3748 3749 3750 3751
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3752 3753
		return 0;

3754
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3755
	/* bspec says to keep retrying for at least 1 ms */
3756 3757 3758 3759
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3760 3761
	/*
	 * Some skl systems, pre-release machines in particular,
3762
	 * don't actually have SAGV.
3763
	 */
3764
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3765
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3766
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3767
		return 0;
3768
	} else if (ret < 0) {
3769
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3770
		return ret;
3771 3772
	}

3773
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3774 3775 3776
	return 0;
}

3777 3778 3779
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3780
	const struct intel_bw_state *new_bw_state;
3781 3782
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3783

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;

	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3798
	if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3799
		intel_disable_sagv(dev_priv);
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to mask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;

	/*
	 * If new mask is zero - means there is nothing to mask,
	 * we can only unmask, which should be done in unmask.
	 */
	if (!new_mask)
		return;

	/*
	 * Restrict required qgv points before updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3826 3827 3828 3829 3830
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3831
	const struct intel_bw_state *new_bw_state;
3832 3833
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;
3844

3845 3846 3847 3848
	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3849
	if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3850
		intel_enable_sagv(dev_priv);
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to unmask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = new_bw_state->qgv_points_mask;

	/*
	 * Allow required qgv points after updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3870 3871
}

3872
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3873
{
3874
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3875
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3876
	enum plane_id plane_id;
3877

3878 3879 3880
	if (!intel_has_sagv(dev_priv))
		return false;

3881
	if (!crtc_state->hw.active)
3882
		return true;
3883

3884
	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3885 3886
		return false;

3887
	for_each_plane_id_on_crtc(crtc, plane_id) {
3888
		const struct skl_plane_wm *wm =
3889 3890
			&crtc_state->wm.skl.optimal.planes[plane_id];
		int level;
3891

3892
		/* Skip this plane if it's not enabled */
3893
		if (!wm->wm[0].plane_en)
3894 3895 3896
			continue;

		/* Find the highest enabled wm level for this plane */
3897
		for (level = ilk_wm_max_level(dev_priv);
3898
		     !wm->wm[level].plane_en; --level)
3899 3900 3901
		     { }

		/*
3902 3903
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3904
		 * can't enable SAGV.
3905
		 */
3906
		if (!wm->wm[level].can_sagv)
3907 3908 3909 3910 3911 3912
			return false;
	}

	return true;
}

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum plane_id plane_id;

	if (!crtc_state->hw.active)
		return true;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		const struct skl_ddb_entry *plane_alloc =
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
		const struct skl_plane_wm *wm =
			&crtc_state->wm.skl.optimal.planes[plane_id];

		if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
			return false;
	}

	return true;
}

3934 3935
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
3936 3937 3938 3939 3940 3941 3942
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	if (INTEL_GEN(dev_priv) >= 12)
		return tgl_crtc_can_enable_sagv(crtc_state);
	else
		return skl_crtc_can_enable_sagv(crtc_state);
3943 3944
}

3945 3946
bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
			   const struct intel_bw_state *bw_state)
3947
{
3948 3949
	if (INTEL_GEN(dev_priv) < 11 &&
	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3950 3951
		return false;

3952 3953 3954 3955 3956
	return bw_state->pipe_sagv_reject == 0;
}

static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
3957
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3958
	int ret;
3959
	struct intel_crtc *crtc;
3960
	struct intel_crtc_state *new_crtc_state;
3961 3962 3963
	struct intel_bw_state *new_bw_state = NULL;
	const struct intel_bw_state *old_bw_state = NULL;
	int i;
3964

3965 3966 3967 3968 3969
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
3970

3971
		old_bw_state = intel_atomic_get_old_bw_state(state);
3972

3973 3974 3975 3976 3977
		if (intel_crtc_can_enable_sagv(new_crtc_state))
			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
		else
			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
	}
3978

3979 3980
	if (!new_bw_state)
		return 0;
3981

3982 3983
	new_bw_state->active_pipes =
		intel_calc_active_pipes(state, old_bw_state->active_pipes);
3984

3985 3986 3987 3988 3989 3990
	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;

		/*
		 * We store use_sagv_wm in the crtc state rather than relying on
		 * that bw state since we have no convenient way to get at the
		 * latter from the plane commit hooks (especially in the legacy
		 * cursor case)
		 */
		pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
				       intel_can_enable_sagv(dev_priv, new_bw_state);
	}

4005 4006
	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

	return 0;
4017 4018
}

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

4040
u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
4041 4042
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
4043
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
4044 4045 4046 4047 4048 4049 4050

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
			    const struct skl_ddb_entry *entry)
{
	u32 slice_mask = 0;
	u16 ddb_size = intel_get_ddb_size(dev_priv);
	u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u16 slice_size = ddb_size / num_supported_slices;
	u16 start_slice;
	u16 end_slice;

	if (!skl_ddb_entry_size(entry))
		return 0;

	start_slice = entry->start / slice_size;
	end_slice = (entry->end - 1) / slice_size;

	/*
	 * Per plane DDB entry can in a really worst case be on multiple slices
	 * but single entry is anyway contigious.
	 */
	while (start_slice <= end_slice) {
		slice_mask |= BIT(start_slice);
		start_slice++;
	}

	return slice_mask;
}

4079
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4080
				  u8 active_pipes);
4081

4082
static int
4083
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
4084
				   const struct intel_crtc_state *crtc_state,
4085
				   const u64 total_data_rate,
4086 4087
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
4088
{
4089
	struct drm_atomic_state *state = crtc_state->uapi.state;
4090
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4091
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
4092
	const struct intel_crtc *crtc;
4093
	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
4094
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
4095 4096 4097 4098 4099
	struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(intel_state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(intel_state);
	u8 active_pipes = new_dbuf_state->active_pipes;
4100
	u16 ddb_size;
4101
	u32 ddb_range_size;
4102
	u32 i;
4103 4104 4105 4106 4107
	u32 dbuf_slice_mask;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
4108 4109 4110
	int ret;

	*num_active = hweight8(active_pipes);
4111

4112
	if (!crtc_state->hw.active) {
4113 4114
		alloc->start = 0;
		alloc->end = 0;
4115
		return 0;
4116 4117
	}

4118
	ddb_size = intel_get_ddb_size(dev_priv);
4119

4120
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4121

4122
	/*
4123 4124 4125 4126 4127 4128
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
4129
	 */
4130 4131
	if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes &&
	    !dev_priv->wm.distrust_bios_wm) {
4132 4133 4134
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
4135 4136
		 *
		 * FIXME get rid of this mess
4137 4138
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4139
		return 0;
4140
	}
4141

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

4162 4163 4164 4165 4166
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
4167
	total_slice_mask = dbuf_slice_mask;
4168
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
4169 4170
		const struct drm_display_mode *pipe_mode =
			&crtc_state->hw.pipe_mode;
4171
		enum pipe pipe = crtc->pipe;
4172
		int hdisplay, vdisplay;
4173
		u32 pipe_dbuf_slice_mask;
4174

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
		if (!crtc_state->hw.active)
			continue;

		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
							       active_pipes);

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4198 4199
			continue;

4200
		drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
4201 4202

		total_width_in_range += hdisplay;
4203 4204

		if (pipe < for_pipe)
4205
			width_before_pipe_in_range += hdisplay;
4206 4207 4208 4209
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

4210 4211 4212 4213
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
4214 4215 4216 4217 4218 4219 4220
	new_dbuf_state->enabled_slices = total_slice_mask | BIT(DBUF_S1);

	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
	}
4221 4222 4223 4224 4225 4226 4227 4228

	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
	end = ddb_range_size *
		(width_before_pipe_in_range + pipe_width) / total_width_in_range;

	alloc->start = offset + start;
	alloc->end = offset + end;

4229 4230 4231 4232
	drm_dbg_kms(&dev_priv->drm,
		    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
		    for_crtc->base.id, for_crtc->name,
		    dbuf_slice_mask, alloc->start, alloc->end, active_pipes);
4233 4234

	return 0;
4235 4236
}

4237 4238 4239 4240 4241
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4242
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4243
				 int level,
4244
				 unsigned int latency,
4245 4246 4247 4248 4249 4250 4251
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4252
{
4253
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4264
	drm_WARN_ON(&dev_priv->drm, ret);
4265 4266

	for (level = 0; level <= max_level; level++) {
4267 4268 4269
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4270 4271 4272 4273 4274
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4275

4276
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4277 4278
}

4279 4280
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4281
{
4282

4283 4284
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4285

4286 4287
	if (entry->end)
		entry->end += 1;
4288 4289
}

4290 4291 4292 4293
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4294 4295
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4296
{
4297 4298
	u32 val, val2;
	u32 fourcc = 0;
4299 4300 4301 4302

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4303
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4304 4305 4306 4307 4308 4309
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4310 4311 4312 4313
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4314

4315 4316 4317 4318 4319
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4320
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4321

4322 4323
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4324 4325 4326 4327
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4328 4329 4330
	}
}

4331 4332 4333
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4334
{
4335 4336 4337
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4338
	intel_wakeref_t wakeref;
4339
	enum plane_id plane_id;
4340

4341
	power_domain = POWER_DOMAIN_PIPE(pipe);
4342 4343
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4344
		return;
4345

4346 4347 4348 4349 4350
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4351

4352
	intel_display_power_put(dev_priv, power_domain, wakeref);
4353
}
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4371
static uint_fixed_16_16_t
4372 4373
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4374
{
4375
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4376
	u32 src_w, src_h, dst_w, dst_h;
4377 4378
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4379

4380 4381
	if (drm_WARN_ON(&dev_priv->drm,
			!intel_wm_plane_visible(crtc_state, plane_state)))
4382
		return u32_to_fixed16(0);
4383

4384 4385 4386 4387 4388 4389 4390
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4391 4392 4393 4394
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4395

4396 4397 4398 4399
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4400

4401
	return mul_fixed16(downscale_w, downscale_h);
4402 4403
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4419
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4420 4421 4422 4423 4424
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4425 4426
			[PIPE_A] = BIT(DBUF_S1),
		},
4427 4428 4429 4430
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4431 4432
			[PIPE_B] = BIT(DBUF_S1),
		},
4433 4434 4435 4436 4437
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4438 4439
			[PIPE_B] = BIT(DBUF_S2),
		},
4440 4441 4442 4443
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4444 4445
			[PIPE_C] = BIT(DBUF_S2),
		},
4446 4447 4448 4449 4450
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4451 4452
			[PIPE_C] = BIT(DBUF_S2),
		},
4453 4454 4455 4456 4457
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4458 4459
			[PIPE_C] = BIT(DBUF_S2),
		},
4460 4461 4462 4463 4464 4465
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4466 4467
			[PIPE_C] = BIT(DBUF_S2),
		},
4468
	},
4469
	{}
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4482
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4483 4484 4485 4486 4487
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4488 4489
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4490 4491 4492 4493
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4494 4495
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4496 4497 4498 4499 4500
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4501 4502
			[PIPE_B] = BIT(DBUF_S1),
		},
4503 4504 4505 4506
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4507 4508
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4509 4510 4511 4512 4513
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4514 4515
			[PIPE_C] = BIT(DBUF_S2),
		},
4516 4517 4518 4519 4520
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4521 4522
			[PIPE_C] = BIT(DBUF_S2),
		},
4523 4524 4525 4526 4527 4528
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4529 4530
			[PIPE_C] = BIT(DBUF_S2),
		},
4531 4532 4533 4534
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4535 4536
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4537 4538 4539 4540 4541
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4542 4543
			[PIPE_D] = BIT(DBUF_S2),
		},
4544 4545 4546 4547 4548
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4549 4550
			[PIPE_D] = BIT(DBUF_S2),
		},
4551 4552 4553 4554 4555 4556
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4557 4558
			[PIPE_D] = BIT(DBUF_S2),
		},
4559 4560 4561 4562 4563
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4564 4565
			[PIPE_D] = BIT(DBUF_S2),
		},
4566 4567 4568 4569 4570 4571
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4572 4573
			[PIPE_D] = BIT(DBUF_S2),
		},
4574 4575 4576 4577 4578 4579
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4580 4581
			[PIPE_D] = BIT(DBUF_S2),
		},
4582 4583 4584 4585 4586 4587 4588
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4589 4590
			[PIPE_D] = BIT(DBUF_S2),
		},
4591
	},
4592
	{}
4593 4594
};

4595 4596
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4597 4598 4599
{
	int i;

4600
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4612
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4626
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4627 4628
}

4629
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4630
{
4631
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4632 4633 4634
}

static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4635
				  u8 active_pipes)
4636 4637 4638 4639 4640 4641
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4642
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4643
	else if (IS_GEN(dev_priv, 11))
4644
		return icl_compute_dbuf_slices(pipe, active_pipes);
4645 4646 4647 4648
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
4649
	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4650 4651
}

4652
static u64
4653 4654
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4655
			     int color_plane)
4656
{
4657
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4658
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4659 4660
	u32 data_rate;
	u32 width = 0, height = 0;
4661
	uint_fixed_16_16_t down_scale_amount;
4662
	u64 rate;
4663

4664
	if (!plane_state->uapi.visible)
4665
		return 0;
4666

4667
	if (plane->id == PLANE_CURSOR)
4668
		return 0;
4669 4670

	if (color_plane == 1 &&
4671
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4672
		return 0;
4673

4674 4675 4676 4677 4678
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4679 4680
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4681

4682
	/* UV plane does 1/2 pixel sub-sampling */
4683
	if (color_plane == 1) {
4684 4685
		width /= 2;
		height /= 2;
4686 4687
	}

4688
	data_rate = width * height;
4689

4690
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4691

4692 4693
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4694
	rate *= fb->format->cpp[color_plane];
4695
	return rate;
4696 4697
}

4698
static u64
4699 4700
skl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4701
{
4702 4703
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4704
	const struct intel_plane_state *plane_state;
4705
	struct intel_plane *plane;
4706
	u64 total_data_rate = 0;
4707 4708
	enum plane_id plane_id;
	int i;
4709

4710
	/* Calculate and cache data rate for each plane */
4711 4712 4713 4714 4715
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4716

4717
		/* packed/y */
4718 4719
		crtc_state->plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4720

4721
		/* uv-plane */
4722 4723 4724 4725 4726 4727 4728
		crtc_state->uv_plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 1);
	}

	for_each_plane_id_on_crtc(crtc, plane_id) {
		total_data_rate += crtc_state->plane_data_rate[plane_id];
		total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
4729 4730 4731 4732 4733
	}

	return total_data_rate;
}

4734
static u64
4735 4736
icl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4737
{
4738 4739
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4740
	const struct intel_plane_state *plane_state;
4741
	struct intel_plane *plane;
4742
	u64 total_data_rate = 0;
4743 4744
	enum plane_id plane_id;
	int i;
4745 4746

	/* Calculate and cache data rate for each plane */
4747 4748 4749 4750 4751
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4752

4753
		if (!plane_state->planar_linked_plane) {
4754 4755
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4756 4757 4758 4759 4760
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4761
			 * intel_atomic_crtc_state_for_each_plane_state(),
4762 4763 4764 4765
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4766
			if (plane_state->planar_slave)
4767 4768 4769
				continue;

			/* Y plane rate is calculated on the slave */
4770
			y_plane_id = plane_state->planar_linked_plane->id;
4771 4772
			crtc_state->plane_data_rate[y_plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4773

4774 4775
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4776 4777 4778
		}
	}

4779 4780 4781
	for_each_plane_id_on_crtc(crtc, plane_id)
		total_data_rate += crtc_state->plane_data_rate[plane_id];

4782 4783 4784
	return total_data_rate;
}

4785 4786 4787 4788 4789
static const struct skl_wm_level *
skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
		   enum plane_id plane_id,
		   int level)
{
4790 4791 4792 4793 4794
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];

	if (level == 0 && pipe_wm->use_sagv_wm)
		return &wm->sagv_wm0;
4795 4796 4797 4798

	return &wm->wm[level];
}

4799
static int
4800 4801
skl_allocate_pipe_ddb(struct intel_atomic_state *state,
		      struct intel_crtc *crtc)
4802
{
4803 4804
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4805
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4806
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4807 4808 4809
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4810
	u64 total_data_rate;
4811
	enum plane_id plane_id;
4812
	int num_active;
4813
	u32 blocks;
4814
	int level;
4815
	int ret;
4816

4817
	/* Clear the partitioning for disabled planes. */
4818 4819
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4820

4821
	if (!crtc_state->hw.active) {
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
		struct intel_atomic_state *state =
			to_intel_atomic_state(crtc_state->uapi.state);
		struct intel_dbuf_state *new_dbuf_state =
			intel_atomic_get_new_dbuf_state(state);
		const struct intel_dbuf_state *old_dbuf_state =
			intel_atomic_get_old_dbuf_state(state);

		/*
		 * FIXME hack to make sure we compute this sensibly when
		 * turning off all the pipes. Otherwise we leave it at
		 * whatever we had previously, and then runtime PM will
		 * mess it up by turning off all but S1. Remove this
		 * once the dbuf state computation flow becomes sane.
		 */
		if (new_dbuf_state->active_pipes == 0) {
			new_dbuf_state->enabled_slices = BIT(DBUF_S1);

			if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
				ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
				if (ret)
					return ret;
			}
		}

4846
		alloc->start = alloc->end = 0;
4847 4848 4849
		return 0;
	}

4850 4851
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4852
			icl_get_total_relative_data_rate(state, crtc);
4853
	else
4854
		total_data_rate =
4855
			skl_get_total_relative_data_rate(state, crtc);
4856

4857 4858 4859 4860 4861 4862
	ret = skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state,
						 total_data_rate,
						 alloc, &num_active);
	if (ret)
		return ret;

4863
	alloc_size = skl_ddb_entry_size(alloc);
4864
	if (alloc_size == 0)
4865
		return 0;
4866

4867
	/* Allocate fixed number of blocks for cursor. */
4868
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4869
	alloc_size -= total[PLANE_CURSOR];
4870
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4871
		alloc->end - total[PLANE_CURSOR];
4872
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4873 4874 4875

	if (total_data_rate == 0)
		return 0;
4876

4877
	/*
4878 4879
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4880
	 */
4881
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4882
		blocks = 0;
4883
		for_each_plane_id_on_crtc(crtc, plane_id) {
4884
			const struct skl_plane_wm *wm =
4885
				&crtc_state->wm.skl.optimal.planes[plane_id];
4886 4887

			if (plane_id == PLANE_CURSOR) {
4888
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4889 4890
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4891 4892 4893
					blocks = U32_MAX;
					break;
				}
4894
				continue;
4895
			}
4896

4897 4898
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4899 4900
		}

4901
		if (blocks <= alloc_size) {
4902 4903 4904
			alloc_size -= blocks;
			break;
		}
4905 4906
	}

4907
	if (level < 0) {
4908 4909 4910 4911
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4912 4913 4914
		return -EINVAL;
	}

4915
	/*
4916 4917 4918
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4919
	 */
4920
	for_each_plane_id_on_crtc(crtc, plane_id) {
4921
		const struct skl_plane_wm *wm =
4922
			&crtc_state->wm.skl.optimal.planes[plane_id];
4923 4924
		u64 rate;
		u16 extra;
4925

4926
		if (plane_id == PLANE_CURSOR)
4927 4928
			continue;

4929
		/*
4930 4931
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4932
		 */
4933 4934
		if (total_data_rate == 0)
			break;
4935

4936
		rate = crtc_state->plane_data_rate[plane_id];
4937 4938 4939
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4940
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4941 4942
		alloc_size -= extra;
		total_data_rate -= rate;
4943

4944 4945
		if (total_data_rate == 0)
			break;
4946

4947
		rate = crtc_state->uv_plane_data_rate[plane_id];
4948 4949 4950
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4951
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4952 4953 4954
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4955
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4956 4957 4958

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4959
	for_each_plane_id_on_crtc(crtc, plane_id) {
4960
		struct skl_ddb_entry *plane_alloc =
4961
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4962
		struct skl_ddb_entry *uv_plane_alloc =
4963
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4964 4965 4966 4967

		if (plane_id == PLANE_CURSOR)
			continue;

4968
		/* Gen11+ uses a separate plane for UV watermarks */
4969 4970
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4971 4972 4973 4974 4975 4976 4977

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4978

4979 4980 4981 4982
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4983
		}
4984
	}
4985

4986 4987 4988 4989 4990 4991 4992
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4993
		for_each_plane_id_on_crtc(crtc, plane_id) {
4994
			struct skl_plane_wm *wm =
4995
				&crtc_state->wm.skl.optimal.planes[plane_id];
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
5012

5013
			/*
5014
			 * Wa_1408961008:icl, ehl
5015 5016
			 * Underruns with WM1+ disabled
			 */
5017
			if (IS_GEN(dev_priv, 11) &&
5018 5019
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
5020 5021
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5022
			}
5023 5024 5025 5026 5027 5028 5029
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
5030
	for_each_plane_id_on_crtc(crtc, plane_id) {
5031
		struct skl_plane_wm *wm =
5032
			&crtc_state->wm.skl.optimal.planes[plane_id];
5033

5034
		if (wm->trans_wm.plane_res_b >= total[plane_id])
5035
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
5036 5037
	}

5038
	return 0;
5039 5040
}

5041 5042
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5043
 * for the read latency) and cpp should always be <= 8, so that
5044 5045 5046
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
5047
static uint_fixed_16_16_t
5048 5049
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
5050
{
5051
	u32 wm_intermediate_val;
5052
	uint_fixed_16_16_t ret;
5053 5054

	if (latency == 0)
5055
		return FP_16_16_MAX;
5056

5057
	wm_intermediate_val = latency * pixel_rate * cpp;
5058
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5059

5060
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5061 5062
		ret = add_fixed16_u32(ret, 1);

5063 5064 5065
	return ret;
}

5066 5067 5068
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
5069
{
5070
	u32 wm_intermediate_val;
5071
	uint_fixed_16_16_t ret;
5072 5073

	if (latency == 0)
5074
		return FP_16_16_MAX;
5075 5076

	wm_intermediate_val = latency * pixel_rate;
5077 5078
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
5079
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5080 5081 5082
	return ret;
}

5083
static uint_fixed_16_16_t
5084
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5085
{
5086
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5087 5088
	u32 pixel_rate;
	u32 crtc_htotal;
5089 5090
	uint_fixed_16_16_t linetime_us;

5091
	if (!crtc_state->hw.active)
5092
		return u32_to_fixed16(0);
5093

5094
	pixel_rate = crtc_state->pixel_rate;
5095

5096
	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5097
		return u32_to_fixed16(0);
5098

5099
	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5100
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5101 5102 5103 5104

	return linetime_us;
}

5105
static u32
5106 5107
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
5108
{
5109
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5110
	u64 adjusted_pixel_rate;
5111
	uint_fixed_16_16_t downscale_amount;
5112 5113

	/* Shouldn't reach here on disabled planes... */
5114 5115
	if (drm_WARN_ON(&dev_priv->drm,
			!intel_wm_plane_visible(crtc_state, plane_state)))
5116 5117 5118 5119 5120 5121
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
5122 5123
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
5124

5125 5126
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
5127 5128
}

5129
static int
5130 5131 5132 5133 5134
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
5135
{
5136
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5137
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5138
	u32 interm_pbpl;
5139

5140
	/* only planar format has two planes */
5141 5142
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5143 5144
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
5145 5146 5147
		return -EINVAL;
	}

5148 5149 5150 5151 5152 5153 5154
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5155
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5156

5157
	wp->width = width;
5158
	if (color_plane == 1 && wp->is_planar)
5159 5160
		wp->width /= 2;

5161 5162
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
5163

5164
	if (INTEL_GEN(dev_priv) >= 11 &&
5165
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5166 5167 5168 5169
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

5170
	if (drm_rotation_90_or_270(rotation)) {
5171
		switch (wp->cpp) {
5172
		case 1:
5173
			wp->y_min_scanlines = 16;
5174 5175
			break;
		case 2:
5176
			wp->y_min_scanlines = 8;
5177 5178
			break;
		case 4:
5179
			wp->y_min_scanlines = 4;
5180
			break;
5181
		default:
5182
			MISSING_CASE(wp->cpp);
5183
			return -EINVAL;
5184 5185
		}
	} else {
5186
		wp->y_min_scanlines = 4;
5187 5188
	}

5189
	if (skl_needs_memory_bw_wa(dev_priv))
5190
		wp->y_min_scanlines *= 2;
5191

5192 5193 5194
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5195 5196
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
5197

5198
		if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5199 5200
			interm_pbpl++;

5201 5202
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
5203
	} else {
5204
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5205 5206 5207 5208 5209 5210
					   wp->dbuf_block_size);

		if (!wp->x_tiled ||
		    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
			interm_pbpl++;

5211
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5212 5213
	}

5214 5215
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
5216

5217
	wp->linetime_us = fixed16_to_u32_round_up(
5218
					intel_get_linetime_us(crtc_state));
5219 5220 5221 5222

	return 0;
}

5223 5224 5225 5226 5227
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
5228
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5229 5230
	int width;

5231 5232 5233 5234 5235
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
5236
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5237 5238 5239

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
5240
				     plane_state->hw.rotation,
5241 5242 5243 5244
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

5245 5246 5247 5248 5249 5250 5251 5252 5253
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5254
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5255
				 int level,
5256
				 unsigned int latency,
5257 5258 5259
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5260
{
5261
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5262 5263
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5264
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5265

5266 5267 5268
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5269
		return;
5270
	}
5271

5272 5273 5274 5275
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5276 5277 5278
	if ((IS_KABYLAKE(dev_priv) ||
	     IS_COFFEELAKE(dev_priv) ||
	     IS_COMETLAKE(dev_priv)) &&
5279 5280 5281
	    dev_priv->ipc_enabled)
		latency += 4;

5282
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5283 5284 5285
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5286
				 wp->cpp, latency, wp->dbuf_block_size);
5287
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5288
				 crtc_state->hw.pipe_mode.crtc_htotal,
5289
				 latency,
5290
				 wp->plane_blocks_per_line);
5291

5292 5293
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5294
	} else {
5295
		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5296
		     wp->dbuf_block_size < 1) &&
5297
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5298
			selected_result = method2;
5299
		} else if (latency >= wp->linetime_us) {
5300
			if (IS_GEN(dev_priv, 9) &&
5301 5302 5303 5304 5305
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5306
			selected_result = method1;
5307
		}
5308
	}
5309

5310
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5311
	res_lines = div_round_up_fixed16(selected_result,
5312
					 wp->plane_blocks_per_line);
5313

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5329

5330 5331 5332 5333 5334 5335 5336 5337 5338
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5339
	}
5340

5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5359 5360 5361
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5362 5363 5364
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5365
		return;
5366
	}
5367 5368 5369 5370 5371 5372 5373

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5374 5375
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5376 5377
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5378
	result->plane_en = true;
5379 5380 5381

	if (INTEL_GEN(dev_priv) < 12)
		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5382 5383
}

5384
static void
5385
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5386
		      const struct skl_wm_params *wm_params,
5387
		      struct skl_wm_level *levels)
5388
{
5389
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5390
	int level, max_level = ilk_wm_max_level(dev_priv);
5391
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5392

5393
	for (level = 0; level <= max_level; level++) {
5394
		struct skl_wm_level *result = &levels[level];
5395
		unsigned int latency = dev_priv->wm.skl_latency[level];
5396

5397 5398
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5399 5400

		result_prev = result;
5401
	}
5402 5403
}

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
				const struct skl_wm_params *wm_params,
				struct skl_plane_wm *plane_wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
	struct skl_wm_level *levels = plane_wm->wm;
	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;

	skl_compute_plane_wm(crtc_state, 0, latency,
			     wm_params, &levels[0],
			     sagv_wm);
}

5418
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5419
				      const struct skl_wm_params *wp,
5420
				      struct skl_plane_wm *wm)
5421
{
5422
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5423
	const struct drm_i915_private *dev_priv = to_i915(dev);
5424
	u16 trans_min, trans_amount, trans_y_tile_min;
5425
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5426 5427 5428

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5429
		return;
5430

5431 5432 5433 5434 5435 5436 5437
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5438
	if (INTEL_GEN(dev_priv) >= 11)
5439
		trans_min = 4;
5440 5441 5442 5443 5444 5445 5446 5447
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5448 5449 5450

	trans_offset_b = trans_min + trans_amount;

5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5461
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5462

5463
	if (wp->y_tiled) {
5464 5465
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5466
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5467 5468
				trans_offset_b;
	} else {
5469
		res_blocks = wm0_sel_res_b + trans_offset_b;
5470 5471
	}

5472 5473 5474 5475 5476 5477 5478
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5479 5480
}

5481
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5482 5483
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5484
{
5485 5486
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5487
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5488 5489 5490
	struct skl_wm_params wm_params;
	int ret;

5491
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5492 5493 5494 5495
					  &wm_params, color_plane);
	if (ret)
		return ret;

5496
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5497 5498 5499 5500

	if (INTEL_GEN(dev_priv) >= 12)
		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);

5501
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5502 5503 5504 5505

	return 0;
}

5506
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5507 5508
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5509
{
5510
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5511 5512 5513
	struct skl_wm_params wm_params;
	int ret;

5514
	wm->is_planar = true;
5515 5516

	/* uv plane watermarks must also be validated for NV12/Planar */
5517
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5518 5519 5520
					  &wm_params, 1);
	if (ret)
		return ret;
5521

5522
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5523

5524
	return 0;
5525 5526
}

5527
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5528
			      const struct intel_plane_state *plane_state)
5529
{
5530
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5531
	enum plane_id plane_id = plane->id;
5532 5533
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5534 5535
	int ret;

5536 5537
	memset(wm, 0, sizeof(*wm));

5538 5539 5540
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5541
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5542
					plane_id, 0);
5543 5544 5545
	if (ret)
		return ret;

5546
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5547
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5548 5549 5550 5551 5552 5553 5554 5555
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5556
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5557 5558
			      const struct intel_plane_state *plane_state)
{
5559 5560 5561 5562
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	enum plane_id plane_id = plane->id;
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5563 5564
	int ret;

5565 5566
	memset(wm, 0, sizeof(*wm));

5567
	/* Watermarks calculated in master */
5568
	if (plane_state->planar_slave)
5569 5570
		return 0;

5571
	if (plane_state->planar_linked_plane) {
5572
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5573
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5574

5575 5576 5577 5578
		drm_WARN_ON(&dev_priv->drm,
			    !intel_wm_plane_visible(crtc_state, plane_state));
		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
			    fb->format->num_planes == 1);
5579

5580
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5581 5582 5583 5584
						y_plane_id, 0);
		if (ret)
			return ret;

5585
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5586 5587 5588 5589
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5590
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5591 5592 5593 5594 5595 5596
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5597 5598
}

5599 5600
static int skl_build_pipe_wm(struct intel_atomic_state *state,
			     struct intel_crtc *crtc)
5601
{
5602 5603 5604
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5605
	const struct intel_plane_state *plane_state;
5606 5607
	struct intel_plane *plane;
	int ret, i;
L
Lyude 已提交
5608

5609 5610 5611 5612 5613 5614 5615 5616
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		/*
		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
		 * instead but we don't populate that correctly for NV12 Y
		 * planes so for now hack this.
		 */
		if (plane->pipe != crtc->pipe)
			continue;
5617

5618
		if (INTEL_GEN(dev_priv) >= 11)
5619
			ret = icl_build_plane_wm(crtc_state, plane_state);
5620
		else
5621
			ret = skl_build_plane_wm(crtc_state, plane_state);
5622 5623
		if (ret)
			return ret;
5624
	}
5625

5626 5627
	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;

5628
	return 0;
5629 5630
}

5631 5632
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5633 5634 5635
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5636 5637
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5638
	else
5639
		intel_de_write_fw(dev_priv, reg, 0);
5640 5641
}

5642 5643 5644 5645
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5646
	u32 val = 0;
5647

5648
	if (level->plane_en)
5649
		val |= PLANE_WM_EN;
5650 5651 5652 5653
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5654

5655
	intel_de_write_fw(dev_priv, reg, val);
5656 5657
}

5658 5659
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5660
{
5661
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5662
	int level, max_level = ilk_wm_max_level(dev_priv);
5663 5664 5665 5666 5667 5668 5669 5670
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5671 5672

	for (level = 0; level <= max_level; level++) {
5673 5674 5675 5676
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5677
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5678
				   wm_level);
5679
	}
5680
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5681
			   &wm->trans_wm);
5682

5683
	if (INTEL_GEN(dev_priv) >= 11) {
5684
		skl_ddb_entry_write(dev_priv,
5685 5686
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5687
	}
5688 5689 5690 5691 5692 5693 5694 5695

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5696 5697
}

5698 5699
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5700
{
5701
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5702
	int level, max_level = ilk_wm_max_level(dev_priv);
5703 5704 5705 5706 5707 5708
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5709 5710

	for (level = 0; level <= max_level; level++) {
5711 5712 5713 5714
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5715
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5716
				   wm_level);
5717
	}
5718
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5719

5720
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5721 5722
}

5723 5724 5725
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5726
	return l1->plane_en == l2->plane_en &&
5727
		l1->ignore_lines == l2->ignore_lines &&
5728 5729 5730
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5731

5732 5733 5734 5735 5736
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5737

5738
	for (level = 0; level <= max_level; level++) {
5739 5740 5741 5742 5743 5744
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5745 5746 5747 5748
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5749 5750
}

5751 5752
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5753
{
5754
	return a->start < b->end && b->start < a->end;
5755 5756
}

5757
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5758
				 const struct skl_ddb_entry *entries,
5759
				 int num_entries, int ignore_idx)
5760
{
5761
	int i;
5762

5763 5764 5765
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5766
			return true;
5767
	}
5768

5769
	return false;
5770 5771
}

5772
static int
5773 5774
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5775
{
5776 5777
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5778 5779
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5780

5781 5782 5783
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5784

5785 5786 5787 5788
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5789 5790
			continue;

5791
		plane_state = intel_atomic_get_plane_state(state, plane);
5792 5793
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5794

5795
		new_crtc_state->update_planes |= BIT(plane_id);
5796 5797 5798 5799 5800 5801
	}

	return 0;
}

static int
5802
skl_compute_ddb(struct intel_atomic_state *state)
5803
{
5804 5805 5806 5807
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *old_dbuf_state;
	const struct intel_dbuf_state *new_dbuf_state;
	const struct intel_crtc_state *old_crtc_state;
5808
	struct intel_crtc_state *new_crtc_state;
5809 5810
	struct intel_crtc *crtc;
	int ret, i;
5811

5812
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5813
					    new_crtc_state, i) {
5814
		ret = skl_allocate_pipe_ddb(state, crtc);
5815 5816 5817
		if (ret)
			return ret;

5818 5819
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5820 5821
		if (ret)
			return ret;
5822 5823
	}

5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);

	if (new_dbuf_state &&
	    new_dbuf_state->enabled_slices != old_dbuf_state->enabled_slices)
		drm_dbg_kms(&dev_priv->drm,
			    "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
			    old_dbuf_state->enabled_slices,
			    new_dbuf_state->enabled_slices,
			    INTEL_INFO(dev_priv)->num_supported_dbuf_slices);

5835 5836 5837
	return 0;
}

5838 5839 5840 5841 5842
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5843
static void
5844
skl_print_wm_changes(struct intel_atomic_state *state)
5845
{
5846 5847 5848 5849 5850
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5851
	int i;
5852

5853
	if (!drm_debug_enabled(DRM_UT_KMS))
5854 5855
		return;

5856 5857
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5858 5859 5860 5861 5862
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5863 5864
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5865 5866
			const struct skl_ddb_entry *old, *new;

5867 5868
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5869 5870 5871 5872

			if (skl_ddb_entry_equal(old, new))
				continue;

5873 5874 5875 5876 5877
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5890
			drm_dbg_kms(&dev_priv->drm,
5891 5892
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5893 5894 5895 5896 5897 5898
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
5899
				    enast(old_wm->sagv_wm0.plane_en),
5900 5901 5902 5903
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5904 5905
				    enast(new_wm->trans_wm.plane_en),
				    enast(new_wm->sagv_wm0.plane_en));
5906 5907

			drm_dbg_kms(&dev_priv->drm,
5908 5909
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5920
				    enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5921 5922 5923 5924 5925 5926 5927 5928 5929

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5930 5931
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
				    enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5932 5933

			drm_dbg_kms(&dev_priv->drm,
5934 5935
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5936 5937 5938 5939 5940 5941
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
5942
				    old_wm->sagv_wm0.plane_res_b,
5943 5944 5945 5946
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5947 5948
				    new_wm->trans_wm.plane_res_b,
				    new_wm->sagv_wm0.plane_res_b);
5949 5950

			drm_dbg_kms(&dev_priv->drm,
5951 5952
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5953 5954 5955 5956 5957 5958
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
5959
				    old_wm->sagv_wm0.min_ddb_alloc,
5960 5961 5962 5963
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5964 5965
				    new_wm->trans_wm.min_ddb_alloc,
				    new_wm->sagv_wm0.min_ddb_alloc);
5966 5967 5968 5969
		}
	}
}

5970 5971
static int intel_add_affected_pipes(struct intel_atomic_state *state,
				    u8 pipe_mask)
V
Ville Syrjälä 已提交
5972 5973 5974 5975 5976 5977 5978
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

5979 5980 5981
		if ((pipe_mask & BIT(crtc->pipe)) == 0)
			continue;

V
Ville Syrjälä 已提交
5982 5983 5984 5985 5986 5987 5988 5989
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5990
static int
5991
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5992
{
V
Ville Syrjälä 已提交
5993
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5994 5995 5996
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int i, ret;
5997

5998
	if (dev_priv->wm.distrust_bios_wm) {
5999 6000 6001 6002 6003 6004 6005 6006
		/*
		 * skl_ddb_get_pipe_allocation_limits() currently requires
		 * all active pipes to be included in the state so that
		 * it can redistribute the dbuf among them, and it really
		 * wants to recompute things when distrust_bios_wm is set
		 * so we add all the pipes to the state.
		 */
		ret = intel_add_affected_pipes(state, ~0);
6007 6008
		if (ret)
			return ret;
6009
	}
6010

6011 6012 6013 6014 6015 6016
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		struct intel_dbuf_state *new_dbuf_state;
		const struct intel_dbuf_state *old_dbuf_state;

		new_dbuf_state = intel_atomic_get_dbuf_state(state);
		if (IS_ERR(new_dbuf_state))
6017
			return PTR_ERR(new_dbuf_state);
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029

		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);

		new_dbuf_state->active_pipes =
			intel_calc_active_pipes(state, old_dbuf_state->active_pipes);

		if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes)
			break;

		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
6030 6031

		/*
6032 6033 6034
		 * skl_ddb_get_pipe_allocation_limits() currently requires
		 * all active pipes to be included in the state so that
		 * it can redistribute the dbuf among them.
6035
		 */
6036 6037
		ret = intel_add_affected_pipes(state,
					       new_dbuf_state->active_pipes);
V
Ville Syrjälä 已提交
6038 6039
		if (ret)
			return ret;
6040 6041

		break;
6042 6043 6044 6045 6046
	}

	return 0;
}

6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
6091
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

6107
static int
6108
skl_compute_wm(struct intel_atomic_state *state)
6109
{
6110
	struct intel_crtc *crtc;
6111
	struct intel_crtc_state *new_crtc_state;
6112 6113
	int ret, i;

6114 6115
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
6116 6117
		return ret;

6118 6119
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
6120
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6121
	 * weren't otherwise being modified if pipe allocations had to change.
6122
	 */
6123 6124
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		ret = skl_build_pipe_wm(state, crtc);
6125 6126
		if (ret)
			return ret;
6127 6128
	}

6129 6130 6131 6132
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

6133 6134 6135
	ret = intel_compute_sagv_mask(state);
	if (ret)
		return ret;
6136

6137 6138 6139 6140 6141
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
6142
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6143 6144 6145 6146 6147
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

6148
	skl_print_wm_changes(state);
6149

6150 6151 6152
	return 0;
}

6153
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6154 6155 6156 6157 6158
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
6159
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

6171
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6172
{
6173
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6174
	struct ilk_wm_maximums max;
6175
	struct intel_wm_config config = {};
6176
	struct ilk_wm_values results = {};
6177
	enum intel_ddb_partitioning partitioning;
6178

6179
	ilk_compute_wm_config(dev_priv, &config);
6180

6181 6182
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6183 6184

	/* 5/6 split only in single pipe config on IVB+ */
6185
	if (INTEL_GEN(dev_priv) >= 7 &&
6186
	    config.num_pipes_active == 1 && config.sprites_enabled) {
6187 6188
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6189

6190
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6191
	} else {
6192
		best_lp_wm = &lp_wm_1_2;
6193 6194
	}

6195
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6196
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6197

6198
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6199

6200
	ilk_write_wm_values(dev_priv, &results);
6201 6202
}

6203
static void ilk_initial_watermarks(struct intel_atomic_state *state,
6204
				   struct intel_crtc *crtc)
6205
{
6206 6207 6208
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6209

6210
	mutex_lock(&dev_priv->wm.wm_mutex);
6211
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6212 6213 6214
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
6215

6216
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6217
				    struct intel_crtc *crtc)
6218
{
6219 6220 6221
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6222 6223 6224

	if (!crtc_state->wm.need_postvbl_update)
		return;
6225

6226
	mutex_lock(&dev_priv->wm.wm_mutex);
6227 6228
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
6229
	mutex_unlock(&dev_priv->wm.wm_mutex);
6230 6231
}

6232
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6233
{
6234
	level->plane_en = val & PLANE_WM_EN;
6235
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6236 6237 6238
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
6239 6240
}

6241
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6242
			      struct skl_pipe_wm *out)
6243
{
6244 6245
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
6246 6247
	int level, max_level;
	enum plane_id plane_id;
6248
	u32 val;
6249

6250
	max_level = ilk_wm_max_level(dev_priv);
6251

6252
	for_each_plane_id_on_crtc(crtc, plane_id) {
6253
		struct skl_plane_wm *wm = &out->planes[plane_id];
6254

6255
		for (level = 0; level <= max_level; level++) {
6256 6257
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
6258 6259
			else
				val = I915_READ(CUR_WM(pipe, level));
6260

6261
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6262 6263
		}

6264 6265 6266
		if (INTEL_GEN(dev_priv) >= 12)
			wm->sagv_wm0 = wm->wm[0];

6267 6268
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6269 6270 6271 6272
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6273 6274
	}

6275
	if (!crtc->active)
6276
		return;
6277 6278
}

6279
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6280
{
6281
	struct intel_crtc *crtc;
6282
	struct intel_crtc_state *crtc_state;
6283

6284
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6285
		crtc_state = to_intel_crtc_state(crtc->base.state);
6286

6287
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6288
		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6289
	}
6290

6291
	if (dev_priv->active_pipes) {
6292 6293 6294
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
6295 6296
}

6297
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6298
{
6299
	struct drm_device *dev = crtc->base.dev;
6300
	struct drm_i915_private *dev_priv = to_i915(dev);
6301
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6302 6303
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6304
	enum pipe pipe = crtc->pipe;
6305

6306
	hw->wm_pipe[pipe] = I915_READ(WM0_PIPE_ILK(pipe));
6307

6308 6309
	memset(active, 0, sizeof(*active));

6310
	active->pipe_enabled = crtc->active;
6311 6312

	if (active->pipe_enabled) {
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6326
		int level, max_level = ilk_wm_max_level(dev_priv);
6327 6328 6329 6330 6331 6332 6333 6334 6335

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6336

6337
	crtc->wm.active.ilk = *active;
6338 6339
}

6340 6341 6342 6343 6344
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6345 6346 6347
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6348
	u32 tmp;
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6371 6372 6373 6374
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6375
	u32 tmp;
6376 6377 6378 6379

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

6380
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6381
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6382
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6383
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6384
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6385
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6386
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6387 6388 6389 6390 6391
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
6392 6393 6394
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6395 6396

	tmp = I915_READ(DSPFW2);
6397 6398 6399
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6400 6401 6402 6403 6404 6405

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
6406 6407
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6408 6409

		tmp = I915_READ(DSPFW8_CHV);
6410 6411
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6412 6413

		tmp = I915_READ(DSPFW9_CHV);
6414 6415
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6416 6417 6418

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6419 6420 6421 6422 6423 6424 6425 6426 6427
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6428 6429
	} else {
		tmp = I915_READ(DSPFW7);
6430 6431
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6432 6433 6434

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6435 6436 6437 6438 6439 6440
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6441 6442 6443 6444 6445 6446
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6447
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6448 6449 6450 6451 6452 6453 6454 6455
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

6456
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6516 6517 6518 6519 6520 6521
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6522 6523
	}

6524 6525 6526 6527 6528 6529 6530 6531
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6552
		if (plane_state->uapi.visible)
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6590
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6591 6592
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6593
	struct intel_crtc *crtc;
6594 6595 6596 6597 6598 6599 6600 6601
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6602
		vlv_punit_get(dev_priv);
6603

6604
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6605 6606 6607
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6608 6609 6610 6611 6612 6613 6614 6615 6616
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6617
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6618 6619 6620 6621 6622
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6623 6624 6625
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6626 6627 6628 6629 6630 6631
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6632

6633
		vlv_punit_put(dev_priv);
6634 6635
	}

6636
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6652
			struct g4x_pipe_wm *raw =
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6674
		crtc_state->wm.vlv.intermediate = *active;
6675

6676 6677 6678 6679 6680 6681 6682
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6683
	}
6684

6685 6686 6687
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6688 6689
}

6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6710
		if (plane_state->uapi.visible)
6711 6712 6713
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6714
			struct g4x_pipe_wm *raw =
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6755
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6756
{
6757
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6758
	struct intel_crtc *crtc;
6759

6760 6761
	ilk_init_lp_watermarks(dev_priv);

6762
	for_each_intel_crtc(&dev_priv->drm, crtc)
6763 6764 6765 6766 6767 6768 6769
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6770
	if (INTEL_GEN(dev_priv) >= 7) {
6771 6772 6773
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6774

6775
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6776 6777
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6778
	else if (IS_IVYBRIDGE(dev_priv))
6779 6780
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6781 6782 6783 6784 6785

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6786 6787
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6788
 * @crtc: the #intel_crtc on which to compute the WM
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6819
void intel_update_watermarks(struct intel_crtc *crtc)
6820
{
6821
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6822 6823

	if (dev_priv->display.update_wm)
6824
		dev_priv->display.update_wm(crtc);
6825 6826
}

6827 6828 6829 6830
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6831 6832 6833
	if (!HAS_IPC(dev_priv))
		return;

6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6844 6845 6846 6847 6848 6849 6850
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
6851 6852 6853
	if (IS_KABYLAKE(dev_priv) ||
	    IS_COFFEELAKE(dev_priv) ||
	    IS_COMETLAKE(dev_priv))
6854 6855 6856 6857 6858
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6859 6860 6861 6862 6863
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6864
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6865

6866 6867 6868
	intel_enable_ipc(dev_priv);
}

6869 6870 6871 6872 6873 6874 6875 6876 6877
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6878

6879
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6880
{
6881
	enum pipe pipe;
6882

6883 6884 6885 6886
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6887

6888 6889
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6890 6891 6892
	}
}

6893
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6894
{
6895
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6896

6897 6898 6899 6900 6901 6902 6903
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6904

6905 6906 6907 6908 6909
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6910

6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6925 6926

	/*
6927 6928 6929 6930 6931
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6932
	 */
6933 6934 6935 6936 6937 6938 6939 6940 6941
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6942

6943
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6944

6945 6946 6947
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6948

6949
	g4x_disable_trickle_feed(dev_priv);
6950

6951
	ibx_init_clock_gating(dev_priv);
6952 6953
}

6954
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6955
{
6956 6957
	enum pipe pipe;
	u32 val;
6958

6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6987 6988
}

6989
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6990
{
6991
	u32 tmp;
6992

6993 6994
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6995 6996 6997
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6998 6999
}

7000
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7001
{
7002
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7003

7004
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7005

7006 7007 7008
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
7009

7010 7011 7012 7013
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7014

7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7027
	 */
7028 7029 7030
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
7031

7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7053

7054
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
7055

7056
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
7057

7058
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
7059 7060
}

7061
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7062
{
7063 7064 7065
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
7066
	 */
7067
	if (HAS_PCH_LPT_LP(dev_priv))
7068 7069 7070
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7071 7072

	/* WADPOClockGatingDisable:hsw */
7073 7074
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7075
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7076 7077
}

7078
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7079
{
7080
	if (HAS_PCH_LPT_LP(dev_priv)) {
7081
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7082 7083 7084 7085 7086 7087

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7088 7089 7090 7091 7092
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
7093
	u32 val;
7094 7095 7096 7097 7098

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

7099 7100 7101 7102 7103
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
7114 7115
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
7116 7117 7118 7119
	/* Wa_1409120013:icl,ehl */
	I915_WRITE(ILK_DPFC_CHICKEN,
		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);

O
Oscar Mateo 已提交
7120 7121 7122
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7123

7124 7125 7126
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
7127 7128
}

7129
static void gen12_init_clock_gating(struct drm_i915_private *i915)
7130 7131 7132
{
	unsigned int i;

7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++)
		if (HAS_ENGINE(&i915->gt, _VCS(i)))
			intel_uncore_rmw(&i915->uncore, POWERGATE_ENABLE, 0,
					 VDN_HCP_POWERGATE_ENABLE(i) |
					 VDN_MFX_POWERGATE_ENABLE(i));
}

static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen12_init_clock_gating(dev_priv);

7145 7146 7147 7148
	/* Wa_1409120013:tgl */
	I915_WRITE(ILK_DPFC_CHICKEN,
		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);

7149
	/* Wa_1409825376:tgl (pre-prod)*/
7150
	if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_B1))
7151 7152
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   TGL_VRH_GATING_DIS);
M
Matt Atwood 已提交
7153 7154 7155 7156

	/* Wa_14011059788:tgl */
	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
			 0, DFR_DISABLE);
7157 7158
}

7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen12_init_clock_gating(dev_priv);

	/* Wa_1409836686:dg1[a0] */
	if (IS_DG1_REVID(dev_priv, DG1_REVID_A0, DG1_REVID_A0))
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   DPT_GATING_DIS);
}

7169 7170 7171 7172 7173
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

7174
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7175 7176
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
7177 7178
}

7179
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7180
{
7181
	u32 val;
7182 7183
	cnp_init_clock_gating(dev_priv);

7184 7185 7186 7187
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

7188 7189 7190 7191
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

7192 7193 7194 7195
	/*
	 * WaFbcWakeMemOn:cnl
	 * Display WA #0859: cnl
	 */
7196 7197 7198
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

7199 7200 7201 7202
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
7203

R
Rodrigo Vivi 已提交
7204 7205 7206 7207 7208
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

7209
	/* WaDisableVFclkgate:cnl */
7210
	/* WaVFUnitClockGatingDisable:cnl */
7211 7212 7213
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7214 7215
}

7216 7217 7218 7219 7220
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

7221 7222 7223 7224
	/* WAC6entrylatency:cfl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);

7225 7226 7227 7228
	/*
	 * WaFbcTurnOffFbcWatermark:cfl
	 * Display WA #0562: cfl
	 */
7229 7230 7231
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS);

7232 7233 7234 7235
	/*
	 * WaFbcNukeOnHostModify:cfl
	 * Display WA #0873: cfl
	 */
7236 7237 7238 7239
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

7240
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7241
{
7242
	gen9_init_clock_gating(dev_priv);
7243

7244 7245 7246 7247
	/* WAC6entrylatency:kbl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);

7248
	/* WaDisableSDEUnitClockGating:kbl */
7249
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7250 7251
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7252 7253

	/* WaDisableGamClockGating:kbl */
7254
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7255 7256
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7257

7258 7259 7260 7261
	/*
	 * WaFbcTurnOffFbcWatermark:kbl
	 * Display WA #0562: kbl
	 */
7262 7263 7264
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS);

7265 7266 7267 7268
	/*
	 * WaFbcNukeOnHostModify:kbl
	 * Display WA #0873: kbl
	 */
7269 7270
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7271 7272
}

7273
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7274
{
7275
	gen9_init_clock_gating(dev_priv);
7276

7277 7278 7279 7280
	/* WaDisableDopClockGating:skl */
	I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL) &
		   ~GEN7_DOP_CLOCK_GATE_ENABLE);

7281 7282 7283
	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7284

7285 7286 7287 7288
	/*
	 * WaFbcTurnOffFbcWatermark:skl
	 * Display WA #0562: skl
	 */
7289 7290 7291
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS);

7292 7293 7294 7295
	/*
	 * WaFbcNukeOnHostModify:skl
	 * Display WA #0873: skl
	 */
7296 7297
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7298

7299 7300 7301 7302
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:skl
	 * Display WA #0883: skl
	 */
7303 7304
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
7305 7306
}

7307
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7308
{
7309
	enum pipe pipe;
B
Ben Widawsky 已提交
7310

7311 7312 7313 7314 7315
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
	I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
		   I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
		   HSW_FBCQ_DIS);

7316
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7317
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7318

7319
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7320 7321 7322
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7323
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7324
	for_each_pipe(dev_priv, pipe) {
7325
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7326
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7327
			   BDW_DPRS_MASK_VBLANK_SRD);
7328
	}
7329

7330 7331 7332 7333 7334
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7335

7336 7337
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7338 7339 7340 7341

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7342

7343 7344
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7345

7346 7347 7348 7349
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7350
	lpt_init_clock_gating(dev_priv);
7351 7352 7353 7354 7355 7356 7357 7358

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7359 7360
}

7361
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7362
{
7363 7364 7365 7366 7367
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
	I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
		   I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
		   HSW_FBCQ_DIS);

7368
	/* This is required by WaCatErrorRejectionIssue:hsw */
7369
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7370 7371
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7372

7373
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7374 7375
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7376
	lpt_init_clock_gating(dev_priv);
7377 7378
}

7379
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7380
{
7381
	u32 snpcr;
7382

7383
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7384

7385 7386 7387 7388 7389
	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS);

7390
	/* WaDisableBackToBackFlipFix:ivb */
7391 7392 7393 7394
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7395
	if (IS_IVB_GT1(dev_priv))
7396 7397
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7398 7399 7400 7401
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7402 7403
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7404
	}
7405

7406
	/*
7407
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7408
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7409 7410
	 */
	I915_WRITE(GEN6_UCGCTL2,
7411
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7412

7413
	/* This is required by WaCatErrorRejectionIssue:ivb */
7414 7415 7416 7417
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7418
	g4x_disable_trickle_feed(dev_priv);
7419

7420 7421 7422 7423
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7424

7425
	if (!HAS_PCH_NOP(dev_priv))
7426
		cpt_init_clock_gating(dev_priv);
7427

7428
	gen6_check_mch_setup(dev_priv);
7429 7430
}

7431
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7432
{
7433
	/* WaDisableBackToBackFlipFix:vlv */
7434 7435 7436 7437
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7438
	/* WaDisableDopClockGating:vlv */
7439 7440 7441
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7442
	/* This is required by WaCatErrorRejectionIssue:vlv */
7443 7444 7445 7446
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7447
	/*
7448
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7449
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7450 7451
	 */
	I915_WRITE(GEN6_UCGCTL2,
7452
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7453

7454 7455 7456 7457 7458
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7459

7460
	/*
7461
	 * WaDisableVLVClockGating_VBIIssue:vlv
7462 7463 7464
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7465
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7466 7467
}

7468
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7469
{
7470 7471 7472 7473 7474
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7475 7476 7477 7478

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7479 7480 7481 7482

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7483 7484 7485 7486

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7487

7488 7489 7490 7491 7492 7493
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7494 7495
}

7496
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7497
{
7498
	u32 dspclk_gate;
7499 7500 7501 7502 7503 7504 7505 7506 7507

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7508
	if (IS_GM45(dev_priv))
7509 7510
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7511

7512
	g4x_disable_trickle_feed(dev_priv);
7513 7514
}

7515
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7516
{
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7527 7528
}

7529
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7530 7531 7532 7533 7534 7535 7536
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7537 7538
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7539 7540
}

7541
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7542 7543 7544 7545 7546 7547
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7548

7549
	if (IS_PINEVIEW(dev_priv))
7550
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7551 7552 7553

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7554 7555

	/* interrupts should cause a wake up from C3 */
7556
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7557 7558 7559

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7560 7561 7562

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7563 7564
}

7565
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7566 7567
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7568 7569 7570 7571

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7572 7573 7574

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7575 7576 7577 7578 7579 7580 7581 7582 7583 7584

	/*
	 * Have FBC ignore 3D activity since we use software
	 * render tracking, and otherwise a pure 3D workload
	 * (even if it just renders a single frame and then does
	 * abosultely nothing) would not allow FBC to recompress
	 * until a 2D blit occurs.
	 */
	I915_WRITE(SCPD0,
		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7585 7586
}

7587
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7588
{
7589 7590 7591
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7592 7593
}

7594
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7595
{
7596
	dev_priv->display.init_clock_gating(dev_priv);
7597 7598
}

7599
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7600
{
7601 7602
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7603 7604
}

7605
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7606
{
7607 7608
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7622 7623 7624
	if (IS_DG1(dev_priv))
		dev_priv->display.init_clock_gating = dg1_init_clock_gating;
	else if (IS_GEN(dev_priv, 12))
7625
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7626
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7627
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7628
	else if (IS_CANNONLAKE(dev_priv))
7629
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7630
	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7631
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7632
	else if (IS_SKYLAKE(dev_priv))
7633
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7634
	else if (IS_KABYLAKE(dev_priv))
7635
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7636
	else if (IS_BROXTON(dev_priv))
7637
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7638 7639
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7640
	else if (IS_BROADWELL(dev_priv))
7641
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7642
	else if (IS_CHERRYVIEW(dev_priv))
7643
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7644
	else if (IS_HASWELL(dev_priv))
7645
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7646
	else if (IS_IVYBRIDGE(dev_priv))
7647
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7648
	else if (IS_VALLEYVIEW(dev_priv))
7649
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7650
	else if (IS_GEN(dev_priv, 6))
7651
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7652
	else if (IS_GEN(dev_priv, 5))
7653
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7654 7655
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7656
	else if (IS_I965GM(dev_priv))
7657
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7658
	else if (IS_I965G(dev_priv))
7659
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7660
	else if (IS_GEN(dev_priv, 3))
7661 7662 7663
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7664
	else if (IS_GEN(dev_priv, 2))
7665 7666 7667 7668 7669 7670 7671
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7672
/* Set up chip specific power management-related functions */
7673
void intel_init_pm(struct drm_i915_private *dev_priv)
7674
{
7675
	/* For cxsr */
7676
	if (IS_PINEVIEW(dev_priv))
7677
		pnv_get_mem_freq(dev_priv);
7678
	else if (IS_GEN(dev_priv, 5))
7679
		ilk_get_mem_freq(dev_priv);
7680

7681 7682 7683
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7684
	/* For FIFO watermark updates */
7685
	if (INTEL_GEN(dev_priv) >= 9) {
7686
		skl_setup_wm_latency(dev_priv);
7687
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7688
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7689
		ilk_setup_wm_latency(dev_priv);
7690

7691
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7692
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7693
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7694
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7695
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7696 7697 7698 7699 7700 7701
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7702
		} else {
7703 7704 7705
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7706
		}
7707
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7708
		vlv_setup_wm_latency(dev_priv);
7709
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7710
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7711
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7712
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7713
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7714 7715 7716 7717 7718 7719
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7720
	} else if (IS_PINEVIEW(dev_priv)) {
7721
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7722 7723 7724
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7725 7726
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7727 7728 7729 7730 7731
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7732
			intel_set_memory_cxsr(dev_priv, false);
7733 7734
			dev_priv->display.update_wm = NULL;
		} else
7735
			dev_priv->display.update_wm = pnv_update_wm;
7736
	} else if (IS_GEN(dev_priv, 4)) {
7737
		dev_priv->display.update_wm = i965_update_wm;
7738
	} else if (IS_GEN(dev_priv, 3)) {
7739 7740
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7741
	} else if (IS_GEN(dev_priv, 2)) {
7742
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7743
			dev_priv->display.update_wm = i845_update_wm;
7744
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7745 7746
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7747
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7748 7749
		}
	} else {
7750 7751
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7752 7753 7754
	}
}

7755
void intel_pm_setup(struct drm_i915_private *dev_priv)
7756
{
7757 7758
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7759
}
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808

static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return NULL;

	return &dbuf_state->base;
}

static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
				     struct intel_global_state *state)
{
	kfree(state);
}

static const struct intel_global_state_funcs intel_dbuf_funcs = {
	.atomic_duplicate_state = intel_dbuf_duplicate_state,
	.atomic_destroy_state = intel_dbuf_destroy_state,
};

struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *dbuf_state;

	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
	if (IS_ERR(dbuf_state))
		return ERR_CAST(dbuf_state);

	return to_intel_dbuf_state(dbuf_state);
}

int intel_dbuf_init(struct drm_i915_private *dev_priv)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return -ENOMEM;

	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
				     &dbuf_state->base, &intel_dbuf_funcs);

	return 0;
}
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845

void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				old_dbuf_state->enabled_slices |
				new_dbuf_state->enabled_slices);
}

void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				new_dbuf_state->enabled_slices);
}