intel_pm.c 270.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

56
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
57
{
58 59 60
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
61
		 * Display WA #0390: skl,kbl
62 63 64 65 66 67 68 69 70
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

71
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72 73 74
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

75
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76 77
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
78

79 80
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81 82 83
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
84

85
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86 87
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
88 89 90 91 92 93

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
94 95
}

96
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
97
{
98
	gen9_init_clock_gating(dev_priv);
99

100 101 102 103
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

104 105
	/*
	 * FIXME:
106
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107 108
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
110 111 112 113 114

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
115 116
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118
}

119 120 121 122 123 124 125 126 127 128 129
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
130 131 132 133 134 135 136 137 138 139

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

140 141
}

142
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

180
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

207
	dev_priv->ips.r_t = dev_priv->mem_freq;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
239
		dev_priv->ips.c_m = 0;
240
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241
		dev_priv->ips.c_m = 1;
242
	} else {
243
		dev_priv->ips.c_m = 2;
244 245 246
	}
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

285 286
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

309 310 311 312
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

313
	mutex_lock(&dev_priv->pcu_lock);
314 315 316 317 318 319 320 321 322 323 324 325 326 327

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

328
	mutex_unlock(&dev_priv->pcu_lock);
329 330
}

331 332 333 334
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

335
	mutex_lock(&dev_priv->pcu_lock);
336 337 338 339 340 341 342 343

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

344
	mutex_unlock(&dev_priv->pcu_lock);
345 346
}

347 348 349
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

350
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
351
{
352
	bool was_enabled;
353
	u32 val;
354

355
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358
		POSTING_READ(FW_BLC_SELF_VLV);
359
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362
		POSTING_READ(FW_BLC_SELF);
363
	} else if (IS_PINEVIEW(dev_priv)) {
364 365 366 367 368 369
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
370
		I915_WRITE(DSPFW3, val);
371
		POSTING_READ(DSPFW3);
372
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374 375 376
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
377
		POSTING_READ(FW_BLC_SELF);
378
	} else if (IS_I915GM(dev_priv)) {
379 380 381 382 383
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
384
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385 386 387
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
388
		POSTING_READ(INSTPM);
389
	} else {
390
		return false;
391
	}
392

393 394
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

395 396 397 398 399
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
400 401
}

V
Ville Syrjälä 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
439
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
440
{
441 442
	bool ret;

443
	mutex_lock(&dev_priv->wm.wm_mutex);
444
	ret = _intel_set_memory_cxsr(dev_priv, enable);
445 446 447 448
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
449
	mutex_unlock(&dev_priv->wm.wm_mutex);
450 451

	return ret;
452
}
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
468
static const int pessimal_latency_ns = 5000;
469

470 471 472
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

473
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
474
{
475
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478 479
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
480

481
	switch (pipe) {
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
502 503
		MISSING_CASE(pipe);
		return;
504 505
	}

506 507 508 509
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
510 511
}

512 513
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
514 515 516 517 518
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
519
	if (i9xx_plane == PLANE_B)
520 521
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

522 523
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
524 525 526 527

	return size;
}

528 529
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
530 531 532 533 534
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
535
	if (i9xx_plane == PLANE_B)
536 537 538
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

539 540
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
541 542 543 544

	return size;
}

545 546
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
547 548 549 550 551 552 553
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

554 555
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
556 557 558 559 560 561

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
562 563 564 565 566
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
567 568
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 575
};
static const struct intel_watermark_params pineview_cursor_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 582
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583 584 585 586 587
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 589
};
static const struct intel_watermark_params i965_cursor_wm_info = {
590 591 592 593 594
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
595 596
};
static const struct intel_watermark_params i945_wm_info = {
597 598 599 600 601
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
602 603
};
static const struct intel_watermark_params i915_wm_info = {
604 605 606 607 608
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
609
};
610
static const struct intel_watermark_params i830_a_wm_info = {
611 612 613 614 615
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
616
};
617 618 619 620 621 622 623
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
624
static const struct intel_watermark_params i845_wm_info = {
625 626 627 628 629
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
630 631
};

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

728 729
/**
 * intel_calculate_wm - calculate watermark level
730
 * @pixel_rate: pixel clock
731
 * @wm: chip FIFO params
732
 * @cpp: bytes per pixel
733 734 735 736 737 738 739 740 741 742 743 744 745
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
746 747 748 749
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
750
{
751
	int entries, wm_size;
752 753 754 755 756 757 758

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
759 760 761 762 763
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
764

765 766
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
767 768

	/* Don't promote wm_size to unsigned... */
769
	if (wm_size > wm->max_wm)
770 771 772
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
773 774 775 776 777 778 779 780 781 782 783

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

784 785 786
	return wm_size;
}

787 788 789 790 791 792 793 794 795 796
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

797 798 799 800 801
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

825
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
826
{
827
	struct intel_crtc *crtc, *enabled = NULL;
828

829
	for_each_intel_crtc(&dev_priv->drm, crtc) {
830
		if (intel_crtc_active(crtc)) {
831 832 833 834 835 836 837 838 839
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

840
static void pineview_update_wm(struct intel_crtc *unused_crtc)
841
{
842
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
843
	struct intel_crtc *crtc;
844 845
	const struct cxsr_latency *latency;
	u32 reg;
846
	unsigned int wm;
847

848 849 850 851
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
852 853
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
854
		intel_set_memory_cxsr(dev_priv, false);
855 856 857
		return;
	}

858
	crtc = single_enabled_crtc(dev_priv);
859
	if (crtc) {
860 861 862 863
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
864
		int cpp = fb->format->cpp[0];
865
		int clock = adjusted_mode->crtc_clock;
866 867 868 869

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
870
					cpp, latency->display_sr);
871 872
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
873
		reg |= FW_WM(wm, SR);
874 875 876 877 878 879
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
880
					4, latency->cursor_sr);
881 882
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
883
		reg |= FW_WM(wm, CURSOR_SR);
884 885 886 887 888
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
889
					cpp, latency->display_hpll_disable);
890 891
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
892
		reg |= FW_WM(wm, HPLL_SR);
893 894 895 896 897
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
898
					4, latency->cursor_hpll_disable);
899 900
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
901
		reg |= FW_WM(wm, HPLL_CURSOR);
902 903 904
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

905
		intel_set_memory_cxsr(dev_priv, true);
906
	} else {
907
		intel_set_memory_cxsr(dev_priv, false);
908 909 910
	}
}

911 912 913 914 915 916 917 918 919 920
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
921
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
922 923 924 925 926 927
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

928 929
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
930
{
931 932 933 934 935
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
953

954
	POSTING_READ(DSPFW1);
955 956
}

957 958 959
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

960
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
961 962
				const struct vlv_wm_values *wm)
{
963 964 965
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
966 967
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

968 969 970 971 972 973
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
974

975 976 977 978 979 980 981 982 983 984 985
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

986
	I915_WRITE(DSPFW1,
987
		   FW_WM(wm->sr.plane, SR) |
988 989 990
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
991
	I915_WRITE(DSPFW2,
992 993 994
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
995
	I915_WRITE(DSPFW3,
996
		   FW_WM(wm->sr.cursor, CURSOR_SR));
997 998 999

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1000 1001
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1002
		I915_WRITE(DSPFW8_CHV,
1003 1004
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1005
		I915_WRITE(DSPFW9_CHV,
1006 1007
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1008
		I915_WRITE(DSPHOWM,
1009
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1010 1011 1012 1013 1014 1015 1016 1017 1018
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1019 1020
	} else {
		I915_WRITE(DSPFW7,
1021 1022
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1023
		I915_WRITE(DSPHOWM,
1024
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1025 1026 1027 1028 1029 1030
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1031 1032 1033
	}

	POSTING_READ(DSPFW1);
1034 1035
}

1036 1037
#undef FW_WM_VLV

1038 1039 1040 1041 1042
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1043
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1044

1045
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1098 1099
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1138
		unsigned int small, large;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1151
	return min_t(unsigned int, wm, USHRT_MAX);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1320 1321
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1322 1323 1324 1325 1326
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1327 1328 1329 1330
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1331 1332 1333
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1334
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
1402
				       struct intel_crtc_state *new_crtc_state)
1403
{
1404 1405 1406 1407 1408 1409 1410
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1411 1412
	enum plane_id plane_id;

1413 1414 1415 1416 1417 1418 1419 1420
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1421
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1422
		!new_crtc_state->disable_cxsr;
1423
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1424
		!new_crtc_state->disable_cxsr;
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1466
out:
1467 1468 1469 1470 1471
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1472
		new_crtc_state->wm.need_postvbl_update = true;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1569 1570
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1571 1572
				   unsigned int htotal,
				   unsigned int width,
1573
				   unsigned int cpp,
1574 1575 1576 1577
				   unsigned int latency)
{
	unsigned int ret;

1578 1579
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1580 1581 1582 1583 1584
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1585
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1586 1587 1588 1589
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1590 1591
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1592 1593 1594
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1595 1596

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1597 1598 1599
	}
}

1600 1601
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1602 1603
				     int level)
{
1604
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1605
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1606 1607
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1608
	unsigned int clock, htotal, cpp, width, wm;
1609 1610 1611 1612

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1613
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1614 1615
		return 0;

1616
	cpp = plane_state->base.fb->format->cpp[0];
1617 1618 1619
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1620

1621
	if (plane->id == PLANE_CURSOR) {
1622 1623 1624 1625 1626 1627 1628 1629
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1630
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1631 1632 1633
				    dev_priv->wm.pri_latency[level] * 10);
	}

1634
	return min_t(unsigned int, wm, USHRT_MAX);
1635 1636
}

1637 1638 1639 1640 1641 1642
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1643
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1644
{
1645
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1646
	const struct g4x_pipe_wm *raw =
1647
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1648
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1649 1650 1651
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1652
	int fifo_extra, fifo_left = fifo_size;
1653
	int sprite0_fifo_extra = 0;
1654 1655
	unsigned int total_rate;
	enum plane_id plane_id;
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1668 1669
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1670 1671
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1672

1673 1674
	if (total_rate > fifo_size)
		return -EINVAL;
1675

1676 1677
	if (total_rate == 0)
		total_rate = 1;
1678

1679
	for_each_plane_id_on_crtc(crtc, plane_id) {
1680 1681
		unsigned int rate;

1682 1683
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1684 1685 1686
			continue;
		}

1687 1688 1689
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1690 1691
	}

1692 1693 1694
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1695 1696 1697
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1698 1699

	/* spread the remainder evenly */
1700
	for_each_plane_id_on_crtc(crtc, plane_id) {
1701 1702 1703 1704 1705
		int plane_extra;

		if (fifo_left == 0)
			break;

1706
		if ((active_planes & BIT(plane_id)) == 0)
1707 1708 1709
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1710
		fifo_state->plane[plane_id] += plane_extra;
1711 1712 1713
		fifo_left -= plane_extra;
	}

1714 1715 1716 1717 1718 1719 1720 1721 1722
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1723 1724
}

1725 1726 1727 1728 1729 1730
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1731
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1742 1743 1744 1745 1746 1747 1748 1749
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1750 1751 1752 1753
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1754
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1755
				 int level, enum plane_id plane_id, u16 value)
1756
{
1757
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1758
	int num_levels = intel_wm_num_levels(dev_priv);
1759
	bool dirty = false;
1760

1761
	for (; level < num_levels; level++) {
1762
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1763

1764
		dirty |= raw->plane[plane_id] != value;
1765
		raw->plane[plane_id] = value;
1766
	}
1767 1768

	return dirty;
1769 1770
}

1771 1772
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1773
{
1774 1775
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1776
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1777
	int level;
1778
	bool dirty = false;
1779

1780
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1781 1782
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1783
	}
1784

1785
	for (level = 0; level < num_levels; level++) {
1786
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1787 1788
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1789

1790 1791
		if (wm > max_wm)
			break;
1792

1793
		dirty |= raw->plane[plane_id] != wm;
1794 1795
		raw->plane[plane_id] = wm;
	}
1796

1797
	/* mark all higher levels as invalid */
1798
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1799

1800 1801
out:
	if (dirty)
1802
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1803 1804 1805 1806 1807 1808
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1809
}
1810

1811 1812
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1813
{
1814
	const struct g4x_pipe_wm *raw =
1815 1816 1817
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1818

1819 1820
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1821

1822
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1823
{
1824 1825 1826 1827
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1841
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1842 1843
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1844 1845 1846
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1847
	unsigned int dirty = 0;
1848

1849 1850 1851 1852
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1853 1854
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1855

1856
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1875
			intel_atomic_get_old_crtc_state(state, crtc);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1887
	}
1888

1889
	/* initially allow all levels */
1890
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1891 1892 1893 1894 1895
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1896
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1897

1898
	for (level = 0; level < wm_state->num_levels; level++) {
1899
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1900
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1901

1902
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1903
			break;
1904

1905 1906 1907 1908 1909 1910 1911 1912
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1913
						 raw->plane[PLANE_SPRITE0],
1914 1915
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1916

1917 1918 1919
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1920 1921
	}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1932 1933
}

1934 1935 1936
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1937 1938
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1939
{
1940
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1941
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1942 1943
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1944
	int sprite0_start, sprite1_start, fifo_size;
1945

1946 1947 1948
	if (!crtc_state->fifo_changed)
		return;

1949 1950 1951
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1952

1953 1954
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1955

1956 1957
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1968

1969 1970 1971
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1972 1973
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1985 1986
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1987 1988
		break;
	case PIPE_B:
1989 1990
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2002 2003
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2004 2005
		break;
	case PIPE_C:
2006 2007
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2019 2020
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2021 2022 2023 2024
		break;
	default:
		break;
	}
2025

2026
	POSTING_READ_FW(DSPARB);
2027

2028
	spin_unlock(&dev_priv->uncore.lock);
2029 2030 2031 2032
}

#undef VLV_FIFO

2033 2034
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
2035
				       struct intel_crtc_state *new_crtc_state)
2036
{
2037 2038 2039 2040 2041 2042 2043
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2044 2045
	int level;

2046 2047 2048 2049 2050 2051 2052
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2053
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2054
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2055
		!new_crtc_state->disable_cxsr;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2074
out:
2075 2076 2077 2078
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2079
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2080
		new_crtc_state->wm.need_postvbl_update = true;
2081 2082 2083 2084

	return 0;
}

2085
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2086 2087 2088 2089 2090
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2091
	wm->level = dev_priv->wm.max_level;
2092 2093
	wm->cxsr = true;

2094
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2095
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2110 2111 2112
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2113
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2114
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2115 2116 2117
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2118
		if (crtc->active && wm->cxsr)
2119 2120
			wm->sr = wm_state->sr[wm->level];

2121 2122 2123 2124
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2125 2126 2127
	}
}

2128
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2129
{
2130 2131
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2132

2133
	vlv_merge_wm(dev_priv, &new_wm);
2134

2135
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2136 2137
		return;

2138
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2139 2140
		chv_set_memory_dvfs(dev_priv, false);

2141
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2142 2143
		chv_set_memory_pm5(dev_priv, false);

2144
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2145
		_intel_set_memory_cxsr(dev_priv, false);
2146

2147
	vlv_write_wm_values(dev_priv, &new_wm);
2148

2149
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2150
		_intel_set_memory_cxsr(dev_priv, true);
2151

2152
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2153 2154
		chv_set_memory_pm5(dev_priv, true);

2155
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2156 2157
		chv_set_memory_dvfs(dev_priv, true);

2158
	*old_wm = new_wm;
2159 2160
}

2161 2162 2163 2164 2165 2166 2167
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2184 2185 2186 2187
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2188
static void i965_update_wm(struct intel_crtc *unused_crtc)
2189
{
2190
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2191
	struct intel_crtc *crtc;
2192 2193
	int srwm = 1;
	int cursor_sr = 16;
2194
	bool cxsr_enabled;
2195 2196

	/* Calc sr entries for one plane configs */
2197
	crtc = single_enabled_crtc(dev_priv);
2198 2199 2200
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2201 2202 2203 2204
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2205
		int clock = adjusted_mode->crtc_clock;
2206
		int htotal = adjusted_mode->crtc_htotal;
2207
		int hdisplay = crtc->config->pipe_src_w;
2208
		int cpp = fb->format->cpp[0];
2209 2210
		int entries;

2211 2212
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2213 2214 2215 2216 2217 2218 2219 2220
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2221 2222 2223
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2224
		entries = DIV_ROUND_UP(entries,
2225 2226
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2227

2228
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2229 2230 2231 2232 2233 2234
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2235
		cxsr_enabled = true;
2236
	} else {
2237
		cxsr_enabled = false;
2238
		/* Turn off self refresh if both pipes are enabled */
2239
		intel_set_memory_cxsr(dev_priv, false);
2240 2241 2242 2243 2244 2245
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2246 2247 2248 2249 2250 2251
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2252
	/* update cursor SR watermark */
2253
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2254 2255 2256

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2257 2258
}

2259 2260
#undef FW_WM

2261
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2262
{
2263
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2264 2265 2266 2267 2268 2269
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2270
	struct intel_crtc *crtc, *enabled = NULL;
2271

2272
	if (IS_I945GM(dev_priv))
2273
		wm_info = &i945_wm_info;
2274
	else if (!IS_GEN2(dev_priv))
2275 2276
		wm_info = &i915_wm_info;
	else
2277
		wm_info = &i830_a_wm_info;
2278

2279 2280
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2281 2282 2283 2284 2285 2286 2287
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2288
		if (IS_GEN2(dev_priv))
2289
			cpp = 4;
2290
		else
2291
			cpp = fb->format->cpp[0];
2292

2293
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2294
					       wm_info, fifo_size, cpp,
2295
					       pessimal_latency_ns);
2296
		enabled = crtc;
2297
	} else {
2298
		planea_wm = fifo_size - wm_info->guard_size;
2299 2300 2301 2302
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2303
	if (IS_GEN2(dev_priv))
2304
		wm_info = &i830_bc_wm_info;
2305

2306 2307
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2308 2309 2310 2311 2312 2313 2314
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2315
		if (IS_GEN2(dev_priv))
2316
			cpp = 4;
2317
		else
2318
			cpp = fb->format->cpp[0];
2319

2320
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2321
					       wm_info, fifo_size, cpp,
2322
					       pessimal_latency_ns);
2323 2324 2325 2326
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2327
	} else {
2328
		planeb_wm = fifo_size - wm_info->guard_size;
2329 2330 2331
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2332 2333 2334

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2335
	if (IS_I915GM(dev_priv) && enabled) {
2336
		struct drm_i915_gem_object *obj;
2337

2338
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2339 2340

		/* self-refresh seems busted with untiled */
2341
		if (!i915_gem_object_is_tiled(obj))
2342 2343 2344
			enabled = NULL;
	}

2345 2346 2347 2348 2349 2350
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2351
	intel_set_memory_cxsr(dev_priv, false);
2352 2353

	/* Calc sr entries for one plane configs */
2354
	if (HAS_FW_BLC(dev_priv) && enabled) {
2355 2356
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2357 2358 2359 2360
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2361
		int clock = adjusted_mode->crtc_clock;
2362
		int htotal = adjusted_mode->crtc_htotal;
2363 2364
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2365 2366
		int entries;

2367
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2368
			cpp = 4;
2369
		else
2370
			cpp = fb->format->cpp[0];
2371

2372 2373
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2374 2375 2376 2377 2378 2379
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2380
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2381 2382
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2383
		else
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2400 2401
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2402 2403
}

2404
static void i845_update_wm(struct intel_crtc *unused_crtc)
2405
{
2406
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2407
	struct intel_crtc *crtc;
2408
	const struct drm_display_mode *adjusted_mode;
2409 2410 2411
	uint32_t fwater_lo;
	int planea_wm;

2412
	crtc = single_enabled_crtc(dev_priv);
2413 2414 2415
	if (crtc == NULL)
		return;

2416
	adjusted_mode = &crtc->config->base.adjusted_mode;
2417
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2418
				       &i845_wm_info,
2419
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2420
				       4, pessimal_latency_ns);
2421 2422 2423 2424 2425 2426 2427 2428
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2429
/* latency must be in 0.1us units. */
2430 2431 2432
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2433
{
2434
	unsigned int ret;
2435

2436 2437
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2438 2439 2440 2441

	return ret;
}

2442
/* latency must be in 0.1us units. */
2443 2444 2445 2446 2447
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2448
{
2449
	unsigned int ret;
2450

2451 2452
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2453
	ret = DIV_ROUND_UP(ret, 64) + 2;
2454

2455 2456 2457
	return ret;
}

2458
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2459
			   uint8_t cpp)
2460
{
2461 2462 2463 2464 2465 2466
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2467
	if (WARN_ON(!cpp))
2468 2469 2470 2471
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2472
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2473 2474
}

2475
struct ilk_wm_maximums {
2476 2477 2478 2479 2480 2481
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2482 2483 2484 2485
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2486
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2487
				   const struct intel_plane_state *pstate,
2488 2489
				   uint32_t mem_value,
				   bool is_lp)
2490
{
2491
	uint32_t method1, method2;
2492
	int cpp;
2493

2494
	if (!intel_wm_plane_visible(cstate, pstate))
2495 2496
		return 0;

2497
	cpp = pstate->base.fb->format->cpp[0];
2498

2499
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2500 2501 2502 2503

	if (!is_lp)
		return method1;

2504
	method2 = ilk_wm_method2(cstate->pixel_rate,
2505
				 cstate->base.adjusted_mode.crtc_htotal,
2506
				 drm_rect_width(&pstate->base.dst),
2507
				 cpp, mem_value);
2508 2509

	return min(method1, method2);
2510 2511
}

2512 2513 2514 2515
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2516
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2517
				   const struct intel_plane_state *pstate,
2518 2519 2520
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2521
	int cpp;
2522

2523
	if (!intel_wm_plane_visible(cstate, pstate))
2524 2525
		return 0;

2526
	cpp = pstate->base.fb->format->cpp[0];
2527

2528 2529
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2530
				 cstate->base.adjusted_mode.crtc_htotal,
2531
				 drm_rect_width(&pstate->base.dst),
2532
				 cpp, mem_value);
2533 2534 2535
	return min(method1, method2);
}

2536 2537 2538 2539
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2540
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2541
				   const struct intel_plane_state *pstate,
2542 2543
				   uint32_t mem_value)
{
2544 2545
	int cpp;

2546
	if (!intel_wm_plane_visible(cstate, pstate))
2547 2548
		return 0;

2549 2550
	cpp = pstate->base.fb->format->cpp[0];

2551
	return ilk_wm_method2(cstate->pixel_rate,
2552
			      cstate->base.adjusted_mode.crtc_htotal,
2553
			      pstate->base.crtc_w, cpp, mem_value);
2554 2555
}

2556
/* Only for WM_LP. */
2557
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2558
				   const struct intel_plane_state *pstate,
2559
				   uint32_t pri_val)
2560
{
2561
	int cpp;
2562

2563
	if (!intel_wm_plane_visible(cstate, pstate))
2564 2565
		return 0;

2566
	cpp = pstate->base.fb->format->cpp[0];
2567

2568
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2569 2570
}

2571 2572
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2573
{
2574
	if (INTEL_GEN(dev_priv) >= 8)
2575
		return 3072;
2576
	else if (INTEL_GEN(dev_priv) >= 7)
2577 2578 2579 2580 2581
		return 768;
	else
		return 512;
}

2582 2583 2584
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2585
{
2586
	if (INTEL_GEN(dev_priv) >= 8)
2587 2588
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2589
	else if (INTEL_GEN(dev_priv) >= 7)
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2600 2601
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2602
{
2603
	if (INTEL_GEN(dev_priv) >= 7)
2604 2605 2606 2607 2608
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2609
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2610
{
2611
	if (INTEL_GEN(dev_priv) >= 8)
2612 2613 2614 2615 2616
		return 31;
	else
		return 15;
}

2617 2618 2619
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2620
				     const struct intel_wm_config *config,
2621 2622 2623
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2624 2625
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2626 2627

	/* if sprites aren't enabled, sprites get nothing */
2628
	if (is_sprite && !config->sprites_enabled)
2629 2630 2631
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2632
	if (level == 0 || config->num_pipes_active > 1) {
2633
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2634 2635 2636 2637 2638 2639

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2640
		if (INTEL_GEN(dev_priv) <= 6)
2641 2642 2643
			fifo_size /= 2;
	}

2644
	if (config->sprites_enabled) {
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2656
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2657 2658 2659 2660
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2661 2662
				      int level,
				      const struct intel_wm_config *config)
2663 2664
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2665
	if (level > 0 && config->num_pipes_active > 1)
2666 2667 2668
		return 64;

	/* otherwise just report max that registers can hold */
2669
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2670 2671
}

2672
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2673 2674 2675
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2676
				    struct ilk_wm_maximums *max)
2677
{
2678 2679 2680
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2681
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2682 2683
}

2684
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2685 2686 2687
					int level,
					struct ilk_wm_maximums *max)
{
2688 2689 2690 2691
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2692 2693
}

2694
static bool ilk_validate_wm_level(int level,
2695
				  const struct ilk_wm_maximums *max,
2696
				  struct intel_wm_level *result)
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2735
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2736
				 const struct intel_crtc *intel_crtc,
2737
				 int level,
2738
				 struct intel_crtc_state *cstate,
2739 2740 2741
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2742
				 struct intel_wm_level *result)
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2767 2768 2769
	result->enable = true;
}

2770
static uint32_t
2771
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2772
{
2773 2774
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2775 2776
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2777
	u32 linetime, ips_linetime;
2778

2779 2780 2781 2782
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2783
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2784
		return 0;
2785

2786 2787 2788
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2789 2790 2791
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2792
					 intel_state->cdclk.logical.cdclk);
2793

2794 2795
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2796 2797
}

2798 2799
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2800
{
2801
	if (INTEL_GEN(dev_priv) >= 9) {
2802
		uint32_t val;
2803
		int ret, i;
2804
		int level, max_level = ilk_wm_max_level(dev_priv);
2805 2806 2807

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2808
		mutex_lock(&dev_priv->pcu_lock);
2809 2810 2811
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2812
		mutex_unlock(&dev_priv->pcu_lock);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2829
		mutex_lock(&dev_priv->pcu_lock);
2830 2831 2832
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2833
		mutex_unlock(&dev_priv->pcu_lock);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2860
		/*
2861
		 * WaWmMemoryReadLatency:skl+,glk
2862
		 *
2863
		 * punit doesn't take into account the read latency so we need
2864 2865
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2866
		 */
2867 2868 2869 2870 2871
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2872
				wm[level] += 2;
2873
			}
2874 2875
		}

2876
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2877 2878 2879 2880 2881
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2882 2883 2884 2885
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2886
	} else if (INTEL_GEN(dev_priv) >= 6) {
2887 2888 2889 2890 2891 2892
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2893
	} else if (INTEL_GEN(dev_priv) >= 5) {
2894 2895 2896 2897 2898 2899
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2900 2901
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2902 2903 2904
	}
}

2905 2906
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2907 2908
{
	/* ILK sprite LP0 latency is 1300 ns */
2909
	if (IS_GEN5(dev_priv))
2910 2911 2912
		wm[0] = 13;
}

2913 2914
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2915 2916
{
	/* ILK cursor LP0 latency is 1300 ns */
2917
	if (IS_GEN5(dev_priv))
2918 2919 2920
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2921
	if (IS_IVYBRIDGE(dev_priv))
2922 2923 2924
		wm[3] *= 2;
}

2925
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2926 2927
{
	/* how many WM levels are we expecting */
2928
	if (INTEL_GEN(dev_priv) >= 9)
2929
		return 7;
2930
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2931
		return 4;
2932
	else if (INTEL_GEN(dev_priv) >= 6)
2933
		return 3;
2934
	else
2935 2936
		return 2;
}
2937

2938
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2939
				   const char *name,
2940
				   const uint16_t wm[8])
2941
{
2942
	int level, max_level = ilk_wm_max_level(dev_priv);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2953 2954 2955 2956
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2957
		if (INTEL_GEN(dev_priv) >= 9)
2958 2959
			latency *= 10;
		else if (level > 0)
2960 2961 2962 2963 2964 2965 2966 2967
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2968 2969 2970
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2971
	int level, max_level = ilk_wm_max_level(dev_priv);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2983
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2999 3000 3001
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3002 3003
}

3004
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3005
{
3006
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3007 3008 3009 3010 3011 3012

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3013
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3014
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3015

3016 3017 3018
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3019

3020
	if (IS_GEN6(dev_priv))
3021
		snb_wm_latency_quirk(dev_priv);
3022 3023
}

3024
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3025
{
3026
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3027
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3028 3029
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3053
/* Compute new watermarks for the pipe */
3054
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3055
{
3056 3057
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3058
	struct intel_pipe_wm *pipe_wm;
3059
	struct drm_device *dev = state->dev;
3060
	const struct drm_i915_private *dev_priv = to_i915(dev);
3061 3062 3063 3064 3065
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3066
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3067
	struct ilk_wm_maximums max;
3068

3069
	pipe_wm = &cstate->wm.ilk.optimal;
3070

3071 3072
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3073

3074
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3075
			pristate = ps;
3076
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3077
			sprstate = ps;
3078
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3079
			curstate = ps;
3080 3081
	}

3082
	pipe_wm->pipe_enabled = cstate->base.active;
3083
	if (sprstate) {
3084 3085 3086 3087
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3088 3089
	}

3090 3091
	usable_level = max_level;

3092
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3093
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3094
		usable_level = 1;
3095 3096

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3097
	if (pipe_wm->sprites_scaled)
3098
		usable_level = 0;
3099

3100
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3101 3102
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3103

3104
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3105
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3106

3107
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3108
		return -EINVAL;
3109

3110
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3111

3112 3113
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3114

3115
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3116
				     pristate, sprstate, curstate, wm);
3117 3118 3119 3120 3121 3122

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3123 3124 3125 3126
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3127 3128
	}

3129
	return 0;
3130 3131
}

3132 3133 3134 3135 3136 3137 3138 3139 3140
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3141
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3142 3143 3144 3145 3146
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3147
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3148 3149 3150 3151 3152 3153

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3154
	*a = newstate->wm.ilk.optimal;
3155 3156 3157
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
		return 0;

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3186 3187
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3188 3189 3190 3191

	return 0;
}

3192 3193 3194 3195 3196 3197 3198 3199 3200
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3201 3202
	ret_wm->enable = true;

3203
	for_each_intel_crtc(dev, intel_crtc) {
3204
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3205 3206 3207 3208
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3209

3210 3211 3212 3213 3214
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3215
		if (!wm->enable)
3216
			ret_wm->enable = false;
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3229
			 const struct intel_wm_config *config,
3230
			 const struct ilk_wm_maximums *max,
3231 3232
			 struct intel_pipe_wm *merged)
{
3233
	struct drm_i915_private *dev_priv = to_i915(dev);
3234
	int level, max_level = ilk_wm_max_level(dev_priv);
3235
	int last_enabled_level = max_level;
3236

3237
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3238
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3239
	    config->num_pipes_active > 1)
3240
		last_enabled_level = 0;
3241

3242
	/* ILK: FBC WM must be disabled always */
3243
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3244 3245 3246 3247 3248 3249 3250

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3251 3252 3253 3254 3255
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3256 3257 3258 3259 3260 3261

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3262 3263
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3264 3265 3266
			wm->fbc_val = 0;
		}
	}
3267 3268 3269 3270 3271 3272 3273

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3274
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3275
	    intel_fbc_is_active(dev_priv)) {
3276 3277 3278 3279 3280 3281
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3282 3283
}

3284 3285 3286 3287 3288 3289
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3290 3291 3292
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3293
	struct drm_i915_private *dev_priv = to_i915(dev);
3294

3295
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3296 3297 3298 3299 3300
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3301
static void ilk_compute_wm_results(struct drm_device *dev,
3302
				   const struct intel_pipe_wm *merged,
3303
				   enum intel_ddb_partitioning partitioning,
3304
				   struct ilk_wm_values *results)
3305
{
3306
	struct drm_i915_private *dev_priv = to_i915(dev);
3307 3308
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3309

3310
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3311
	results->partitioning = partitioning;
3312

3313
	/* LP1+ register values */
3314
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3315
		const struct intel_wm_level *r;
3316

3317
		level = ilk_wm_lp_to_level(wm_lp, merged);
3318

3319
		r = &merged->wm[level];
3320

3321 3322 3323 3324 3325
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3326
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3327 3328 3329
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3330 3331 3332
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3333
		if (INTEL_GEN(dev_priv) >= 8)
3334 3335 3336 3337 3338 3339
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3340 3341 3342 3343
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3344
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3345 3346 3347 3348
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3349
	}
3350

3351
	/* LP0 register values */
3352
	for_each_intel_crtc(dev, intel_crtc) {
3353
		enum pipe pipe = intel_crtc->pipe;
3354 3355
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3356 3357 3358 3359

		if (WARN_ON(!r->enable))
			continue;

3360
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3361

3362 3363 3364 3365
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3366 3367 3368
	}
}

3369 3370
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3371
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3372 3373
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3374
{
3375
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3376
	int level1 = 0, level2 = 0;
3377

3378 3379 3380 3381 3382
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3383 3384
	}

3385 3386
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3387 3388 3389
			return r2;
		else
			return r1;
3390
	} else if (level1 > level2) {
3391 3392 3393 3394 3395 3396
		return r1;
	} else {
		return r2;
	}
}

3397 3398 3399 3400 3401 3402 3403 3404
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3405
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3406 3407
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3408 3409 3410 3411 3412
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3413
	for_each_pipe(dev_priv, pipe) {
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3457 3458
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3459
{
3460
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3461
	bool changed = false;
3462

3463 3464 3465
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3466
		changed = true;
3467 3468 3469 3470
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3471
		changed = true;
3472 3473 3474 3475
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3476
		changed = true;
3477
	}
3478

3479 3480 3481 3482
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3483

3484 3485 3486 3487 3488 3489 3490
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3491 3492
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3493
{
3494
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3495 3496 3497
	unsigned int dirty;
	uint32_t val;

3498
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3499 3500 3501 3502 3503
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3504
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3505
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3506
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3507
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3508
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3509 3510
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3511
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3512
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3513
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3514
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3515
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3516 3517
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3518
	if (dirty & WM_DIRTY_DDB) {
3519
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3534 3535
	}

3536
	if (dirty & WM_DIRTY_FBC) {
3537 3538 3539 3540 3541 3542 3543 3544
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3545 3546 3547 3548
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3549
	if (INTEL_GEN(dev_priv) >= 7) {
3550 3551 3552 3553 3554
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3555

3556
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3557
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3558
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3559
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3560
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3561
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3562 3563

	dev_priv->wm.hw = *results;
3564 3565
}

3566
bool ilk_disable_lp_wm(struct drm_device *dev)
3567
{
3568
	struct drm_i915_private *dev_priv = to_i915(dev);
3569 3570 3571 3572

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3573 3574 3575 3576 3577 3578 3579 3580
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3581
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3582 3583 3584 3585 3586
		return true;

	return false;
}

3587 3588 3589
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3590 3591
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3592 3593 3594 3595 3596 3597 3598
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3599 3600
}

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3613
intel_enable_sagv(struct drm_i915_private *dev_priv)
3614 3615 3616
{
	int ret;

3617 3618 3619 3620
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3621 3622 3623
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3624
	mutex_lock(&dev_priv->pcu_lock);
3625 3626 3627 3628 3629

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3630
	mutex_unlock(&dev_priv->pcu_lock);
3631 3632 3633 3634 3635

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3636
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3637
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3638
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3639 3640 3641 3642 3643 3644
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3645
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3646 3647 3648 3649
	return 0;
}

int
3650
intel_disable_sagv(struct drm_i915_private *dev_priv)
3651
{
3652
	int ret;
3653

3654 3655 3656 3657
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3658 3659 3660
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3661
	mutex_lock(&dev_priv->pcu_lock);
3662 3663

	/* bspec says to keep retrying for at least 1 ms */
3664 3665 3666 3667
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3668
	mutex_unlock(&dev_priv->pcu_lock);
3669 3670 3671 3672 3673

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3674
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3675
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3676
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3677
		return 0;
3678 3679 3680
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3681 3682
	}

3683
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3684 3685 3686
	return 0;
}

3687
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3688 3689 3690 3691
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3692 3693
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3694
	struct intel_crtc_state *cstate;
3695
	enum pipe pipe;
3696
	int level, latency;
3697
	int sagv_block_time_us;
3698

3699 3700 3701
	if (!intel_has_sagv(dev_priv))
		return false;

3702 3703 3704 3705 3706 3707 3708
	if (IS_GEN9(dev_priv))
		sagv_block_time_us = 30;
	else if (IS_GEN10(dev_priv))
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3709
	/*
3710
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3722
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3723
	cstate = to_intel_crtc_state(crtc->base.state);
3724

3725
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3726 3727
		return false;

3728
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3729 3730
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3731

3732
		/* Skip this plane if it's not enabled */
3733
		if (!wm->wm[0].plane_en)
3734 3735 3736
			continue;

		/* Find the highest enabled wm level for this plane */
3737
		for (level = ilk_wm_max_level(dev_priv);
3738
		     !wm->wm[level].plane_en; --level)
3739 3740
		     { }

3741 3742 3743
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3744
		    plane->base.state->fb->modifier ==
3745 3746 3747
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3748
		/*
3749 3750 3751
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3752
		 */
3753
		if (latency < sagv_block_time_us)
3754 3755 3756 3757 3758 3759
			return false;
	}

	return true;
}

3760 3761
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3762
				   const struct intel_crtc_state *cstate,
3763 3764
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3765
{
3766 3767 3768
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3769
	struct drm_crtc *for_crtc = cstate->base.crtc;
3770 3771
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3772

3773
	if (WARN_ON(!state) || !cstate->base.active) {
3774 3775
		alloc->start = 0;
		alloc->end = 0;
3776
		*num_active = hweight32(dev_priv->active_crtcs);
3777 3778 3779
		return;
	}

3780 3781 3782 3783 3784
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3785 3786
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3787

3788 3789
	if (INTEL_GEN(dev_priv) < 11)
		ddb_size -= 4; /* 4 blocks for bypass path allocation */
3790

3791
	/*
3792 3793 3794 3795 3796 3797
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3798
	 */
3799
	if (!intel_state->active_pipe_changes) {
3800 3801 3802 3803 3804
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3805
		return;
3806
	}
3807 3808 3809 3810 3811 3812

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3813 3814
}

3815
static unsigned int skl_cursor_allocation(int num_active)
3816
{
3817
	if (num_active == 1)
3818 3819 3820 3821 3822
		return 32;

	return 8;
}

3823 3824 3825 3826
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3827 3828
	if (entry->end)
		entry->end += 1;
3829 3830
}

3831 3832
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3833
{
3834
	struct intel_crtc *crtc;
3835

3836 3837
	memset(ddb, 0, sizeof(*ddb));

3838
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3839
		enum intel_display_power_domain power_domain;
3840 3841
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3842 3843 3844

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3845 3846
			continue;

3847 3848 3849 3850 3851 3852 3853
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3854

3855 3856
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3857 3858

		intel_display_power_put(dev_priv, power_domain);
3859 3860 3861
	}
}

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3878
static uint_fixed_16_16_t
3879 3880
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3881
{
3882
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3883
	uint32_t src_w, src_h, dst_w, dst_h;
3884 3885
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3886

3887
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3888
		return u32_to_fixed16(0);
3889 3890

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3891
	if (plane->id == PLANE_CURSOR) {
3892 3893 3894 3895
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3896 3897
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3898 3899 3900
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3901 3902 3903 3904 3905
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3906 3907
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3908 3909 3910 3911
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3912 3913 3914 3915
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3916

3917
	return mul_fixed16(downscale_w, downscale_h);
3918 3919
}

3920 3921 3922
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
3923
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

3942 3943 3944 3945
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
3956
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3957 3958 3959 3960 3961
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
3962
	int crtc_clock, dotclk;
3963 3964
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
3965
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3966 3967 3968 3969 3970 3971

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
3972
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

3990
		max_downscale = max_fixed16(plane_downscale, max_downscale);
3991 3992 3993 3994 3995 3996
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3997 3998
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

3999
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4000 4001 4002
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4003 4004

	if (pipe_max_pixel_rate < crtc_clock) {
4005
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4006 4007 4008 4009 4010 4011
		return -EINVAL;
	}

	return 0;
}

4012
static unsigned int
4013 4014 4015
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
4016
{
4017
	struct intel_plane *plane = to_intel_plane(pstate->plane);
4018
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4019
	uint32_t data_rate;
4020
	uint32_t width = 0, height = 0;
4021 4022
	struct drm_framebuffer *fb;
	u32 format;
4023
	uint_fixed_16_16_t down_scale_amount;
4024

4025
	if (!intel_pstate->base.visible)
4026
		return 0;
4027 4028

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4029
	format = fb->format->format;
4030

4031
	if (plane->id == PLANE_CURSOR)
4032 4033 4034
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
4035

4036 4037 4038 4039 4040
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4041 4042
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4043

4044
	/* for planar format */
4045
	if (format == DRM_FORMAT_NV12) {
4046
		if (y)  /* y-plane data rate */
4047
			data_rate = width * height *
4048
				fb->format->cpp[0];
4049
		else    /* uv-plane data rate */
4050
			data_rate = (width / 2) * (height / 2) *
4051
				fb->format->cpp[1];
4052 4053
	} else {
		/* for packed formats */
4054
		data_rate = width * height * fb->format->cpp[0];
4055 4056
	}

4057
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4058

4059
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4060 4061 4062 4063 4064 4065 4066 4067
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4068 4069 4070
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
4071
{
4072 4073
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4074 4075
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4076
	unsigned int total_data_rate = 0;
4077 4078 4079

	if (WARN_ON(!state))
		return 0;
4080

4081
	/* Calculate and cache data rate for each plane */
4082
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4083 4084
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4085 4086 4087 4088

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4089
		plane_data_rate[plane_id] = rate;
4090 4091

		total_data_rate += rate;
4092 4093 4094 4095

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4096
		plane_y_data_rate[plane_id] = rate;
4097

4098
		total_data_rate += rate;
4099 4100 4101 4102 4103
	}

	return total_data_rate;
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
4118
	if (y && fb->format->format != DRM_FORMAT_NV12)
4119 4120 4121
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4122
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4123 4124 4125
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4126 4127
		return 8;

4128 4129 4130 4131 4132
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4133 4134
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4135 4136

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
4137
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4138 4139 4140 4141
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
4142
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4143
		plane_bpp = fb->format->cpp[1];
4144
	else
4145
		plane_bpp = fb->format->cpp[0];
4146

4147
	if (drm_rotation_90_or_270(pstate->rotation)) {
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4171 4172 4173 4174 4175 4176 4177 4178
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4179
		enum plane_id plane_id = to_intel_plane(plane)->id;
4180

4181
		if (plane_id == PLANE_CURSOR)
4182 4183 4184 4185 4186
			continue;

		if (!pstate->visible)
			continue;

4187 4188
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4189 4190 4191 4192 4193
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4194
static int
4195
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4196 4197
		      struct skl_ddb_allocation *ddb /* out */)
{
4198
	struct drm_atomic_state *state = cstate->base.state;
4199
	struct drm_crtc *crtc = cstate->base.crtc;
4200 4201 4202
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4203
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4204
	uint16_t alloc_size, start;
4205 4206
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4207
	unsigned int total_data_rate;
4208
	enum plane_id plane_id;
4209
	int num_active;
4210 4211
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4212
	uint16_t total_min_blocks = 0;
4213

4214 4215 4216 4217
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4218 4219 4220
	if (WARN_ON(!state))
		return 0;

4221
	if (!cstate->base.active) {
4222
		alloc->start = alloc->end = 0;
4223 4224 4225
		return 0;
	}

4226
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4227
	alloc_size = skl_ddb_entry_size(alloc);
4228
	if (alloc_size == 0)
4229
		return 0;
4230

4231
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4232

4233 4234 4235 4236 4237
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4238

4239
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4240 4241
		total_min_blocks += minimum[plane_id];
		total_min_blocks += y_minimum[plane_id];
4242 4243
	}

4244 4245 4246 4247 4248 4249 4250
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4251 4252
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4253 4254
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4255
	/*
4256 4257
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4258 4259 4260
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4261 4262 4263
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4264
	if (total_data_rate == 0)
4265
		return 0;
4266

4267
	start = alloc->start;
4268
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4269
		unsigned int data_rate, y_data_rate;
4270
		uint16_t plane_blocks, y_plane_blocks = 0;
4271

4272
		if (plane_id == PLANE_CURSOR)
4273 4274
			continue;

4275
		data_rate = plane_data_rate[plane_id];
4276 4277

		/*
4278
		 * allocation for (packed formats) or (uv-plane part of planar format):
4279 4280 4281
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4282 4283 4284
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4285

4286 4287
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4288 4289
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4290
		}
4291

4292 4293
		start += plane_blocks;

4294 4295 4296
		/*
		 * allocation for y_plane part of planar format:
		 */
4297
		y_data_rate = plane_y_data_rate[plane_id];
4298

4299 4300 4301 4302
		y_plane_blocks = y_minimum[plane_id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);

4303
		if (y_data_rate) {
4304 4305
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4306
		}
4307 4308

		start += y_plane_blocks;
4309 4310
	}

4311
	return 0;
4312 4313
}

4314 4315
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4316
 * for the read latency) and cpp should always be <= 8, so that
4317 4318 4319
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4320 4321
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4322
	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4323
{
4324 4325
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4326 4327

	if (latency == 0)
4328
		return FP_16_16_MAX;
4329

4330
	wm_intermediate_val = latency * pixel_rate * cpp;
4331
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4332 4333 4334 4335

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4336 4337 4338
	return ret;
}

4339 4340 4341 4342
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4343
{
4344
	uint32_t wm_intermediate_val;
4345
	uint_fixed_16_16_t ret;
4346 4347

	if (latency == 0)
4348
		return FP_16_16_MAX;
4349 4350

	wm_intermediate_val = latency * pixel_rate;
4351 4352
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4353
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4354 4355 4356
	return ret;
}

4357 4358 4359 4360 4361 4362 4363 4364
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4365
		return u32_to_fixed16(0);
4366 4367 4368 4369

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4370
		return u32_to_fixed16(0);
4371 4372

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4373
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4374 4375 4376 4377

	return linetime_us;
}

4378 4379 4380
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4381 4382
{
	uint64_t adjusted_pixel_rate;
4383
	uint_fixed_16_16_t downscale_amount;
4384 4385

	/* Shouldn't reach here on disabled planes... */
4386
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4387 4388 4389 4390 4391 4392
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4393
	adjusted_pixel_rate = cstate->pixel_rate;
4394
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4395

4396 4397
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4398 4399
}

4400 4401 4402 4403 4404
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
			    struct skl_wm_params *wp)
4405
{
4406
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4407 4408
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4409
	uint32_t interm_pbpl;
4410 4411 4412
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4413

4414
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4415
		return 0;
4416

4417 4418 4419 4420 4421 4422 4423
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4424

4425
	if (plane->id == PLANE_CURSOR) {
4426
		wp->width = intel_pstate->base.crtc_w;
4427
	} else {
4428 4429 4430 4431 4432
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4433
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4434
	}
4435

4436 4437 4438 4439
	wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
							    fb->format->cpp[0];
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4440

4441 4442 4443 4444 4445 4446
	if (INTEL_GEN(dev_priv) >= 11 &&
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4447
	if (drm_rotation_90_or_270(pstate->rotation)) {
4448

4449
		switch (wp->cpp) {
4450
		case 1:
4451
			wp->y_min_scanlines = 16;
4452 4453
			break;
		case 2:
4454
			wp->y_min_scanlines = 8;
4455 4456
			break;
		case 4:
4457
			wp->y_min_scanlines = 4;
4458
			break;
4459
		default:
4460
			MISSING_CASE(wp->cpp);
4461
			return -EINVAL;
4462 4463
		}
	} else {
4464
		wp->y_min_scanlines = 4;
4465 4466
	}

4467
	if (apply_memory_bw_wa)
4468
		wp->y_min_scanlines *= 2;
4469

4470 4471 4472
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4473 4474
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4475 4476 4477 4478

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4479 4480 4481
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4482 4483
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4484
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4485
	} else {
4486 4487
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4488
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4489 4490
	}

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4517
	uint32_t min_disp_buf_needed;
4518 4519 4520 4521 4522 4523 4524 4525

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
		*enabled = false;
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4526 4527
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4528 4529 4530 4531 4532 4533 4534
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4535
				 wp->cpp, latency, wp->dbuf_block_size);
4536
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4537
				 cstate->base.adjusted_mode.crtc_htotal,
4538
				 latency,
4539
				 wp->plane_blocks_per_line);
4540

4541 4542
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4543
	} else {
4544
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4545 4546
		     wp->dbuf_block_size < 1) &&
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4547
			selected_result = method2;
4548
		else if (ddb_allocation >=
4549
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4550
			selected_result = min_fixed16(method1, method2);
4551
		else if (latency >= wp->linetime_us)
4552
			selected_result = min_fixed16(method1, method2);
4553 4554 4555
		else
			selected_result = method1;
	}
4556

4557
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4558
	res_lines = div_round_up_fixed16(selected_result,
4559
					 wp->plane_blocks_per_line);
4560

4561
	/* Display WA #1125: skl,bxt,kbl,glk */
4562 4563
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4564 4565

	/* Display WA #1126: skl,bxt,kbl,glk */
4566
	if (level >= 1 && level <= 7) {
4567 4568 4569 4570
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4571
		} else {
4572
			res_blocks++;
4573
		}
4574
	}
4575

4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			uint32_t extra_lines;
			uint_fixed_16_16_t fp_min_disp_buf_needed;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					      res_lines % wp->y_min_scanlines;

			fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
						extra_lines,
						wp->plane_blocks_per_line);
			min_disp_buf_needed = fixed16_to_u32_round_up(
						fp_min_disp_buf_needed);
		} else {
			min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
		}
	} else {
		min_disp_buf_needed = res_blocks;
	}

4599 4600
	if ((level > 0 && res_lines > 31) ||
	    res_blocks >= ddb_allocation ||
4601
	    min_disp_buf_needed >= ddb_allocation) {
4602
		*enabled = false;
4603

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4619
	}
4620

4621 4622
	/* The number of lines are ignored for the level 0 watermark. */
	*out_lines = level ? res_lines : 0;
4623
	*out_blocks = res_blocks;
4624
	*enabled = true;
4625

4626
	return 0;
4627 4628
}

4629
static int
4630
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4631
		      struct skl_ddb_allocation *ddb,
4632 4633
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4634
		      const struct skl_wm_params *wm_params,
4635
		      struct skl_plane_wm *wm)
4636
{
4637 4638 4639 4640 4641
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4642
	int level, max_level = ilk_wm_max_level(dev_priv);
4643
	int ret;
L
Lyude 已提交
4644

4645 4646
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4647

4648 4649
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);

4650 4651 4652 4653 4654 4655
	for (level = 0; level <= max_level; level++) {
		struct skl_wm_level *result = &wm->wm[level];

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4656
					   ddb_blocks,
4657
					   level,
4658
					   wm_params,
4659
					   &result->plane_res_b,
4660 4661
					   &result->plane_res_l,
					   &result->plane_en);
4662 4663 4664
		if (ret)
			return ret;
	}
4665 4666

	return 0;
4667 4668
}

4669
static uint32_t
4670
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4671
{
M
Mahesh Kumar 已提交
4672 4673
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4674
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4675
	uint32_t linetime_wm;
4676

4677
	linetime_us = intel_get_linetime_us(cstate);
4678

4679
	if (is_fixed16_zero(linetime_us))
4680
		return 0;
4681

4682
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4683

4684 4685 4686 4687
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4688 4689

	return linetime_wm;
4690 4691
}

4692
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4693 4694 4695
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4696
				      struct skl_wm_level *trans_wm /* out */)
4697
{
4698 4699 4700 4701 4702 4703
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4704
	if (!cstate->base.active)
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4739
		return;
4740
	}
4741

4742
exit:
L
Lyude 已提交
4743
	trans_wm->plane_en = false;
4744 4745
}

4746 4747 4748
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4749
{
4750
	struct drm_device *dev = cstate->base.crtc->dev;
4751
	struct drm_crtc_state *crtc_state = &cstate->base;
4752
	const struct drm_i915_private *dev_priv = to_i915(dev);
4753 4754
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4755
	struct skl_plane_wm *wm;
4756
	int ret;
4757

L
Lyude 已提交
4758 4759 4760 4761 4762 4763
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4764 4765 4766 4767
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4768
		struct skl_wm_params wm_params;
4769 4770
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4771 4772

		wm = &pipe_wm->planes[plane_id];
4773
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4774 4775 4776 4777 4778 4779
		memset(&wm_params, 0, sizeof(struct skl_wm_params));

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
						  intel_pstate, &wm_params);
		if (ret)
			return ret;
L
Lyude 已提交
4780

4781
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4782
					    intel_pstate, &wm_params, wm);
4783 4784
		if (ret)
			return ret;
4785 4786
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4787
	}
4788
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4789

4790
	return 0;
4791 4792
}

4793 4794
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4795 4796 4797 4798 4799 4800 4801 4802
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4818 4819 4820
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4821
			       enum plane_id plane_id)
4822 4823 4824 4825
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4826
	int level, max_level = ilk_wm_max_level(dev_priv);
4827 4828 4829
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4830
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4831
				   &wm->wm[level]);
4832
	}
4833
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4834
			   &wm->trans_wm);
4835

4836 4837
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
4838 4839 4840 4841
	if (INTEL_GEN(dev_priv) < 11)
		skl_ddb_entry_write(dev_priv,
				    PLANE_NV12_BUF_CFG(pipe, plane_id),
				    &ddb->y_plane[pipe][plane_id]);
4842 4843
}

4844 4845 4846
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4847 4848 4849 4850
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4851
	int level, max_level = ilk_wm_max_level(dev_priv);
4852 4853 4854
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4855 4856
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4857
	}
4858
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4859

4860
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4861
			    &ddb->plane[pipe][PLANE_CURSOR]);
4862 4863
}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4878 4879
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4880
{
4881
	return a->start < b->end && b->start < a->end;
4882 4883
}

4884 4885
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
				 const struct skl_ddb_entry **entries,
4886 4887
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4888
{
4889
	enum pipe pipe;
4890

4891 4892 4893
	for_each_pipe(dev_priv, pipe) {
		if (pipe != ignore && entries[pipe] &&
		    skl_ddb_entries_overlap(ddb, entries[pipe]))
4894
			return true;
4895
	}
4896

4897
	return false;
4898 4899
}

4900
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4901
			      const struct skl_pipe_wm *old_pipe_wm,
4902
			      struct skl_pipe_wm *pipe_wm, /* out */
4903
			      struct skl_ddb_allocation *ddb, /* out */
4904
			      bool *changed /* out */)
4905
{
4906
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4907
	int ret;
4908

4909 4910 4911
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4912

4913
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4914 4915 4916
		*changed = false;
	else
		*changed = true;
4917

4918
	return 0;
4919 4920
}

4921 4922 4923 4924 4925 4926 4927
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4928
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4929 4930 4931 4932 4933
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4934
static int
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
4970 4971 4972 4973 4974
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4975
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4976
	uint32_t realloc_pipes = pipes_modified(state);
4977 4978 4979 4980 4981 4982 4983 4984
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4985 4986 4987 4988 4989 4990
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4991 4992
		intel_state->active_pipe_changes = ~0;

4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5016
	if (intel_state->active_pipe_changes) {
5017
		realloc_pipes = ~0;
5018 5019
		intel_state->wm_results.dirty_pipes = ~0;
	}
5020

5021 5022 5023 5024 5025 5026
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5027 5028 5029 5030 5031 5032
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
5033 5034 5035 5036 5037 5038 5039 5040

		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
5041 5042 5043 5044 5045
	}

	return 0;
}

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5069
	int i;
5070

5071
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5072 5073
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5074

5075
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5076
			enum plane_id plane_id = intel_plane->id;
5077 5078
			const struct skl_ddb_entry *old, *new;

5079 5080
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5081 5082 5083 5084

			if (skl_ddb_entry_equal(old, new))
				continue;

5085 5086 5087 5088 5089
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5090 5091 5092 5093
		}
	}
}

5094 5095 5096 5097 5098
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
5099 5100
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
5101
	struct drm_device *dev = state->dev;
5102
	struct skl_pipe_wm *pipe_wm;
5103
	bool changed = false;
5104
	int ret, i;
5105

5106 5107 5108 5109 5110 5111 5112
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

5113 5114 5115 5116 5117 5118 5119 5120
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5121
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5122
		changed = true;
5123

5124 5125 5126
	if (!changed)
		return 0;

5127 5128 5129
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5130
	ret = skl_compute_ddb(state);
5131 5132 5133
	if (ret)
		return ret;

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5144
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5145 5146
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5147 5148
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5149 5150

		pipe_wm = &intel_cstate->wm.skl.optimal;
5151 5152
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5166 5167
	skl_print_wm_changes(state);

5168 5169 5170
	return 0;
}

5171 5172 5173 5174 5175 5176
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5177
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5178
	enum pipe pipe = crtc->pipe;
5179
	enum plane_id plane_id;
5180 5181 5182

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5183 5184

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5185

5186 5187 5188 5189 5190 5191 5192 5193
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5194 5195
}

5196 5197
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5198
{
5199
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5200
	struct drm_device *dev = intel_crtc->base.dev;
5201
	struct drm_i915_private *dev_priv = to_i915(dev);
5202
	struct skl_wm_values *results = &state->wm_results;
5203
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5204
	enum pipe pipe = intel_crtc->pipe;
5205

5206
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5207 5208
		return;

5209
	mutex_lock(&dev_priv->wm.wm_mutex);
5210

5211 5212
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5213 5214

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5215 5216

	mutex_unlock(&dev_priv->wm.wm_mutex);
5217 5218
}

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5237
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5238
{
5239
	struct drm_device *dev = &dev_priv->drm;
5240
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5241
	struct ilk_wm_maximums max;
5242
	struct intel_wm_config config = {};
5243
	struct ilk_wm_values results = {};
5244
	enum intel_ddb_partitioning partitioning;
5245

5246 5247 5248 5249
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5250 5251

	/* 5/6 split only in single pipe config on IVB+ */
5252
	if (INTEL_GEN(dev_priv) >= 7 &&
5253 5254 5255
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5256

5257
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5258
	} else {
5259
		best_lp_wm = &lp_wm_1_2;
5260 5261
	}

5262
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5263
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5264

5265
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5266

5267
	ilk_write_wm_values(dev_priv, &results);
5268 5269
}

5270 5271
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5272
{
5273 5274
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5275

5276
	mutex_lock(&dev_priv->wm.wm_mutex);
5277
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5278 5279 5280
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5281

5282 5283
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5284 5285 5286
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5287

5288 5289
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5290
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5291 5292 5293
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5294 5295
}

5296 5297
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5298
{
5299 5300 5301 5302
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5303 5304
}

5305 5306
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5307
{
5308
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5309 5310
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5311 5312
	int level, max_level;
	enum plane_id plane_id;
5313
	uint32_t val;
5314

5315
	max_level = ilk_wm_max_level(dev_priv);
5316

5317 5318
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5319

5320
		for (level = 0; level <= max_level; level++) {
5321 5322
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5323 5324
			else
				val = I915_READ(CUR_WM(pipe, level));
5325

5326
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5327 5328
		}

5329 5330
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5331 5332 5333 5334
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5335 5336
	}

5337 5338
	if (!intel_crtc->active)
		return;
5339

5340
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5341 5342 5343 5344
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5345
	struct drm_i915_private *dev_priv = to_i915(dev);
5346
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5347
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5348
	struct drm_crtc *crtc;
5349 5350
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5351

5352
	skl_ddb_get_hw_state(dev_priv, ddb);
5353 5354 5355 5356 5357 5358
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5359
		if (intel_crtc->active)
5360 5361
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5362

5363 5364 5365 5366 5367 5368 5369
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5370 5371
}

5372 5373 5374
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5375
	struct drm_i915_private *dev_priv = to_i915(dev);
5376
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5377
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5378
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5379
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5380
	enum pipe pipe = intel_crtc->pipe;
5381
	static const i915_reg_t wm0_pipe_reg[] = {
5382 5383 5384 5385 5386 5387
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5388
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5389
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5390

5391 5392
	memset(active, 0, sizeof(*active));

5393
	active->pipe_enabled = intel_crtc->active;
5394 5395

	if (active->pipe_enabled) {
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5410
		int level, max_level = ilk_wm_max_level(dev_priv);
5411 5412 5413 5414 5415 5416 5417 5418 5419

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5420 5421

	intel_crtc->wm.active.ilk = *active;
5422 5423
}

5424 5425 5426 5427 5428
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5455 5456 5457 5458 5459 5460 5461 5462 5463
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5464
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5465
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5466
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5467
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5468
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5469
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5470
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5471 5472 5473 5474 5475
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5476 5477 5478
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5479 5480

	tmp = I915_READ(DSPFW2);
5481 5482 5483
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5484 5485 5486 5487 5488 5489

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5490 5491
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5492 5493

		tmp = I915_READ(DSPFW8_CHV);
5494 5495
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5496 5497

		tmp = I915_READ(DSPFW9_CHV);
5498 5499
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5500 5501 5502

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5503 5504 5505 5506 5507 5508 5509 5510 5511
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5512 5513
	} else {
		tmp = I915_READ(DSPFW7);
5514 5515
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5516 5517 5518

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5519 5520 5521 5522 5523 5524
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5525 5526 5527 5528 5529 5530
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5672 5673 5674 5675
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5676
	struct intel_crtc *crtc;
5677 5678 5679 5680 5681 5682 5683 5684
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5685
		mutex_lock(&dev_priv->pcu_lock);
5686 5687 5688 5689 5690

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5691 5692 5693 5694 5695 5696 5697 5698 5699
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5700
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5714

5715
		mutex_unlock(&dev_priv->pcu_lock);
5716 5717
	}

5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5734
			struct g4x_pipe_wm *raw =
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5756
		crtc_state->wm.vlv.intermediate = *active;
5757

5758
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5759 5760 5761 5762 5763
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5764
	}
5765 5766 5767 5768 5769

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5794
			struct g4x_pipe_wm *raw =
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5835 5836
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5837
	struct drm_i915_private *dev_priv = to_i915(dev);
5838
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5839 5840
	struct drm_crtc *crtc;

5841 5842
	ilk_init_lp_watermarks(dev_priv);

5843
	for_each_crtc(dev, crtc)
5844 5845 5846 5847 5848 5849 5850
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5851
	if (INTEL_GEN(dev_priv) >= 7) {
5852 5853 5854
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5855

5856
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5857 5858
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5859
	else if (IS_IVYBRIDGE(dev_priv))
5860 5861
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5862 5863 5864 5865 5866

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5899
void intel_update_watermarks(struct intel_crtc *crtc)
5900
{
5901
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5902 5903

	if (dev_priv->display.update_wm)
5904
		dev_priv->display.update_wm(crtc);
5905 5906
}

5907 5908 5909 5910
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

5911 5912 5913 5914 5915 5916
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv)) {
		dev_priv->ipc_enabled = false;
		return;
	}

5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

5937
/*
5938 5939 5940 5941 5942 5943 5944 5945
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5946
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5947 5948 5949
{
	u16 rgvswctl;

5950
	lockdep_assert_held(&mchdev_lock);
5951

5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5969
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5970
{
5971
	u32 rgvmodectl;
5972 5973
	u8 fmax, fmin, fstart, vstart;

5974 5975
	spin_lock_irq(&mchdev_lock);

5976 5977
	rgvmodectl = I915_READ(MEMMODECTL);

5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5998
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5999 6000
		PXVFREQ_PX_SHIFT;

6001 6002
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6003

6004 6005 6006
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6023
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6024
		DRM_ERROR("stuck trying to change perf mode\n");
6025
	mdelay(1);
6026

6027
	ironlake_set_drps(dev_priv, fstart);
6028

6029 6030
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6031
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6032
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6033
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6034 6035

	spin_unlock_irq(&mchdev_lock);
6036 6037
}

6038
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6039
{
6040 6041 6042 6043 6044
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6045 6046 6047 6048 6049 6050 6051 6052 6053

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6054
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6055
	mdelay(1);
6056 6057
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6058
	mdelay(1);
6059

6060
	spin_unlock_irq(&mchdev_lock);
6061 6062
}

6063 6064 6065 6066 6067
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6068
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6069
{
6070
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6071
	u32 limits;
6072

6073 6074 6075 6076 6077 6078
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6079
	if (INTEL_GEN(dev_priv) >= 9) {
6080 6081 6082
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6083
	} else {
6084 6085 6086
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6087
	}
6088 6089 6090 6091

	return limits;
}

6092 6093
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
6094
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6095
	int new_power;
6096 6097
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6098

6099 6100
	new_power = rps->power;
	switch (rps->power) {
6101
	case LOW_POWER:
6102 6103
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
6104 6105 6106 6107
			new_power = BETWEEN;
		break;

	case BETWEEN:
6108 6109
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
6110
			new_power = LOW_POWER;
6111 6112
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
6113 6114 6115 6116
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
6117 6118
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
6119 6120 6121 6122
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
6123
	if (val <= rps->min_freq_softlimit)
6124
		new_power = LOW_POWER;
6125
	if (val >= rps->max_freq_softlimit)
6126
		new_power = HIGH_POWER;
6127
	if (new_power == rps->power)
6128 6129 6130 6131 6132 6133
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6134 6135
		ei_up = 16000;
		threshold_up = 95;
6136 6137

		/* Downclock if less than 85% busy over 32ms */
6138 6139
		ei_down = 32000;
		threshold_down = 85;
6140 6141 6142 6143
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6144 6145
		ei_up = 13000;
		threshold_up = 90;
6146 6147

		/* Downclock if less than 75% busy over 32ms */
6148 6149
		ei_down = 32000;
		threshold_down = 75;
6150 6151 6152 6153
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6154 6155
		ei_up = 10000;
		threshold_up = 85;
6156 6157

		/* Downclock if less than 60% busy over 32ms */
6158 6159
		ei_down = 32000;
		threshold_down = 60;
6160 6161 6162
		break;
	}

6163 6164 6165 6166 6167 6168
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6169
	I915_WRITE(GEN6_RP_UP_EI,
6170
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6171
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6172 6173
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6174 6175

	I915_WRITE(GEN6_RP_DOWN_EI,
6176
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6177
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6188

6189
skip_hw_write:
6190 6191 6192 6193
	rps->power = new_power;
	rps->up_threshold = threshold_up;
	rps->down_threshold = threshold_down;
	rps->last_adj = 0;
6194 6195
}

6196 6197
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6198
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6199 6200
	u32 mask = 0;

6201
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6202
	if (val > rps->min_freq_softlimit)
6203
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6204
	if (val < rps->max_freq_softlimit)
6205
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6206

6207 6208
	mask &= dev_priv->pm_rps_events;

6209
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6210 6211
}

6212 6213 6214
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6215
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6216
{
6217 6218
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6219 6220 6221
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6222
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6223
		gen6_set_rps_thresholds(dev_priv, val);
6224

6225
		if (INTEL_GEN(dev_priv) >= 9)
6226 6227
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6228
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6229 6230 6231 6232 6233 6234 6235
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6236
	}
6237 6238 6239 6240

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6241
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6242
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6243

6244
	rps->cur_freq = val;
6245
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6246 6247

	return 0;
6248 6249
}

6250
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6251
{
6252 6253
	int err;

6254
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6255 6256 6257
		      "Odd GPU freq value\n"))
		val &= ~1;

6258 6259
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6260
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6261 6262 6263 6264
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6265
		gen6_set_rps_thresholds(dev_priv, val);
6266
	}
6267

6268
	dev_priv->gt_pm.rps.cur_freq = val;
6269
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6270 6271

	return 0;
6272 6273
}

6274
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6275 6276
 *
 * * If Gfx is Idle, then
6277 6278 6279
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6280 6281 6282
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6283 6284
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6285
	int err;
6286

6287
	if (rps->cur_freq <= val)
6288 6289
		return;

6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6302
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6303
	err = valleyview_set_rps(dev_priv, val);
6304
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6305 6306 6307

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6308 6309
}

6310 6311
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6312 6313
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6314
	mutex_lock(&dev_priv->pcu_lock);
6315
	if (rps->enabled) {
6316 6317
		u8 freq;

6318
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6319 6320
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6321
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6322

6323 6324
		gen6_enable_rps_interrupts(dev_priv);

6325 6326 6327
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6328 6329
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6330

6331
		if (intel_set_rps(dev_priv,
6332
				  clamp(freq,
6333 6334
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6335
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6336
	}
6337
	mutex_unlock(&dev_priv->pcu_lock);
6338 6339
}

6340 6341
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6342 6343
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6344 6345 6346 6347 6348 6349 6350
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6351
	mutex_lock(&dev_priv->pcu_lock);
6352
	if (rps->enabled) {
6353
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6354
			vlv_set_rps_idle(dev_priv);
6355
		else
6356 6357
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6358 6359
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6360
	}
6361
	mutex_unlock(&dev_priv->pcu_lock);
6362 6363
}

6364
void gen6_rps_boost(struct drm_i915_gem_request *rq,
6365
		    struct intel_rps_client *rps_client)
6366
{
6367
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6368
	unsigned long flags;
6369 6370
	bool boost;

6371 6372 6373
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6374
	if (!rps->enabled)
6375
		return;
6376

6377 6378 6379 6380
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return;

	/* Serializes with i915_gem_request_retire() */
6381
	boost = false;
6382
	spin_lock_irqsave(&rq->lock, flags);
6383 6384
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6385
		rq->waitboost = true;
6386
	}
6387
	spin_unlock_irqrestore(&rq->lock, flags);
6388 6389 6390
	if (!boost)
		return;

6391 6392
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6393

6394
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6395 6396
}

6397
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6398
{
6399
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6400 6401
	int err;

6402
	lockdep_assert_held(&dev_priv->pcu_lock);
6403 6404
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6405

6406 6407
	if (!rps->enabled) {
		rps->cur_freq = val;
6408 6409 6410
		return 0;
	}

6411
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6412
		err = valleyview_set_rps(dev_priv, val);
6413
	else
6414 6415 6416
		err = gen6_set_rps(dev_priv, val);

	return err;
6417 6418
}

6419
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6420 6421
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6422
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6423 6424
}

6425
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6426 6427 6428 6429
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6430
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6431 6432
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6433 6434 6435 6436
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6437
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6438
	I915_WRITE(GEN6_RP_CONTROL, 0);
6439 6440
}

6441
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6442 6443 6444 6445
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6446 6447 6448 6449 6450
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6451
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6452
{
6453
	/* We're doing forcewake before Disabling RC6,
6454
	 * This what the BIOS expects when going into suspend */
6455
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6456

6457
	I915_WRITE(GEN6_RC_CONTROL, 0);
6458

6459
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6460 6461
}

6462 6463 6464 6465 6466
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6467
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6468 6469 6470
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6482 6483

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6484
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6485 6486 6487 6488 6489 6490 6491 6492
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6493 6494
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6495
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6496 6497 6498 6499 6500 6501 6502
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6503
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6504 6505 6506
		enable_rc6 = false;
	}

6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6521 6522 6523 6524 6525 6526
		enable_rc6 = false;
	}

	return enable_rc6;
}

6527
static bool sanitize_rc6(struct drm_i915_private *i915)
6528
{
6529
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6530

6531 6532 6533
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6534

6535 6536
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6537
		DRM_INFO("RC6 disabled by BIOS\n");
6538
		info->has_rc6 = 0;
6539 6540
	}

6541 6542 6543 6544 6545 6546 6547 6548
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6549

6550
	return info->has_rc6;
6551 6552
}

6553
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6554
{
6555 6556
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6557
	/* All of these values are in units of 50MHz */
6558

6559
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6560
	if (IS_GEN9_LP(dev_priv)) {
6561
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6562 6563 6564
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6565
	} else {
6566
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6567 6568 6569
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6570
	}
6571
	/* hw_max = RP0 until we check for overclocking */
6572
	rps->max_freq = rps->rp0_freq;
6573

6574
	rps->efficient_freq = rps->rp1_freq;
6575
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6576
	    IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6577 6578 6579 6580 6581
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6582
			rps->efficient_freq =
6583 6584
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6585 6586
					rps->min_freq,
					rps->max_freq);
6587 6588
	}

6589
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6590
		/* Store the frequency values in 16.66 MHZ units, which is
6591 6592
		 * the natural hardware unit for SKL
		 */
6593 6594 6595 6596 6597
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6598
	}
6599 6600
}

6601
static void reset_rps(struct drm_i915_private *dev_priv,
6602
		      int (*set)(struct drm_i915_private *, u8))
6603
{
6604 6605
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6606 6607

	/* force a reset */
6608 6609
	rps->power = -1;
	rps->cur_freq = -1;
6610

6611 6612
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6613 6614
}

J
Jesse Barnes 已提交
6615
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6616
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6617 6618 6619
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6620 6621 6622 6623
	/* Program defaults and thresholds for RPS */
	if (IS_GEN9(dev_priv))
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6624 6625 6626 6627 6628

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6629 6630
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6631 6632 6633
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6634
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6635 6636 6637 6638

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6639
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6640
{
6641
	struct intel_engine_cs *engine;
6642
	enum intel_engine_id id;
6643
	u32 rc6_mode;
Z
Zhe Wang 已提交
6644 6645 6646 6647 6648 6649

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6650
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6651 6652 6653 6654 6655

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6656 6657 6658 6659 6660 6661 6662 6663
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6664
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6665
	} else {
6666
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6667 6668
	}

Z
Zhe Wang 已提交
6669 6670
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6671
	for_each_engine(engine, dev_priv, id)
6672
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6673

6674
	if (HAS_GUC(dev_priv))
6675 6676
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6677 6678
	I915_WRITE(GEN6_RC_SLEEP, 0);

6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6702

Z
Zhe Wang 已提交
6703
	/* 3a: Enable RC6 */
6704
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6705 6706 6707 6708 6709 6710 6711

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

6712
	I915_WRITE(GEN6_RC_CONTROL,
6713 6714 6715
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
6716

6717 6718
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6719
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6720
	 */
6721
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6722 6723
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
6724 6725
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6726

6727
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6728 6729
}

6730
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6731
{
6732
	struct intel_engine_cs *engine;
6733
	enum intel_engine_id id;
6734 6735 6736 6737

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

6738
	/* 1b: Get forcewake during program sequence. Although the driver
6739
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6740
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6741 6742 6743 6744 6745 6746 6747 6748

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6749
	for_each_engine(engine, dev_priv, id)
6750
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6751
	I915_WRITE(GEN6_RC_SLEEP, 0);
6752
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6753 6754

	/* 3: Enable RC6 */
6755

6756 6757 6758 6759
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
6760

6761 6762 6763 6764 6765
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6766 6767
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6768 6769 6770
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
6771
	I915_WRITE(GEN6_RPNSWREQ,
6772
		   HSW_FREQUENCY(rps->rp1_freq));
6773
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6774
		   HSW_FREQUENCY(rps->rp1_freq));
6775 6776 6777 6778 6779
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6780 6781
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
6782 6783 6784 6785 6786 6787 6788

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6789

6790
	/* 2: Enable RPS */
6791 6792 6793 6794 6795 6796 6797 6798
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

6799
	reset_rps(dev_priv, gen6_set_rps);
6800

6801
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6802 6803
}

6804
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6805
{
6806
	struct intel_engine_cs *engine;
6807
	enum intel_engine_id id;
6808
	u32 rc6vids, rc6_mask;
6809
	u32 gtfifodbg;
6810
	int ret;
6811 6812 6813 6814

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6815 6816
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6817 6818 6819 6820
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6821
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6832
	for_each_engine(engine, dev_priv, id)
6833
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6834 6835 6836

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6837
	if (IS_IVYBRIDGE(dev_priv))
6838 6839 6840
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6841
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6842 6843
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6844
	/* We don't use those on Haswell */
6845 6846 6847 6848 6849
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6850 6851 6852 6853 6854
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6855 6856
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6857
	if (IS_GEN6(dev_priv) && ret) {
6858
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6859
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6860 6861 6862 6863 6864 6865 6866 6867 6868
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6869
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6870 6871
}

6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6891
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6892
{
6893
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6894
	int min_freq = 15;
6895 6896
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6897
	unsigned int max_gpu_freq, min_gpu_freq;
6898
	int scaling_factor = 180;
6899
	struct cpufreq_policy *policy;
6900

6901
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6902

6903 6904 6905 6906 6907 6908 6909 6910 6911
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6912
		max_ia_freq = tsc_khz;
6913
	}
6914 6915 6916 6917

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6918
	min_ring_freq = I915_READ(DCLK) & 0xf;
6919 6920
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6921

6922
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6923
		/* Convert GT frequency to 50 HZ units */
6924 6925
		min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6926
	} else {
6927 6928
		min_gpu_freq = rps->min_freq;
		max_gpu_freq = rps->max_freq;
6929 6930
	}

6931 6932 6933 6934 6935
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6936 6937
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6938 6939
		unsigned int ia_freq = 0, ring_freq = 0;

6940
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6941 6942 6943 6944 6945
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6946
		} else if (INTEL_GEN(dev_priv) >= 8) {
6947 6948
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6949
		} else if (IS_HASWELL(dev_priv)) {
6950
			ring_freq = mult_frac(gpu_freq, 5, 4);
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6967

B
Ben Widawsky 已提交
6968 6969
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6970 6971 6972
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6973 6974 6975
	}
}

6976
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6977 6978 6979
{
	u32 val, rp0;

6980
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6981

6982
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6997
	}
6998 6999 7000

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7014 7015 7016 7017
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7018 7019 7020
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7021 7022 7023
	return rp1;
}

7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7046
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7047 7048 7049
{
	u32 val, rp0;

7050
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7063
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7064
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7065
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7066 7067 7068 7069 7070
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7071
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7072
{
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7084 7085
}

7086 7087 7088 7089 7090
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7091
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7092 7093 7094
			     dev_priv->vlv_pctx->stolen->start);
}

7095 7096 7097 7098 7099 7100 7101 7102 7103

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7104
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7105
{
7106 7107
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7108 7109 7110 7111
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7112
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7113 7114
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7115 7116 7117 7118

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7119 7120

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7121 7122
}

7123
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7124 7125
{
	struct drm_i915_gem_object *pctx;
7126 7127
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7128 7129 7130 7131 7132
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7133
		resource_size_t pcbr_offset;
7134

7135
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7136
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7137
								      pcbr_offset,
7138
								      I915_GTT_OFFSET_NONE,
7139 7140 7141 7142
								      pctx_size);
		goto out;
	}

7143 7144
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7145 7146 7147 7148 7149 7150 7151 7152
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7153
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7154 7155
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7156
		goto out;
7157 7158
	}

7159 7160 7161 7162 7163
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7164 7165 7166
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7167
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7168 7169 7170
	dev_priv->vlv_pctx = pctx;
}

7171
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7172 7173 7174 7175
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
7176
	i915_gem_object_put(dev_priv->vlv_pctx);
7177 7178 7179
	dev_priv->vlv_pctx = NULL;
}

7180 7181
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7182
	dev_priv->gt_pm.rps.gpll_ref_freq =
7183 7184 7185 7186 7187
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7188
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7189 7190
}

7191
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7192
{
7193
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7194
	u32 val;
7195

7196
	valleyview_setup_pctx(dev_priv);
7197

7198 7199
	vlv_init_gpll_ref_freq(dev_priv);

7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7213
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7214

7215 7216
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7217
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7218 7219
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7220

7221
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7222
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7223 7224
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7225

7226
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7227
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7228 7229
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7230

7231
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7232
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7233 7234
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7235 7236
}

7237
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7238
{
7239
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7240
	u32 val;
7241

7242
	cherryview_setup_pctx(dev_priv);
7243

7244 7245
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7246
	mutex_lock(&dev_priv->sb_lock);
7247
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7248
	mutex_unlock(&dev_priv->sb_lock);
7249

7250 7251 7252 7253
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7254
	default:
7255 7256 7257
		dev_priv->mem_freq = 1600;
		break;
	}
7258
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7259

7260 7261
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7262
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7263 7264
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7265

7266
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7267
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7268 7269
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7270

7271
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7272
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7273 7274
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7275

7276
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7277
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7278 7279
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7280

7281 7282
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7283
		  "Odd GPU freq values\n");
7284 7285
}

7286
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7287
{
7288
	valleyview_cleanup_pctx(dev_priv);
7289 7290
}

7291
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7292
{
7293
	struct intel_engine_cs *engine;
7294
	enum intel_engine_id id;
7295
	u32 gtfifodbg, rc6_mode, pcbr;
7296

7297 7298
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7309
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7310

7311 7312 7313
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7314 7315 7316 7317 7318
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7319
	for_each_engine(engine, dev_priv, id)
7320
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7321 7322
	I915_WRITE(GEN6_RC_SLEEP, 0);

7323 7324
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7325

7326
	/* Allows RC6 residency counter to work */
7327 7328 7329 7330 7331 7332 7333 7334 7335
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7336 7337
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7338
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7339 7340
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7351
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7352 7353 7354 7355 7356 7357 7358
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7359
	/* 2: Enable RPS */
7360 7361
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7362
		   GEN6_RP_MEDIA_IS_GFX |
7363 7364 7365 7366
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7367 7368 7369 7370 7371 7372
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7373 7374
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7375 7376 7377
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7378
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7379 7380
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7381
	reset_rps(dev_priv, valleyview_set_rps);
7382

7383
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7384 7385
}

7386
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7387
{
7388
	struct intel_engine_cs *engine;
7389
	enum intel_engine_id id;
7390
	u32 gtfifodbg;
7391

7392 7393
	valleyview_check_pctx(dev_priv);

7394 7395
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7396 7397
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7398 7399 7400
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7401
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7402

7403 7404 7405
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7406 7407 7408 7409
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7410
	for_each_engine(engine, dev_priv, id)
7411
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7412

7413
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7414

7415
	/* Allows RC6 residency counter to work */
7416
	I915_WRITE(VLV_COUNTER_CONTROL,
7417 7418
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7419
				      VLV_RENDER_RC0_COUNT_EN |
7420 7421
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7422

7423 7424
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7425

7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7451 7452 7453 7454 7455 7456
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7457
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7458

7459 7460 7461
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7462
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7463 7464
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7465
	reset_rps(dev_priv, valleyview_set_rps);
7466

7467
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7468 7469
}

7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7499
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7500 7501 7502 7503 7504 7505
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7506
	lockdep_assert_held(&mchdev_lock);
7507

7508
	diff1 = now - dev_priv->ips.last_time1;
7509 7510 7511 7512 7513 7514 7515

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7516
		return dev_priv->ips.chipset_power;
7517 7518 7519 7520 7521 7522 7523 7524

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7525 7526
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7527 7528
		diff += total_count;
	} else {
7529
		diff = total_count - dev_priv->ips.last_count1;
7530 7531 7532
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7533 7534
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7545 7546
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7547

7548
	dev_priv->ips.chipset_power = ret;
7549 7550 7551 7552

	return ret;
}

7553 7554 7555 7556
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7557
	if (!IS_GEN5(dev_priv))
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7596
{
7597 7598 7599
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7600
	if (INTEL_INFO(dev_priv)->is_mobile)
7601 7602 7603
		return vm > 0 ? vm : 0;

	return vd;
7604 7605
}

7606
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7607
{
7608
	u64 now, diff, diffms;
7609 7610
	u32 count;

7611
	lockdep_assert_held(&mchdev_lock);
7612

7613 7614 7615
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7616 7617 7618 7619 7620 7621 7622

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7623 7624
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7625 7626
		diff += count;
	} else {
7627
		diff = count - dev_priv->ips.last_count2;
7628 7629
	}

7630 7631
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7632 7633 7634 7635

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7636
	dev_priv->ips.gfx_power = diff;
7637 7638
}

7639 7640
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7641
	if (!IS_GEN5(dev_priv))
7642 7643
		return;

7644
	spin_lock_irq(&mchdev_lock);
7645 7646 7647

	__i915_update_gfx_val(dev_priv);

7648
	spin_unlock_irq(&mchdev_lock);
7649 7650
}

7651
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7652 7653 7654 7655
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7656
	lockdep_assert_held(&mchdev_lock);
7657

7658
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7678
	corr2 = (corr * dev_priv->ips.corr);
7679 7680 7681 7682

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7683
	__i915_update_gfx_val(dev_priv);
7684

7685
	return dev_priv->ips.gfx_power + state2;
7686 7687
}

7688 7689 7690 7691
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7692
	if (!IS_GEN5(dev_priv))
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7715
	spin_lock_irq(&mchdev_lock);
7716 7717 7718 7719
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7720 7721
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7722 7723 7724 7725

	ret = chipset_val + graphics_val;

out_unlock:
7726
	spin_unlock_irq(&mchdev_lock);
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7742
	spin_lock_irq(&mchdev_lock);
7743 7744 7745 7746 7747 7748
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7749 7750
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7751 7752

out_unlock:
7753
	spin_unlock_irq(&mchdev_lock);
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7770
	spin_lock_irq(&mchdev_lock);
7771 7772 7773 7774 7775 7776
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7777 7778
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7779 7780

out_unlock:
7781
	spin_unlock_irq(&mchdev_lock);
7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7796
	spin_lock_irq(&mchdev_lock);
7797 7798
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7799
	spin_unlock_irq(&mchdev_lock);
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7816
	spin_lock_irq(&mchdev_lock);
7817 7818 7819 7820 7821 7822
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7823
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7824

7825
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7826 7827 7828
		ret = false;

out_unlock:
7829
	spin_unlock_irq(&mchdev_lock);
7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7857 7858
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7859
	spin_lock_irq(&mchdev_lock);
7860
	i915_mch_dev = dev_priv;
7861
	spin_unlock_irq(&mchdev_lock);
7862 7863 7864 7865 7866 7867

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7868
	spin_lock_irq(&mchdev_lock);
7869
	i915_mch_dev = NULL;
7870
	spin_unlock_irq(&mchdev_lock);
7871
}
7872

7873
static void intel_init_emon(struct drm_i915_private *dev_priv)
7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7890
		I915_WRITE(PEW(i), 0);
7891
	for (i = 0; i < 3; i++)
7892
		I915_WRITE(DEW(i), 0);
7893 7894 7895

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7896
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7917
		I915_WRITE(PXW(i), val);
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7933
		I915_WRITE(PXWL(i), 0);
7934 7935 7936 7937 7938 7939

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7940
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7941 7942
}

7943
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7944
{
7945 7946
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7947 7948 7949 7950
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
7951
	if (!sanitize_rc6(dev_priv)) {
7952 7953 7954
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7955

7956
	mutex_lock(&dev_priv->pcu_lock);
7957 7958

	/* Initialize RPS limits (for userspace) */
7959 7960 7961 7962
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7963
	else if (INTEL_GEN(dev_priv) >= 6)
7964 7965 7966
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
7967 7968
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
7969

7970 7971
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
7972 7973

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7974
		rps->min_freq_softlimit =
7975
			max_t(int,
7976
			      rps->efficient_freq,
7977 7978
			      intel_freq_opcode(dev_priv, 450));

7979 7980 7981 7982 7983 7984 7985 7986
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7987
					 (rps->max_freq & 0xff) * 50,
7988
					 (params & 0xff) * 50);
7989
			rps->max_freq = params & 0xff;
7990 7991 7992
		}
	}

7993
	/* Finally allow us to boost to max by default */
7994
	rps->boost_freq = rps->max_freq;
7995

7996
	mutex_unlock(&dev_priv->pcu_lock);
7997 7998
}

7999
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8000
{
8001
	if (IS_VALLEYVIEW(dev_priv))
8002
		valleyview_cleanup_gt_powersave(dev_priv);
8003

8004
	if (!HAS_RC6(dev_priv))
8005
		intel_runtime_pm_put(dev_priv);
8006 8007
}

8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8024 8025
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8026 8027
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8028
	intel_disable_gt_powersave(dev_priv);
8029 8030

	gen6_reset_rps_interrupts(dev_priv);
8031 8032
}

8033 8034 8035 8036
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8037 8038 8039
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8040
	/* Currently there is no HW configuration to be done to disable. */
8041 8042

	i915->gt_pm.llc_pstate.enabled = false;
8043 8044
}

8045
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8046
{
8047
	lockdep_assert_held(&dev_priv->pcu_lock);
8048

8049 8050 8051
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8052 8053 8054 8055 8056 8057 8058 8059
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8060 8061

	dev_priv->gt_pm.rc6.enabled = false;
8062
}
8063

8064 8065 8066
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8067

8068 8069 8070
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8071
	if (INTEL_GEN(dev_priv) >= 9)
8072
		gen9_disable_rps(dev_priv);
8073
	else if (IS_CHERRYVIEW(dev_priv))
8074
		cherryview_disable_rps(dev_priv);
8075
	else if (IS_VALLEYVIEW(dev_priv))
8076
		valleyview_disable_rps(dev_priv);
8077
	else if (INTEL_GEN(dev_priv) >= 6)
8078
		gen6_disable_rps(dev_priv);
8079
	else if (IS_IRONLAKE_M(dev_priv))
8080
		ironlake_disable_drps(dev_priv);
8081 8082

	dev_priv->gt_pm.rps.enabled = false;
8083 8084 8085 8086 8087
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8088

8089 8090
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8091 8092 8093
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8094
	mutex_unlock(&dev_priv->pcu_lock);
8095 8096
}

8097 8098 8099 8100
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8101 8102 8103
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8104
	gen6_update_ring_freq(i915);
8105 8106

	i915->gt_pm.llc_pstate.enabled = true;
8107 8108
}

8109
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8110
{
8111
	lockdep_assert_held(&dev_priv->pcu_lock);
8112

8113 8114 8115
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8116 8117 8118 8119 8120 8121 8122 8123 8124 8125
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8126 8127

	dev_priv->gt_pm.rc6.enabled = true;
8128
}
8129

8130 8131 8132
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8133

8134
	lockdep_assert_held(&dev_priv->pcu_lock);
8135

8136 8137 8138
	if (rps->enabled)
		return;

8139 8140 8141 8142
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8143
	} else if (INTEL_GEN(dev_priv) >= 9) {
8144 8145 8146
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8147
	} else if (INTEL_GEN(dev_priv) >= 6) {
8148
		gen6_enable_rps(dev_priv);
8149 8150 8151
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8152
	}
8153

8154 8155
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8156

8157 8158
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8159 8160

	rps->enabled = true;
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8171 8172
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8173 8174 8175
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8176

8177
	mutex_unlock(&dev_priv->pcu_lock);
8178
}
I
Imre Deak 已提交
8179

8180
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8181 8182 8183 8184 8185 8186 8187 8188 8189
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8190
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8191
{
8192
	enum pipe pipe;
8193

8194
	for_each_pipe(dev_priv, pipe) {
8195 8196 8197
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8198 8199 8200

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8201 8202 8203
	}
}

8204
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8205
{
8206
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8207

8208 8209 8210 8211
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8212 8213 8214
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8232
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8233 8234 8235
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8236

8237 8238 8239 8240 8241 8242 8243
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8244
	if (IS_IRONLAKE_M(dev_priv)) {
8245
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8246 8247 8248 8249 8250 8251 8252 8253
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8254 8255
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8256 8257 8258 8259 8260 8261
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8262

8263
	/* WaDisableRenderCachePipelinedFlush:ilk */
8264 8265
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8266

8267 8268 8269
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8270
	g4x_disable_trickle_feed(dev_priv);
8271

8272
	ibx_init_clock_gating(dev_priv);
8273 8274
}

8275
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8276 8277
{
	int pipe;
8278
	uint32_t val;
8279 8280 8281 8282 8283 8284

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8285 8286 8287
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8288 8289
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8290 8291 8292
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8293
	for_each_pipe(dev_priv, pipe) {
8294 8295 8296
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8297
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8298
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8299 8300 8301
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8302 8303
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8304
	/* WADP0ClockGatingDisable */
8305
	for_each_pipe(dev_priv, pipe) {
8306 8307 8308
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8309 8310
}

8311
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8312 8313 8314 8315
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8316 8317 8318
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8319 8320
}

8321
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8322
{
8323
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8324

8325
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8326 8327 8328 8329 8330

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8331
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8332 8333 8334
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8335 8336 8337
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8338 8339 8340
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8341 8342 8343 8344
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8345 8346
	 */
	I915_WRITE(GEN6_GT_MODE,
8347
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8348

8349
	I915_WRITE(CACHE_MODE_0,
8350
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8366
	 *
8367 8368
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8369 8370 8371 8372 8373
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8374
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8375 8376
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8377

8378 8379 8380 8381 8382 8383 8384 8385
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8386 8387 8388 8389 8390 8391 8392 8393
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8394 8395
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8396 8397 8398 8399 8400 8401 8402
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8403 8404 8405 8406
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8407

8408
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8409

8410
	cpt_init_clock_gating(dev_priv);
8411

8412
	gen6_check_mch_setup(dev_priv);
8413 8414 8415 8416 8417 8418
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8419
	/*
8420
	 * WaVSThreadDispatchOverride:ivb,vlv
8421 8422 8423 8424
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8425 8426 8427 8428 8429 8430 8431 8432
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8433
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8434 8435 8436 8437 8438
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8439
	if (HAS_PCH_LPT_LP(dev_priv))
8440 8441 8442
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8443 8444

	/* WADPOClockGatingDisable:hsw */
8445 8446
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8447
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8448 8449
}

8450
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8451
{
8452
	if (HAS_PCH_LPT_LP(dev_priv)) {
8453 8454 8455 8456 8457 8458 8459
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8460 8461 8462 8463 8464
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8465
	u32 val;
8466 8467 8468 8469 8470

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8471 8472 8473 8474 8475
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8486 8487 8488 8489 8490
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

L
Lucas De Marchi 已提交
8491
	/* Display WA #1181: cnp */
8492 8493
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8494 8495
}

8496
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8497
{
8498
	u32 val;
8499 8500
	cnp_init_clock_gating(dev_priv);

8501 8502 8503 8504
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8505 8506 8507 8508 8509 8510 8511 8512
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8513 8514 8515
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8516 8517
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8518 8519
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8520 8521 8522 8523 8524

	/* WaDisableVFclkgate:cnl */
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8525 8526
}

8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8537
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8538
{
8539
	gen9_init_clock_gating(dev_priv);
8540 8541 8542 8543 8544

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8545 8546 8547 8548 8549

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8550

8551
	/* WaFbcNukeOnHostModify:kbl */
8552 8553
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8554 8555
}

8556
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8557
{
8558
	gen9_init_clock_gating(dev_priv);
8559 8560 8561 8562

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8563 8564 8565 8566

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8567 8568
}

8569
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8570
{
8571 8572 8573
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8574
	enum pipe pipe;
B
Ben Widawsky 已提交
8575

8576
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8577
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8578

8579
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8580 8581 8582
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8583
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8584
	for_each_pipe(dev_priv, pipe) {
8585
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8586
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8587
			   BDW_DPRS_MASK_VBLANK_SRD);
8588
	}
8589

8590 8591 8592 8593 8594
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8595

8596 8597
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8598 8599 8600 8601

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8602

8603 8604
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8605

8606 8607
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8608

8609 8610 8611 8612
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8613
	lpt_init_clock_gating(dev_priv);
8614 8615 8616 8617 8618 8619 8620 8621

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8622 8623
}

8624
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8625
{
8626 8627 8628 8629 8630
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8631
	/* This is required by WaCatErrorRejectionIssue:hsw */
8632 8633 8634 8635
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8636 8637 8638
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8639

8640 8641 8642
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8643 8644 8645 8646
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8647
	/* WaDisable4x2SubspanOptimization:hsw */
8648 8649
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8650

8651 8652 8653
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8654 8655 8656 8657
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8658 8659
	 */
	I915_WRITE(GEN7_GT_MODE,
8660
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8661

8662 8663 8664 8665
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8666
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8667 8668
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8669
	lpt_init_clock_gating(dev_priv);
8670 8671
}

8672
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8673
{
8674
	uint32_t snpcr;
8675

8676
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8677

8678
	/* WaDisableEarlyCull:ivb */
8679 8680 8681
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8682
	/* WaDisableBackToBackFlipFix:ivb */
8683 8684 8685 8686
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8687
	/* WaDisablePSDDualDispatchEnable:ivb */
8688
	if (IS_IVB_GT1(dev_priv))
8689 8690 8691
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8692 8693 8694
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8695
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8696 8697 8698
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8699
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8700 8701 8702
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8703
		   GEN7_WA_L3_CHICKEN_MODE);
8704
	if (IS_IVB_GT1(dev_priv))
8705 8706
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8707 8708 8709 8710
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8711 8712
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8713
	}
8714

8715
	/* WaForceL3Serialization:ivb */
8716 8717 8718
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8719
	/*
8720
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8721
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8722 8723
	 */
	I915_WRITE(GEN6_UCGCTL2,
8724
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8725

8726
	/* This is required by WaCatErrorRejectionIssue:ivb */
8727 8728 8729 8730
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8731
	g4x_disable_trickle_feed(dev_priv);
8732 8733

	gen7_setup_fixed_func_scheduler(dev_priv);
8734

8735 8736 8737 8738 8739
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8740

8741
	/* WaDisable4x2SubspanOptimization:ivb */
8742 8743
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8744

8745 8746 8747
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8748 8749 8750 8751
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8752 8753
	 */
	I915_WRITE(GEN7_GT_MODE,
8754
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8755

8756 8757 8758 8759
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8760

8761
	if (!HAS_PCH_NOP(dev_priv))
8762
		cpt_init_clock_gating(dev_priv);
8763

8764
	gen6_check_mch_setup(dev_priv);
8765 8766
}

8767
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8768
{
8769
	/* WaDisableEarlyCull:vlv */
8770 8771 8772
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8773
	/* WaDisableBackToBackFlipFix:vlv */
8774 8775 8776 8777
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8778
	/* WaPsdDispatchEnable:vlv */
8779
	/* WaDisablePSDDualDispatchEnable:vlv */
8780
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8781 8782
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8783

8784 8785 8786
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8787
	/* WaForceL3Serialization:vlv */
8788 8789 8790
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8791
	/* WaDisableDopClockGating:vlv */
8792 8793 8794
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8795
	/* This is required by WaCatErrorRejectionIssue:vlv */
8796 8797 8798 8799
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8800 8801
	gen7_setup_fixed_func_scheduler(dev_priv);

8802
	/*
8803
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8804
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8805 8806
	 */
	I915_WRITE(GEN6_UCGCTL2,
8807
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8808

8809 8810 8811 8812 8813
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8814

8815 8816 8817 8818
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8819 8820
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8821

8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8833 8834 8835 8836 8837 8838
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8839
	/*
8840
	 * WaDisableVLVClockGating_VBIIssue:vlv
8841 8842 8843
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8844
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8845 8846
}

8847
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8848
{
8849 8850 8851 8852 8853
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8854 8855 8856 8857

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8858 8859 8860 8861

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8862 8863 8864 8865

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8866

8867 8868 8869 8870 8871 8872 8873
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8874 8875 8876 8877 8878
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8879 8880
}

8881
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8893
	if (IS_GM45(dev_priv))
8894 8895
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8896 8897 8898 8899

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8900

8901 8902 8903
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8904
	g4x_disable_trickle_feed(dev_priv);
8905 8906
}

8907
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8908 8909 8910 8911 8912 8913
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8914 8915
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8916 8917 8918

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8919 8920
}

8921
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8922 8923 8924 8925 8926 8927 8928
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8929 8930
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8931 8932 8933

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8934 8935
}

8936
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8937 8938 8939 8940 8941 8942
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8943

8944
	if (IS_PINEVIEW(dev_priv))
8945
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8946 8947 8948

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8949 8950

	/* interrupts should cause a wake up from C3 */
8951
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8952 8953 8954

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8955 8956 8957

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8958 8959
}

8960
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8961 8962
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8963 8964 8965 8966

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8967 8968 8969

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8970 8971
}

8972
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8973
{
8974 8975 8976
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8977 8978
}

8979
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8980
{
8981
	dev_priv->display.init_clock_gating(dev_priv);
8982 8983
}

8984
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8985
{
8986 8987
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8988 8989
}

8990
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9006
	if (IS_CANNONLAKE(dev_priv))
9007
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9008 9009
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9010
	else if (IS_SKYLAKE(dev_priv))
9011
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9012
	else if (IS_KABYLAKE(dev_priv))
9013
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9014
	else if (IS_BROXTON(dev_priv))
9015
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9016 9017
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9018
	else if (IS_BROADWELL(dev_priv))
9019
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9020
	else if (IS_CHERRYVIEW(dev_priv))
9021
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9022
	else if (IS_HASWELL(dev_priv))
9023
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9024
	else if (IS_IVYBRIDGE(dev_priv))
9025
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9026
	else if (IS_VALLEYVIEW(dev_priv))
9027
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9028 9029 9030
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
9031
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9032 9033
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9034
	else if (IS_I965GM(dev_priv))
9035
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9036
	else if (IS_I965G(dev_priv))
9037
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9050
/* Set up chip specific power management-related functions */
9051
void intel_init_pm(struct drm_i915_private *dev_priv)
9052
{
9053
	intel_fbc_init(dev_priv);
9054

9055
	/* For cxsr */
9056
	if (IS_PINEVIEW(dev_priv))
9057
		i915_pineview_get_mem_freq(dev_priv);
9058
	else if (IS_GEN5(dev_priv))
9059
		i915_ironlake_get_mem_freq(dev_priv);
9060

9061
	/* For FIFO watermark updates */
9062
	if (INTEL_GEN(dev_priv) >= 9) {
9063
		skl_setup_wm_latency(dev_priv);
9064
		dev_priv->display.initial_watermarks = skl_initial_wm;
9065
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9066
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9067
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9068
		ilk_setup_wm_latency(dev_priv);
9069

9070
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9071
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9072
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9073
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9074
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9075 9076 9077 9078 9079 9080
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9081 9082 9083 9084
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9085
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9086
		vlv_setup_wm_latency(dev_priv);
9087
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9088
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9089
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9090
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9091
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9092 9093 9094 9095 9096 9097
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9098
	} else if (IS_PINEVIEW(dev_priv)) {
9099
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9100 9101 9102 9103 9104 9105 9106 9107 9108
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9109
			intel_set_memory_cxsr(dev_priv, false);
9110 9111 9112
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9113
	} else if (IS_GEN4(dev_priv)) {
9114
		dev_priv->display.update_wm = i965_update_wm;
9115
	} else if (IS_GEN3(dev_priv)) {
9116 9117
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9118
	} else if (IS_GEN2(dev_priv)) {
9119
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9120
			dev_priv->display.update_wm = i845_update_wm;
9121
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9122 9123
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9124
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9125 9126 9127
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9128 9129 9130
	}
}

9131 9132 9133 9134 9135 9136 9137 9138 9139
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9140
		return -ENODEV;
9141 9142 9143
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9144
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9145 9146 9147 9148
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9149
		MISSING_CASE(flags);
9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9176
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9177
{
9178 9179
	int status;

9180
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9181

9182 9183 9184 9185 9186 9187
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9188 9189
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9190 9191 9192
		return -EAGAIN;
	}

9193 9194 9195
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9196

9197 9198 9199
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9200 9201
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9202 9203 9204
		return -ETIMEDOUT;
	}

9205 9206
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9207

9208 9209 9210 9211 9212 9213
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9214 9215
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9216 9217 9218
		return status;
	}

B
Ben Widawsky 已提交
9219 9220 9221
	return 0;
}

9222
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9223 9224
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9225
{
9226 9227
	int status;

9228
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9229

9230 9231 9232 9233 9234 9235
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9236 9237
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9238 9239 9240
		return -EAGAIN;
	}

9241
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9242
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9243
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9244

9245 9246
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9247 9248
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9249 9250
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9251 9252 9253
		return -ETIMEDOUT;
	}

9254
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9255

9256 9257 9258 9259 9260 9261
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9262 9263
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9264 9265 9266
		return status;
	}

B
Ben Widawsky 已提交
9267 9268
	return 0;
}
9269

9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9291
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9292 9293
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9294
 * for @timeout_base_ms and if this times out for another 50 ms with
9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9306
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9321
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9322 9323 9324 9325 9326 9327 9328 9329
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9330
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9331
	 * account for interrupts that could reduce the number of these
9332 9333
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9334 9335 9336 9337
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9338
	ret = wait_for_atomic(COND, 50);
9339 9340 9341 9342 9343 9344 9345
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9346 9347
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9348 9349
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9350 9351 9352 9353
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9354
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9355 9356
}

9357
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9358
{
9359 9360 9361
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9362 9363
}

9364
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9365
{
9366 9367
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9368 9369 9370 9371
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9372
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9373 9374
}

9375
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9376
{
9377 9378
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9379
	/* CHV needs even values */
9380
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9381 9382
}

9383
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9384
{
9385
	if (INTEL_GEN(dev_priv) >= 9)
9386 9387
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9388
	else if (IS_CHERRYVIEW(dev_priv))
9389
		return chv_gpu_freq(dev_priv, val);
9390
	else if (IS_VALLEYVIEW(dev_priv))
9391 9392 9393
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9394 9395
}

9396 9397
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9398
	if (INTEL_GEN(dev_priv) >= 9)
9399 9400
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9401
	else if (IS_CHERRYVIEW(dev_priv))
9402
		return chv_freq_opcode(dev_priv, val);
9403
	else if (IS_VALLEYVIEW(dev_priv))
9404 9405
		return byt_freq_opcode(dev_priv, val);
	else
9406
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9407
}
9408

9409
void intel_pm_setup(struct drm_i915_private *dev_priv)
9410
{
9411
	mutex_init(&dev_priv->pcu_lock);
D
Daniel Vetter 已提交
9412

9413
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9414

9415 9416
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9417
}
9418

9419 9420 9421
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9422
	u32 lower, upper, tmp;
9423
	int loop = 2;
9424

9425 9426
	/*
	 * The register accessed do not need forcewake. We borrow
9427 9428
	 * uncore lock to prevent concurrent access to range reg.
	 */
9429
	lockdep_assert_held(&dev_priv->uncore.lock);
9430

9431 9432
	/*
	 * vlv and chv residency counters are 40 bits in width.
9433 9434
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9435 9436 9437 9438 9439
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9440
	 */
9441 9442
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9454
	} while (upper != tmp && --loop);
9455

9456 9457
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9458 9459 9460 9461
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9462 9463 9464
	return lower | (u64)upper << 8;
}

9465
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9466
			   const i915_reg_t reg)
9467
{
9468 9469 9470 9471
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9472
	u32 mul, div;
9473

9474
	if (!HAS_RC6(dev_priv))
9475 9476
		return 0;

9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9494 9495
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9496
		mul = 1000000;
9497
		div = dev_priv->czclk_freq;
9498
		overflow_hw = BIT_ULL(40);
9499 9500
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9501 9502 9503 9504 9505 9506 9507 9508
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9509

9510 9511
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9512
	}
9513

9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9537
}
T
Tvrtko Ursulin 已提交
9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}