intel_pm.c 290.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36 37
#include "i915_drv.h"
#include "intel_drv.h"
38
#include "intel_fbc.h"
39
#include "intel_pm.h"
40
#include "intel_sprite.h"
41
#include "../../../platform/x86/intel_ips.h"
42

B
Ben Widawsky 已提交
43
/**
44 45
 * DOC: RC6
 *
B
Ben Widawsky 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

63
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
64
{
65 66 67
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
68
		 * Display WA #0390: skl,kbl
69 70 71 72 73 74 75 76 77
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

78
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
79 80 81
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

82
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
83 84
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
85

86 87
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
88 89 90
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
91

92
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
93 94
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
95 96 97 98 99 100

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
101 102
}

103
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
104
{
105
	gen9_init_clock_gating(dev_priv);
106

107 108 109 110
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

111 112
	/*
	 * FIXME:
113
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
114 115
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
116
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
117 118 119 120 121

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
122 123
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
124 125
}

126 127 128 129 130 131 132 133 134 135 136
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
137 138 139 140 141 142 143 144 145 146

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

147 148
}

149
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

187
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

214
	dev_priv->ips.r_t = dev_priv->mem_freq;
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
246
		dev_priv->ips.c_m = 0;
247
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
248
		dev_priv->ips.c_m = 1;
249
	} else {
250
		dev_priv->ips.c_m = 2;
251 252 253
	}
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

292 293
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

316 317 318 319
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

320
	vlv_punit_get(dev_priv);
321 322 323 324 325 326 327 328 329 330 331 332 333 334

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

335
	vlv_punit_put(dev_priv);
336 337
}

338 339 340 341
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

342
	vlv_punit_get(dev_priv);
343

344
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
345 346 347 348
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
349
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
350

351
	vlv_punit_put(dev_priv);
352 353
}

354 355 356
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

357
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358
{
359
	bool was_enabled;
360
	u32 val;
361

362
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365
		POSTING_READ(FW_BLC_SELF_VLV);
366
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_PINEVIEW(dev_priv)) {
371 372 373 374 375 376
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
377
		I915_WRITE(DSPFW3, val);
378
		POSTING_READ(DSPFW3);
379
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 382 383
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
384
		POSTING_READ(FW_BLC_SELF);
385
	} else if (IS_I915GM(dev_priv)) {
386 387 388 389 390
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
391
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392 393 394
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
395
		POSTING_READ(INSTPM);
396
	} else {
397
		return false;
398
	}
399

400 401
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

402 403 404 405 406
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
407 408
}

V
Ville Syrjälä 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
446
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447
{
448 449
	bool ret;

450
	mutex_lock(&dev_priv->wm.wm_mutex);
451
	ret = _intel_set_memory_cxsr(dev_priv, enable);
452 453 454 455
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
456
	mutex_unlock(&dev_priv->wm.wm_mutex);
457 458

	return ret;
459
}
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
475
static const int pessimal_latency_ns = 5000;
476

477 478 479
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

480
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481
{
482
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
483
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485 486
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
487

488
	switch (pipe) {
489
		u32 dsparb, dsparb2, dsparb3;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
509 510
		MISSING_CASE(pipe);
		return;
511 512
	}

513 514 515 516
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
517 518
}

519 520
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
521
{
522
	u32 dsparb = I915_READ(DSPARB);
523 524 525
	int size;

	size = dsparb & 0x7f;
526
	if (i9xx_plane == PLANE_B)
527 528
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

529 530
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
531 532 533 534

	return size;
}

535 536
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
537
{
538
	u32 dsparb = I915_READ(DSPARB);
539 540 541
	int size;

	size = dsparb & 0x1ff;
542
	if (i9xx_plane == PLANE_B)
543 544 545
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

546 547
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
548 549 550 551

	return size;
}

552 553
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
554
{
555
	u32 dsparb = I915_READ(DSPARB);
556 557 558 559 560
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

561 562
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
563 564 565 566 567 568

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 575
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 582
};
static const struct intel_watermark_params pineview_cursor_wm = {
583 584 585 586 587
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 589
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
590 591 592 593 594
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595 596
};
static const struct intel_watermark_params i965_cursor_wm_info = {
597 598 599 600 601
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
602 603
};
static const struct intel_watermark_params i945_wm_info = {
604 605 606 607 608
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
609 610
};
static const struct intel_watermark_params i915_wm_info = {
611 612 613 614 615
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
616
};
617
static const struct intel_watermark_params i830_a_wm_info = {
618 619 620 621 622
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
623
};
624 625 626 627 628 629 630
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
631
static const struct intel_watermark_params i845_wm_info = {
632 633 634 635 636
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
637 638
};

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
676
	u64 ret;
677

678
	ret = (u64)pixel_rate * cpp * latency;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

735 736
/**
 * intel_calculate_wm - calculate watermark level
737
 * @pixel_rate: pixel clock
738
 * @wm: chip FIFO params
739
 * @fifo_size: size of the FIFO buffer
740
 * @cpp: bytes per pixel
741 742 743 744 745 746 747 748 749 750 751 752 753
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
754 755 756 757
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
758
{
759
	int entries, wm_size;
760 761 762 763 764 765 766

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
767 768 769 770 771
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
772

773 774
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
775 776

	/* Don't promote wm_size to unsigned... */
777
	if (wm_size > wm->max_wm)
778 779 780
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
781 782 783 784 785 786 787 788 789 790 791

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

792 793 794
	return wm_size;
}

795 796 797 798 799 800 801 802 803 804
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

805 806 807 808 809
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

833
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
834
{
835
	struct intel_crtc *crtc, *enabled = NULL;
836

837
	for_each_intel_crtc(&dev_priv->drm, crtc) {
838
		if (intel_crtc_active(crtc)) {
839 840 841 842 843 844 845 846 847
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

848
static void pineview_update_wm(struct intel_crtc *unused_crtc)
849
{
850
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
851
	struct intel_crtc *crtc;
852 853
	const struct cxsr_latency *latency;
	u32 reg;
854
	unsigned int wm;
855

856
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
857 858 859
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
860 861
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
862
		intel_set_memory_cxsr(dev_priv, false);
863 864 865
		return;
	}

866
	crtc = single_enabled_crtc(dev_priv);
867
	if (crtc) {
868 869 870 871
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
872
		int cpp = fb->format->cpp[0];
873
		int clock = adjusted_mode->crtc_clock;
874 875 876 877

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
878
					cpp, latency->display_sr);
879 880
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
881
		reg |= FW_WM(wm, SR);
882 883 884 885 886 887
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
888
					4, latency->cursor_sr);
889 890
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
891
		reg |= FW_WM(wm, CURSOR_SR);
892 893 894 895 896
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
897
					cpp, latency->display_hpll_disable);
898 899
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
900
		reg |= FW_WM(wm, HPLL_SR);
901 902 903 904 905
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
906
					4, latency->cursor_hpll_disable);
907 908
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
909
		reg |= FW_WM(wm, HPLL_CURSOR);
910 911 912
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

913
		intel_set_memory_cxsr(dev_priv, true);
914
	} else {
915
		intel_set_memory_cxsr(dev_priv, false);
916 917 918
	}
}

919 920 921 922 923 924 925 926 927 928
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
929
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
930 931 932 933 934 935
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

936 937
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
938
{
939 940 941 942 943
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
961

962
	POSTING_READ(DSPFW1);
963 964
}

965 966 967
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

968
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
969 970
				const struct vlv_wm_values *wm)
{
971 972 973
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
974 975
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

976 977 978 979 980 981
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
982

983 984 985 986 987 988 989 990 991 992 993
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

994
	I915_WRITE(DSPFW1,
995
		   FW_WM(wm->sr.plane, SR) |
996 997 998
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
999
	I915_WRITE(DSPFW2,
1000 1001 1002
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1003
	I915_WRITE(DSPFW3,
1004
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1005 1006 1007

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1008 1009
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1010
		I915_WRITE(DSPFW8_CHV,
1011 1012
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1013
		I915_WRITE(DSPFW9_CHV,
1014 1015
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1016
		I915_WRITE(DSPHOWM,
1017
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1018 1019 1020 1021 1022 1023 1024 1025 1026
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1027 1028
	} else {
		I915_WRITE(DSPFW7,
1029 1030
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1031
		I915_WRITE(DSPHOWM,
1032
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1033 1034 1035 1036 1037 1038
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1039 1040 1041
	}

	POSTING_READ(DSPFW1);
1042 1043
}

1044 1045
#undef FW_WM_VLV

1046 1047 1048 1049 1050
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1051
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1052

1053
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1098 1099 1100
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1101 1102 1103 1104 1105
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1106 1107
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1146
		unsigned int small, large;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1159
	return min_t(unsigned int, wm, USHRT_MAX);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1197 1198 1199
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1328 1329
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1330 1331 1332 1333 1334
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1335 1336 1337 1338
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1339 1340 1341
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1342
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1408
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1409
{
1410
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1411 1412 1413 1414 1415 1416 1417
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1418 1419
	enum plane_id plane_id;

1420 1421 1422 1423 1424 1425 1426 1427
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1428
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1429
		!new_crtc_state->disable_cxsr;
1430
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1431
		!new_crtc_state->disable_cxsr;
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1473
out:
1474 1475 1476 1477 1478
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1479
		new_crtc_state->wm.need_postvbl_update = true;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1576 1577
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1578 1579
				   unsigned int htotal,
				   unsigned int width,
1580
				   unsigned int cpp,
1581 1582 1583 1584
				   unsigned int latency)
{
	unsigned int ret;

1585 1586
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1587 1588 1589 1590 1591
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1592
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1593 1594 1595 1596
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1597 1598
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1599 1600 1601
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1602 1603

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1604 1605 1606
	}
}

1607 1608 1609
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1610
{
1611
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1612
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1613 1614
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1615
	unsigned int clock, htotal, cpp, width, wm;
1616 1617 1618 1619

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1620
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1621 1622
		return 0;

1623
	cpp = plane_state->base.fb->format->cpp[0];
1624 1625 1626
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1627

1628
	if (plane->id == PLANE_CURSOR) {
1629 1630 1631 1632 1633 1634 1635 1636
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1637
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1638 1639 1640
				    dev_priv->wm.pri_latency[level] * 10);
	}

1641
	return min_t(unsigned int, wm, USHRT_MAX);
1642 1643
}

1644 1645 1646 1647 1648 1649
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1650
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1651
{
1652
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1653
	const struct g4x_pipe_wm *raw =
1654
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1655
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1656 1657 1658
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1659
	int fifo_extra, fifo_left = fifo_size;
1660
	int sprite0_fifo_extra = 0;
1661 1662
	unsigned int total_rate;
	enum plane_id plane_id;
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1675 1676
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1677 1678
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1679

1680 1681
	if (total_rate > fifo_size)
		return -EINVAL;
1682

1683 1684
	if (total_rate == 0)
		total_rate = 1;
1685

1686
	for_each_plane_id_on_crtc(crtc, plane_id) {
1687 1688
		unsigned int rate;

1689 1690
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1691 1692 1693
			continue;
		}

1694 1695 1696
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1697 1698
	}

1699 1700 1701
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1702 1703 1704
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1705 1706

	/* spread the remainder evenly */
1707
	for_each_plane_id_on_crtc(crtc, plane_id) {
1708 1709 1710 1711 1712
		int plane_extra;

		if (fifo_left == 0)
			break;

1713
		if ((active_planes & BIT(plane_id)) == 0)
1714 1715 1716
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1717
		fifo_state->plane[plane_id] += plane_extra;
1718 1719 1720
		fifo_left -= plane_extra;
	}

1721 1722 1723 1724 1725 1726 1727 1728 1729
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1730 1731
}

1732 1733 1734 1735 1736 1737
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1738
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1749 1750 1751 1752 1753 1754 1755 1756
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1757 1758 1759 1760
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1761
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1762
				 int level, enum plane_id plane_id, u16 value)
1763
{
1764
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1765
	int num_levels = intel_wm_num_levels(dev_priv);
1766
	bool dirty = false;
1767

1768
	for (; level < num_levels; level++) {
1769
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1770

1771
		dirty |= raw->plane[plane_id] != value;
1772
		raw->plane[plane_id] = value;
1773
	}
1774 1775

	return dirty;
1776 1777
}

1778 1779
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1780
{
1781 1782
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1783
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1784
	int level;
1785
	bool dirty = false;
1786

1787
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1788 1789
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1790
	}
1791

1792
	for (level = 0; level < num_levels; level++) {
1793
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1794 1795
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1796

1797 1798
		if (wm > max_wm)
			break;
1799

1800
		dirty |= raw->plane[plane_id] != wm;
1801 1802
		raw->plane[plane_id] = wm;
	}
1803

1804
	/* mark all higher levels as invalid */
1805
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1806

1807 1808
out:
	if (dirty)
1809
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1810 1811 1812 1813 1814 1815
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1816
}
1817

1818 1819
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1820
{
1821
	const struct g4x_pipe_wm *raw =
1822 1823 1824
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1825

1826 1827
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1828

1829
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1830
{
1831 1832 1833 1834
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1848
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1849 1850
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1851 1852 1853
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1854
	unsigned int dirty = 0;
1855

1856 1857 1858 1859
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1860 1861
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1862

1863
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1882
			intel_atomic_get_old_crtc_state(state, crtc);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1894
	}
1895

1896
	/* initially allow all levels */
1897
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1898 1899 1900 1901 1902
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1903
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1904

1905
	for (level = 0; level < wm_state->num_levels; level++) {
1906
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1907
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1908

1909
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1910
			break;
1911

1912 1913 1914 1915 1916 1917 1918 1919
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1920
						 raw->plane[PLANE_SPRITE0],
1921 1922
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1923

1924 1925 1926
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1927 1928
	}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1939 1940
}

1941 1942 1943
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1944 1945
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1946
{
1947
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1948
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1949 1950
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1951
	int sprite0_start, sprite1_start, fifo_size;
1952

1953 1954 1955
	if (!crtc_state->fifo_changed)
		return;

1956 1957 1958
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1959

1960 1961
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1962

1963 1964
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1975

1976
	switch (crtc->pipe) {
1977
		u32 dsparb, dsparb2, dsparb3;
1978
	case PIPE_A:
1979 1980
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1992 1993
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1994 1995
		break;
	case PIPE_B:
1996 1997
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2009 2010
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2011 2012
		break;
	case PIPE_C:
2013 2014
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2026 2027
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2028 2029 2030 2031
		break;
	default:
		break;
	}
2032

2033
	POSTING_READ_FW(DSPARB);
2034

2035
	spin_unlock(&dev_priv->uncore.lock);
2036 2037 2038 2039
}

#undef VLV_FIFO

2040
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2041
{
2042
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2043 2044 2045 2046 2047 2048 2049
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2050 2051
	int level;

2052 2053 2054 2055 2056 2057 2058
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2059
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2060
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2061
		!new_crtc_state->disable_cxsr;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2080
out:
2081 2082 2083 2084
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2085
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2086
		new_crtc_state->wm.need_postvbl_update = true;
2087 2088 2089 2090

	return 0;
}

2091
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2092 2093 2094 2095 2096
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2097
	wm->level = dev_priv->wm.max_level;
2098 2099
	wm->cxsr = true;

2100
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2101
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2116 2117 2118
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2119
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2120
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2121 2122 2123
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2124
		if (crtc->active && wm->cxsr)
2125 2126
			wm->sr = wm_state->sr[wm->level];

2127 2128 2129 2130
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2131 2132 2133
	}
}

2134
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2135
{
2136 2137
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2138

2139
	vlv_merge_wm(dev_priv, &new_wm);
2140

2141
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2142 2143
		return;

2144
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2145 2146
		chv_set_memory_dvfs(dev_priv, false);

2147
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2148 2149
		chv_set_memory_pm5(dev_priv, false);

2150
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2151
		_intel_set_memory_cxsr(dev_priv, false);
2152

2153
	vlv_write_wm_values(dev_priv, &new_wm);
2154

2155
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2156
		_intel_set_memory_cxsr(dev_priv, true);
2157

2158
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2159 2160
		chv_set_memory_pm5(dev_priv, true);

2161
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2162 2163
		chv_set_memory_dvfs(dev_priv, true);

2164
	*old_wm = new_wm;
2165 2166
}

2167 2168 2169 2170 2171 2172 2173
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2190 2191 2192 2193
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2194
static void i965_update_wm(struct intel_crtc *unused_crtc)
2195
{
2196
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2197
	struct intel_crtc *crtc;
2198 2199
	int srwm = 1;
	int cursor_sr = 16;
2200
	bool cxsr_enabled;
2201 2202

	/* Calc sr entries for one plane configs */
2203
	crtc = single_enabled_crtc(dev_priv);
2204 2205 2206
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2207 2208 2209 2210
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2211
		int clock = adjusted_mode->crtc_clock;
2212
		int htotal = adjusted_mode->crtc_htotal;
2213
		int hdisplay = crtc->config->pipe_src_w;
2214
		int cpp = fb->format->cpp[0];
2215 2216
		int entries;

2217 2218
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2219 2220 2221 2222 2223 2224 2225 2226
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2227 2228 2229
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2230
		entries = DIV_ROUND_UP(entries,
2231 2232
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2233

2234
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2235 2236 2237 2238 2239 2240
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2241
		cxsr_enabled = true;
2242
	} else {
2243
		cxsr_enabled = false;
2244
		/* Turn off self refresh if both pipes are enabled */
2245
		intel_set_memory_cxsr(dev_priv, false);
2246 2247 2248 2249 2250 2251
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2252 2253 2254 2255 2256 2257
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2258
	/* update cursor SR watermark */
2259
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2260 2261 2262

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2263 2264
}

2265 2266
#undef FW_WM

2267
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2268
{
2269
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2270
	const struct intel_watermark_params *wm_info;
2271 2272
	u32 fwater_lo;
	u32 fwater_hi;
2273 2274 2275
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2276
	struct intel_crtc *crtc, *enabled = NULL;
2277

2278
	if (IS_I945GM(dev_priv))
2279
		wm_info = &i945_wm_info;
2280
	else if (!IS_GEN(dev_priv, 2))
2281 2282
		wm_info = &i915_wm_info;
	else
2283
		wm_info = &i830_a_wm_info;
2284

2285 2286
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2287 2288 2289 2290 2291 2292 2293
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2294
		if (IS_GEN(dev_priv, 2))
2295
			cpp = 4;
2296
		else
2297
			cpp = fb->format->cpp[0];
2298

2299
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2300
					       wm_info, fifo_size, cpp,
2301
					       pessimal_latency_ns);
2302
		enabled = crtc;
2303
	} else {
2304
		planea_wm = fifo_size - wm_info->guard_size;
2305 2306 2307 2308
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2309
	if (IS_GEN(dev_priv, 2))
2310
		wm_info = &i830_bc_wm_info;
2311

2312 2313
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2314 2315 2316 2317 2318 2319 2320
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2321
		if (IS_GEN(dev_priv, 2))
2322
			cpp = 4;
2323
		else
2324
			cpp = fb->format->cpp[0];
2325

2326
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2327
					       wm_info, fifo_size, cpp,
2328
					       pessimal_latency_ns);
2329 2330 2331 2332
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2333
	} else {
2334
		planeb_wm = fifo_size - wm_info->guard_size;
2335 2336 2337
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2338 2339 2340

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2341
	if (IS_I915GM(dev_priv) && enabled) {
2342
		struct drm_i915_gem_object *obj;
2343

2344
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2345 2346

		/* self-refresh seems busted with untiled */
2347
		if (!i915_gem_object_is_tiled(obj))
2348 2349 2350
			enabled = NULL;
	}

2351 2352 2353 2354 2355 2356
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2357
	intel_set_memory_cxsr(dev_priv, false);
2358 2359

	/* Calc sr entries for one plane configs */
2360
	if (HAS_FW_BLC(dev_priv) && enabled) {
2361 2362
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2363 2364 2365 2366
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2367
		int clock = adjusted_mode->crtc_clock;
2368
		int htotal = adjusted_mode->crtc_htotal;
2369 2370
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2371 2372
		int entries;

2373
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2374
			cpp = 4;
2375
		else
2376
			cpp = fb->format->cpp[0];
2377

2378 2379
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2380 2381 2382 2383 2384 2385
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2386
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2387 2388
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2389
		else
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2406 2407
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2408 2409
}

2410
static void i845_update_wm(struct intel_crtc *unused_crtc)
2411
{
2412
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2413
	struct intel_crtc *crtc;
2414
	const struct drm_display_mode *adjusted_mode;
2415
	u32 fwater_lo;
2416 2417
	int planea_wm;

2418
	crtc = single_enabled_crtc(dev_priv);
2419 2420 2421
	if (crtc == NULL)
		return;

2422
	adjusted_mode = &crtc->config->base.adjusted_mode;
2423
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2424
				       &i845_wm_info,
2425
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2426
				       4, pessimal_latency_ns);
2427 2428 2429 2430 2431 2432 2433 2434
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2435
/* latency must be in 0.1us units. */
2436 2437 2438
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2439
{
2440
	unsigned int ret;
2441

2442 2443
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2444 2445 2446 2447

	return ret;
}

2448
/* latency must be in 0.1us units. */
2449 2450 2451 2452 2453
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2454
{
2455
	unsigned int ret;
2456

2457 2458
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2459
	ret = DIV_ROUND_UP(ret, 64) + 2;
2460

2461 2462 2463
	return ret;
}

2464
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2465
{
2466 2467 2468 2469 2470 2471
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2472
	if (WARN_ON(!cpp))
2473 2474 2475 2476
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2477
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2478 2479
}

2480
struct ilk_wm_maximums {
2481 2482 2483 2484
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2485 2486
};

2487 2488 2489 2490
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2491 2492 2493
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value, bool is_lp)
2494
{
2495
	u32 method1, method2;
2496
	int cpp;
2497

2498 2499 2500
	if (mem_value == 0)
		return U32_MAX;

2501
	if (!intel_wm_plane_visible(cstate, pstate))
2502 2503
		return 0;

2504
	cpp = pstate->base.fb->format->cpp[0];
2505

2506
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2507 2508 2509 2510

	if (!is_lp)
		return method1;

2511
	method2 = ilk_wm_method2(cstate->pixel_rate,
2512
				 cstate->base.adjusted_mode.crtc_htotal,
2513
				 drm_rect_width(&pstate->base.dst),
2514
				 cpp, mem_value);
2515 2516

	return min(method1, method2);
2517 2518
}

2519 2520 2521 2522
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2523 2524 2525
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2526
{
2527
	u32 method1, method2;
2528
	int cpp;
2529

2530 2531 2532
	if (mem_value == 0)
		return U32_MAX;

2533
	if (!intel_wm_plane_visible(cstate, pstate))
2534 2535
		return 0;

2536
	cpp = pstate->base.fb->format->cpp[0];
2537

2538 2539
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2540
				 cstate->base.adjusted_mode.crtc_htotal,
2541
				 drm_rect_width(&pstate->base.dst),
2542
				 cpp, mem_value);
2543 2544 2545
	return min(method1, method2);
}

2546 2547 2548 2549
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2550 2551 2552
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2553
{
2554 2555
	int cpp;

2556 2557 2558
	if (mem_value == 0)
		return U32_MAX;

2559
	if (!intel_wm_plane_visible(cstate, pstate))
2560 2561
		return 0;

2562 2563
	cpp = pstate->base.fb->format->cpp[0];

2564
	return ilk_wm_method2(cstate->pixel_rate,
2565
			      cstate->base.adjusted_mode.crtc_htotal,
2566
			      pstate->base.crtc_w, cpp, mem_value);
2567 2568
}

2569
/* Only for WM_LP. */
2570 2571 2572
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val)
2573
{
2574
	int cpp;
2575

2576
	if (!intel_wm_plane_visible(cstate, pstate))
2577 2578
		return 0;

2579
	cpp = pstate->base.fb->format->cpp[0];
2580

2581
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2582 2583
}

2584 2585
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2586
{
2587
	if (INTEL_GEN(dev_priv) >= 8)
2588
		return 3072;
2589
	else if (INTEL_GEN(dev_priv) >= 7)
2590 2591 2592 2593 2594
		return 768;
	else
		return 512;
}

2595 2596 2597
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2598
{
2599
	if (INTEL_GEN(dev_priv) >= 8)
2600 2601
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2602
	else if (INTEL_GEN(dev_priv) >= 7)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2613 2614
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2615
{
2616
	if (INTEL_GEN(dev_priv) >= 7)
2617 2618 2619 2620 2621
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2622
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2623
{
2624
	if (INTEL_GEN(dev_priv) >= 8)
2625 2626 2627 2628 2629
		return 31;
	else
		return 15;
}

2630
/* Calculate the maximum primary/sprite plane watermark */
2631
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2632
				     int level,
2633
				     const struct intel_wm_config *config,
2634 2635 2636
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2637
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2638 2639

	/* if sprites aren't enabled, sprites get nothing */
2640
	if (is_sprite && !config->sprites_enabled)
2641 2642 2643
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2644
	if (level == 0 || config->num_pipes_active > 1) {
2645
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2646 2647 2648 2649 2650 2651

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2652
		if (INTEL_GEN(dev_priv) <= 6)
2653 2654 2655
			fifo_size /= 2;
	}

2656
	if (config->sprites_enabled) {
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2668
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2669 2670 2671
}

/* Calculate the maximum cursor plane watermark */
2672
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2673 2674
				      int level,
				      const struct intel_wm_config *config)
2675 2676
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2677
	if (level > 0 && config->num_pipes_active > 1)
2678 2679 2680
		return 64;

	/* otherwise just report max that registers can hold */
2681
	return ilk_cursor_wm_reg_max(dev_priv, level);
2682 2683
}

2684
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2685 2686 2687
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2688
				    struct ilk_wm_maximums *max)
2689
{
2690 2691 2692 2693
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2694 2695
}

2696
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2697 2698 2699
					int level,
					struct ilk_wm_maximums *max)
{
2700 2701 2702 2703
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2704 2705
}

2706
static bool ilk_validate_wm_level(int level,
2707
				  const struct ilk_wm_maximums *max,
2708
				  struct intel_wm_level *result)
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2738 2739 2740
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2741 2742 2743 2744 2745 2746
		result->enable = true;
	}

	return ret;
}

2747
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2748
				 const struct intel_crtc *intel_crtc,
2749
				 int level,
2750
				 struct intel_crtc_state *cstate,
2751 2752 2753
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2754
				 struct intel_wm_level *result)
2755
{
2756 2757 2758
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2759 2760 2761 2762 2763 2764 2765 2766

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2779 2780 2781
	result->enable = true;
}

2782
static u32
2783
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2784
{
2785 2786
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2787 2788
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2789
	u32 linetime, ips_linetime;
2790

2791 2792 2793 2794
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2795
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2796
		return 0;
2797

2798 2799 2800
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2801 2802 2803
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2804
					 intel_state->cdclk.logical.cdclk);
2805

2806 2807
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2808 2809
}

2810
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2811
				  u16 wm[8])
2812
{
2813
	if (INTEL_GEN(dev_priv) >= 9) {
2814
		u32 val;
2815
		int ret, i;
2816
		int level, max_level = ilk_wm_max_level(dev_priv);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2868
		/*
2869
		 * WaWmMemoryReadLatency:skl+,glk
2870
		 *
2871
		 * punit doesn't take into account the read latency so we need
2872 2873
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2874
		 */
2875 2876 2877 2878 2879
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2880
				wm[level] += 2;
2881
			}
2882 2883
		}

2884 2885 2886 2887 2888 2889
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2890
		if (dev_priv->dram_info.is_16gb_dimm)
2891 2892
			wm[0] += 1;

2893
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2894
		u64 sskpd = I915_READ64(MCH_SSKPD);
2895 2896 2897 2898

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2899 2900 2901 2902
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2903
	} else if (INTEL_GEN(dev_priv) >= 6) {
2904
		u32 sskpd = I915_READ(MCH_SSKPD);
2905 2906 2907 2908 2909

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2910
	} else if (INTEL_GEN(dev_priv) >= 5) {
2911
		u32 mltr = I915_READ(MLTR_ILK);
2912 2913 2914 2915 2916

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2917 2918
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2919 2920 2921
	}
}

2922
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2923
				       u16 wm[5])
2924 2925
{
	/* ILK sprite LP0 latency is 1300 ns */
2926
	if (IS_GEN(dev_priv, 5))
2927 2928 2929
		wm[0] = 13;
}

2930
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2931
				       u16 wm[5])
2932 2933
{
	/* ILK cursor LP0 latency is 1300 ns */
2934
	if (IS_GEN(dev_priv, 5))
2935 2936 2937
		wm[0] = 13;
}

2938
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2939 2940
{
	/* how many WM levels are we expecting */
2941
	if (INTEL_GEN(dev_priv) >= 9)
2942
		return 7;
2943
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2944
		return 4;
2945
	else if (INTEL_GEN(dev_priv) >= 6)
2946
		return 3;
2947
	else
2948 2949
		return 2;
}
2950

2951
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2952
				   const char *name,
2953
				   const u16 wm[8])
2954
{
2955
	int level, max_level = ilk_wm_max_level(dev_priv);
2956 2957 2958 2959 2960

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2961 2962
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2963 2964 2965
			continue;
		}

2966 2967 2968 2969
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2970
		if (INTEL_GEN(dev_priv) >= 9)
2971 2972
			latency *= 10;
		else if (level > 0)
2973 2974 2975 2976 2977 2978 2979 2980
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2981
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2982
				    u16 wm[5], u16 min)
2983
{
2984
	int level, max_level = ilk_wm_max_level(dev_priv);
2985 2986 2987 2988 2989 2990

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2991
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2992 2993 2994 2995

	return true;
}

2996
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3012 3013 3014
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3015 3016
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3045
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3046
{
3047
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3048 3049 3050 3051 3052 3053

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3054
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3055
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3056

3057 3058 3059
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3060

3061
	if (IS_GEN(dev_priv, 6)) {
3062
		snb_wm_latency_quirk(dev_priv);
3063 3064
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3065 3066
}

3067
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3068
{
3069
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3070
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3071 3072
}

3073
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3085
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3096
/* Compute new watermarks for the pipe */
3097
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3098
{
3099 3100
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3101
	struct intel_pipe_wm *pipe_wm;
3102
	struct drm_device *dev = state->dev;
3103
	const struct drm_i915_private *dev_priv = to_i915(dev);
3104 3105 3106 3107 3108
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3109
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3110
	struct ilk_wm_maximums max;
3111

3112
	pipe_wm = &cstate->wm.ilk.optimal;
3113

3114 3115
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3116

3117
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3118
			pristate = ps;
3119
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3120
			sprstate = ps;
3121
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3122
			curstate = ps;
3123 3124
	}

3125
	pipe_wm->pipe_enabled = cstate->base.active;
3126
	if (sprstate) {
3127 3128 3129 3130
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3131 3132
	}

3133 3134
	usable_level = max_level;

3135
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3136
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3137
		usable_level = 1;
3138 3139

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3140
	if (pipe_wm->sprites_scaled)
3141
		usable_level = 0;
3142

3143
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3144 3145
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3146

3147
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3148
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3149

3150
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3151
		return -EINVAL;
3152

3153
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3154

3155 3156
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3157

3158
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3159
				     pristate, sprstate, curstate, wm);
3160 3161 3162 3163 3164 3165

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3166 3167 3168 3169
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3170 3171
	}

3172
	return 0;
3173 3174
}

3175 3176 3177 3178 3179
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3180
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3181
{
3182 3183
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3184
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3185 3186 3187 3188 3189
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3190
	int level, max_level = ilk_wm_max_level(dev_priv);
3191 3192 3193 3194 3195 3196

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3197
	*a = newstate->wm.ilk.optimal;
3198 3199
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3200 3201
		return 0;

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3223
	if (!ilk_validate_pipe_wm(dev_priv, a))
3224 3225 3226 3227 3228 3229
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3230 3231
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3232 3233 3234 3235

	return 0;
}

3236 3237 3238
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3239
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3240 3241 3242 3243 3244
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3245 3246
	ret_wm->enable = true;

3247
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3248
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3249 3250 3251 3252
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3253

3254 3255 3256 3257 3258
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3259
		if (!wm->enable)
3260
			ret_wm->enable = false;
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3272
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3273
			 const struct intel_wm_config *config,
3274
			 const struct ilk_wm_maximums *max,
3275 3276
			 struct intel_pipe_wm *merged)
{
3277
	int level, max_level = ilk_wm_max_level(dev_priv);
3278
	int last_enabled_level = max_level;
3279

3280
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3281
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3282
	    config->num_pipes_active > 1)
3283
		last_enabled_level = 0;
3284

3285
	/* ILK: FBC WM must be disabled always */
3286
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3287 3288 3289 3290 3291

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3292
		ilk_merge_wm_level(dev_priv, level, wm);
3293

3294 3295 3296 3297 3298
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3299 3300 3301 3302 3303 3304

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3305 3306
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3307 3308 3309
			wm->fbc_val = 0;
		}
	}
3310 3311 3312 3313 3314 3315 3316

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3317
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3318
	    intel_fbc_is_active(dev_priv)) {
3319 3320 3321 3322 3323 3324
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3325 3326
}

3327 3328 3329 3330 3331 3332
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3333
/* The value we need to program into the WM_LPx latency field */
3334 3335
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3336
{
3337
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3338 3339 3340 3341 3342
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3343
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3344
				   const struct intel_pipe_wm *merged,
3345
				   enum intel_ddb_partitioning partitioning,
3346
				   struct ilk_wm_values *results)
3347
{
3348 3349
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3350

3351
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3352
	results->partitioning = partitioning;
3353

3354
	/* LP1+ register values */
3355
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3356
		const struct intel_wm_level *r;
3357

3358
		level = ilk_wm_lp_to_level(wm_lp, merged);
3359

3360
		r = &merged->wm[level];
3361

3362 3363 3364 3365 3366
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3367
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3368 3369 3370
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3371 3372 3373
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3374
		if (INTEL_GEN(dev_priv) >= 8)
3375 3376 3377 3378 3379 3380
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3381 3382 3383 3384
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3385
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3386 3387 3388 3389
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3390
	}
3391

3392
	/* LP0 register values */
3393
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3394
		enum pipe pipe = intel_crtc->pipe;
3395 3396
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3397 3398 3399 3400

		if (WARN_ON(!r->enable))
			continue;

3401
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3402

3403 3404 3405 3406
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3407 3408 3409
	}
}

3410 3411
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3412 3413 3414 3415
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3416
{
3417
	int level, max_level = ilk_wm_max_level(dev_priv);
3418
	int level1 = 0, level2 = 0;
3419

3420 3421 3422 3423 3424
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3425 3426
	}

3427 3428
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3429 3430 3431
			return r2;
		else
			return r1;
3432
	} else if (level1 > level2) {
3433 3434 3435 3436 3437 3438
		return r1;
	} else {
		return r2;
	}
}

3439 3440 3441 3442 3443 3444 3445 3446
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3447
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3448 3449
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3450 3451 3452 3453 3454
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3455
	for_each_pipe(dev_priv, pipe) {
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3499 3500
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3501
{
3502
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3503
	bool changed = false;
3504

3505 3506 3507
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3508
		changed = true;
3509 3510 3511 3512
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3513
		changed = true;
3514 3515 3516 3517
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3518
		changed = true;
3519
	}
3520

3521 3522 3523 3524
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3525

3526 3527 3528 3529 3530 3531 3532
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3533 3534
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3535
{
3536
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3537
	unsigned int dirty;
3538
	u32 val;
3539

3540
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3541 3542 3543 3544 3545
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3546
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3547
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3548
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3549
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3550
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3551 3552
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3553
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3554
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3555
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3556
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3557
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3558 3559
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3560
	if (dirty & WM_DIRTY_DDB) {
3561
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3576 3577
	}

3578
	if (dirty & WM_DIRTY_FBC) {
3579 3580 3581 3582 3583 3584 3585 3586
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3587 3588 3589 3590
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3591
	if (INTEL_GEN(dev_priv) >= 7) {
3592 3593 3594 3595 3596
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3597

3598
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3599
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3600
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3601
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3602
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3603
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3604 3605

	dev_priv->wm.hw = *results;
3606 3607
}

3608
bool ilk_disable_lp_wm(struct drm_device *dev)
3609
{
3610
	struct drm_i915_private *dev_priv = to_i915(dev);
3611 3612 3613 3614

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3626 3627 3628 3629 3630 3631
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3632 3633 3634 3635 3636
		enabled_slices++;

	return enabled_slices;
}

3637 3638 3639 3640
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3641
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3642
{
3643
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3644 3645
}

3646 3647 3648
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3649 3650
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3651 3652
}

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3665
intel_enable_sagv(struct drm_i915_private *dev_priv)
3666 3667 3668
{
	int ret;

3669 3670 3671 3672
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3673 3674
		return 0;

3675
	DRM_DEBUG_KMS("Enabling SAGV\n");
3676 3677 3678
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3679
	/* We don't need to wait for SAGV when enabling */
3680 3681 3682

	/*
	 * Some skl systems, pre-release machines in particular,
3683
	 * don't actually have SAGV.
3684
	 */
3685
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3686
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3687
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3688 3689
		return 0;
	} else if (ret < 0) {
3690
		DRM_ERROR("Failed to enable SAGV\n");
3691 3692 3693
		return ret;
	}

3694
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3695 3696 3697 3698
	return 0;
}

int
3699
intel_disable_sagv(struct drm_i915_private *dev_priv)
3700
{
3701
	int ret;
3702

3703 3704 3705 3706
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3707 3708
		return 0;

3709
	DRM_DEBUG_KMS("Disabling SAGV\n");
3710
	/* bspec says to keep retrying for at least 1 ms */
3711 3712 3713 3714
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3715 3716
	/*
	 * Some skl systems, pre-release machines in particular,
3717
	 * don't actually have SAGV.
3718
	 */
3719
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3720
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3721
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3722
		return 0;
3723
	} else if (ret < 0) {
3724
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3725
		return ret;
3726 3727
	}

3728
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3729 3730 3731
	return 0;
}

3732
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3733 3734 3735 3736
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3737 3738
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3739
	struct intel_crtc_state *cstate;
3740
	enum pipe pipe;
3741
	int level, latency;
3742
	int sagv_block_time_us;
3743

3744 3745 3746
	if (!intel_has_sagv(dev_priv))
		return false;

3747
	if (IS_GEN(dev_priv, 9))
3748
		sagv_block_time_us = 30;
3749
	else if (IS_GEN(dev_priv, 10))
3750 3751 3752 3753
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3754
	/*
3755
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3767
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3768
	cstate = to_intel_crtc_state(crtc->base.state);
3769

3770
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3771 3772
		return false;

3773
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3774 3775
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3776

3777
		/* Skip this plane if it's not enabled */
3778
		if (!wm->wm[0].plane_en)
3779 3780 3781
			continue;

		/* Find the highest enabled wm level for this plane */
3782
		for (level = ilk_wm_max_level(dev_priv);
3783
		     !wm->wm[level].plane_en; --level)
3784 3785
		     { }

3786 3787
		latency = dev_priv->wm.skl_latency[level];

3788
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3789
		    plane->base.state->fb->modifier ==
3790 3791 3792
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3793
		/*
3794 3795
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3796
		 * can't enable SAGV.
3797
		 */
3798
		if (latency < sagv_block_time_us)
3799 3800 3801 3802 3803 3804
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3805 3806
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3807
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3808 3809
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3821
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3822 3823 3824

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3825 3826 3827 3828 3829
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3830
	 */
3831
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3832 3833 3834 3835 3836 3837 3838 3839 3840
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3841
static void
3842
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3843
				   const struct intel_crtc_state *cstate,
3844
				   const u64 total_data_rate,
3845
				   struct skl_ddb_allocation *ddb,
3846 3847
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3848
{
3849 3850
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3851
	struct drm_crtc *for_crtc = cstate->base.crtc;
3852 3853 3854 3855 3856 3857
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3858

3859
	if (WARN_ON(!state) || !cstate->base.active) {
3860 3861
		alloc->start = 0;
		alloc->end = 0;
3862
		*num_active = hweight32(dev_priv->active_crtcs);
3863 3864 3865
		return;
	}

3866 3867 3868 3869 3870
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3871 3872
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3873

3874
	/*
3875 3876 3877 3878 3879 3880
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3881
	 */
3882
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3883 3884 3885 3886 3887
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3888
		return;
3889
	}
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3917 3918
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3933
{
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3948
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3949 3950 3951 3952 3953
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3954

3955
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3956 3957
}

3958 3959
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3960
{
3961

3962 3963
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3964

3965 3966
	if (entry->end)
		entry->end += 1;
3967 3968
}

3969 3970 3971 3972
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3973 3974
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3975
{
3976 3977
	u32 val, val2;
	u32 fourcc = 0;
3978 3979 3980 3981

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3982
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3983 3984 3985 3986 3987 3988
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3989 3990 3991 3992
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3993

3994 3995 3996 3997 3998
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3999
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4000

4001
		if (is_planar_yuv_format(fourcc))
4002 4003 4004 4005
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4006 4007 4008
	}
}

4009 4010 4011
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4012
{
4013 4014 4015
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4016
	intel_wakeref_t wakeref;
4017
	enum plane_id plane_id;
4018

4019
	power_domain = POWER_DOMAIN_PIPE(pipe);
4020 4021
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4022
		return;
4023

4024 4025 4026 4027 4028
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4029

4030
	intel_display_power_put(dev_priv, power_domain, wakeref);
4031
}
4032

4033 4034 4035 4036
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4037 4038
}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4055
static uint_fixed_16_16_t
4056 4057
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4058
{
4059
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4060
	u32 src_w, src_h, dst_w, dst_h;
4061 4062
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4063

4064
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4065
		return u32_to_fixed16(0);
4066 4067

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4068
	if (plane->id == PLANE_CURSOR) {
4069 4070 4071 4072
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4073 4074
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4075 4076 4077
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4078 4079 4080 4081 4082
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4083 4084
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4085 4086 4087 4088
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4089 4090 4091 4092
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4093

4094
	return mul_fixed16(downscale_w, downscale_h);
4095 4096
}

4097 4098 4099
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4100
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4101 4102 4103 4104 4105

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4106 4107
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4119 4120 4121 4122
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4133
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4134 4135 4136 4137 4138
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4139
	int crtc_clock, dotclk;
4140
	u32 pipe_max_pixel_rate;
4141
	uint_fixed_16_16_t pipe_downscale;
4142
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4143 4144 4145 4146 4147 4148

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4149
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4167
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4168 4169 4170 4171 4172 4173
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4174 4175
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4176
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4177 4178 4179
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4180 4181

	if (pipe_max_pixel_rate < crtc_clock) {
4182
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4183 4184 4185 4186 4187 4188
		return -EINVAL;
	}

	return 0;
}

4189
static u64
4190
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4191
			     const struct intel_plane_state *intel_pstate,
4192
			     const int plane)
4193
{
4194 4195
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4196 4197
	u32 data_rate;
	u32 width = 0, height = 0;
4198 4199
	struct drm_framebuffer *fb;
	u32 format;
4200
	uint_fixed_16_16_t down_scale_amount;
4201
	u64 rate;
4202

4203
	if (!intel_pstate->base.visible)
4204
		return 0;
4205

4206
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4207
	format = fb->format->format;
4208

4209
	if (intel_plane->id == PLANE_CURSOR)
4210
		return 0;
4211
	if (plane == 1 && !is_planar_yuv_format(format))
4212
		return 0;
4213

4214 4215 4216 4217 4218
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4219 4220
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4221

4222
	/* UV plane does 1/2 pixel sub-sampling */
4223
	if (plane == 1 && is_planar_yuv_format(format)) {
4224 4225
		width /= 2;
		height /= 2;
4226 4227
	}

4228
	data_rate = width * height;
4229

4230
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4231

4232 4233 4234 4235
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4236 4237
}

4238
static u64
4239
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4240 4241
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4242
{
4243 4244
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4245 4246
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4247
	u64 total_data_rate = 0;
4248 4249 4250

	if (WARN_ON(!state))
		return 0;
4251

4252
	/* Calculate and cache data rate for each plane */
4253
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4254
		enum plane_id plane_id = to_intel_plane(plane)->id;
4255
		u64 rate;
4256 4257
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4258

4259
		/* packed/y */
4260
		rate = skl_plane_relative_data_rate(intel_cstate,
4261
						    intel_pstate, 0);
4262
		plane_data_rate[plane_id] = rate;
4263
		total_data_rate += rate;
4264

4265
		/* uv-plane */
4266
		rate = skl_plane_relative_data_rate(intel_cstate,
4267
						    intel_pstate, 1);
4268
		uv_plane_data_rate[plane_id] = rate;
4269
		total_data_rate += rate;
4270 4271 4272 4273 4274
	}

	return total_data_rate;
}

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4330
static int
4331
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4332 4333
		      struct skl_ddb_allocation *ddb /* out */)
{
4334
	struct drm_atomic_state *state = cstate->base.state;
4335
	struct drm_crtc *crtc = cstate->base.crtc;
4336
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4337
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4338
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4339 4340 4341
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4342
	u64 total_data_rate;
4343
	enum plane_id plane_id;
4344
	int num_active;
4345 4346
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4347
	u32 blocks;
4348
	int level;
4349

4350
	/* Clear the partitioning for disabled planes. */
4351 4352
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4353

4354 4355 4356
	if (WARN_ON(!state))
		return 0;

4357
	if (!cstate->base.active) {
4358
		alloc->start = alloc->end = 0;
4359 4360 4361
		return 0;
	}

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
	if (INTEL_GEN(dev_priv) < 11)
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
	else
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4374
	alloc_size = skl_ddb_entry_size(alloc);
4375
	if (alloc_size == 0)
4376
		return 0;
4377

4378
	/* Allocate fixed number of blocks for cursor. */
4379
	total[PLANE_CURSOR] = skl_cursor_allocation(cstate, num_active);
4380 4381 4382 4383 4384 4385 4386
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4387

4388
	/*
4389 4390
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4391
	 */
4392
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4393
		blocks = 0;
4394
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4395 4396
			const struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4397 4398 4399 4400 4401 4402 4403

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4404
				continue;
4405
			}
4406

4407 4408
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4409 4410
		}

4411
		if (blocks <= alloc_size) {
4412 4413 4414
			alloc_size -= blocks;
			break;
		}
4415 4416
	}

4417
	if (level < 0) {
4418
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4419 4420
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4421 4422 4423
		return -EINVAL;
	}

4424
	/*
4425 4426 4427
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4428
	 */
4429
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4430 4431
		const struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];
4432 4433
		u64 rate;
		u16 extra;
4434

4435
		if (plane_id == PLANE_CURSOR)
4436 4437
			continue;

4438
		/*
4439 4440
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4441
		 */
4442 4443
		if (total_data_rate == 0)
			break;
4444

4445 4446 4447 4448
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4449
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4450 4451
		alloc_size -= extra;
		total_data_rate -= rate;
4452

4453 4454
		if (total_data_rate == 0)
			break;
4455

4456 4457 4458 4459
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4460
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4461 4462 4463 4464 4465 4466 4467 4468
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4469 4470 4471 4472
		struct skl_ddb_entry *plane_alloc =
			&cstate->wm.skl.plane_ddb_y[plane_id];
		struct skl_ddb_entry *uv_plane_alloc =
			&cstate->wm.skl.plane_ddb_uv[plane_id];
4473 4474 4475 4476

		if (plane_id == PLANE_CURSOR)
			continue;

4477
		/* Gen11+ uses a separate plane for UV watermarks */
4478 4479 4480 4481 4482 4483 4484 4485
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4486

4487 4488 4489 4490
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4491
		}
4492
	}
4493

4494 4495 4496 4497 4498 4499 4500 4501
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4502 4503
			struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4520

4521
			/*
4522
			 * Wa_1408961008:icl, ehl
4523 4524
			 * Underruns with WM1+ disabled
			 */
4525
			if (IS_GEN(dev_priv, 11) &&
4526 4527
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4528 4529
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4530
			}
4531 4532 4533 4534 4535 4536 4537 4538
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4539 4540 4541
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];

4542
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4543
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4544 4545
	}

4546
	return 0;
4547 4548
}

4549 4550
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4551
 * for the read latency) and cpp should always be <= 8, so that
4552 4553 4554
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4555
static uint_fixed_16_16_t
4556 4557
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4558
{
4559
	u32 wm_intermediate_val;
4560
	uint_fixed_16_16_t ret;
4561 4562

	if (latency == 0)
4563
		return FP_16_16_MAX;
4564

4565
	wm_intermediate_val = latency * pixel_rate * cpp;
4566
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4567 4568 4569 4570

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4571 4572 4573
	return ret;
}

4574 4575 4576
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4577
{
4578
	u32 wm_intermediate_val;
4579
	uint_fixed_16_16_t ret;
4580 4581

	if (latency == 0)
4582
		return FP_16_16_MAX;
4583 4584

	wm_intermediate_val = latency * pixel_rate;
4585 4586
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4587
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4588 4589 4590
	return ret;
}

4591
static uint_fixed_16_16_t
4592
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4593
{
4594 4595
	u32 pixel_rate;
	u32 crtc_htotal;
4596 4597 4598
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4599
		return u32_to_fixed16(0);
4600 4601 4602 4603

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4604
		return u32_to_fixed16(0);
4605 4606

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4607
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4608 4609 4610 4611

	return linetime_us;
}

4612
static u32
4613 4614
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4615
{
4616
	u64 adjusted_pixel_rate;
4617
	uint_fixed_16_16_t downscale_amount;
4618 4619

	/* Shouldn't reach here on disabled planes... */
4620
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4621 4622 4623 4624 4625 4626
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4627
	adjusted_pixel_rate = cstate->pixel_rate;
4628
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4629

4630 4631
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4632 4633
}

4634
static int
4635 4636 4637 4638 4639
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4640
{
4641 4642
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4643
	u32 interm_pbpl;
4644

4645
	/* only planar format has two planes */
4646
	if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4647
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4648 4649 4650
		return -EINVAL;
	}

4651 4652 4653 4654 4655 4656 4657 4658
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->is_planar = is_planar_yuv_format(format->format);
4659

4660
	wp->width = width;
4661
	if (color_plane == 1 && wp->is_planar)
4662 4663
		wp->width /= 2;

4664 4665
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4666

4667
	if (INTEL_GEN(dev_priv) >= 11 &&
4668
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4669 4670 4671 4672
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4673
	if (drm_rotation_90_or_270(rotation)) {
4674
		switch (wp->cpp) {
4675
		case 1:
4676
			wp->y_min_scanlines = 16;
4677 4678
			break;
		case 2:
4679
			wp->y_min_scanlines = 8;
4680 4681
			break;
		case 4:
4682
			wp->y_min_scanlines = 4;
4683
			break;
4684
		default:
4685
			MISSING_CASE(wp->cpp);
4686
			return -EINVAL;
4687 4688
		}
	} else {
4689
		wp->y_min_scanlines = 4;
4690 4691
	}

4692
	if (skl_needs_memory_bw_wa(dev_priv))
4693
		wp->y_min_scanlines *= 2;
4694

4695 4696 4697
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4698 4699
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4700 4701 4702 4703

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4704 4705
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4706
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4707 4708
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4709
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4710
	} else {
4711 4712
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4713
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4714 4715
	}

4716 4717
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4718

4719
	wp->linetime_us = fixed16_to_u32_round_up(
4720
					intel_get_linetime_us(crtc_state));
4721 4722 4723 4724

	return 0;
}

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

	if (plane->id == PLANE_CURSOR) {
		width = plane_state->base.crtc_w;
	} else {
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
		width = drm_rect_width(&plane_state->base.src) >> 16;
	}

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4752 4753 4754 4755 4756 4757 4758 4759 4760
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4761 4762 4763 4764 4765
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4766
{
4767
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4768
	u32 latency = dev_priv->wm.skl_latency[level];
4769 4770
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4771
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4772

4773 4774 4775
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4776
		return;
4777
	}
4778

4779
	/* Display WA #1141: kbl,cfl */
4780 4781
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4782 4783 4784
	    dev_priv->ipc_enabled)
		latency += 4;

4785
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4786 4787 4788
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4789
				 wp->cpp, latency, wp->dbuf_block_size);
4790
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4791
				 cstate->base.adjusted_mode.crtc_htotal,
4792
				 latency,
4793
				 wp->plane_blocks_per_line);
4794

4795 4796
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4797
	} else {
4798
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4799
		     wp->dbuf_block_size < 1) &&
4800
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4801
			selected_result = method2;
4802
		} else if (latency >= wp->linetime_us) {
4803
			if (IS_GEN(dev_priv, 9) &&
4804 4805 4806 4807 4808
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4809
			selected_result = method1;
4810
		}
4811
	}
4812

4813
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4814
	res_lines = div_round_up_fixed16(selected_result,
4815
					 wp->plane_blocks_per_line);
4816

4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4832

4833 4834 4835 4836 4837 4838 4839 4840 4841
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4842
	}
4843

4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4862 4863 4864
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4865 4866 4867
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4868
		return;
4869
	}
4870 4871 4872 4873 4874 4875 4876

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4877 4878
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4879 4880
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4881
	result->plane_en = true;
4882 4883
}

4884
static void
4885
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4886
		      const struct skl_wm_params *wm_params,
4887
		      struct skl_wm_level *levels)
4888
{
4889
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4890
	int level, max_level = ilk_wm_max_level(dev_priv);
4891
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4892

4893
	for (level = 0; level <= max_level; level++) {
4894
		struct skl_wm_level *result = &levels[level];
4895

4896
		skl_compute_plane_wm(cstate, level, wm_params,
4897
				     result_prev, result);
4898 4899

		result_prev = result;
4900
	}
4901 4902
}

4903
static u32
4904
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4905
{
M
Mahesh Kumar 已提交
4906 4907
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4908
	uint_fixed_16_16_t linetime_us;
4909
	u32 linetime_wm;
4910

4911
	linetime_us = intel_get_linetime_us(cstate);
4912
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4913

4914 4915
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4916
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4917 4918

	return linetime_wm;
4919 4920
}

4921
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4922
				      const struct skl_wm_params *wp,
4923
				      struct skl_plane_wm *wm)
4924
{
4925 4926
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
4927 4928 4929
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4930 4931 4932

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4933
		return;
4934 4935 4936

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4937
		return;
4938

4939 4940
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4941 4942 4943 4944
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4955
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4956

4957
	if (wp->y_tiled) {
4958 4959
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4960
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4961 4962
				trans_offset_b;
	} else {
4963
		res_blocks = wm0_sel_res_b + trans_offset_b;
4964 4965 4966 4967 4968 4969 4970

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4971 4972 4973 4974 4975 4976 4977
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4978 4979
}

4980
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4981 4982
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4983
{
4984
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4985 4986 4987
	struct skl_wm_params wm_params;
	int ret;

4988
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4989 4990 4991 4992
					  &wm_params, color_plane);
	if (ret)
		return ret;

4993
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4994
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4995 4996 4997 4998

	return 0;
}

4999
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5000 5001
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5002
{
5003
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5004 5005 5006
	struct skl_wm_params wm_params;
	int ret;

5007
	wm->is_planar = true;
5008 5009

	/* uv plane watermarks must also be validated for NV12/Planar */
5010
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5011 5012 5013
					  &wm_params, 1);
	if (ret)
		return ret;
5014

5015
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5016

5017
	return 0;
5018 5019
}

5020
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5021
			      const struct intel_plane_state *plane_state)
5022
{
5023 5024 5025
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
5026 5027
	int ret;

5028 5029 5030
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5031
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5032
					plane_id, 0);
5033 5034 5035
	if (ret)
		return ret;

5036
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5037
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5038 5039 5040 5041 5042 5043 5044 5045
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5046
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5064
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5065 5066 5067 5068
						y_plane_id, 0);
		if (ret)
			return ret;

5069
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5070 5071 5072 5073
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5074
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5075 5076 5077 5078 5079 5080
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5081 5082
}

5083
static int skl_build_pipe_wm(struct intel_crtc_state *cstate)
5084
{
5085
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5086
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5087 5088 5089
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
5090
	int ret;
5091

L
Lyude 已提交
5092 5093 5094 5095 5096 5097
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5098 5099 5100 5101
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5102
		if (INTEL_GEN(dev_priv) >= 11)
5103
			ret = icl_build_plane_wm(cstate, intel_pstate);
5104
		else
5105
			ret = skl_build_plane_wm(cstate, intel_pstate);
5106 5107
		if (ret)
			return ret;
5108
	}
5109

5110
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5111

5112
	return 0;
5113 5114
}

5115 5116
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5117 5118 5119
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5120
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5121
	else
5122
		I915_WRITE_FW(reg, 0);
5123 5124
}

5125 5126 5127 5128
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5129
	u32 val = 0;
5130

5131
	if (level->plane_en)
5132
		val |= PLANE_WM_EN;
5133 5134 5135 5136
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5137

5138
	I915_WRITE_FW(reg, val);
5139 5140
}

5141 5142
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5143
{
5144
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5145
	int level, max_level = ilk_wm_max_level(dev_priv);
5146 5147 5148 5149 5150 5151 5152 5153
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5154 5155

	for (level = 0; level <= max_level; level++) {
5156
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5157
				   &wm->wm[level]);
5158
	}
5159
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5160
			   &wm->trans_wm);
5161

5162
	if (INTEL_GEN(dev_priv) >= 11) {
5163
		skl_ddb_entry_write(dev_priv,
5164 5165
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5166
	}
5167 5168 5169 5170 5171 5172 5173 5174

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5175 5176
}

5177 5178
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5179
{
5180
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5181
	int level, max_level = ilk_wm_max_level(dev_priv);
5182 5183 5184 5185 5186 5187
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5188 5189

	for (level = 0; level <= max_level; level++) {
5190 5191
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5192
	}
5193
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5194

5195
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5196 5197
}

5198 5199 5200
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5201
	return l1->plane_en == l2->plane_en &&
5202
		l1->ignore_lines == l2->ignore_lines &&
5203 5204 5205
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5206

5207 5208 5209 5210 5211
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5212

5213 5214 5215 5216 5217 5218 5219
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5220 5221
}

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5239 5240
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5241
{
5242
	return a->start < b->end && b->start < a->end;
5243 5244
}

5245
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5246
				 const struct skl_ddb_entry *entries,
5247
				 int num_entries, int ignore_idx)
5248
{
5249
	int i;
5250

5251 5252 5253
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5254
			return true;
5255
	}
5256

5257
	return false;
5258 5259
}

5260
static u32
5261
pipes_modified(struct intel_atomic_state *state)
5262
{
5263 5264
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5265
	u32 i, ret = 0;
5266

5267 5268
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5269 5270 5271 5272

	return ret;
}

5273
static int
5274 5275
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5276
{
5277 5278 5279 5280
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5281

5282 5283 5284
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5285

5286 5287 5288 5289
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5290 5291
			continue;

5292
		plane_state = intel_atomic_get_plane_state(state, plane);
5293 5294
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5295

5296
		new_crtc_state->update_planes |= BIT(plane_id);
5297 5298 5299 5300 5301 5302
	}

	return 0;
}

static int
5303
skl_compute_ddb(struct intel_atomic_state *state)
5304
{
5305 5306
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5307 5308
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5309 5310
	struct intel_crtc *crtc;
	int ret, i;
5311

5312 5313
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5314
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5315 5316
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5317 5318 5319
		if (ret)
			return ret;

5320 5321
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5322 5323
		if (ret)
			return ret;
5324 5325 5326 5327 5328
	}

	return 0;
}

5329 5330 5331 5332 5333
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5334
static void
5335
skl_print_wm_changes(struct intel_atomic_state *state)
5336
{
5337 5338 5339 5340 5341
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5342
	int i;
5343

5344 5345 5346
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5347 5348
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5349 5350 5351 5352 5353
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5354 5355
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5356 5357
			const struct skl_ddb_entry *old, *new;

5358 5359
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5360 5361 5362 5363

			if (skl_ddb_entry_equal(old, new))
				continue;

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5394 5395
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5396
				      plane->base.base.id, plane->base.name,
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5433
				      plane->base.base.id, plane->base.name,
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5444 5445 5446 5447
		}
	}
}

5448
static int
5449
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5450
{
5451
	struct drm_device *dev = state->base.dev;
5452
	const struct drm_i915_private *dev_priv = to_i915(dev);
5453 5454
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5455
	u32 realloc_pipes = pipes_modified(state);
5456
	int ret, i;
5457

5458 5459 5460 5461
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5462 5463
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5464

5465 5466 5467 5468 5469 5470 5471 5472
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5473
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5474
		(*changed) = true;
5475

5476
	if (!*changed)
5477 5478
		return 0;

5479 5480 5481 5482 5483 5484 5485 5486
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5487
				       state->base.acquire_ctx);
5488 5489 5490
		if (ret)
			return ret;

5491
		state->active_pipe_changes = ~0;
5492 5493

		/*
5494
		 * We usually only initialize state->active_crtcs if we
5495 5496 5497 5498
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5499 5500
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5516
	if (state->active_pipe_changes || state->modeset) {
5517
		realloc_pipes = ~0;
5518
		state->wm_results.dirty_pipes = ~0;
5519 5520 5521 5522 5523 5524
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5525 5526 5527 5528
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5529 5530 5531 5532 5533
	}

	return 0;
}

5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5594
static int
5595
skl_compute_wm(struct intel_atomic_state *state)
5596
{
5597
	struct intel_crtc *crtc;
5598
	struct intel_crtc_state *new_crtc_state;
5599 5600
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5601 5602 5603
	bool changed = false;
	int ret, i;

5604 5605 5606
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5607 5608 5609 5610
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5611 5612
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5613
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5614 5615 5616
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5617
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5618 5619
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5620 5621 5622
		if (ret)
			return ret;

5623
		ret = skl_wm_add_affected_planes(state, crtc);
5624 5625 5626
		if (ret)
			return ret;

5627 5628 5629
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5630
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5631 5632
	}

5633 5634 5635 5636
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5637
	skl_print_wm_changes(state);
5638

5639 5640 5641
	return 0;
}

5642 5643 5644 5645 5646 5647 5648
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5649 5650 5651

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5652 5653 5654 5655

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5656 5657
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5658
{
5659
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5660
	struct drm_device *dev = intel_crtc->base.dev;
5661
	struct drm_i915_private *dev_priv = to_i915(dev);
5662
	struct skl_ddb_values *results = &state->wm_results;
5663

5664
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5665 5666
		return;

5667
	mutex_lock(&dev_priv->wm.wm_mutex);
5668

5669 5670
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5671

5672
	mutex_unlock(&dev_priv->wm.wm_mutex);
5673 5674
}

5675
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5676 5677 5678 5679 5680
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5681
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5693
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5694
{
5695
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5696
	struct ilk_wm_maximums max;
5697
	struct intel_wm_config config = {};
5698
	struct ilk_wm_values results = {};
5699
	enum intel_ddb_partitioning partitioning;
5700

5701
	ilk_compute_wm_config(dev_priv, &config);
5702

5703 5704
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5705 5706

	/* 5/6 split only in single pipe config on IVB+ */
5707
	if (INTEL_GEN(dev_priv) >= 7 &&
5708
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5709 5710
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5711

5712
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5713
	} else {
5714
		best_lp_wm = &lp_wm_1_2;
5715 5716
	}

5717
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5718
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5719

5720
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5721

5722
	ilk_write_wm_values(dev_priv, &results);
5723 5724
}

5725 5726
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5727
{
5728 5729
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5730

5731
	mutex_lock(&dev_priv->wm.wm_mutex);
5732
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5733 5734 5735
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5736

5737 5738
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5739 5740 5741
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5742

5743 5744
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5745
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5746 5747 5748
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5749 5750
}

5751
static inline void skl_wm_level_from_reg_val(u32 val,
5752
					     struct skl_wm_level *level)
5753
{
5754
	level->plane_en = val & PLANE_WM_EN;
5755
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5756 5757 5758
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5759 5760
}

5761
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5762
			      struct skl_pipe_wm *out)
5763
{
5764 5765
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5766 5767
	int level, max_level;
	enum plane_id plane_id;
5768
	u32 val;
5769

5770
	max_level = ilk_wm_max_level(dev_priv);
5771

5772
	for_each_plane_id_on_crtc(crtc, plane_id) {
5773
		struct skl_plane_wm *wm = &out->planes[plane_id];
5774

5775
		for (level = 0; level <= max_level; level++) {
5776 5777
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5778 5779
			else
				val = I915_READ(CUR_WM(pipe, level));
5780

5781
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5782 5783
		}

5784 5785
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5786 5787 5788 5789
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5790 5791
	}

5792
	if (!crtc->active)
5793
		return;
5794

5795
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5796 5797
}

5798
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5799
{
5800
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5801
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5802
	struct intel_crtc *crtc;
5803
	struct intel_crtc_state *cstate;
5804

5805
	skl_ddb_get_hw_state(dev_priv, ddb);
5806 5807
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5808 5809 5810

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5811 5812
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5813
	}
5814

5815 5816 5817 5818
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5819 5820
}

5821
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5822
{
5823
	struct drm_device *dev = crtc->base.dev;
5824
	struct drm_i915_private *dev_priv = to_i915(dev);
5825
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5826
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5827
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5828
	enum pipe pipe = crtc->pipe;
5829
	static const i915_reg_t wm0_pipe_reg[] = {
5830 5831 5832 5833 5834 5835
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5836
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5837
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5838

5839 5840
	memset(active, 0, sizeof(*active));

5841
	active->pipe_enabled = crtc->active;
5842 5843

	if (active->pipe_enabled) {
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5858
		int level, max_level = ilk_wm_max_level(dev_priv);
5859 5860 5861 5862 5863 5864 5865 5866 5867

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5868

5869
	crtc->wm.active.ilk = *active;
5870 5871
}

5872 5873 5874 5875 5876
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5877 5878 5879
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5880
	u32 tmp;
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5903 5904 5905 5906
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5907
	u32 tmp;
5908 5909 5910 5911

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5912
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5913
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5914
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5915
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5916
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5917
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5918
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5919 5920 5921 5922 5923
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5924 5925 5926
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5927 5928

	tmp = I915_READ(DSPFW2);
5929 5930 5931
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5932 5933 5934 5935 5936 5937

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5938 5939
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5940 5941

		tmp = I915_READ(DSPFW8_CHV);
5942 5943
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5944 5945

		tmp = I915_READ(DSPFW9_CHV);
5946 5947
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5948 5949 5950

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5951 5952 5953 5954 5955 5956 5957 5958 5959
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5960 5961
	} else {
		tmp = I915_READ(DSPFW7);
5962 5963
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5964 5965 5966

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5967 5968 5969 5970 5971 5972
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5973 5974 5975 5976 5977 5978
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5979
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5980 5981 5982 5983 5984 5985 5986 5987
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5988
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6119
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6120 6121
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6122
	struct intel_crtc *crtc;
6123 6124 6125 6126 6127 6128 6129 6130
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6131
		vlv_punit_get(dev_priv);
6132

6133
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6134 6135 6136
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6137 6138 6139 6140 6141 6142 6143 6144 6145
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6146
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6160

6161
		vlv_punit_put(dev_priv);
6162 6163
	}

6164
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6180
			struct g4x_pipe_wm *raw =
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6202
		crtc_state->wm.vlv.intermediate = *active;
6203

6204
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6205 6206 6207 6208 6209
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6210
	}
6211 6212 6213 6214 6215

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6240
			struct g4x_pipe_wm *raw =
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6281
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6282
{
6283
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6284
	struct intel_crtc *crtc;
6285

6286 6287
	ilk_init_lp_watermarks(dev_priv);

6288
	for_each_intel_crtc(&dev_priv->drm, crtc)
6289 6290 6291 6292 6293 6294 6295
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6296
	if (INTEL_GEN(dev_priv) >= 7) {
6297 6298 6299
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6300

6301
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6302 6303
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6304
	else if (IS_IVYBRIDGE(dev_priv))
6305 6306
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6307 6308 6309 6310 6311

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6312 6313
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6314
 * @crtc: the #intel_crtc on which to compute the WM
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6345
void intel_update_watermarks(struct intel_crtc *crtc)
6346
{
6347
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6348 6349

	if (dev_priv->display.update_wm)
6350
		dev_priv->display.update_wm(crtc);
6351 6352
}

6353 6354 6355 6356
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6357 6358 6359
	if (!HAS_IPC(dev_priv))
		return;

6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6375 6376 6377 6378 6379 6380
	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		dev_priv->ipc_enabled = dev_priv->dram_info.symmetric_memory;
	else
		dev_priv->ipc_enabled = true;

6381 6382 6383
	intel_enable_ipc(dev_priv);
}

6384
/*
6385 6386 6387 6388
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

6389
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6390 6391 6392
{
	u16 rgvswctl;

6393
	lockdep_assert_held(&mchdev_lock);
6394

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6412
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6413
{
6414
	u32 rgvmodectl;
6415 6416
	u8 fmax, fmin, fstart, vstart;

6417 6418
	spin_lock_irq(&mchdev_lock);

6419 6420
	rgvmodectl = I915_READ(MEMMODECTL);

6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6441
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6442 6443
		PXVFREQ_PX_SHIFT;

6444 6445
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6446

6447 6448 6449
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6466
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6467
		DRM_ERROR("stuck trying to change perf mode\n");
6468
	mdelay(1);
6469

6470
	ironlake_set_drps(dev_priv, fstart);
6471

6472 6473
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6474
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6475
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6476
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6477 6478

	spin_unlock_irq(&mchdev_lock);
6479 6480
}

6481
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6482
{
6483 6484 6485 6486 6487
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6488 6489 6490 6491 6492 6493 6494 6495 6496

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6497
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6498
	mdelay(1);
6499 6500
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6501
	mdelay(1);
6502

6503
	spin_unlock_irq(&mchdev_lock);
6504 6505
}

6506 6507 6508 6509 6510
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6511
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6512
{
6513
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6514
	u32 limits;
6515

6516 6517 6518 6519 6520 6521
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6522
	if (INTEL_GEN(dev_priv) >= 9) {
6523 6524 6525
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6526
	} else {
6527 6528 6529
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6530
	}
6531 6532 6533 6534

	return limits;
}

C
Chris Wilson 已提交
6535
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6536
{
6537
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6538 6539
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6540

C
Chris Wilson 已提交
6541
	lockdep_assert_held(&rps->power.mutex);
6542

C
Chris Wilson 已提交
6543
	if (new_power == rps->power.mode)
6544 6545 6546 6547 6548 6549
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6550 6551
		ei_up = 16000;
		threshold_up = 95;
6552 6553

		/* Downclock if less than 85% busy over 32ms */
6554 6555
		ei_down = 32000;
		threshold_down = 85;
6556 6557 6558 6559
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6560 6561
		ei_up = 13000;
		threshold_up = 90;
6562 6563

		/* Downclock if less than 75% busy over 32ms */
6564 6565
		ei_down = 32000;
		threshold_down = 75;
6566 6567 6568 6569
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6570 6571
		ei_up = 10000;
		threshold_up = 85;
6572 6573

		/* Downclock if less than 60% busy over 32ms */
6574 6575
		ei_down = 32000;
		threshold_down = 60;
6576 6577 6578
		break;
	}

6579 6580 6581 6582 6583 6584
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6585
	I915_WRITE(GEN6_RP_UP_EI,
6586
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6587
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6588 6589
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6590 6591

	I915_WRITE(GEN6_RP_DOWN_EI,
6592
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6593
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6594 6595 6596 6597
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
6598
		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6599 6600 6601 6602 6603
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6604

6605
skip_hw_write:
C
Chris Wilson 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6650 6651
}

C
Chris Wilson 已提交
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6670 6671
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6672
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6673 6674
	u32 mask = 0;

6675
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6676
	if (val > rps->min_freq_softlimit)
6677
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6678
	if (val < rps->max_freq_softlimit)
6679
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6680

6681 6682
	mask &= dev_priv->pm_rps_events;

6683
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6684 6685
}

6686 6687 6688
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6689
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6690
{
6691 6692
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6693 6694 6695
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6696
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6697
		gen6_set_rps_thresholds(dev_priv, val);
6698

6699
		if (INTEL_GEN(dev_priv) >= 9)
6700 6701
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6702
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6703 6704 6705 6706 6707 6708 6709
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6710
	}
6711 6712 6713 6714

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6715
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6716
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6717

6718
	rps->cur_freq = val;
6719
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6720 6721

	return 0;
6722 6723
}

6724
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6725
{
6726 6727
	int err;

6728
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6729 6730 6731
		      "Odd GPU freq value\n"))
		val &= ~1;

6732 6733
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6734
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6735
		vlv_punit_get(dev_priv);
6736
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6737
		vlv_punit_put(dev_priv);
6738 6739 6740
		if (err)
			return err;

6741
		gen6_set_rps_thresholds(dev_priv, val);
6742
	}
6743

6744
	dev_priv->gt_pm.rps.cur_freq = val;
6745
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6746 6747

	return 0;
6748 6749
}

6750
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6751 6752
 *
 * * If Gfx is Idle, then
6753 6754 6755
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6756 6757 6758
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6759 6760
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6761
	int err;
6762

6763
	if (rps->cur_freq <= val)
6764 6765
		return;

6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6778
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6779
	err = valleyview_set_rps(dev_priv, val);
6780
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6781 6782 6783

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6784 6785
}

6786 6787
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6788 6789
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6790
	mutex_lock(&rps->lock);
6791
	if (rps->enabled) {
6792 6793
		u8 freq;

6794
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6795 6796
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6797
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6798

6799 6800
		gen6_enable_rps_interrupts(dev_priv);

6801 6802 6803
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6804 6805
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6806

6807
		if (intel_set_rps(dev_priv,
6808
				  clamp(freq,
6809 6810
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6811
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6812
	}
6813
	mutex_unlock(&rps->lock);
6814 6815
}

6816 6817
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6818 6819
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6820 6821 6822 6823 6824 6825 6826
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6827
	mutex_lock(&rps->lock);
6828
	if (rps->enabled) {
6829
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6830
			vlv_set_rps_idle(dev_priv);
6831
		else
6832 6833
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6834 6835
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6836
	}
6837
	mutex_unlock(&rps->lock);
6838 6839
}

6840
void gen6_rps_boost(struct i915_request *rq)
6841
{
6842
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6843
	unsigned long flags;
6844 6845
	bool boost;

6846 6847 6848
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6849
	if (!rps->enabled)
6850
		return;
6851

6852
	if (i915_request_signaled(rq))
6853 6854
		return;

6855
	/* Serializes with i915_request_retire() */
6856
	boost = false;
6857
	spin_lock_irqsave(&rq->lock, flags);
6858 6859
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6860
		rq->waitboost = true;
6861
	}
6862
	spin_unlock_irqrestore(&rq->lock, flags);
6863 6864 6865
	if (!boost)
		return;

6866 6867
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6868

6869
	atomic_inc(&rps->boosts);
6870 6871
}

6872
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6873
{
6874
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6875 6876
	int err;

6877
	lockdep_assert_held(&rps->lock);
6878 6879
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6880

6881 6882
	if (!rps->enabled) {
		rps->cur_freq = val;
6883 6884 6885
		return 0;
	}

6886
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6887
		err = valleyview_set_rps(dev_priv, val);
6888
	else
6889 6890 6891
		err = gen6_set_rps(dev_priv, val);

	return err;
6892 6893
}

6894
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6895 6896
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6897
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6898 6899
}

6900
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6901 6902 6903 6904
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6905
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6906 6907
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6908 6909 6910 6911
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6912
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6913
	I915_WRITE(GEN6_RP_CONTROL, 0);
6914 6915
}

6916
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6917 6918 6919 6920
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6921 6922 6923 6924 6925
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6926
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6927
{
6928
	/* We're doing forcewake before Disabling RC6,
6929
	 * This what the BIOS expects when going into suspend */
6930
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6931

6932
	I915_WRITE(GEN6_RC_CONTROL, 0);
6933

6934
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6935 6936
}

6937 6938 6939 6940 6941
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6942
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6943 6944 6945
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6957 6958

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6959
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6960 6961 6962 6963 6964 6965 6966 6967
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6968 6969
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6970
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6971 6972 6973 6974 6975 6976 6977
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6978
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6979 6980 6981
		enable_rc6 = false;
	}

6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6996 6997 6998 6999 7000 7001
		enable_rc6 = false;
	}

	return enable_rc6;
}

7002
static bool sanitize_rc6(struct drm_i915_private *i915)
7003
{
7004
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
7005

7006
	/* Powersaving is controlled by the host when inside a VM */
7007
	if (intel_vgpu_active(i915)) {
7008
		info->has_rc6 = 0;
7009 7010
		info->has_rps = false;
	}
7011

7012 7013
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7014
		DRM_INFO("RC6 disabled by BIOS\n");
7015
		info->has_rc6 = 0;
7016 7017
	}

7018 7019 7020 7021 7022 7023 7024 7025
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
7026

7027
	return info->has_rc6;
7028 7029
}

7030
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7031
{
7032 7033
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7034
	/* All of these values are in units of 50MHz */
7035

7036
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
7037
	if (IS_GEN9_LP(dev_priv)) {
7038
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7039 7040 7041
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
7042
	} else {
7043
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7044 7045 7046
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
7047
	}
7048
	/* hw_max = RP0 until we check for overclocking */
7049
	rps->max_freq = rps->rp0_freq;
7050

7051
	rps->efficient_freq = rps->rp1_freq;
7052
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7053
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7054 7055 7056 7057 7058
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
7059
			rps->efficient_freq =
7060 7061
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
7062 7063
					rps->min_freq,
					rps->max_freq);
7064 7065
	}

7066
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7067
		/* Store the frequency values in 16.66 MHZ units, which is
7068 7069
		 * the natural hardware unit for SKL
		 */
7070 7071 7072 7073 7074
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
7075
	}
7076 7077
}

7078
static void reset_rps(struct drm_i915_private *dev_priv,
7079
		      int (*set)(struct drm_i915_private *, u8))
7080
{
7081 7082
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
7083 7084

	/* force a reset */
C
Chris Wilson 已提交
7085
	rps->power.mode = -1;
7086
	rps->cur_freq = -1;
7087

7088 7089
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
7090 7091
}

J
Jesse Barnes 已提交
7092
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
7093
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
7094
{
7095
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
7096

7097
	/* Program defaults and thresholds for RPS */
7098
	if (IS_GEN(dev_priv, 9))
7099 7100
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7101 7102 7103 7104 7105

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
7106 7107
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

7108 7109 7110
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7111
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
7112

7113
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
7114 7115
}

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/*
	 * 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.
	 */
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
	I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);

	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);

	if (HAS_GUC(dev_priv))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

	I915_WRITE(GEN6_RC_SLEEP, 0);

7147 7148
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);

	/* 3a: Enable RC6 */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   GEN6_RC_CTL_EI_MODE(1));

	/* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
	I915_WRITE(GEN9_PG_ENABLE,
7181 7182 7183
		   GEN9_RENDER_PG_ENABLE |
		   GEN9_MEDIA_PG_ENABLE |
		   GEN11_MEDIA_SAMPLER_PG_ENABLE);
7184 7185 7186 7187

	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
}

7188
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
7189
{
7190
	struct intel_engine_cs *engine;
7191
	enum intel_engine_id id;
7192
	u32 rc6_mode;
Z
Zhe Wang 已提交
7193 7194 7195 7196 7197 7198

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7199
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7200 7201 7202 7203 7204

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
7205 7206 7207 7208 7209 7210 7211 7212
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
7213
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
7214
	} else {
7215
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
7216 7217
	}

Z
Zhe Wang 已提交
7218 7219
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7220
	for_each_engine(engine, dev_priv, id)
7221
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7222

7223
	if (HAS_GUC(dev_priv))
7224 7225
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
7226 7227
	I915_WRITE(GEN6_RC_SLEEP, 0);

7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7251

Z
Zhe Wang 已提交
7252
	/* 3a: Enable RC6 */
7253
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
7254 7255 7256 7257 7258 7259 7260

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7261
	I915_WRITE(GEN6_RC_CONTROL,
7262 7263 7264
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7265

7266 7267
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7268
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7269
	 */
7270
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7271 7272
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7273 7274
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7275

7276
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7277 7278
}

7279
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7280
{
7281
	struct intel_engine_cs *engine;
7282
	enum intel_engine_id id;
7283 7284 7285 7286

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7287
	/* 1b: Get forcewake during program sequence. Although the driver
7288
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7289
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7290 7291 7292 7293 7294 7295 7296 7297

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7298
	for_each_engine(engine, dev_priv, id)
7299
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7300
	I915_WRITE(GEN6_RC_SLEEP, 0);
7301
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7302 7303

	/* 3: Enable RC6 */
7304

7305 7306 7307 7308
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7309

7310
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7311 7312 7313 7314
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7315 7316
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7317
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7318 7319

	/* 1 Program defaults and thresholds for RPS*/
7320
	I915_WRITE(GEN6_RPNSWREQ,
7321
		   HSW_FREQUENCY(rps->rp1_freq));
7322
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7323
		   HSW_FREQUENCY(rps->rp1_freq));
7324 7325 7326 7327 7328
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7329 7330
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7331 7332 7333 7334 7335 7336 7337

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7338

7339
	/* 2: Enable RPS */
7340 7341 7342 7343 7344 7345 7346 7347
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7348
	reset_rps(dev_priv, gen6_set_rps);
7349

7350
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7351 7352
}

7353
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7354
{
7355
	struct intel_engine_cs *engine;
7356
	enum intel_engine_id id;
7357
	u32 rc6vids, rc6_mask;
7358
	u32 gtfifodbg;
7359
	int ret;
7360 7361 7362 7363

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7364 7365
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7366 7367 7368 7369
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7370
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7371 7372 7373 7374 7375 7376 7377 7378 7379 7380

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7381
	for_each_engine(engine, dev_priv, id)
7382
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7383 7384 7385

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7386
	if (IS_IVYBRIDGE(dev_priv))
7387 7388 7389
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7390
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7391 7392
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7393
	/* We don't use those on Haswell */
7394 7395 7396 7397 7398
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7399 7400 7401 7402 7403
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7404 7405
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7406
	if (IS_GEN(dev_priv, 6) && ret) {
7407
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7408
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7409 7410 7411 7412 7413 7414 7415 7416 7417
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7418
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7419 7420
}

7421 7422 7423 7424 7425 7426 7427 7428
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
7429
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7430 7431 7432 7433 7434 7435 7436

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

7437
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7438 7439
}

7440
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7441
{
7442
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7443 7444
	const int min_freq = 15;
	const int scaling_factor = 180;
7445 7446
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7447
	unsigned int max_gpu_freq, min_gpu_freq;
7448
	struct cpufreq_policy *policy;
7449

7450
	lockdep_assert_held(&rps->lock);
7451

7452 7453 7454
	if (rps->max_freq <= rps->min_freq)
		return;

7455 7456 7457 7458 7459 7460 7461 7462 7463
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7464
		max_ia_freq = tsc_khz;
7465
	}
7466 7467 7468 7469

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7470
	min_ring_freq = I915_READ(DCLK) & 0xf;
7471 7472
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7473

7474 7475
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7476
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7477
		/* Convert GT frequency to 50 HZ units */
7478 7479
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7480 7481
	}

7482 7483 7484 7485 7486
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7487
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7488
		const int diff = max_gpu_freq - gpu_freq;
7489 7490
		unsigned int ia_freq = 0, ring_freq = 0;

7491
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7492 7493 7494 7495 7496
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7497
		} else if (INTEL_GEN(dev_priv) >= 8) {
7498 7499
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7500
		} else if (IS_HASWELL(dev_priv)) {
7501
			ring_freq = mult_frac(gpu_freq, 5, 4);
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7518

B
Ben Widawsky 已提交
7519 7520
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7521 7522 7523
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7524 7525 7526
	}
}

7527
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7528 7529 7530
{
	u32 val, rp0;

7531
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7532

7533
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7548
	}
7549 7550 7551

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7565 7566 7567 7568
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7569 7570 7571
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7572 7573 7574
	return rp1;
}

7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7597
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7598 7599 7600
{
	u32 val, rp0;

7601
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7614
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7615
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7616
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7617 7618 7619 7620 7621
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7622
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7623
{
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7635 7636
}

7637 7638 7639 7640 7641
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7642
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7643 7644 7645
			     dev_priv->vlv_pctx->stolen->start);
}

7646 7647 7648 7649 7650 7651 7652 7653 7654

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7655
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7656
{
7657 7658
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7659 7660 7661 7662
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7663
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7664 7665
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7666 7667 7668 7669

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7670 7671

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7672 7673
}

7674
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7675 7676
{
	struct drm_i915_gem_object *pctx;
7677 7678
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7679 7680 7681 7682 7683
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7684
		resource_size_t pcbr_offset;
7685

7686
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7687
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7688
								      pcbr_offset,
7689
								      I915_GTT_OFFSET_NONE,
7690 7691 7692 7693
								      pctx_size);
		goto out;
	}

7694 7695
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7696 7697 7698 7699 7700 7701 7702 7703
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7704
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7705 7706
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7707
		goto out;
7708 7709
	}

7710 7711 7712 7713 7714
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7715 7716 7717
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7718
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7719 7720 7721
	dev_priv->vlv_pctx = pctx;
}

7722
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7723
{
7724
	struct drm_i915_gem_object *pctx;
7725

7726 7727 7728
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7729 7730
}

7731 7732
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7733
	dev_priv->gt_pm.rps.gpll_ref_freq =
7734 7735 7736 7737 7738
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7739
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7740 7741
}

7742
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7743
{
7744
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7745
	u32 val;
7746

7747
	valleyview_setup_pctx(dev_priv);
7748

7749 7750 7751 7752 7753
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7754 7755
	vlv_init_gpll_ref_freq(dev_priv);

7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7769
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7770

7771 7772
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7773
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7774 7775
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7776

7777
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7778
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7779 7780
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7781

7782
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7783
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7784 7785
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7786

7787
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7788
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7789 7790
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7791 7792 7793 7794 7795

	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));
7796 7797
}

7798
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7799
{
7800
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7801
	u32 val;
7802

7803
	cherryview_setup_pctx(dev_priv);
7804

7805 7806 7807 7808 7809
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7810 7811
	vlv_init_gpll_ref_freq(dev_priv);

7812 7813
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);

7814 7815 7816 7817
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7818
	default:
7819 7820 7821
		dev_priv->mem_freq = 1600;
		break;
	}
7822
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7823

7824 7825
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7826
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7827 7828
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7829

7830
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7831
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7832 7833
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7834

7835
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7836
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7837 7838
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7839

7840
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7841
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7842 7843
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7844

7845 7846 7847 7848 7849
	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7850 7851
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7852
		  "Odd GPU freq values\n");
7853 7854
}

7855
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7856
{
7857
	valleyview_cleanup_pctx(dev_priv);
7858 7859
}

7860
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7861
{
7862
	struct intel_engine_cs *engine;
7863
	enum intel_engine_id id;
7864
	u32 gtfifodbg, rc6_mode, pcbr;
7865

7866 7867
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7878
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7879

7880 7881 7882
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7883 7884 7885 7886 7887
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7888
	for_each_engine(engine, dev_priv, id)
7889
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7890 7891
	I915_WRITE(GEN6_RC_SLEEP, 0);

7892 7893
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7894

7895
	/* Allows RC6 residency counter to work */
7896 7897 7898 7899 7900 7901 7902 7903 7904
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7905 7906
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7907
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7908 7909
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7910
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7911 7912 7913 7914 7915 7916
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7917
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7918 7919

	/* 1: Program defaults and thresholds for RPS*/
7920
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7921 7922 7923 7924 7925 7926 7927
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7928
	/* 2: Enable RPS */
7929 7930
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7931
		   GEN6_RP_MEDIA_IS_GFX |
7932 7933 7934 7935
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7936
	/* Setting Fixed Bias */
7937 7938 7939
	vlv_punit_get(dev_priv);

	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
D
Deepak S 已提交
7940 7941
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7942 7943
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7944 7945
	vlv_punit_put(dev_priv);

7946 7947 7948
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7949
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7950 7951
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7952
	reset_rps(dev_priv, valleyview_set_rps);
7953

7954
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7955 7956
}

7957
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7958
{
7959
	struct intel_engine_cs *engine;
7960
	enum intel_engine_id id;
7961
	u32 gtfifodbg;
7962

7963 7964
	valleyview_check_pctx(dev_priv);

7965 7966
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7967 7968
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7969 7970 7971
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7972
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7973

7974 7975 7976
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7977 7978 7979 7980
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7981
	for_each_engine(engine, dev_priv, id)
7982
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7983

7984
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7985

7986
	/* Allows RC6 residency counter to work */
7987
	I915_WRITE(VLV_COUNTER_CONTROL,
7988 7989
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7990
				      VLV_RENDER_RC0_COUNT_EN |
7991 7992
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7993

7994 7995
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7996

7997
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7998 7999 8000 8001 8002 8003
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

8004
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

8022 8023
	vlv_punit_get(dev_priv);

D
Deepak S 已提交
8024
	/* Setting Fixed Bias */
8025
	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
D
Deepak S 已提交
8026 8027
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

8028
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8029

8030 8031
	vlv_punit_put(dev_priv);

8032 8033 8034
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

8035
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8036 8037
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

8038
	reset_rps(dev_priv, valleyview_set_rps);
8039

8040
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8041 8042
}

8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

8072
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8073 8074 8075 8076 8077 8078
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

8079
	lockdep_assert_held(&mchdev_lock);
8080

8081
	diff1 = now - dev_priv->ips.last_time1;
8082 8083 8084 8085 8086 8087 8088

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
8089
		return dev_priv->ips.chipset_power;
8090 8091 8092 8093 8094 8095 8096 8097

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
8098 8099
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
8100 8101
		diff += total_count;
	} else {
8102
		diff = total_count - dev_priv->ips.last_count1;
8103 8104 8105
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8106 8107
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

8118 8119
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
8120

8121
	dev_priv->ips.chipset_power = ret;
8122 8123 8124 8125

	return ret;
}

8126 8127
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
8128 8129
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8130

8131
	if (!IS_GEN(dev_priv, 5))
8132 8133
		return 0;

8134 8135 8136 8137 8138
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8139 8140 8141 8142

	return val;
}

8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8170
{
8171 8172 8173
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

8174
	if (INTEL_INFO(dev_priv)->is_mobile)
8175 8176 8177
		return vm > 0 ? vm : 0;

	return vd;
8178 8179
}

8180
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8181
{
8182
	u64 now, diff, diffms;
8183 8184
	u32 count;

8185
	lockdep_assert_held(&mchdev_lock);
8186

8187 8188 8189
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
8190 8191 8192 8193 8194 8195 8196

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

8197 8198
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
8199 8200
		diff += count;
	} else {
8201
		diff = count - dev_priv->ips.last_count2;
8202 8203
	}

8204 8205
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
8206 8207 8208 8209

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
8210
	dev_priv->ips.gfx_power = diff;
8211 8212
}

8213 8214
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
8215 8216
	intel_wakeref_t wakeref;

8217
	if (!IS_GEN(dev_priv, 5))
8218 8219
		return;

8220 8221 8222 8223 8224
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8225 8226
}

8227
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8228 8229 8230 8231
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

8232
	lockdep_assert_held(&mchdev_lock);
8233

8234
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
8254
	corr2 = (corr * dev_priv->ips.corr);
8255 8256 8257 8258

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

8259
	__i915_update_gfx_val(dev_priv);
8260

8261
	return dev_priv->ips.gfx_power + state2;
8262 8263
}

8264 8265
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
8266 8267
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8268

8269
	if (!IS_GEN(dev_priv, 5))
8270 8271
		return 0;

8272 8273 8274 8275 8276
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8277

8278 8279
	return val;
}
8280

8281
static struct drm_i915_private __rcu *i915_mch_dev;
8282

8283 8284 8285 8286 8287
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
8288
	i915 = rcu_dereference(i915_mch_dev);
8289 8290 8291 8292 8293
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
8294 8295
}

8296 8297 8298 8299 8300 8301 8302 8303
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
8304 8305 8306 8307
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
8308

8309 8310 8311
	i915 = mchdev_get();
	if (!i915)
		return 0;
8312

8313 8314 8315 8316 8317 8318
	with_intel_runtime_pm(i915, wakeref) {
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
8319

8320 8321
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
8332
	struct drm_i915_private *i915;
8333

8334 8335 8336
	i915 = mchdev_get();
	if (!i915)
		return false;
8337

8338 8339 8340
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
8341
	spin_unlock_irq(&mchdev_lock);
8342

8343 8344
	drm_dev_put(&i915->drm);
	return true;
8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
8356
	struct drm_i915_private *i915;
8357

8358 8359 8360
	i915 = mchdev_get();
	if (!i915)
		return false;
8361

8362 8363 8364
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
8365
	spin_unlock_irq(&mchdev_lock);
8366

8367 8368
	drm_dev_put(&i915->drm);
	return true;
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
8379 8380
	struct drm_i915_private *i915;
	bool ret;
8381

8382 8383 8384
	i915 = mchdev_get();
	if (!i915)
		return false;
8385

8386 8387 8388
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
8401 8402
	struct drm_i915_private *i915;
	bool ret;
8403

8404 8405 8406
	i915 = mchdev_get();
	if (!i915)
		return false;
8407

8408 8409 8410
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
8411
	spin_unlock_irq(&mchdev_lock);
8412

8413
	drm_dev_put(&i915->drm);
8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8440 8441
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8442
	rcu_assign_pointer(i915_mch_dev, dev_priv);
8443 8444 8445 8446 8447 8448

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8449
	rcu_assign_pointer(i915_mch_dev, NULL);
8450
}
8451

8452
static void intel_init_emon(struct drm_i915_private *dev_priv)
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8469
		I915_WRITE(PEW(i), 0);
8470
	for (i = 0; i < 3; i++)
8471
		I915_WRITE(DEW(i), 0);
8472 8473 8474

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8475
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8496
		I915_WRITE(PXW(i), val);
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8512
		I915_WRITE(PXWL(i), 0);
8513 8514 8515 8516 8517 8518

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8519
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8520 8521
}

8522
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8523
{
8524 8525
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8526 8527 8528 8529
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8530
	if (!sanitize_rc6(dev_priv)) {
8531
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8532
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8533
	}
I
Imre Deak 已提交
8534

8535
	/* Initialize RPS limits (for userspace) */
8536 8537 8538 8539
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8540
	else if (INTEL_GEN(dev_priv) >= 6)
8541 8542 8543
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8544 8545
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8546

8547
	/* After setting max-softlimit, find the overclock max freq */
8548
	if (IS_GEN(dev_priv, 6) ||
8549 8550 8551 8552 8553 8554
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8555
					 (rps->max_freq & 0xff) * 50,
8556
					 (params & 0xff) * 50);
8557
			rps->max_freq = params & 0xff;
8558 8559 8560
		}
	}

8561
	/* Finally allow us to boost to max by default */
8562
	rps->boost_freq = rps->max_freq;
8563 8564
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8565 8566
}

8567
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8568
{
8569
	if (IS_VALLEYVIEW(dev_priv))
8570
		valleyview_cleanup_gt_powersave(dev_priv);
8571

8572
	if (!HAS_RC6(dev_priv))
8573
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8574 8575
}

8576 8577
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8578 8579
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8580
	intel_disable_gt_powersave(dev_priv);
8581

8582 8583
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8584
	else if (INTEL_GEN(dev_priv) >= 6)
8585
		gen6_reset_rps_interrupts(dev_priv);
8586 8587
}

8588 8589
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
8590
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8591

8592 8593 8594
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8595
	/* Currently there is no HW configuration to be done to disable. */
8596 8597

	i915->gt_pm.llc_pstate.enabled = false;
8598 8599
}

8600
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8601
{
8602
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8603

8604 8605 8606
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8607 8608 8609 8610 8611 8612 8613 8614
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8615 8616

	dev_priv->gt_pm.rc6.enabled = false;
8617
}
8618

8619 8620
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
8621
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8622

8623 8624 8625
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8626
	if (INTEL_GEN(dev_priv) >= 9)
8627
		gen9_disable_rps(dev_priv);
8628
	else if (IS_CHERRYVIEW(dev_priv))
8629
		cherryview_disable_rps(dev_priv);
8630
	else if (IS_VALLEYVIEW(dev_priv))
8631
		valleyview_disable_rps(dev_priv);
8632
	else if (INTEL_GEN(dev_priv) >= 6)
8633
		gen6_disable_rps(dev_priv);
8634
	else if (IS_IRONLAKE_M(dev_priv))
8635
		ironlake_disable_drps(dev_priv);
8636 8637

	dev_priv->gt_pm.rps.enabled = false;
8638 8639 8640 8641
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
8642
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8643

8644 8645
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8646 8647 8648
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8649
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8650 8651
}

8652 8653
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
8654
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8655

8656 8657 8658
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8659
	gen6_update_ring_freq(i915);
8660 8661

	i915->gt_pm.llc_pstate.enabled = true;
8662 8663
}

8664
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8665
{
8666
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8667

8668 8669 8670
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8671 8672 8673 8674
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
8675 8676
	else if (INTEL_GEN(dev_priv) >= 11)
		gen11_enable_rc6(dev_priv);
8677 8678 8679 8680 8681 8682
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8683 8684

	dev_priv->gt_pm.rc6.enabled = true;
8685
}
8686

8687 8688 8689
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8690

8691
	lockdep_assert_held(&rps->lock);
8692

8693 8694 8695
	if (rps->enabled)
		return;

8696 8697 8698 8699
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8700
	} else if (INTEL_GEN(dev_priv) >= 9) {
8701 8702 8703
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8704
	} else if (INTEL_GEN(dev_priv) >= 6) {
8705
		gen6_enable_rps(dev_priv);
8706 8707 8708
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8709
	}
8710

8711 8712
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8713

8714 8715
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8716 8717

	rps->enabled = true;
8718 8719 8720 8721 8722 8723 8724 8725
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

8726
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8727

8728 8729
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8730 8731
	if (HAS_RPS(dev_priv))
		intel_enable_rps(dev_priv);
8732 8733
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8734

8735
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8736
}
I
Imre Deak 已提交
8737

8738
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8739 8740 8741 8742 8743 8744 8745 8746 8747
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8748
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8749
{
8750
	enum pipe pipe;
8751

8752
	for_each_pipe(dev_priv, pipe) {
8753 8754 8755
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8756 8757 8758

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8759 8760 8761
	}
}

8762
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8763
{
8764
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8765

8766 8767 8768 8769
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8770 8771 8772
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8790
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8791 8792 8793
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8794

8795 8796 8797 8798 8799 8800 8801
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8802
	if (IS_IRONLAKE_M(dev_priv)) {
8803
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8804 8805 8806 8807 8808 8809 8810 8811
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8812 8813
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8814 8815 8816 8817 8818 8819
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8820

8821
	/* WaDisableRenderCachePipelinedFlush:ilk */
8822 8823
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8824

8825 8826 8827
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8828
	g4x_disable_trickle_feed(dev_priv);
8829

8830
	ibx_init_clock_gating(dev_priv);
8831 8832
}

8833
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8834 8835
{
	int pipe;
8836
	u32 val;
8837 8838 8839 8840 8841 8842

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8843 8844 8845
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8846 8847
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8848 8849 8850
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8851
	for_each_pipe(dev_priv, pipe) {
8852 8853 8854
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8855
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8856
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8857 8858 8859
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8860 8861
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8862
	/* WADP0ClockGatingDisable */
8863
	for_each_pipe(dev_priv, pipe) {
8864 8865 8866
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8867 8868
}

8869
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8870
{
8871
	u32 tmp;
8872 8873

	tmp = I915_READ(MCH_SSKPD);
8874 8875 8876
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8877 8878
}

8879
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8880
{
8881
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8882

8883
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8884 8885 8886 8887 8888

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8889
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8890 8891 8892
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8893 8894 8895
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8896 8897 8898
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8899 8900 8901 8902
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8903 8904
	 */
	I915_WRITE(GEN6_GT_MODE,
8905
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8906

8907
	I915_WRITE(CACHE_MODE_0,
8908
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8924
	 *
8925 8926
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8927 8928 8929 8930 8931
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8932
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8933 8934
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8935

8936 8937 8938 8939 8940 8941 8942 8943
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8944 8945 8946 8947 8948 8949 8950 8951
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8952 8953
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8954 8955 8956 8957 8958 8959 8960
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8961 8962 8963 8964
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8965

8966
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8967

8968
	cpt_init_clock_gating(dev_priv);
8969

8970
	gen6_check_mch_setup(dev_priv);
8971 8972 8973 8974
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8975
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8976

8977
	/*
8978
	 * WaVSThreadDispatchOverride:ivb,vlv
8979 8980 8981 8982
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8983 8984 8985 8986 8987 8988 8989 8990
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8991
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8992 8993 8994 8995 8996
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8997
	if (HAS_PCH_LPT_LP(dev_priv))
8998 8999 9000
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
9001 9002

	/* WADPOClockGatingDisable:hsw */
9003 9004
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9005
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9006 9007
}

9008
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9009
{
9010
	if (HAS_PCH_LPT_LP(dev_priv)) {
9011
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9012 9013 9014 9015 9016 9017

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

9018 9019 9020 9021 9022
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
9023
	u32 val;
9024 9025 9026 9027 9028

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

9029 9030 9031 9032 9033
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
9034 9035 9036 9037 9038 9039 9040 9041 9042 9043

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
9044 9045 9046 9047 9048
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9049 9050 9051 9052

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
9053 9054
}

9055 9056 9057 9058 9059
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

9060
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9061 9062
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
9063 9064
}

9065
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9066
{
9067
	u32 val;
9068 9069
	cnp_init_clock_gating(dev_priv);

9070 9071 9072 9073
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

9074 9075 9076 9077 9078 9079 9080 9081
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

9082 9083 9084
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
9085 9086
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9087 9088
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9089

R
Rodrigo Vivi 已提交
9090 9091 9092 9093 9094
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

9095
	/* WaDisableVFclkgate:cnl */
9096
	/* WaVFUnitClockGatingDisable:cnl */
9097 9098 9099
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9100 9101
}

9102 9103 9104 9105 9106 9107 9108 9109 9110 9111
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

9112
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9113
{
9114
	gen9_init_clock_gating(dev_priv);
9115 9116 9117 9118 9119

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9120 9121 9122 9123 9124

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9125

9126
	/* WaFbcNukeOnHostModify:kbl */
9127 9128
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9129 9130
}

9131
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9132
{
9133
	gen9_init_clock_gating(dev_priv);
9134 9135 9136 9137

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
9138 9139 9140 9141

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9142 9143
}

9144
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
9145
{
9146 9147 9148
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
9149
	enum pipe pipe;
B
Ben Widawsky 已提交
9150

9151
	/* WaSwitchSolVfFArbitrationPriority:bdw */
9152
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9153

9154
	/* WaPsrDPAMaskVBlankInSRD:bdw */
9155 9156 9157
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

9158
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9159
	for_each_pipe(dev_priv, pipe) {
9160
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
9161
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
9162
			   BDW_DPRS_MASK_VBLANK_SRD);
9163
	}
9164

9165 9166 9167 9168 9169
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9170

9171 9172
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9173 9174 9175 9176

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9177

9178 9179
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
9180

9181 9182
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9183

9184 9185 9186 9187
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

9188
	lpt_init_clock_gating(dev_priv);
9189 9190 9191 9192 9193 9194 9195 9196

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
9197 9198
}

9199
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9200
{
9201 9202 9203 9204 9205
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

9206
	/* This is required by WaCatErrorRejectionIssue:hsw */
9207 9208 9209 9210
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9211 9212 9213
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9214

9215 9216 9217
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9218 9219 9220 9221
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

9222
	/* WaDisable4x2SubspanOptimization:hsw */
9223 9224
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9225

9226 9227 9228
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9229 9230 9231 9232
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9233 9234
	 */
	I915_WRITE(GEN7_GT_MODE,
9235
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9236

9237 9238 9239 9240
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

9241
	/* WaSwitchSolVfFArbitrationPriority:hsw */
9242 9243
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

9244
	lpt_init_clock_gating(dev_priv);
9245 9246
}

9247
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9248
{
9249
	u32 snpcr;
9250

9251
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9252

9253
	/* WaDisableEarlyCull:ivb */
9254 9255 9256
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9257
	/* WaDisableBackToBackFlipFix:ivb */
9258 9259 9260 9261
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9262
	/* WaDisablePSDDualDispatchEnable:ivb */
9263
	if (IS_IVB_GT1(dev_priv))
9264 9265 9266
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9267 9268 9269
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9270
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9271 9272 9273
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9274
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9275 9276 9277
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9278
		   GEN7_WA_L3_CHICKEN_MODE);
9279
	if (IS_IVB_GT1(dev_priv))
9280 9281
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9282 9283 9284 9285
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9286 9287
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9288
	}
9289

9290
	/* WaForceL3Serialization:ivb */
9291 9292 9293
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9294
	/*
9295
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9296
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9297 9298
	 */
	I915_WRITE(GEN6_UCGCTL2,
9299
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9300

9301
	/* This is required by WaCatErrorRejectionIssue:ivb */
9302 9303 9304 9305
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9306
	g4x_disable_trickle_feed(dev_priv);
9307 9308

	gen7_setup_fixed_func_scheduler(dev_priv);
9309

9310 9311 9312 9313 9314
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9315

9316
	/* WaDisable4x2SubspanOptimization:ivb */
9317 9318
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9319

9320 9321 9322
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9323 9324 9325 9326
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9327 9328
	 */
	I915_WRITE(GEN7_GT_MODE,
9329
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9330

9331 9332 9333 9334
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9335

9336
	if (!HAS_PCH_NOP(dev_priv))
9337
		cpt_init_clock_gating(dev_priv);
9338

9339
	gen6_check_mch_setup(dev_priv);
9340 9341
}

9342
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9343
{
9344
	/* WaDisableEarlyCull:vlv */
9345 9346 9347
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9348
	/* WaDisableBackToBackFlipFix:vlv */
9349 9350 9351 9352
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9353
	/* WaPsdDispatchEnable:vlv */
9354
	/* WaDisablePSDDualDispatchEnable:vlv */
9355
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9356 9357
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9358

9359 9360 9361
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9362
	/* WaForceL3Serialization:vlv */
9363 9364 9365
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9366
	/* WaDisableDopClockGating:vlv */
9367 9368 9369
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9370
	/* This is required by WaCatErrorRejectionIssue:vlv */
9371 9372 9373 9374
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9375 9376
	gen7_setup_fixed_func_scheduler(dev_priv);

9377
	/*
9378
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9379
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9380 9381
	 */
	I915_WRITE(GEN6_UCGCTL2,
9382
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9383

9384 9385 9386 9387 9388
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9389

9390 9391 9392 9393
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9394 9395
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9396

9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9408 9409 9410 9411 9412 9413
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9414
	/*
9415
	 * WaDisableVLVClockGating_VBIIssue:vlv
9416 9417 9418
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9419
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9420 9421
}

9422
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9423
{
9424 9425 9426 9427 9428
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9429 9430 9431 9432

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9433 9434 9435 9436

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9437 9438 9439 9440

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9441

9442 9443 9444 9445 9446 9447 9448
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9449 9450 9451 9452 9453
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9454 9455
}

9456
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9457
{
9458
	u32 dspclk_gate;
9459 9460 9461 9462 9463 9464 9465 9466 9467

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9468
	if (IS_GM45(dev_priv))
9469 9470
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9471 9472 9473 9474

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9475

9476 9477 9478
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9479
	g4x_disable_trickle_feed(dev_priv);
9480 9481
}

9482
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9483 9484 9485 9486 9487 9488
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9489 9490
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9491 9492 9493

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9494 9495
}

9496
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9497 9498 9499 9500 9501 9502 9503
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9504 9505
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9506 9507 9508

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9509 9510
}

9511
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9512 9513 9514 9515 9516 9517
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9518

9519
	if (IS_PINEVIEW(dev_priv))
9520
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9521 9522 9523

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9524 9525

	/* interrupts should cause a wake up from C3 */
9526
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9527 9528 9529

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9530 9531 9532

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9533 9534
}

9535
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9536 9537
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9538 9539 9540 9541

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9542 9543 9544

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9545 9546
}

9547
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9548
{
9549 9550 9551
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9552 9553
}

9554
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9555
{
9556
	dev_priv->display.init_clock_gating(dev_priv);
9557 9558
}

9559
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9560
{
9561 9562
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9563 9564
}

9565
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9581
	if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
9582
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9583
	else if (IS_CANNONLAKE(dev_priv))
9584
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9585 9586
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9587
	else if (IS_SKYLAKE(dev_priv))
9588
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9589
	else if (IS_KABYLAKE(dev_priv))
9590
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9591
	else if (IS_BROXTON(dev_priv))
9592
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9593 9594
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9595
	else if (IS_BROADWELL(dev_priv))
9596
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9597
	else if (IS_CHERRYVIEW(dev_priv))
9598
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9599
	else if (IS_HASWELL(dev_priv))
9600
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9601
	else if (IS_IVYBRIDGE(dev_priv))
9602
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9603
	else if (IS_VALLEYVIEW(dev_priv))
9604
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9605
	else if (IS_GEN(dev_priv, 6))
9606
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9607
	else if (IS_GEN(dev_priv, 5))
9608
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9609 9610
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9611
	else if (IS_I965GM(dev_priv))
9612
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9613
	else if (IS_I965G(dev_priv))
9614
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9615
	else if (IS_GEN(dev_priv, 3))
9616 9617 9618
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9619
	else if (IS_GEN(dev_priv, 2))
9620 9621 9622 9623 9624 9625 9626
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9627
/* Set up chip specific power management-related functions */
9628
void intel_init_pm(struct drm_i915_private *dev_priv)
9629
{
9630
	/* For cxsr */
9631
	if (IS_PINEVIEW(dev_priv))
9632
		i915_pineview_get_mem_freq(dev_priv);
9633
	else if (IS_GEN(dev_priv, 5))
9634
		i915_ironlake_get_mem_freq(dev_priv);
9635

9636
	/* For FIFO watermark updates */
9637
	if (INTEL_GEN(dev_priv) >= 9) {
9638
		skl_setup_wm_latency(dev_priv);
9639
		dev_priv->display.initial_watermarks = skl_initial_wm;
9640
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9641
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9642
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9643
		ilk_setup_wm_latency(dev_priv);
9644

9645
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9646
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9647
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9648
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9649
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9650 9651 9652 9653 9654 9655
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9656 9657 9658 9659
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9660
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9661
		vlv_setup_wm_latency(dev_priv);
9662
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9663
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9664
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9665
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9666
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9667 9668 9669 9670 9671 9672
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9673
	} else if (IS_PINEVIEW(dev_priv)) {
9674
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9675 9676 9677 9678 9679 9680 9681 9682 9683
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9684
			intel_set_memory_cxsr(dev_priv, false);
9685 9686 9687
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9688
	} else if (IS_GEN(dev_priv, 4)) {
9689
		dev_priv->display.update_wm = i965_update_wm;
9690
	} else if (IS_GEN(dev_priv, 3)) {
9691 9692
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9693
	} else if (IS_GEN(dev_priv, 2)) {
9694
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9695
			dev_priv->display.update_wm = i845_update_wm;
9696
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9697 9698
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9699
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9700 9701 9702
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9703 9704 9705
	}
}

9706 9707
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9708
	u32 flags =
9709 9710 9711 9712 9713 9714
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9715
		return -ENODEV;
9716 9717 9718
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9719
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9720 9721 9722 9723
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9724
		MISSING_CASE(flags);
9725 9726 9727 9728 9729 9730
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
9731
	u32 flags =
9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9751 9752
static int
__sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9753
{
9754 9755
	int status;

9756
	lockdep_assert_held(&dev_priv->sb_lock);
B
Ben Widawsky 已提交
9757

9758 9759 9760 9761 9762
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

9763
	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY)
B
Ben Widawsky 已提交
9764 9765
		return -EAGAIN;

9766 9767 9768
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9769

9770
	if (__intel_wait_for_register_fw(&dev_priv->uncore,
9771
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9772
					 500, 0, NULL))
B
Ben Widawsky 已提交
9773 9774
		return -ETIMEDOUT;

9775 9776
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9777

9778 9779 9780 9781 9782
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794
	return status;
}

int
sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
{
	int status;

	mutex_lock(&dev_priv->sb_lock);
	status = __sandybridge_pcode_read(dev_priv, mbox, val);
	mutex_unlock(&dev_priv->sb_lock);

9795
	if (status) {
9796 9797
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9798 9799
	}

9800
	return status;
B
Ben Widawsky 已提交
9801 9802
}

9803 9804 9805 9806
static int __sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
					     u32 mbox, u32 val,
					     int fast_timeout_us,
					     int slow_timeout_ms)
B
Ben Widawsky 已提交
9807
{
9808 9809
	int status;

9810 9811 9812 9813 9814
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

9815
	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY)
B
Ben Widawsky 已提交
9816 9817
		return -EAGAIN;

9818
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9819
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9820
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9821

9822
	if (__intel_wait_for_register_fw(&dev_priv->uncore,
9823
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9824
					 fast_timeout_us, slow_timeout_ms,
9825
					 NULL))
B
Ben Widawsky 已提交
9826 9827
		return -ETIMEDOUT;

9828
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9829

9830 9831 9832 9833 9834
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850
	return status;
}

int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
				    u32 mbox, u32 val,
				    int fast_timeout_us,
				    int slow_timeout_ms)
{
	int status;

	mutex_lock(&dev_priv->sb_lock);
	status = __sandybridge_pcode_write_timeout(dev_priv, mbox, val,
						   fast_timeout_us,
						   slow_timeout_ms);
	mutex_unlock(&dev_priv->sb_lock);

9851
	if (status) {
9852 9853
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9854 9855
	}

9856
	return status;
B
Ben Widawsky 已提交
9857
}
9858

9859 9860 9861 9862 9863 9864
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

9865
	*status = __sandybridge_pcode_read(dev_priv, mbox, &val);
9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9880
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9881 9882
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9883
 * for @timeout_base_ms and if this times out for another 50 ms with
9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9895
	mutex_lock(&dev_priv->sb_lock);
9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9910
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9911 9912 9913 9914 9915 9916 9917 9918
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9919
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9920
	 * account for interrupts that could reduce the number of these
9921 9922
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9923 9924 9925 9926
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9927
	ret = wait_for_atomic(COND, 50);
9928 9929 9930
	preempt_enable();

out:
9931
	mutex_unlock(&dev_priv->sb_lock);
9932 9933 9934 9935
	return ret ? ret : status;
#undef COND
}

9936 9937
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9938 9939
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9940 9941 9942 9943
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9944
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9945 9946
}

9947
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9948
{
9949 9950 9951
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9952 9953
}

9954
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9955
{
9956 9957
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9958 9959 9960 9961
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9962
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9963 9964
}

9965
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9966
{
9967 9968
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9969
	/* CHV needs even values */
9970
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9971 9972
}

9973
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9974
{
9975
	if (INTEL_GEN(dev_priv) >= 9)
9976 9977
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9978
	else if (IS_CHERRYVIEW(dev_priv))
9979
		return chv_gpu_freq(dev_priv, val);
9980
	else if (IS_VALLEYVIEW(dev_priv))
9981 9982 9983
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9984 9985
}

9986 9987
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9988
	if (INTEL_GEN(dev_priv) >= 9)
9989 9990
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9991
	else if (IS_CHERRYVIEW(dev_priv))
9992
		return chv_freq_opcode(dev_priv, val);
9993
	else if (IS_VALLEYVIEW(dev_priv))
9994 9995
		return byt_freq_opcode(dev_priv, val);
	else
9996
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9997
}
9998

9999
void intel_pm_setup(struct drm_i915_private *dev_priv)
10000
{
10001
	mutex_init(&dev_priv->gt_pm.rps.lock);
C
Chris Wilson 已提交
10002
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
10003

10004
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
10005

10006 10007
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
10008
}
10009

10010 10011 10012
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
10013
	u32 lower, upper, tmp;
10014
	int loop = 2;
10015

10016 10017
	/*
	 * The register accessed do not need forcewake. We borrow
10018 10019
	 * uncore lock to prevent concurrent access to range reg.
	 */
10020
	lockdep_assert_held(&dev_priv->uncore.lock);
10021

10022 10023
	/*
	 * vlv and chv residency counters are 40 bits in width.
10024 10025
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
10026 10027 10028 10029 10030
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
10031
	 */
10032 10033
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
10045
	} while (upper != tmp && --loop);
10046

10047 10048
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
10049 10050 10051 10052
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

10053 10054 10055
	return lower | (u64)upper << 8;
}

10056
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
10057
			   const i915_reg_t reg)
10058
{
10059
	struct intel_uncore *uncore = &dev_priv->uncore;
10060 10061 10062 10063
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
10064
	u32 mul, div;
10065

10066
	if (!HAS_RC6(dev_priv))
10067 10068
		return 0;

10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

10081
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
10082

10083 10084
	spin_lock_irqsave(&uncore->lock, flags);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
10085

10086 10087
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10088
		mul = 1000000;
10089
		div = dev_priv->czclk_freq;
10090
		overflow_hw = BIT_ULL(40);
10091 10092
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
10093 10094 10095 10096 10097 10098 10099 10100
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
10101

10102
		overflow_hw = BIT_ULL(32);
10103
		time_hw = intel_uncore_read_fw(uncore, reg);
10104
	}
10105

10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

10125 10126
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irqrestore(&uncore->lock, flags);
10127 10128

	return mul_u64_u32_div(time_hw, mul, div);
10129
}
T
Tvrtko Ursulin 已提交
10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}