intel_pm.c 284.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36
#include "i915_drv.h"
37
#include "i915_irq.h"
38
#include "intel_atomic.h"
39
#include "intel_drv.h"
40
#include "intel_fbc.h"
41
#include "intel_pm.h"
42
#include "intel_sprite.h"
43
#include "intel_sideband.h"
44
#include "../../../platform/x86/intel_ips.h"
45

B
Ben Widawsky 已提交
46
/**
47 48
 * DOC: RC6
 *
B
Ben Widawsky 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

66
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
67
{
68 69 70
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
71
		 * Display WA #0390: skl,kbl
72 73 74 75 76 77 78 79 80
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

81
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
82 83 84
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

85
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
86 87
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
88

89 90
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
91 92 93
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
94

95
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
96 97
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
98 99 100 101 102 103

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
104 105
}

106
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
107
{
108
	gen9_init_clock_gating(dev_priv);
109

110 111 112 113
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

114 115
	/*
	 * FIXME:
116
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
117 118
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
119
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
120 121 122 123 124

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
125 126
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
127 128
}

129 130 131 132 133 134 135 136 137 138 139
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
140 141 142 143 144 145 146 147 148 149

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

150 151
}

152
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

190
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

217
	dev_priv->ips.r_t = dev_priv->mem_freq;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
249
		dev_priv->ips.c_m = 0;
250
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
251
		dev_priv->ips.c_m = 1;
252
	} else {
253
		dev_priv->ips.c_m = 2;
254 255 256
	}
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

295 296
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

319 320 321 322
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

323
	vlv_punit_get(dev_priv);
324 325 326 327 328 329 330 331 332 333 334 335 336 337

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

338
	vlv_punit_put(dev_priv);
339 340
}

341 342 343 344
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

345
	vlv_punit_get(dev_priv);
346

347
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
348 349 350 351
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
352
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
353

354
	vlv_punit_put(dev_priv);
355 356
}

357 358 359
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

360
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
361
{
362
	bool was_enabled;
363
	u32 val;
364

365
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
366
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
367
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
368
		POSTING_READ(FW_BLC_SELF_VLV);
369
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
370
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
371
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
372
		POSTING_READ(FW_BLC_SELF);
373
	} else if (IS_PINEVIEW(dev_priv)) {
374 375 376 377 378 379
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
380
		I915_WRITE(DSPFW3, val);
381
		POSTING_READ(DSPFW3);
382
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
383
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
384 385 386
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
387
		POSTING_READ(FW_BLC_SELF);
388
	} else if (IS_I915GM(dev_priv)) {
389 390 391 392 393
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
394
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
395 396 397
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
398
		POSTING_READ(INSTPM);
399
	} else {
400
		return false;
401
	}
402

403 404
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

405 406 407 408 409
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
410 411
}

V
Ville Syrjälä 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
449
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
450
{
451 452
	bool ret;

453
	mutex_lock(&dev_priv->wm.wm_mutex);
454
	ret = _intel_set_memory_cxsr(dev_priv, enable);
455 456 457 458
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
459
	mutex_unlock(&dev_priv->wm.wm_mutex);
460 461

	return ret;
462
}
463

464 465 466 467 468 469 470 471 472 473 474 475 476 477
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
478
static const int pessimal_latency_ns = 5000;
479

480 481 482
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

483
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
484
{
485
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
486
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
487
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
488 489
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
490

491
	switch (pipe) {
492
		u32 dsparb, dsparb2, dsparb3;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
512 513
		MISSING_CASE(pipe);
		return;
514 515
	}

516 517 518 519
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
520 521
}

522 523
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
524
{
525
	u32 dsparb = I915_READ(DSPARB);
526 527 528
	int size;

	size = dsparb & 0x7f;
529
	if (i9xx_plane == PLANE_B)
530 531
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

532 533
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
534 535 536 537

	return size;
}

538 539
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
540
{
541
	u32 dsparb = I915_READ(DSPARB);
542 543 544
	int size;

	size = dsparb & 0x1ff;
545
	if (i9xx_plane == PLANE_B)
546 547 548
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

549 550
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
551 552 553 554

	return size;
}

555 556
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
557
{
558
	u32 dsparb = I915_READ(DSPARB);
559 560 561 562 563
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

564 565
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
566 567 568 569 570 571

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
572 573 574 575 576
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
577 578
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
579 580 581 582 583
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 585
};
static const struct intel_watermark_params pineview_cursor_wm = {
586 587 588 589 590
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
591 592
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
593 594 595 596 597
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598 599
};
static const struct intel_watermark_params i965_cursor_wm_info = {
600 601 602 603 604
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
605 606
};
static const struct intel_watermark_params i945_wm_info = {
607 608 609 610 611
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
612 613
};
static const struct intel_watermark_params i915_wm_info = {
614 615 616 617 618
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
619
};
620
static const struct intel_watermark_params i830_a_wm_info = {
621 622 623 624 625
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
626
};
627 628 629 630 631 632 633
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
634
static const struct intel_watermark_params i845_wm_info = {
635 636 637 638 639
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
640 641
};

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
679
	u64 ret;
680

681
	ret = mul_u32_u32(pixel_rate, cpp * latency);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

738 739
/**
 * intel_calculate_wm - calculate watermark level
740
 * @pixel_rate: pixel clock
741
 * @wm: chip FIFO params
742
 * @fifo_size: size of the FIFO buffer
743
 * @cpp: bytes per pixel
744 745 746 747 748 749 750 751 752 753 754 755 756
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
757 758 759 760
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
761
{
762
	int entries, wm_size;
763 764 765 766 767 768 769

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
770 771 772 773 774
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
775

776 777
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
778 779

	/* Don't promote wm_size to unsigned... */
780
	if (wm_size > wm->max_wm)
781 782 783
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
784 785 786 787 788 789 790 791 792 793 794

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

795 796 797
	return wm_size;
}

798 799 800 801 802 803 804 805 806 807
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

808 809 810 811 812
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

836
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
837
{
838
	struct intel_crtc *crtc, *enabled = NULL;
839

840
	for_each_intel_crtc(&dev_priv->drm, crtc) {
841
		if (intel_crtc_active(crtc)) {
842 843 844 845 846 847 848 849 850
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

851
static void pineview_update_wm(struct intel_crtc *unused_crtc)
852
{
853
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
854
	struct intel_crtc *crtc;
855 856
	const struct cxsr_latency *latency;
	u32 reg;
857
	unsigned int wm;
858

859
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
860 861 862
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
863 864
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
865
		intel_set_memory_cxsr(dev_priv, false);
866 867 868
		return;
	}

869
	crtc = single_enabled_crtc(dev_priv);
870
	if (crtc) {
871 872 873 874
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
875
		int cpp = fb->format->cpp[0];
876
		int clock = adjusted_mode->crtc_clock;
877 878 879 880

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
881
					cpp, latency->display_sr);
882 883
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
884
		reg |= FW_WM(wm, SR);
885 886 887 888 889 890
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
891
					4, latency->cursor_sr);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
894
		reg |= FW_WM(wm, CURSOR_SR);
895 896 897 898 899
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
900
					cpp, latency->display_hpll_disable);
901 902
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
903
		reg |= FW_WM(wm, HPLL_SR);
904 905 906 907 908
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
909
					4, latency->cursor_hpll_disable);
910 911
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
912
		reg |= FW_WM(wm, HPLL_CURSOR);
913 914 915
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

916
		intel_set_memory_cxsr(dev_priv, true);
917
	} else {
918
		intel_set_memory_cxsr(dev_priv, false);
919 920 921
	}
}

922 923 924 925 926 927 928 929 930 931
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
932
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
933 934 935 936 937 938
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

939 940
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
941
{
942 943 944 945 946
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
964

965
	POSTING_READ(DSPFW1);
966 967
}

968 969 970
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

971
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
972 973
				const struct vlv_wm_values *wm)
{
974 975 976
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
977 978
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

979 980 981 982 983 984
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
985

986 987 988 989 990 991 992 993 994 995 996
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

997
	I915_WRITE(DSPFW1,
998
		   FW_WM(wm->sr.plane, SR) |
999 1000 1001
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1002
	I915_WRITE(DSPFW2,
1003 1004 1005
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1006
	I915_WRITE(DSPFW3,
1007
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1008 1009 1010

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1011 1012
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1013
		I915_WRITE(DSPFW8_CHV,
1014 1015
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1016
		I915_WRITE(DSPFW9_CHV,
1017 1018
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1019
		I915_WRITE(DSPHOWM,
1020
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1021 1022 1023 1024 1025 1026 1027 1028 1029
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1030 1031
	} else {
		I915_WRITE(DSPFW7,
1032 1033
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1034
		I915_WRITE(DSPHOWM,
1035
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1036 1037 1038 1039 1040 1041
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1042 1043 1044
	}

	POSTING_READ(DSPFW1);
1045 1046
}

1047 1048
#undef FW_WM_VLV

1049 1050 1051 1052 1053
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1054
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1055

1056
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1101 1102 1103
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1104 1105 1106 1107 1108
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1109 1110
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1149
		unsigned int small, large;
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1162
	return min_t(unsigned int, wm, USHRT_MAX);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1200 1201 1202
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1331 1332
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1333 1334 1335 1336 1337
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1338 1339 1340 1341
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1342 1343 1344
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1345
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1411
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1412
{
1413
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1414 1415 1416 1417 1418 1419 1420
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1421 1422
	enum plane_id plane_id;

1423 1424 1425 1426 1427 1428 1429 1430
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1431
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1432
		!new_crtc_state->disable_cxsr;
1433
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1434
		!new_crtc_state->disable_cxsr;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1476
out:
1477 1478 1479 1480 1481
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1482
		new_crtc_state->wm.need_postvbl_update = true;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1579 1580
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1581 1582
				   unsigned int htotal,
				   unsigned int width,
1583
				   unsigned int cpp,
1584 1585 1586 1587
				   unsigned int latency)
{
	unsigned int ret;

1588 1589
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1590 1591 1592 1593 1594
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1595
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1596 1597 1598 1599
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1600 1601
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1602 1603 1604
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1605 1606

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1607 1608 1609
	}
}

1610 1611 1612
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1613
{
1614
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1615
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1616 1617
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1618
	unsigned int clock, htotal, cpp, width, wm;
1619 1620 1621 1622

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1623
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1624 1625
		return 0;

1626
	cpp = plane_state->base.fb->format->cpp[0];
1627 1628 1629
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1630

1631
	if (plane->id == PLANE_CURSOR) {
1632 1633 1634 1635 1636 1637 1638 1639
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1640
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1641 1642 1643
				    dev_priv->wm.pri_latency[level] * 10);
	}

1644
	return min_t(unsigned int, wm, USHRT_MAX);
1645 1646
}

1647 1648 1649 1650 1651 1652
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1653
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1654
{
1655
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1656
	const struct g4x_pipe_wm *raw =
1657
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1658
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1659 1660 1661
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1662
	int fifo_extra, fifo_left = fifo_size;
1663
	int sprite0_fifo_extra = 0;
1664 1665
	unsigned int total_rate;
	enum plane_id plane_id;
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1678 1679
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1680 1681
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1682

1683 1684
	if (total_rate > fifo_size)
		return -EINVAL;
1685

1686 1687
	if (total_rate == 0)
		total_rate = 1;
1688

1689
	for_each_plane_id_on_crtc(crtc, plane_id) {
1690 1691
		unsigned int rate;

1692 1693
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1694 1695 1696
			continue;
		}

1697 1698 1699
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1700 1701
	}

1702 1703 1704
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1705 1706 1707
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1708 1709

	/* spread the remainder evenly */
1710
	for_each_plane_id_on_crtc(crtc, plane_id) {
1711 1712 1713 1714 1715
		int plane_extra;

		if (fifo_left == 0)
			break;

1716
		if ((active_planes & BIT(plane_id)) == 0)
1717 1718 1719
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1720
		fifo_state->plane[plane_id] += plane_extra;
1721 1722 1723
		fifo_left -= plane_extra;
	}

1724 1725 1726 1727 1728 1729 1730 1731 1732
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1733 1734
}

1735 1736 1737 1738 1739 1740
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1741
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1752 1753 1754 1755 1756 1757 1758 1759
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1760 1761 1762 1763
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1764
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1765
				 int level, enum plane_id plane_id, u16 value)
1766
{
1767
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1768
	int num_levels = intel_wm_num_levels(dev_priv);
1769
	bool dirty = false;
1770

1771
	for (; level < num_levels; level++) {
1772
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1773

1774
		dirty |= raw->plane[plane_id] != value;
1775
		raw->plane[plane_id] = value;
1776
	}
1777 1778

	return dirty;
1779 1780
}

1781 1782
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1783
{
1784 1785
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1786
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1787
	int level;
1788
	bool dirty = false;
1789

1790
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1791 1792
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1793
	}
1794

1795
	for (level = 0; level < num_levels; level++) {
1796
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1797 1798
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1799

1800 1801
		if (wm > max_wm)
			break;
1802

1803
		dirty |= raw->plane[plane_id] != wm;
1804 1805
		raw->plane[plane_id] = wm;
	}
1806

1807
	/* mark all higher levels as invalid */
1808
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1809

1810 1811
out:
	if (dirty)
1812
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1813 1814 1815 1816 1817 1818
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1819
}
1820

1821 1822
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1823
{
1824
	const struct g4x_pipe_wm *raw =
1825 1826 1827
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1828

1829 1830
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1831

1832
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1833
{
1834 1835 1836 1837
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1851
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1852 1853
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1854 1855 1856
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1857
	unsigned int dirty = 0;
1858

1859 1860 1861 1862
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1863 1864
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1865

1866
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1885
			intel_atomic_get_old_crtc_state(state, crtc);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1897
	}
1898

1899
	/* initially allow all levels */
1900
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1901 1902 1903 1904 1905
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1906
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1907

1908
	for (level = 0; level < wm_state->num_levels; level++) {
1909
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1910
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1911

1912
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1913
			break;
1914

1915 1916 1917 1918 1919 1920 1921 1922
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1923
						 raw->plane[PLANE_SPRITE0],
1924 1925
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1926

1927 1928 1929
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1930 1931
	}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1942 1943
}

1944 1945 1946
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1947 1948
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1949
{
1950
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1951
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1952 1953
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1954
	int sprite0_start, sprite1_start, fifo_size;
1955

1956 1957 1958
	if (!crtc_state->fifo_changed)
		return;

1959 1960 1961
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1962

1963 1964
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1965

1966 1967
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1978

1979
	switch (crtc->pipe) {
1980
		u32 dsparb, dsparb2, dsparb3;
1981
	case PIPE_A:
1982 1983
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1995 1996
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1997 1998
		break;
	case PIPE_B:
1999 2000
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2012 2013
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2014 2015
		break;
	case PIPE_C:
2016 2017
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2029 2030
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2031 2032 2033 2034
		break;
	default:
		break;
	}
2035

2036
	POSTING_READ_FW(DSPARB);
2037

2038
	spin_unlock(&dev_priv->uncore.lock);
2039 2040 2041 2042
}

#undef VLV_FIFO

2043
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2044
{
2045
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2046 2047 2048 2049 2050 2051 2052
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2053 2054
	int level;

2055 2056 2057 2058 2059 2060 2061
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2062
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2063
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2064
		!new_crtc_state->disable_cxsr;
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2083
out:
2084 2085 2086 2087
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2088
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2089
		new_crtc_state->wm.need_postvbl_update = true;
2090 2091 2092 2093

	return 0;
}

2094
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2095 2096 2097 2098 2099
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2100
	wm->level = dev_priv->wm.max_level;
2101 2102
	wm->cxsr = true;

2103
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2104
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2119 2120 2121
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2122
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2123
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2124 2125 2126
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2127
		if (crtc->active && wm->cxsr)
2128 2129
			wm->sr = wm_state->sr[wm->level];

2130 2131 2132 2133
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2134 2135 2136
	}
}

2137
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2138
{
2139 2140
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2141

2142
	vlv_merge_wm(dev_priv, &new_wm);
2143

2144
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2145 2146
		return;

2147
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2148 2149
		chv_set_memory_dvfs(dev_priv, false);

2150
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2151 2152
		chv_set_memory_pm5(dev_priv, false);

2153
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2154
		_intel_set_memory_cxsr(dev_priv, false);
2155

2156
	vlv_write_wm_values(dev_priv, &new_wm);
2157

2158
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2159
		_intel_set_memory_cxsr(dev_priv, true);
2160

2161
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2162 2163
		chv_set_memory_pm5(dev_priv, true);

2164
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2165 2166
		chv_set_memory_dvfs(dev_priv, true);

2167
	*old_wm = new_wm;
2168 2169
}

2170 2171 2172 2173 2174 2175 2176
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2193 2194 2195 2196
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2197
static void i965_update_wm(struct intel_crtc *unused_crtc)
2198
{
2199
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2200
	struct intel_crtc *crtc;
2201 2202
	int srwm = 1;
	int cursor_sr = 16;
2203
	bool cxsr_enabled;
2204 2205

	/* Calc sr entries for one plane configs */
2206
	crtc = single_enabled_crtc(dev_priv);
2207 2208 2209
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2210 2211 2212 2213
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2214
		int clock = adjusted_mode->crtc_clock;
2215
		int htotal = adjusted_mode->crtc_htotal;
2216
		int hdisplay = crtc->config->pipe_src_w;
2217
		int cpp = fb->format->cpp[0];
2218 2219
		int entries;

2220 2221
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2222 2223 2224 2225 2226 2227 2228 2229
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2230 2231 2232
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2233
		entries = DIV_ROUND_UP(entries,
2234 2235
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2236

2237
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2238 2239 2240 2241 2242 2243
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2244
		cxsr_enabled = true;
2245
	} else {
2246
		cxsr_enabled = false;
2247
		/* Turn off self refresh if both pipes are enabled */
2248
		intel_set_memory_cxsr(dev_priv, false);
2249 2250 2251 2252 2253 2254
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2255 2256 2257 2258 2259 2260
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2261
	/* update cursor SR watermark */
2262
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2263 2264 2265

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2266 2267
}

2268 2269
#undef FW_WM

2270
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2271
{
2272
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2273
	const struct intel_watermark_params *wm_info;
2274 2275
	u32 fwater_lo;
	u32 fwater_hi;
2276 2277 2278
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2279
	struct intel_crtc *crtc, *enabled = NULL;
2280

2281
	if (IS_I945GM(dev_priv))
2282
		wm_info = &i945_wm_info;
2283
	else if (!IS_GEN(dev_priv, 2))
2284 2285
		wm_info = &i915_wm_info;
	else
2286
		wm_info = &i830_a_wm_info;
2287

2288 2289
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2290 2291 2292 2293 2294 2295 2296
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2297
		if (IS_GEN(dev_priv, 2))
2298
			cpp = 4;
2299
		else
2300
			cpp = fb->format->cpp[0];
2301

2302
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2303
					       wm_info, fifo_size, cpp,
2304
					       pessimal_latency_ns);
2305
		enabled = crtc;
2306
	} else {
2307
		planea_wm = fifo_size - wm_info->guard_size;
2308 2309 2310 2311
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2312
	if (IS_GEN(dev_priv, 2))
2313
		wm_info = &i830_bc_wm_info;
2314

2315 2316
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2317 2318 2319 2320 2321 2322 2323
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2324
		if (IS_GEN(dev_priv, 2))
2325
			cpp = 4;
2326
		else
2327
			cpp = fb->format->cpp[0];
2328

2329
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2330
					       wm_info, fifo_size, cpp,
2331
					       pessimal_latency_ns);
2332 2333 2334 2335
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2336
	} else {
2337
		planeb_wm = fifo_size - wm_info->guard_size;
2338 2339 2340
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2341 2342 2343

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2344
	if (IS_I915GM(dev_priv) && enabled) {
2345
		struct drm_i915_gem_object *obj;
2346

2347
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2348 2349

		/* self-refresh seems busted with untiled */
2350
		if (!i915_gem_object_is_tiled(obj))
2351 2352 2353
			enabled = NULL;
	}

2354 2355 2356 2357 2358 2359
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2360
	intel_set_memory_cxsr(dev_priv, false);
2361 2362

	/* Calc sr entries for one plane configs */
2363
	if (HAS_FW_BLC(dev_priv) && enabled) {
2364 2365
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2366 2367 2368 2369
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2370
		int clock = adjusted_mode->crtc_clock;
2371
		int htotal = adjusted_mode->crtc_htotal;
2372 2373
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2374 2375
		int entries;

2376
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2377
			cpp = 4;
2378
		else
2379
			cpp = fb->format->cpp[0];
2380

2381 2382
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2383 2384 2385 2386 2387 2388
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2389
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2390 2391
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2392
		else
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2409 2410
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2411 2412
}

2413
static void i845_update_wm(struct intel_crtc *unused_crtc)
2414
{
2415
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2416
	struct intel_crtc *crtc;
2417
	const struct drm_display_mode *adjusted_mode;
2418
	u32 fwater_lo;
2419 2420
	int planea_wm;

2421
	crtc = single_enabled_crtc(dev_priv);
2422 2423 2424
	if (crtc == NULL)
		return;

2425
	adjusted_mode = &crtc->config->base.adjusted_mode;
2426
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2427
				       &i845_wm_info,
2428
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2429
				       4, pessimal_latency_ns);
2430 2431 2432 2433 2434 2435 2436 2437
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2438
/* latency must be in 0.1us units. */
2439 2440 2441
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2442
{
2443
	unsigned int ret;
2444

2445 2446
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2447 2448 2449 2450

	return ret;
}

2451
/* latency must be in 0.1us units. */
2452 2453 2454 2455 2456
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2457
{
2458
	unsigned int ret;
2459

2460 2461
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2462
	ret = DIV_ROUND_UP(ret, 64) + 2;
2463

2464 2465 2466
	return ret;
}

2467
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2468
{
2469 2470 2471 2472 2473 2474
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2475
	if (WARN_ON(!cpp))
2476 2477 2478 2479
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2480
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2481 2482
}

2483
struct ilk_wm_maximums {
2484 2485 2486 2487
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2488 2489
};

2490 2491 2492 2493
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2494 2495 2496
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value, bool is_lp)
2497
{
2498
	u32 method1, method2;
2499
	int cpp;
2500

2501 2502 2503
	if (mem_value == 0)
		return U32_MAX;

2504
	if (!intel_wm_plane_visible(cstate, pstate))
2505 2506
		return 0;

2507
	cpp = pstate->base.fb->format->cpp[0];
2508

2509
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2510 2511 2512 2513

	if (!is_lp)
		return method1;

2514
	method2 = ilk_wm_method2(cstate->pixel_rate,
2515
				 cstate->base.adjusted_mode.crtc_htotal,
2516
				 drm_rect_width(&pstate->base.dst),
2517
				 cpp, mem_value);
2518 2519

	return min(method1, method2);
2520 2521
}

2522 2523 2524 2525
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2526 2527 2528
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2529
{
2530
	u32 method1, method2;
2531
	int cpp;
2532

2533 2534 2535
	if (mem_value == 0)
		return U32_MAX;

2536
	if (!intel_wm_plane_visible(cstate, pstate))
2537 2538
		return 0;

2539
	cpp = pstate->base.fb->format->cpp[0];
2540

2541 2542
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2543
				 cstate->base.adjusted_mode.crtc_htotal,
2544
				 drm_rect_width(&pstate->base.dst),
2545
				 cpp, mem_value);
2546 2547 2548
	return min(method1, method2);
}

2549 2550 2551 2552
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2553 2554 2555
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 mem_value)
2556
{
2557 2558
	int cpp;

2559 2560 2561
	if (mem_value == 0)
		return U32_MAX;

2562
	if (!intel_wm_plane_visible(cstate, pstate))
2563 2564
		return 0;

2565 2566
	cpp = pstate->base.fb->format->cpp[0];

2567
	return ilk_wm_method2(cstate->pixel_rate,
2568
			      cstate->base.adjusted_mode.crtc_htotal,
2569
			      pstate->base.crtc_w, cpp, mem_value);
2570 2571
}

2572
/* Only for WM_LP. */
2573 2574 2575
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate,
			      u32 pri_val)
2576
{
2577
	int cpp;
2578

2579
	if (!intel_wm_plane_visible(cstate, pstate))
2580 2581
		return 0;

2582
	cpp = pstate->base.fb->format->cpp[0];
2583

2584
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2585 2586
}

2587 2588
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2589
{
2590
	if (INTEL_GEN(dev_priv) >= 8)
2591
		return 3072;
2592
	else if (INTEL_GEN(dev_priv) >= 7)
2593 2594 2595 2596 2597
		return 768;
	else
		return 512;
}

2598 2599 2600
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2601
{
2602
	if (INTEL_GEN(dev_priv) >= 8)
2603 2604
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2605
	else if (INTEL_GEN(dev_priv) >= 7)
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2616 2617
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2618
{
2619
	if (INTEL_GEN(dev_priv) >= 7)
2620 2621 2622 2623 2624
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2625
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2626
{
2627
	if (INTEL_GEN(dev_priv) >= 8)
2628 2629 2630 2631 2632
		return 31;
	else
		return 15;
}

2633
/* Calculate the maximum primary/sprite plane watermark */
2634
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2635
				     int level,
2636
				     const struct intel_wm_config *config,
2637 2638 2639
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2640
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2641 2642

	/* if sprites aren't enabled, sprites get nothing */
2643
	if (is_sprite && !config->sprites_enabled)
2644 2645 2646
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2647
	if (level == 0 || config->num_pipes_active > 1) {
2648
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2649 2650 2651 2652 2653 2654

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2655
		if (INTEL_GEN(dev_priv) <= 6)
2656 2657 2658
			fifo_size /= 2;
	}

2659
	if (config->sprites_enabled) {
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2671
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2672 2673 2674
}

/* Calculate the maximum cursor plane watermark */
2675
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2676 2677
				      int level,
				      const struct intel_wm_config *config)
2678 2679
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2680
	if (level > 0 && config->num_pipes_active > 1)
2681 2682 2683
		return 64;

	/* otherwise just report max that registers can hold */
2684
	return ilk_cursor_wm_reg_max(dev_priv, level);
2685 2686
}

2687
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2688 2689 2690
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2691
				    struct ilk_wm_maximums *max)
2692
{
2693 2694 2695 2696
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2697 2698
}

2699
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2700 2701 2702
					int level,
					struct ilk_wm_maximums *max)
{
2703 2704 2705 2706
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2707 2708
}

2709
static bool ilk_validate_wm_level(int level,
2710
				  const struct ilk_wm_maximums *max,
2711
				  struct intel_wm_level *result)
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2741 2742 2743
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2744 2745 2746 2747 2748 2749
		result->enable = true;
	}

	return ret;
}

2750
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2751
				 const struct intel_crtc *intel_crtc,
2752
				 int level,
2753
				 struct intel_crtc_state *cstate,
2754 2755 2756
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2757
				 struct intel_wm_level *result)
2758
{
2759 2760 2761
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2762 2763 2764 2765 2766 2767 2768 2769

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2782 2783 2784
	result->enable = true;
}

2785
static u32
2786
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2787
{
2788 2789
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2790 2791
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2792
	u32 linetime, ips_linetime;
2793

2794 2795 2796 2797
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2798
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2799
		return 0;
2800

2801 2802 2803
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2804 2805 2806
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2807
					 intel_state->cdclk.logical.cdclk);
2808

2809 2810
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2811 2812
}

2813
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2814
				  u16 wm[8])
2815
{
2816 2817
	struct intel_uncore *uncore = &dev_priv->uncore;

2818
	if (INTEL_GEN(dev_priv) >= 9) {
2819
		u32 val;
2820
		int ret, i;
2821
		int level, max_level = ilk_wm_max_level(dev_priv);
2822 2823 2824 2825 2826

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2827
					     &val, NULL);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2846
					     &val, NULL);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2873
		/*
2874
		 * WaWmMemoryReadLatency:skl+,glk
2875
		 *
2876
		 * punit doesn't take into account the read latency so we need
2877 2878
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2879
		 */
2880 2881 2882 2883 2884
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2885
				wm[level] += 2;
2886
			}
2887 2888
		}

2889 2890 2891 2892 2893 2894
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2895
		if (dev_priv->dram_info.is_16gb_dimm)
2896 2897
			wm[0] += 1;

2898
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2899
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2900 2901 2902 2903

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2904 2905 2906 2907
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2908
	} else if (INTEL_GEN(dev_priv) >= 6) {
2909
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2910 2911 2912 2913 2914

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2915
	} else if (INTEL_GEN(dev_priv) >= 5) {
2916
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2917 2918 2919 2920 2921

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2922 2923
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2924 2925 2926
	}
}

2927
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2928
				       u16 wm[5])
2929 2930
{
	/* ILK sprite LP0 latency is 1300 ns */
2931
	if (IS_GEN(dev_priv, 5))
2932 2933 2934
		wm[0] = 13;
}

2935
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2936
				       u16 wm[5])
2937 2938
{
	/* ILK cursor LP0 latency is 1300 ns */
2939
	if (IS_GEN(dev_priv, 5))
2940 2941 2942
		wm[0] = 13;
}

2943
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2944 2945
{
	/* how many WM levels are we expecting */
2946
	if (INTEL_GEN(dev_priv) >= 9)
2947
		return 7;
2948
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2949
		return 4;
2950
	else if (INTEL_GEN(dev_priv) >= 6)
2951
		return 3;
2952
	else
2953 2954
		return 2;
}
2955

2956
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2957
				   const char *name,
2958
				   const u16 wm[8])
2959
{
2960
	int level, max_level = ilk_wm_max_level(dev_priv);
2961 2962 2963 2964 2965

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2966 2967
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2968 2969 2970
			continue;
		}

2971 2972 2973 2974
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2975
		if (INTEL_GEN(dev_priv) >= 9)
2976 2977
			latency *= 10;
		else if (level > 0)
2978 2979 2980 2981 2982 2983 2984 2985
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2986
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2987
				    u16 wm[5], u16 min)
2988
{
2989
	int level, max_level = ilk_wm_max_level(dev_priv);
2990 2991 2992 2993 2994 2995

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2996
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2997 2998 2999 3000

	return true;
}

3001
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3017 3018 3019
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3020 3021
}

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3050
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3051
{
3052
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3053 3054 3055 3056 3057 3058

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3059
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3060
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3061

3062 3063 3064
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3065

3066
	if (IS_GEN(dev_priv, 6)) {
3067
		snb_wm_latency_quirk(dev_priv);
3068 3069
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3070 3071
}

3072
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3073
{
3074
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3075
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3076 3077
}

3078
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3090
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3101
/* Compute new watermarks for the pipe */
3102
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3103
{
3104 3105
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3106
	struct intel_pipe_wm *pipe_wm;
3107
	struct drm_device *dev = state->dev;
3108
	const struct drm_i915_private *dev_priv = to_i915(dev);
3109 3110 3111 3112 3113
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3114
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3115
	struct ilk_wm_maximums max;
3116

3117
	pipe_wm = &cstate->wm.ilk.optimal;
3118

3119 3120
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3121

3122
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3123
			pristate = ps;
3124
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3125
			sprstate = ps;
3126
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3127
			curstate = ps;
3128 3129
	}

3130
	pipe_wm->pipe_enabled = cstate->base.active;
3131
	if (sprstate) {
3132 3133 3134 3135
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3136 3137
	}

3138 3139
	usable_level = max_level;

3140
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3141
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3142
		usable_level = 1;
3143 3144

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3145
	if (pipe_wm->sprites_scaled)
3146
		usable_level = 0;
3147

3148
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3149 3150
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3151

3152
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3153
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3154

3155
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3156
		return -EINVAL;
3157

3158
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3159

3160 3161
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3162

3163
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3164
				     pristate, sprstate, curstate, wm);
3165 3166 3167 3168 3169 3170

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3171 3172 3173 3174
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3175 3176
	}

3177
	return 0;
3178 3179
}

3180 3181 3182 3183 3184
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3185
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3186
{
3187 3188
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3189
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3190 3191 3192 3193 3194
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3195
	int level, max_level = ilk_wm_max_level(dev_priv);
3196 3197 3198 3199 3200 3201

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3202
	*a = newstate->wm.ilk.optimal;
3203 3204
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3205 3206
		return 0;

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3228
	if (!ilk_validate_pipe_wm(dev_priv, a))
3229 3230 3231 3232 3233 3234
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3235 3236
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3237 3238 3239 3240

	return 0;
}

3241 3242 3243
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3244
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3245 3246 3247 3248 3249
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3250 3251
	ret_wm->enable = true;

3252
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3253
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3254 3255 3256 3257
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3258

3259 3260 3261 3262 3263
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3264
		if (!wm->enable)
3265
			ret_wm->enable = false;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3277
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3278
			 const struct intel_wm_config *config,
3279
			 const struct ilk_wm_maximums *max,
3280 3281
			 struct intel_pipe_wm *merged)
{
3282
	int level, max_level = ilk_wm_max_level(dev_priv);
3283
	int last_enabled_level = max_level;
3284

3285
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3286
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3287
	    config->num_pipes_active > 1)
3288
		last_enabled_level = 0;
3289

3290
	/* ILK: FBC WM must be disabled always */
3291
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3292 3293 3294 3295 3296

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3297
		ilk_merge_wm_level(dev_priv, level, wm);
3298

3299 3300 3301 3302 3303
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3304 3305 3306 3307 3308 3309

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3310 3311
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3312 3313 3314
			wm->fbc_val = 0;
		}
	}
3315 3316 3317 3318 3319 3320 3321

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3322
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3323
	    intel_fbc_is_active(dev_priv)) {
3324 3325 3326 3327 3328 3329
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3330 3331
}

3332 3333 3334 3335 3336 3337
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3338
/* The value we need to program into the WM_LPx latency field */
3339 3340
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3341
{
3342
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3343 3344 3345 3346 3347
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3348
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3349
				   const struct intel_pipe_wm *merged,
3350
				   enum intel_ddb_partitioning partitioning,
3351
				   struct ilk_wm_values *results)
3352
{
3353 3354
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3355

3356
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3357
	results->partitioning = partitioning;
3358

3359
	/* LP1+ register values */
3360
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3361
		const struct intel_wm_level *r;
3362

3363
		level = ilk_wm_lp_to_level(wm_lp, merged);
3364

3365
		r = &merged->wm[level];
3366

3367 3368 3369 3370 3371
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3372
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3373 3374 3375
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3376 3377 3378
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3379
		if (INTEL_GEN(dev_priv) >= 8)
3380 3381 3382 3383 3384 3385
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3386 3387 3388 3389
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3390
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3391 3392 3393 3394
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3395
	}
3396

3397
	/* LP0 register values */
3398
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3399
		enum pipe pipe = intel_crtc->pipe;
3400 3401
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3402 3403 3404 3405

		if (WARN_ON(!r->enable))
			continue;

3406
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3407

3408 3409 3410 3411
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3412 3413 3414
	}
}

3415 3416
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3417 3418 3419 3420
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3421
{
3422
	int level, max_level = ilk_wm_max_level(dev_priv);
3423
	int level1 = 0, level2 = 0;
3424

3425 3426 3427 3428 3429
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3430 3431
	}

3432 3433
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3434 3435 3436
			return r2;
		else
			return r1;
3437
	} else if (level1 > level2) {
3438 3439 3440 3441 3442 3443
		return r1;
	} else {
		return r2;
	}
}

3444 3445 3446 3447 3448 3449 3450 3451
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3452
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3453 3454
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3455 3456 3457 3458 3459
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3460
	for_each_pipe(dev_priv, pipe) {
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3504 3505
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3506
{
3507
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3508
	bool changed = false;
3509

3510 3511 3512
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3513
		changed = true;
3514 3515 3516 3517
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3518
		changed = true;
3519 3520 3521 3522
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3523
		changed = true;
3524
	}
3525

3526 3527 3528 3529
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3530

3531 3532 3533 3534 3535 3536 3537
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3538 3539
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3540
{
3541
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3542
	unsigned int dirty;
3543
	u32 val;
3544

3545
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3546 3547 3548 3549 3550
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3551
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3552
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3553
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3554
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3555
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3556 3557
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3558
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3559
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3560
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3561
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3562
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3563 3564
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3565
	if (dirty & WM_DIRTY_DDB) {
3566
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3581 3582
	}

3583
	if (dirty & WM_DIRTY_FBC) {
3584 3585 3586 3587 3588 3589 3590 3591
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3592 3593 3594 3595
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3596
	if (INTEL_GEN(dev_priv) >= 7) {
3597 3598 3599 3600 3601
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3602

3603
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3604
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3605
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3606
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3607
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3608
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3609 3610

	dev_priv->wm.hw = *results;
3611 3612
}

3613
bool ilk_disable_lp_wm(struct drm_device *dev)
3614
{
3615
	struct drm_i915_private *dev_priv = to_i915(dev);
3616 3617 3618 3619

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3631 3632 3633 3634 3635 3636
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3637 3638 3639 3640 3641
		enabled_slices++;

	return enabled_slices;
}

3642 3643 3644 3645
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3646
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3647
{
3648
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3649 3650
}

3651 3652 3653
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3654 3655
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3656 3657
}

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3670
intel_enable_sagv(struct drm_i915_private *dev_priv)
3671 3672 3673
{
	int ret;

3674 3675 3676 3677
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3678 3679
		return 0;

3680
	DRM_DEBUG_KMS("Enabling SAGV\n");
3681 3682 3683
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3684
	/* We don't need to wait for SAGV when enabling */
3685 3686 3687

	/*
	 * Some skl systems, pre-release machines in particular,
3688
	 * don't actually have SAGV.
3689
	 */
3690
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3691
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3692
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3693 3694
		return 0;
	} else if (ret < 0) {
3695
		DRM_ERROR("Failed to enable SAGV\n");
3696 3697 3698
		return ret;
	}

3699
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3700 3701 3702 3703
	return 0;
}

int
3704
intel_disable_sagv(struct drm_i915_private *dev_priv)
3705
{
3706
	int ret;
3707

3708 3709 3710 3711
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3712 3713
		return 0;

3714
	DRM_DEBUG_KMS("Disabling SAGV\n");
3715
	/* bspec says to keep retrying for at least 1 ms */
3716 3717 3718 3719
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3720 3721
	/*
	 * Some skl systems, pre-release machines in particular,
3722
	 * don't actually have SAGV.
3723
	 */
3724
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3725
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3726
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3727
		return 0;
3728
	} else if (ret < 0) {
3729
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3730
		return ret;
3731 3732
	}

3733
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3734 3735 3736
	return 0;
}

3737
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3738 3739 3740 3741
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3742 3743
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3744
	struct intel_crtc_state *cstate;
3745
	enum pipe pipe;
3746
	int level, latency;
3747
	int sagv_block_time_us;
3748

3749 3750 3751
	if (!intel_has_sagv(dev_priv))
		return false;

3752
	if (IS_GEN(dev_priv, 9))
3753
		sagv_block_time_us = 30;
3754
	else if (IS_GEN(dev_priv, 10))
3755 3756 3757 3758
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3759 3760 3761 3762 3763
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
3764 3765 3766 3767 3768 3769

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
	if (hweight32(intel_state->active_crtcs) > 1)
3770 3771 3772 3773
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3774
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3775
	cstate = to_intel_crtc_state(crtc->base.state);
3776

3777
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3778 3779
		return false;

3780
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3781 3782
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3783

3784
		/* Skip this plane if it's not enabled */
3785
		if (!wm->wm[0].plane_en)
3786 3787 3788
			continue;

		/* Find the highest enabled wm level for this plane */
3789
		for (level = ilk_wm_max_level(dev_priv);
3790
		     !wm->wm[level].plane_en; --level)
3791 3792
		     { }

3793 3794
		latency = dev_priv->wm.skl_latency[level];

3795
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3796
		    plane->base.state->fb->modifier ==
3797 3798 3799
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3800
		/*
3801 3802
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3803
		 * can't enable SAGV.
3804
		 */
3805
		if (latency < sagv_block_time_us)
3806 3807 3808 3809 3810 3811
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3812 3813
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
			      const struct intel_crtc_state *cstate,
3814
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3815 3816
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	adjusted_mode = &cstate->base.adjusted_mode;
3828
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3829 3830 3831

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3832 3833 3834 3835 3836
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3837
	 */
3838
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3839 3840 3841 3842 3843 3844 3845 3846 3847
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3848
static void
3849
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3850
				   const struct intel_crtc_state *cstate,
3851
				   const u64 total_data_rate,
3852
				   struct skl_ddb_allocation *ddb,
3853 3854
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3855
{
3856 3857
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3858
	struct drm_crtc *for_crtc = cstate->base.crtc;
3859 3860 3861 3862 3863 3864
	const struct drm_crtc_state *crtc_state;
	const struct drm_crtc *crtc;
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3865

3866
	if (WARN_ON(!state) || !cstate->base.active) {
3867 3868
		alloc->start = 0;
		alloc->end = 0;
3869
		*num_active = hweight32(dev_priv->active_crtcs);
3870 3871 3872
		return;
	}

3873 3874 3875 3876 3877
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3878 3879
	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
				      *num_active, ddb);
3880

3881
	/*
3882 3883 3884 3885 3886 3887
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3888
	 */
3889
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3890 3891 3892 3893 3894
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3895
		return;
3896
	}
3897

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode;
		int hdisplay, vdisplay;
		enum pipe pipe;

		if (!crtc_state->enable)
			continue;

		pipe = to_intel_crtc(crtc)->pipe;
		adjusted_mode = &crtc_state->adjusted_mode;
		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3924 3925
}

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3940
{
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3955
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3956 3957 3958 3959 3960
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3961

3962
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3963 3964
}

3965 3966
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3967
{
3968

3969 3970
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3971

3972 3973
	if (entry->end)
		entry->end += 1;
3974 3975
}

3976 3977 3978 3979
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3980 3981
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3982
{
3983 3984
	u32 val, val2;
	u32 fourcc = 0;
3985 3986 3987 3988

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3989
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3990 3991 3992 3993 3994 3995
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3996 3997 3998 3999
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4000

4001 4002 4003 4004 4005
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4006
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4007

4008
		if (is_planar_yuv_format(fourcc))
4009 4010 4011 4012
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4013 4014 4015
	}
}

4016 4017 4018
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4019
{
4020 4021 4022
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4023
	intel_wakeref_t wakeref;
4024
	enum plane_id plane_id;
4025

4026
	power_domain = POWER_DOMAIN_PIPE(pipe);
4027 4028
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4029
		return;
4030

4031 4032 4033 4034 4035
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4036

4037
	intel_display_power_put(dev_priv, power_domain, wakeref);
4038
}
4039

4040 4041 4042 4043
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4044 4045
}

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4062
static uint_fixed_16_16_t
4063 4064
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
4065
{
4066
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4067
	u32 src_w, src_h, dst_w, dst_h;
4068 4069
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4070

4071
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4072
		return u32_to_fixed16(0);
4073 4074

	/* n.b., src is 16.16 fixed point, dst is whole integer */
4075
	if (plane->id == PLANE_CURSOR) {
4076 4077 4078 4079
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
4080 4081
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
4082 4083 4084
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
4085 4086 4087 4088 4089
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4090 4091
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
4092 4093 4094 4095
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

4096 4097 4098 4099
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4100

4101
	return mul_fixed16(downscale_w, downscale_h);
4102 4103
}

4104 4105 4106
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4107
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4108 4109 4110 4111 4112

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4113 4114
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4126 4127 4128 4129
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
4140
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4141 4142 4143 4144 4145
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
4146
	int crtc_clock, dotclk;
4147
	u32 pipe_max_pixel_rate;
4148
	uint_fixed_16_16_t pipe_downscale;
4149
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4150 4151 4152 4153 4154 4155

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
4156
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4174
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4175 4176 4177 4178 4179 4180
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4181 4182
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4183
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4184 4185 4186
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4187 4188

	if (pipe_max_pixel_rate < crtc_clock) {
4189
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4190 4191 4192 4193 4194 4195
		return -EINVAL;
	}

	return 0;
}

4196
static u64
4197
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4198
			     const struct intel_plane_state *intel_pstate,
4199
			     const int plane)
4200
{
4201 4202
	struct intel_plane *intel_plane =
		to_intel_plane(intel_pstate->base.plane);
4203 4204
	u32 data_rate;
	u32 width = 0, height = 0;
4205 4206
	struct drm_framebuffer *fb;
	u32 format;
4207
	uint_fixed_16_16_t down_scale_amount;
4208
	u64 rate;
4209

4210
	if (!intel_pstate->base.visible)
4211
		return 0;
4212

4213
	fb = intel_pstate->base.fb;
V
Ville Syrjälä 已提交
4214
	format = fb->format->format;
4215

4216
	if (intel_plane->id == PLANE_CURSOR)
4217
		return 0;
4218
	if (plane == 1 && !is_planar_yuv_format(format))
4219
		return 0;
4220

4221 4222 4223 4224 4225
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4226 4227
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4228

4229
	/* UV plane does 1/2 pixel sub-sampling */
4230
	if (plane == 1 && is_planar_yuv_format(format)) {
4231 4232
		width /= 2;
		height /= 2;
4233 4234
	}

4235
	data_rate = width * height;
4236

4237
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4238

4239 4240 4241 4242
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

	rate *= fb->format->cpp[plane];
	return rate;
4243 4244
}

4245
static u64
4246
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4247 4248
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4249
{
4250 4251
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4252 4253
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4254
	u64 total_data_rate = 0;
4255 4256 4257

	if (WARN_ON(!state))
		return 0;
4258

4259
	/* Calculate and cache data rate for each plane */
4260
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4261
		enum plane_id plane_id = to_intel_plane(plane)->id;
4262
		u64 rate;
4263 4264
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
4265

4266
		/* packed/y */
4267
		rate = skl_plane_relative_data_rate(intel_cstate,
4268
						    intel_pstate, 0);
4269
		plane_data_rate[plane_id] = rate;
4270
		total_data_rate += rate;
4271

4272
		/* uv-plane */
4273
		rate = skl_plane_relative_data_rate(intel_cstate,
4274
						    intel_pstate, 1);
4275
		uv_plane_data_rate[plane_id] = rate;
4276
		total_data_rate += rate;
4277 4278 4279 4280 4281
	}

	return total_data_rate;
}

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 u64 *plane_data_rate)
{
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	u64 total_data_rate = 0;

	if (WARN_ON(!state))
		return 0;

	/* Calculate and cache data rate for each plane */
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
		const struct intel_plane_state *intel_pstate =
			to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
		u64 rate;

		if (!intel_pstate->linked_plane) {
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
			 * drm_atomic_crtc_state_for_each_plane_state(),
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
			if (intel_pstate->slave)
				continue;

			/* Y plane rate is calculated on the slave */
			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 0);
			y_plane_id = intel_pstate->linked_plane->id;
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

			rate = skl_plane_relative_data_rate(intel_cstate,
							    intel_pstate, 1);
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4337
static int
4338
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4339 4340
		      struct skl_ddb_allocation *ddb /* out */)
{
4341
	struct drm_atomic_state *state = cstate->base.state;
4342
	struct drm_crtc *crtc = cstate->base.crtc;
4343
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4344
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4345
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4346 4347 4348
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4349
	u64 total_data_rate;
4350
	enum plane_id plane_id;
4351
	int num_active;
4352 4353
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4354
	u32 blocks;
4355
	int level;
4356

4357
	/* Clear the partitioning for disabled planes. */
4358 4359
	memset(cstate->wm.skl.plane_ddb_y, 0, sizeof(cstate->wm.skl.plane_ddb_y));
	memset(cstate->wm.skl.plane_ddb_uv, 0, sizeof(cstate->wm.skl.plane_ddb_uv));
4360

4361 4362 4363
	if (WARN_ON(!state))
		return 0;

4364
	if (!cstate->base.active) {
4365
		alloc->start = alloc->end = 0;
4366 4367 4368
		return 0;
	}

4369 4370 4371 4372 4373
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
			icl_get_total_relative_data_rate(cstate,
							 plane_data_rate);
	else
4374 4375 4376 4377
		total_data_rate =
			skl_get_total_relative_data_rate(cstate,
							 plane_data_rate,
							 uv_plane_data_rate);
4378

4379 4380 4381

	skl_ddb_get_pipe_allocation_limits(dev_priv, cstate, total_data_rate,
					   ddb, alloc, &num_active);
4382
	alloc_size = skl_ddb_entry_size(alloc);
4383
	if (alloc_size == 0)
4384
		return 0;
4385

4386
	/* Allocate fixed number of blocks for cursor. */
4387
	total[PLANE_CURSOR] = skl_cursor_allocation(cstate, num_active);
4388 4389 4390 4391 4392 4393 4394
	alloc_size -= total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
		alloc->end - total[PLANE_CURSOR];
	cstate->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;

	if (total_data_rate == 0)
		return 0;
4395

4396
	/*
4397 4398
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4399
	 */
4400
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4401
		blocks = 0;
4402
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4403 4404
			const struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4405 4406 4407 4408 4409 4410 4411

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4412
				continue;
4413
			}
4414

4415 4416
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4417 4418
		}

4419
		if (blocks <= alloc_size) {
4420 4421 4422
			alloc_size -= blocks;
			break;
		}
4423 4424
	}

4425
	if (level < 0) {
4426
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4427 4428
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4429 4430 4431
		return -EINVAL;
	}

4432
	/*
4433 4434 4435
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4436
	 */
4437
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4438 4439
		const struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];
4440 4441
		u64 rate;
		u16 extra;
4442

4443
		if (plane_id == PLANE_CURSOR)
4444 4445
			continue;

4446
		/*
4447 4448
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4449
		 */
4450 4451
		if (total_data_rate == 0)
			break;
4452

4453 4454 4455 4456
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4457
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4458 4459
		alloc_size -= extra;
		total_data_rate -= rate;
4460

4461 4462
		if (total_data_rate == 0)
			break;
4463

4464 4465 4466 4467
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4468
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4469 4470 4471 4472 4473 4474 4475 4476
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4477 4478 4479 4480
		struct skl_ddb_entry *plane_alloc =
			&cstate->wm.skl.plane_ddb_y[plane_id];
		struct skl_ddb_entry *uv_plane_alloc =
			&cstate->wm.skl.plane_ddb_uv[plane_id];
4481 4482 4483 4484

		if (plane_id == PLANE_CURSOR)
			continue;

4485
		/* Gen11+ uses a separate plane for UV watermarks */
4486 4487 4488 4489 4490 4491 4492 4493
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4494

4495 4496 4497 4498
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4499
		}
4500
	}
4501

4502 4503 4504 4505 4506 4507 4508 4509
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4510 4511
			struct skl_plane_wm *wm =
				&cstate->wm.skl.optimal.planes[plane_id];
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4528

4529
			/*
4530
			 * Wa_1408961008:icl, ehl
4531 4532
			 * Underruns with WM1+ disabled
			 */
4533
			if (IS_GEN(dev_priv, 11) &&
4534 4535
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4536 4537
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4538
			}
4539 4540 4541 4542 4543 4544 4545 4546
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4547 4548 4549
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane_id];

4550
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4551
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4552 4553
	}

4554
	return 0;
4555 4556
}

4557 4558
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4559
 * for the read latency) and cpp should always be <= 8, so that
4560 4561 4562
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4563
static uint_fixed_16_16_t
4564 4565
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4566
{
4567
	u32 wm_intermediate_val;
4568
	uint_fixed_16_16_t ret;
4569 4570

	if (latency == 0)
4571
		return FP_16_16_MAX;
4572

4573
	wm_intermediate_val = latency * pixel_rate * cpp;
4574
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4575 4576 4577 4578

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4579 4580 4581
	return ret;
}

4582 4583 4584
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4585
{
4586
	u32 wm_intermediate_val;
4587
	uint_fixed_16_16_t ret;
4588 4589

	if (latency == 0)
4590
		return FP_16_16_MAX;
4591 4592

	wm_intermediate_val = latency * pixel_rate;
4593 4594
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4595
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4596 4597 4598
	return ret;
}

4599
static uint_fixed_16_16_t
4600
intel_get_linetime_us(const struct intel_crtc_state *cstate)
4601
{
4602 4603
	u32 pixel_rate;
	u32 crtc_htotal;
4604 4605 4606
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4607
		return u32_to_fixed16(0);
4608 4609 4610 4611

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4612
		return u32_to_fixed16(0);
4613 4614

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4615
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4616 4617 4618 4619

	return linetime_us;
}

4620
static u32
4621 4622
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4623
{
4624
	u64 adjusted_pixel_rate;
4625
	uint_fixed_16_16_t downscale_amount;
4626 4627

	/* Shouldn't reach here on disabled planes... */
4628
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4629 4630 4631 4632 4633 4634
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4635
	adjusted_pixel_rate = cstate->pixel_rate;
4636
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4637

4638 4639
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4640 4641
}

4642
static int
4643 4644 4645 4646 4647
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4648
{
4649 4650
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4651
	u32 interm_pbpl;
4652

4653
	/* only planar format has two planes */
4654
	if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4655
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4656 4657 4658
		return -EINVAL;
	}

4659 4660 4661 4662 4663 4664 4665 4666
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->is_planar = is_planar_yuv_format(format->format);
4667

4668
	wp->width = width;
4669
	if (color_plane == 1 && wp->is_planar)
4670 4671
		wp->width /= 2;

4672 4673
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4674

4675
	if (INTEL_GEN(dev_priv) >= 11 &&
4676
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4677 4678 4679 4680
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4681
	if (drm_rotation_90_or_270(rotation)) {
4682
		switch (wp->cpp) {
4683
		case 1:
4684
			wp->y_min_scanlines = 16;
4685 4686
			break;
		case 2:
4687
			wp->y_min_scanlines = 8;
4688 4689
			break;
		case 4:
4690
			wp->y_min_scanlines = 4;
4691
			break;
4692
		default:
4693
			MISSING_CASE(wp->cpp);
4694
			return -EINVAL;
4695 4696
		}
	} else {
4697
		wp->y_min_scanlines = 4;
4698 4699
	}

4700
	if (skl_needs_memory_bw_wa(dev_priv))
4701
		wp->y_min_scanlines *= 2;
4702

4703 4704 4705
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4706 4707
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4708 4709 4710 4711

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4712 4713
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4714
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4715 4716
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4717
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4718
	} else {
4719 4720
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4721
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4722 4723
	}

4724 4725
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4726

4727
	wp->linetime_us = fixed16_to_u32_round_up(
4728
					intel_get_linetime_us(crtc_state));
4729 4730 4731 4732

	return 0;
}

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

	if (plane->id == PLANE_CURSOR) {
		width = plane_state->base.crtc_w;
	} else {
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
		width = drm_rect_width(&plane_state->base.src) >> 16;
	}

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4760 4761 4762 4763 4764 4765 4766 4767 4768
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4769 4770 4771 4772 4773
static void skl_compute_plane_wm(const struct intel_crtc_state *cstate,
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4774
{
4775
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4776
	u32 latency = dev_priv->wm.skl_latency[level];
4777 4778
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4779
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4780

4781 4782 4783
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4784
		return;
4785
	}
4786

4787 4788 4789 4790
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4791
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4792 4793 4794
	    dev_priv->ipc_enabled)
		latency += 4;

4795
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4796 4797 4798
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4799
				 wp->cpp, latency, wp->dbuf_block_size);
4800
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4801
				 cstate->base.adjusted_mode.crtc_htotal,
4802
				 latency,
4803
				 wp->plane_blocks_per_line);
4804

4805 4806
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4807
	} else {
4808
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4809
		     wp->dbuf_block_size < 1) &&
4810
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4811
			selected_result = method2;
4812
		} else if (latency >= wp->linetime_us) {
4813
			if (IS_GEN(dev_priv, 9) &&
4814 4815 4816 4817 4818
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4819
			selected_result = method1;
4820
		}
4821
	}
4822

4823
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4824
	res_lines = div_round_up_fixed16(selected_result,
4825
					 wp->plane_blocks_per_line);
4826

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4842

4843 4844 4845 4846 4847 4848 4849 4850 4851
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4852
	}
4853

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4872 4873 4874
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4875 4876 4877
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4878
		return;
4879
	}
4880 4881 4882 4883 4884 4885 4886

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4887 4888
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4889 4890
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4891
	result->plane_en = true;
4892 4893
}

4894
static void
4895
skl_compute_wm_levels(const struct intel_crtc_state *cstate,
4896
		      const struct skl_wm_params *wm_params,
4897
		      struct skl_wm_level *levels)
4898
{
4899
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4900
	int level, max_level = ilk_wm_max_level(dev_priv);
4901
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4902

4903
	for (level = 0; level <= max_level; level++) {
4904
		struct skl_wm_level *result = &levels[level];
4905

4906
		skl_compute_plane_wm(cstate, level, wm_params,
4907
				     result_prev, result);
4908 4909

		result_prev = result;
4910
	}
4911 4912
}

4913
static u32
4914
skl_compute_linetime_wm(const struct intel_crtc_state *cstate)
4915
{
M
Mahesh Kumar 已提交
4916 4917
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4918
	uint_fixed_16_16_t linetime_us;
4919
	u32 linetime_wm;
4920

4921
	linetime_us = intel_get_linetime_us(cstate);
4922
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4923

4924 4925
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4926
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4927 4928

	return linetime_wm;
4929 4930
}

4931
static void skl_compute_transition_wm(const struct intel_crtc_state *cstate,
4932
				      const struct skl_wm_params *wp,
4933
				      struct skl_plane_wm *wm)
4934
{
4935 4936
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
4937 4938 4939
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4940 4941 4942

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4943
		return;
4944 4945 4946

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4947
		return;
4948

4949 4950
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4951 4952 4953 4954
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4965
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4966

4967
	if (wp->y_tiled) {
4968 4969
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4970
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4971 4972
				trans_offset_b;
	} else {
4973
		res_blocks = wm0_sel_res_b + trans_offset_b;
4974 4975 4976 4977 4978 4979 4980

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4981 4982 4983 4984 4985 4986 4987
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4988 4989
}

4990
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4991 4992
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4993
{
4994
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4995 4996 4997
	struct skl_wm_params wm_params;
	int ret;

4998
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4999 5000 5001 5002
					  &wm_params, color_plane);
	if (ret)
		return ret;

5003
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5004
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5005 5006 5007 5008

	return 0;
}

5009
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5010 5011
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5012
{
5013
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5014 5015 5016
	struct skl_wm_params wm_params;
	int ret;

5017
	wm->is_planar = true;
5018 5019

	/* uv plane watermarks must also be validated for NV12/Planar */
5020
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5021 5022 5023
					  &wm_params, 1);
	if (ret)
		return ret;
5024

5025
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5026

5027
	return 0;
5028 5029
}

5030
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5031
			      const struct intel_plane_state *plane_state)
5032
{
5033 5034 5035
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
5036 5037
	int ret;

5038 5039 5040
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5041
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5042
					plane_id, 0);
5043 5044 5045
	if (ret)
		return ret;

5046
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5047
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5048 5049 5050 5051 5052 5053 5054 5055
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5056
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
	if (plane_state->slave)
		return 0;

	if (plane_state->linked_plane) {
		const struct drm_framebuffer *fb = plane_state->base.fb;
		enum plane_id y_plane_id = plane_state->linked_plane->id;

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5074
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5075 5076 5077 5078
						y_plane_id, 0);
		if (ret)
			return ret;

5079
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5080 5081 5082 5083
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5084
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5085 5086 5087 5088 5089 5090
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5091 5092
}

5093
static int skl_build_pipe_wm(struct intel_crtc_state *cstate)
5094
{
5095
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5096
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5097 5098 5099
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
5100
	int ret;
5101

L
Lyude 已提交
5102 5103 5104 5105 5106 5107
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5108 5109 5110 5111
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);

5112
		if (INTEL_GEN(dev_priv) >= 11)
5113
			ret = icl_build_plane_wm(cstate, intel_pstate);
5114
		else
5115
			ret = skl_build_plane_wm(cstate, intel_pstate);
5116 5117
		if (ret)
			return ret;
5118
	}
5119

5120
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
5121

5122
	return 0;
5123 5124
}

5125 5126
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5127 5128 5129
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5130
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5131
	else
5132
		I915_WRITE_FW(reg, 0);
5133 5134
}

5135 5136 5137 5138
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5139
	u32 val = 0;
5140

5141
	if (level->plane_en)
5142
		val |= PLANE_WM_EN;
5143 5144 5145 5146
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5147

5148
	I915_WRITE_FW(reg, val);
5149 5150
}

5151 5152
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5153
{
5154
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5155
	int level, max_level = ilk_wm_max_level(dev_priv);
5156 5157 5158 5159 5160 5161 5162 5163
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5164 5165

	for (level = 0; level <= max_level; level++) {
5166
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5167
				   &wm->wm[level]);
5168
	}
5169
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5170
			   &wm->trans_wm);
5171

5172
	if (INTEL_GEN(dev_priv) >= 11) {
5173
		skl_ddb_entry_write(dev_priv,
5174 5175
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5176
	}
5177 5178 5179 5180 5181 5182 5183 5184

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5185 5186
}

5187 5188
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5189
{
5190
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5191
	int level, max_level = ilk_wm_max_level(dev_priv);
5192 5193 5194 5195 5196 5197
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5198 5199

	for (level = 0; level <= max_level; level++) {
5200 5201
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5202
	}
5203
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5204

5205
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5206 5207
}

5208 5209 5210
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5211
	return l1->plane_en == l2->plane_en &&
5212
		l1->ignore_lines == l2->ignore_lines &&
5213 5214 5215
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5216

5217 5218 5219 5220 5221
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5222

5223 5224 5225 5226 5227 5228 5229
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5230 5231
}

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5249 5250
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5251
{
5252
	return a->start < b->end && b->start < a->end;
5253 5254
}

5255
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5256
				 const struct skl_ddb_entry *entries,
5257
				 int num_entries, int ignore_idx)
5258
{
5259
	int i;
5260

5261 5262 5263
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5264
			return true;
5265
	}
5266

5267
	return false;
5268 5269
}

5270
static u32
5271
pipes_modified(struct intel_atomic_state *state)
5272
{
5273 5274
	struct intel_crtc *crtc;
	struct intel_crtc_state *cstate;
5275
	u32 i, ret = 0;
5276

5277 5278
	for_each_new_intel_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(&crtc->base);
5279 5280 5281 5282

	return ret;
}

5283
static int
5284 5285
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5286
{
5287 5288 5289 5290
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5291

5292 5293 5294
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5295

5296 5297 5298 5299
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5300 5301
			continue;

5302
		plane_state = intel_atomic_get_plane_state(state, plane);
5303 5304
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5305

5306
		new_crtc_state->update_planes |= BIT(plane_id);
5307 5308 5309 5310 5311 5312
	}

	return 0;
}

static int
5313
skl_compute_ddb(struct intel_atomic_state *state)
5314
{
5315 5316
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5317 5318
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5319 5320
	struct intel_crtc *crtc;
	int ret, i;
5321

5322 5323
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5324
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5325 5326
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5327 5328 5329
		if (ret)
			return ret;

5330 5331
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5332 5333
		if (ret)
			return ret;
5334 5335 5336 5337 5338
	}

	return 0;
}

5339 5340 5341 5342 5343
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5344
static void
5345
skl_print_wm_changes(struct intel_atomic_state *state)
5346
{
5347 5348 5349 5350 5351
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5352
	int i;
5353

5354 5355 5356
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5357 5358
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5359 5360 5361 5362 5363
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5364 5365
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5366 5367
			const struct skl_ddb_entry *old, *new;

5368 5369
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5370 5371 5372 5373

			if (skl_ddb_entry_equal(old, new))
				continue;

5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5404 5405
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5406
				      plane->base.base.id, plane->base.name,
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5443
				      plane->base.base.id, plane->base.name,
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5454 5455 5456 5457
		}
	}
}

5458
static int
5459
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5460
{
5461
	struct drm_device *dev = state->base.dev;
5462
	const struct drm_i915_private *dev_priv = to_i915(dev);
5463 5464
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5465
	u32 realloc_pipes = pipes_modified(state);
5466
	int ret, i;
5467

5468 5469 5470 5471
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5472 5473
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5474

5475 5476 5477 5478 5479 5480 5481 5482
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5483
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5484
		(*changed) = true;
5485

5486
	if (!*changed)
5487 5488
		return 0;

5489 5490 5491 5492 5493 5494 5495 5496
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5497
				       state->base.acquire_ctx);
5498 5499 5500
		if (ret)
			return ret;

5501
		state->active_pipe_changes = ~0;
5502 5503

		/*
5504
		 * We usually only initialize state->active_crtcs if we
5505 5506 5507 5508
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5509 5510
		if (!state->modeset)
			state->active_crtcs = dev_priv->active_crtcs;
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5526
	if (state->active_pipe_changes || state->modeset) {
5527
		realloc_pipes = ~0;
5528
		state->wm_results.dirty_pipes = ~0;
5529 5530 5531 5532 5533 5534
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5535 5536 5537 5538
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5539 5540 5541 5542 5543
	}

	return 0;
}

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5604
static int
5605
skl_compute_wm(struct intel_atomic_state *state)
5606
{
5607
	struct intel_crtc *crtc;
5608
	struct intel_crtc_state *new_crtc_state;
5609 5610
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5611 5612 5613
	bool changed = false;
	int ret, i;

5614 5615 5616
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5617 5618 5619 5620
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5621 5622
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5623
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5624 5625 5626
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5627
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5628 5629
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5630 5631 5632
		if (ret)
			return ret;

5633
		ret = skl_wm_add_affected_planes(state, crtc);
5634 5635 5636
		if (ret)
			return ret;

5637 5638 5639
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5640
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5641 5642
	}

5643 5644 5645 5646
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5647
	skl_print_wm_changes(state);
5648

5649 5650 5651
	return 0;
}

5652 5653 5654 5655 5656 5657 5658
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
	enum pipe pipe = crtc->pipe;
5659 5660 5661

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5662 5663 5664 5665

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5666 5667
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5668
{
5669
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5670
	struct drm_device *dev = intel_crtc->base.dev;
5671
	struct drm_i915_private *dev_priv = to_i915(dev);
5672
	struct skl_ddb_values *results = &state->wm_results;
5673

5674
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5675 5676
		return;

5677
	mutex_lock(&dev_priv->wm.wm_mutex);
5678

5679 5680
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5681

5682
	mutex_unlock(&dev_priv->wm.wm_mutex);
5683 5684
}

5685
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5686 5687 5688 5689 5690
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5691
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5703
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5704
{
5705
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5706
	struct ilk_wm_maximums max;
5707
	struct intel_wm_config config = {};
5708
	struct ilk_wm_values results = {};
5709
	enum intel_ddb_partitioning partitioning;
5710

5711
	ilk_compute_wm_config(dev_priv, &config);
5712

5713 5714
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5715 5716

	/* 5/6 split only in single pipe config on IVB+ */
5717
	if (INTEL_GEN(dev_priv) >= 7 &&
5718
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5719 5720
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5721

5722
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5723
	} else {
5724
		best_lp_wm = &lp_wm_1_2;
5725 5726
	}

5727
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5728
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5729

5730
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5731

5732
	ilk_write_wm_values(dev_priv, &results);
5733 5734
}

5735 5736
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5737
{
5738 5739
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5740

5741
	mutex_lock(&dev_priv->wm.wm_mutex);
5742
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5743 5744 5745
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5746

5747 5748
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5749 5750 5751
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5752

5753 5754
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5755
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5756 5757 5758
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5759 5760
}

5761
static inline void skl_wm_level_from_reg_val(u32 val,
5762
					     struct skl_wm_level *level)
5763
{
5764
	level->plane_en = val & PLANE_WM_EN;
5765
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5766 5767 5768
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5769 5770
}

5771
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5772
			      struct skl_pipe_wm *out)
5773
{
5774 5775
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5776 5777
	int level, max_level;
	enum plane_id plane_id;
5778
	u32 val;
5779

5780
	max_level = ilk_wm_max_level(dev_priv);
5781

5782
	for_each_plane_id_on_crtc(crtc, plane_id) {
5783
		struct skl_plane_wm *wm = &out->planes[plane_id];
5784

5785
		for (level = 0; level <= max_level; level++) {
5786 5787
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5788 5789
			else
				val = I915_READ(CUR_WM(pipe, level));
5790

5791
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5792 5793
		}

5794 5795
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5796 5797 5798 5799
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5800 5801
	}

5802
	if (!crtc->active)
5803
		return;
5804

5805
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5806 5807
}

5808
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5809
{
5810
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5811
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5812
	struct intel_crtc *crtc;
5813
	struct intel_crtc_state *cstate;
5814

5815
	skl_ddb_get_hw_state(dev_priv, ddb);
5816 5817
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		cstate = to_intel_crtc_state(crtc->base.state);
5818 5819 5820

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5821 5822
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5823
	}
5824

5825 5826 5827 5828
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5829 5830
}

5831
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5832
{
5833
	struct drm_device *dev = crtc->base.dev;
5834
	struct drm_i915_private *dev_priv = to_i915(dev);
5835
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5836
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->base.state);
5837
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5838
	enum pipe pipe = crtc->pipe;
5839
	static const i915_reg_t wm0_pipe_reg[] = {
5840 5841 5842 5843 5844 5845
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5846
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5847
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5848

5849 5850
	memset(active, 0, sizeof(*active));

5851
	active->pipe_enabled = crtc->active;
5852 5853

	if (active->pipe_enabled) {
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5868
		int level, max_level = ilk_wm_max_level(dev_priv);
5869 5870 5871 5872 5873 5874 5875 5876 5877

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5878

5879
	crtc->wm.active.ilk = *active;
5880 5881
}

5882 5883 5884 5885 5886
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5887 5888 5889
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5890
	u32 tmp;
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5913 5914 5915 5916
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5917
	u32 tmp;
5918 5919 5920 5921

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5922
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5923
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5924
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5925
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5926
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5927
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5928
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5929 5930 5931 5932 5933
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5934 5935 5936
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5937 5938

	tmp = I915_READ(DSPFW2);
5939 5940 5941
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5942 5943 5944 5945 5946 5947

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5948 5949
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5950 5951

		tmp = I915_READ(DSPFW8_CHV);
5952 5953
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5954 5955

		tmp = I915_READ(DSPFW9_CHV);
5956 5957
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5958 5959 5960

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5961 5962 5963 5964 5965 5966 5967 5968 5969
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5970 5971
	} else {
		tmp = I915_READ(DSPFW7);
5972 5973
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5974 5975 5976

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5977 5978 5979 5980 5981 5982
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5983 5984 5985 5986 5987 5988
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5989
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5990 5991 5992 5993 5994 5995 5996 5997
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5998
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6129
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6130 6131
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6132
	struct intel_crtc *crtc;
6133 6134 6135 6136 6137 6138 6139 6140
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6141
		vlv_punit_get(dev_priv);
6142

6143
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6144 6145 6146
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6147 6148 6149 6150 6151 6152 6153 6154 6155
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6156
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6170

6171
		vlv_punit_put(dev_priv);
6172 6173
	}

6174
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6190
			struct g4x_pipe_wm *raw =
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6212
		crtc_state->wm.vlv.intermediate = *active;
6213

6214
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6215 6216 6217 6218 6219
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6220
	}
6221 6222 6223 6224 6225

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6250
			struct g4x_pipe_wm *raw =
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6291
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6292
{
6293
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6294
	struct intel_crtc *crtc;
6295

6296 6297
	ilk_init_lp_watermarks(dev_priv);

6298
	for_each_intel_crtc(&dev_priv->drm, crtc)
6299 6300 6301 6302 6303 6304 6305
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6306
	if (INTEL_GEN(dev_priv) >= 7) {
6307 6308 6309
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6310

6311
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6312 6313
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6314
	else if (IS_IVYBRIDGE(dev_priv))
6315 6316
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6317 6318 6319 6320 6321

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6322 6323
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6324
 * @crtc: the #intel_crtc on which to compute the WM
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6355
void intel_update_watermarks(struct intel_crtc *crtc)
6356
{
6357
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6358 6359

	if (dev_priv->display.update_wm)
6360
		dev_priv->display.update_wm(crtc);
6361 6362
}

6363 6364 6365 6366
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6367 6368 6369
	if (!HAS_IPC(dev_priv))
		return;

6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6393 6394 6395 6396 6397
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6398
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6399

6400 6401 6402
	intel_enable_ipc(dev_priv);
}

6403
/*
6404 6405 6406 6407
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

6408
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6409 6410 6411
{
	u16 rgvswctl;

6412
	lockdep_assert_held(&mchdev_lock);
6413

6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

6431
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6432
{
6433
	u32 rgvmodectl;
6434 6435
	u8 fmax, fmin, fstart, vstart;

6436 6437
	spin_lock_irq(&mchdev_lock);

6438 6439
	rgvmodectl = I915_READ(MEMMODECTL);

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6460
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6461 6462
		PXVFREQ_PX_SHIFT;

6463 6464
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6465

6466 6467 6468
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6485
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6486
		DRM_ERROR("stuck trying to change perf mode\n");
6487
	mdelay(1);
6488

6489
	ironlake_set_drps(dev_priv, fstart);
6490

6491 6492
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6493
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6494
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6495
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6496 6497

	spin_unlock_irq(&mchdev_lock);
6498 6499
}

6500
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6501
{
6502 6503 6504 6505 6506
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6507 6508 6509 6510 6511 6512 6513 6514 6515

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6516
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6517
	mdelay(1);
6518 6519
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6520
	mdelay(1);
6521

6522
	spin_unlock_irq(&mchdev_lock);
6523 6524
}

6525 6526 6527 6528 6529
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6530
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6531
{
6532
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6533
	u32 limits;
6534

6535 6536 6537 6538 6539 6540
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6541
	if (INTEL_GEN(dev_priv) >= 9) {
6542 6543 6544
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6545
	} else {
6546 6547 6548
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6549
	}
6550 6551 6552 6553

	return limits;
}

C
Chris Wilson 已提交
6554
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6555
{
6556
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6557 6558
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6559

C
Chris Wilson 已提交
6560
	lockdep_assert_held(&rps->power.mutex);
6561

C
Chris Wilson 已提交
6562
	if (new_power == rps->power.mode)
6563 6564 6565 6566 6567 6568
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6569 6570
		ei_up = 16000;
		threshold_up = 95;
6571 6572

		/* Downclock if less than 85% busy over 32ms */
6573 6574
		ei_down = 32000;
		threshold_down = 85;
6575 6576 6577 6578
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6579 6580
		ei_up = 13000;
		threshold_up = 90;
6581 6582

		/* Downclock if less than 75% busy over 32ms */
6583 6584
		ei_down = 32000;
		threshold_down = 75;
6585 6586 6587 6588
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6589 6590
		ei_up = 10000;
		threshold_up = 85;
6591 6592

		/* Downclock if less than 60% busy over 32ms */
6593 6594
		ei_down = 32000;
		threshold_down = 60;
6595 6596 6597
		break;
	}

6598 6599 6600 6601 6602 6603
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6604
	I915_WRITE(GEN6_RP_UP_EI,
6605
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6606
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6607 6608
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6609 6610

	I915_WRITE(GEN6_RP_DOWN_EI,
6611
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6612
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6613 6614 6615 6616
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
6617
		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6618 6619 6620 6621 6622
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6623

6624
skip_hw_write:
C
Chris Wilson 已提交
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6669 6670
}

C
Chris Wilson 已提交
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6689 6690
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6691
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6692 6693
	u32 mask = 0;

6694
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6695
	if (val > rps->min_freq_softlimit)
6696
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6697
	if (val < rps->max_freq_softlimit)
6698
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6699

6700 6701
	mask &= dev_priv->pm_rps_events;

6702
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6703 6704
}

6705 6706 6707
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6708
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6709
{
6710 6711
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6712 6713 6714
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6715
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6716
		gen6_set_rps_thresholds(dev_priv, val);
6717

6718
		if (INTEL_GEN(dev_priv) >= 9)
6719 6720
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6721
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6722 6723 6724 6725 6726 6727 6728
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6729
	}
6730 6731 6732 6733

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6734
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6735
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6736

6737
	rps->cur_freq = val;
6738
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6739 6740

	return 0;
6741 6742
}

6743
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6744
{
6745 6746
	int err;

6747
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6748 6749 6750
		      "Odd GPU freq value\n"))
		val &= ~1;

6751 6752
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6753
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6754
		vlv_punit_get(dev_priv);
6755
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6756
		vlv_punit_put(dev_priv);
6757 6758 6759
		if (err)
			return err;

6760
		gen6_set_rps_thresholds(dev_priv, val);
6761
	}
6762

6763
	dev_priv->gt_pm.rps.cur_freq = val;
6764
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6765 6766

	return 0;
6767 6768
}

6769
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6770 6771
 *
 * * If Gfx is Idle, then
6772 6773 6774
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6775 6776 6777
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6778 6779
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6780
	int err;
6781

6782
	if (rps->cur_freq <= val)
6783 6784
		return;

6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6797
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6798
	err = valleyview_set_rps(dev_priv, val);
6799
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6800 6801 6802

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6803 6804
}

6805 6806
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6807 6808
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6809
	mutex_lock(&rps->lock);
6810
	if (rps->enabled) {
6811 6812
		u8 freq;

6813
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6814 6815
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6816
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6817

6818 6819
		gen6_enable_rps_interrupts(dev_priv);

6820 6821 6822
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6823 6824
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6825

6826
		if (intel_set_rps(dev_priv,
6827
				  clamp(freq,
6828 6829
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6830
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6831
	}
6832
	mutex_unlock(&rps->lock);
6833 6834
}

6835 6836
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6837 6838
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6839 6840 6841 6842 6843 6844 6845
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6846
	mutex_lock(&rps->lock);
6847
	if (rps->enabled) {
6848
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6849
			vlv_set_rps_idle(dev_priv);
6850
		else
6851 6852
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6853 6854
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6855
	}
6856
	mutex_unlock(&rps->lock);
6857 6858
}

6859
void gen6_rps_boost(struct i915_request *rq)
6860
{
6861
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6862
	unsigned long flags;
6863 6864
	bool boost;

6865 6866 6867
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6868
	if (!rps->enabled)
6869
		return;
6870

6871
	if (i915_request_signaled(rq))
6872 6873
		return;

6874
	/* Serializes with i915_request_retire() */
6875
	boost = false;
6876
	spin_lock_irqsave(&rq->lock, flags);
6877 6878
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6879
		rq->waitboost = true;
6880
	}
6881
	spin_unlock_irqrestore(&rq->lock, flags);
6882 6883 6884
	if (!boost)
		return;

6885 6886
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6887

6888
	atomic_inc(&rps->boosts);
6889 6890
}

6891
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6892
{
6893
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6894 6895
	int err;

6896
	lockdep_assert_held(&rps->lock);
6897 6898
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6899

6900 6901
	if (!rps->enabled) {
		rps->cur_freq = val;
6902 6903 6904
		return 0;
	}

6905
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6906
		err = valleyview_set_rps(dev_priv, val);
6907
	else
6908 6909 6910
		err = gen6_set_rps(dev_priv, val);

	return err;
6911 6912
}

6913
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6914 6915
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6916
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6917 6918
}

6919
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6920 6921 6922 6923
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6924
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6925 6926
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6927 6928 6929 6930
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6931
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6932
	I915_WRITE(GEN6_RP_CONTROL, 0);
6933 6934
}

6935
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6936 6937 6938 6939
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6940 6941 6942 6943 6944
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6945
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6946
{
6947
	/* We're doing forcewake before Disabling RC6,
6948
	 * This what the BIOS expects when going into suspend */
6949
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6950

6951
	I915_WRITE(GEN6_RC_CONTROL, 0);
6952

6953
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6954 6955
}

6956 6957 6958 6959 6960
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6961
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6962 6963 6964
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6976 6977

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6978
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6979 6980 6981 6982 6983 6984 6985 6986
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6987 6988
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6989
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6990 6991 6992 6993 6994 6995 6996
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6997
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6998 6999 7000
		enable_rc6 = false;
	}

7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7015 7016 7017 7018 7019 7020
		enable_rc6 = false;
	}

	return enable_rc6;
}

7021
static bool sanitize_rc6(struct drm_i915_private *i915)
7022
{
7023
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
7024

7025
	/* Powersaving is controlled by the host when inside a VM */
7026
	if (intel_vgpu_active(i915)) {
7027
		info->has_rc6 = 0;
7028 7029
		info->has_rps = false;
	}
7030

7031 7032
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7033
		DRM_INFO("RC6 disabled by BIOS\n");
7034
		info->has_rc6 = 0;
7035 7036
	}

7037 7038 7039 7040 7041 7042 7043 7044
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
7045

7046
	return info->has_rc6;
7047 7048
}

7049
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7050
{
7051 7052
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7053
	/* All of these values are in units of 50MHz */
7054

7055
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
7056
	if (IS_GEN9_LP(dev_priv)) {
7057
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7058 7059 7060
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
7061
	} else {
7062
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7063 7064 7065
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
7066
	}
7067
	/* hw_max = RP0 until we check for overclocking */
7068
	rps->max_freq = rps->rp0_freq;
7069

7070
	rps->efficient_freq = rps->rp1_freq;
7071
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7072
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7073 7074 7075 7076
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7077
					   &ddcc_status, NULL) == 0)
7078
			rps->efficient_freq =
7079 7080
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
7081 7082
					rps->min_freq,
					rps->max_freq);
7083 7084
	}

7085
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7086
		/* Store the frequency values in 16.66 MHZ units, which is
7087 7088
		 * the natural hardware unit for SKL
		 */
7089 7090 7091 7092 7093
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
7094
	}
7095 7096
}

7097
static void reset_rps(struct drm_i915_private *dev_priv,
7098
		      int (*set)(struct drm_i915_private *, u8))
7099
{
7100 7101
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
7102 7103

	/* force a reset */
C
Chris Wilson 已提交
7104
	rps->power.mode = -1;
7105
	rps->cur_freq = -1;
7106

7107 7108
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
7109 7110
}

J
Jesse Barnes 已提交
7111
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
7112
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
7113
{
7114
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
7115

7116
	/* Program defaults and thresholds for RPS */
7117
	if (IS_GEN(dev_priv, 9))
7118 7119
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7120 7121 7122 7123 7124

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
7125 7126
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

7127 7128 7129
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7130
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
7131

7132
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
7133 7134
}

7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/*
	 * 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.
	 */
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
	I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);

	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);

	if (HAS_GUC(dev_priv))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

	I915_WRITE(GEN6_RC_SLEEP, 0);

7166 7167
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);

	/* 3a: Enable RC6 */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   GEN6_RC_CTL_EI_MODE(1));

	/* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
	I915_WRITE(GEN9_PG_ENABLE,
7200 7201 7202
		   GEN9_RENDER_PG_ENABLE |
		   GEN9_MEDIA_PG_ENABLE |
		   GEN11_MEDIA_SAMPLER_PG_ENABLE);
7203 7204 7205 7206

	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
}

7207
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
7208
{
7209
	struct intel_engine_cs *engine;
7210
	enum intel_engine_id id;
7211
	u32 rc6_mode;
Z
Zhe Wang 已提交
7212 7213 7214 7215 7216 7217

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7218
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7219 7220 7221 7222 7223

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
7224 7225 7226 7227 7228 7229 7230 7231
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
7232
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
7233
	} else {
7234
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
7235 7236
	}

Z
Zhe Wang 已提交
7237 7238
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7239
	for_each_engine(engine, dev_priv, id)
7240
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7241

7242
	if (HAS_GUC(dev_priv))
7243 7244
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
7245 7246
	I915_WRITE(GEN6_RC_SLEEP, 0);

7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7270

Z
Zhe Wang 已提交
7271
	/* 3a: Enable RC6 */
7272
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
7273 7274 7275 7276 7277 7278 7279

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

7280
	I915_WRITE(GEN6_RC_CONTROL,
7281 7282 7283
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
7284

7285 7286
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7287
	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7288
	 */
7289
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7290 7291
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
7292 7293
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7294

7295
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
7296 7297
}

7298
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7299
{
7300
	struct intel_engine_cs *engine;
7301
	enum intel_engine_id id;
7302 7303 7304 7305

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

7306
	/* 1b: Get forcewake during program sequence. Although the driver
7307
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7308
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7309 7310 7311 7312 7313 7314 7315 7316

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7317
	for_each_engine(engine, dev_priv, id)
7318
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7319
	I915_WRITE(GEN6_RC_SLEEP, 0);
7320
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7321 7322

	/* 3: Enable RC6 */
7323

7324 7325 7326 7327
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
7328

7329
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7330 7331 7332 7333
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
7334 7335
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7336
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7337 7338

	/* 1 Program defaults and thresholds for RPS*/
7339
	I915_WRITE(GEN6_RPNSWREQ,
7340
		   HSW_FREQUENCY(rps->rp1_freq));
7341
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7342
		   HSW_FREQUENCY(rps->rp1_freq));
7343 7344 7345 7346 7347
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7348 7349
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7350 7351 7352 7353 7354 7355 7356

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7357

7358
	/* 2: Enable RPS */
7359 7360 7361 7362 7363 7364 7365 7366
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7367
	reset_rps(dev_priv, gen6_set_rps);
7368

7369
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7370 7371
}

7372
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7373
{
7374
	struct intel_engine_cs *engine;
7375
	enum intel_engine_id id;
7376
	u32 rc6vids, rc6_mask;
7377
	u32 gtfifodbg;
7378
	int ret;
7379 7380 7381 7382

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
7383 7384
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7385 7386 7387 7388
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7389
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7400
	for_each_engine(engine, dev_priv, id)
7401
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7402 7403 7404

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7405
	if (IS_IVYBRIDGE(dev_priv))
7406 7407 7408
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7409
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7410 7411
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

7412
	/* We don't use those on Haswell */
7413 7414 7415 7416 7417
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7418 7419 7420 7421 7422
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

7423
	rc6vids = 0;
7424 7425
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
				     &rc6vids, NULL);
7426
	if (IS_GEN(dev_priv, 6) && ret) {
7427
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7428
	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7429 7430 7431 7432 7433 7434 7435 7436 7437
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

7438
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7439 7440
}

7441 7442 7443 7444 7445 7446 7447 7448
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
7449
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7450 7451 7452 7453 7454 7455 7456

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

7457
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7458 7459
}

7460
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7461
{
7462
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7463 7464
	const int min_freq = 15;
	const int scaling_factor = 180;
7465 7466
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7467
	unsigned int max_gpu_freq, min_gpu_freq;
7468
	struct cpufreq_policy *policy;
7469

7470
	lockdep_assert_held(&rps->lock);
7471

7472 7473 7474
	if (rps->max_freq <= rps->min_freq)
		return;

7475 7476 7477 7478 7479 7480 7481 7482 7483
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7484
		max_ia_freq = tsc_khz;
7485
	}
7486 7487 7488 7489

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7490
	min_ring_freq = I915_READ(DCLK) & 0xf;
7491 7492
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7493

7494 7495
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7496
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7497
		/* Convert GT frequency to 50 HZ units */
7498 7499
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7500 7501
	}

7502 7503 7504 7505 7506
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7507
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7508
		const int diff = max_gpu_freq - gpu_freq;
7509 7510
		unsigned int ia_freq = 0, ring_freq = 0;

7511
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7512 7513 7514 7515 7516
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7517
		} else if (INTEL_GEN(dev_priv) >= 8) {
7518 7519
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7520
		} else if (IS_HASWELL(dev_priv)) {
7521
			ring_freq = mult_frac(gpu_freq, 5, 4);
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7538

B
Ben Widawsky 已提交
7539 7540
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7541 7542 7543
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7544 7545 7546
	}
}

7547
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7548 7549 7550
{
	u32 val, rp0;

7551
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7552

7553
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7568
	}
7569 7570 7571

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7585 7586 7587 7588
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7589 7590 7591
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7592 7593 7594
	return rp1;
}

7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7617
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7618 7619 7620
{
	u32 val, rp0;

7621
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7634
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7635
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7636
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7637 7638 7639 7640 7641
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7642
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7643
{
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7655 7656
}

7657 7658 7659 7660 7661
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7662
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7663 7664 7665
			     dev_priv->vlv_pctx->stolen->start);
}

7666 7667 7668 7669 7670 7671 7672 7673 7674

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7675
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7676
{
7677 7678
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7679 7680 7681 7682
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7683
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7684 7685
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7686 7687 7688 7689

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7690 7691

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7692 7693
}

7694
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7695 7696
{
	struct drm_i915_gem_object *pctx;
7697 7698
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7699 7700 7701 7702 7703
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7704
		resource_size_t pcbr_offset;
7705

7706
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7707
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7708
								      pcbr_offset,
7709
								      I915_GTT_OFFSET_NONE,
7710 7711 7712 7713
								      pctx_size);
		goto out;
	}

7714 7715
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7716 7717 7718 7719 7720 7721 7722 7723
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7724
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7725 7726
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7727
		goto out;
7728 7729
	}

7730 7731 7732 7733 7734
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7735 7736 7737
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7738
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7739 7740 7741
	dev_priv->vlv_pctx = pctx;
}

7742
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7743
{
7744
	struct drm_i915_gem_object *pctx;
7745

7746 7747 7748
	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
	if (pctx)
		i915_gem_object_put(pctx);
7749 7750
}

7751 7752
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7753
	dev_priv->gt_pm.rps.gpll_ref_freq =
7754 7755 7756 7757 7758
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7759
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7760 7761
}

7762
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7763
{
7764
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7765
	u32 val;
7766

7767
	valleyview_setup_pctx(dev_priv);
7768

7769 7770 7771 7772 7773
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7774 7775
	vlv_init_gpll_ref_freq(dev_priv);

7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7789
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7790

7791 7792
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7793
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7794 7795
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7796

7797
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7798
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7799 7800
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7801

7802
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7803
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7804 7805
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7806

7807
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7808
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7809 7810
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7811 7812 7813 7814 7815

	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));
7816 7817
}

7818
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7819
{
7820
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7821
	u32 val;
7822

7823
	cherryview_setup_pctx(dev_priv);
7824

7825 7826 7827 7828 7829
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7830 7831
	vlv_init_gpll_ref_freq(dev_priv);

7832 7833
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);

7834 7835 7836 7837
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7838
	default:
7839 7840 7841
		dev_priv->mem_freq = 1600;
		break;
	}
7842
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7843

7844 7845
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7846
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7847 7848
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7849

7850
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7851
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7852 7853
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7854

7855
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7856
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7857 7858
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7859

7860
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7861
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7862 7863
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7864

7865 7866 7867 7868 7869
	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7870 7871
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7872
		  "Odd GPU freq values\n");
7873 7874
}

7875
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7876
{
7877
	valleyview_cleanup_pctx(dev_priv);
7878 7879
}

7880
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7881
{
7882
	struct intel_engine_cs *engine;
7883
	enum intel_engine_id id;
7884
	u32 gtfifodbg, rc6_mode, pcbr;
7885

7886 7887
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7898
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7899

7900 7901 7902
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7903 7904 7905 7906 7907
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7908
	for_each_engine(engine, dev_priv, id)
7909
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7910 7911
	I915_WRITE(GEN6_RC_SLEEP, 0);

7912 7913
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7914

7915
	/* Allows RC6 residency counter to work */
7916 7917 7918 7919 7920 7921 7922 7923 7924
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7925 7926
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7927
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7928 7929
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7930
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7931 7932 7933 7934 7935 7936
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7937
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7938 7939

	/* 1: Program defaults and thresholds for RPS*/
7940
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7941 7942 7943 7944 7945 7946 7947
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7948
	/* 2: Enable RPS */
7949 7950
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7951
		   GEN6_RP_MEDIA_IS_GFX |
7952 7953 7954 7955
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7956
	/* Setting Fixed Bias */
7957 7958 7959
	vlv_punit_get(dev_priv);

	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
D
Deepak S 已提交
7960 7961
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7962 7963
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7964 7965
	vlv_punit_put(dev_priv);

7966 7967 7968
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7969
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7970 7971
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7972
	reset_rps(dev_priv, valleyview_set_rps);
7973

7974
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7975 7976
}

7977
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7978
{
7979
	struct intel_engine_cs *engine;
7980
	enum intel_engine_id id;
7981
	u32 gtfifodbg;
7982

7983 7984
	valleyview_check_pctx(dev_priv);

7985 7986
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7987 7988
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7989 7990 7991
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7992
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7993

7994 7995 7996
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7997 7998 7999 8000
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

8001
	for_each_engine(engine, dev_priv, id)
8002
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
8003

8004
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
8005

8006
	/* Allows RC6 residency counter to work */
8007
	I915_WRITE(VLV_COUNTER_CONTROL,
8008 8009
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
8010
				      VLV_RENDER_RC0_COUNT_EN |
8011 8012
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
8013

8014 8015
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
8016

8017
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8018 8019 8020 8021 8022 8023
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

8024
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

8042 8043
	vlv_punit_get(dev_priv);

D
Deepak S 已提交
8044
	/* Setting Fixed Bias */
8045
	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
D
Deepak S 已提交
8046 8047
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

8048
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8049

8050 8051
	vlv_punit_put(dev_priv);

8052 8053 8054
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

8055
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8056 8057
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

8058
	reset_rps(dev_priv, valleyview_set_rps);
8059

8060
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8061 8062
}

8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

8092
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8093 8094 8095 8096 8097 8098
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

8099
	lockdep_assert_held(&mchdev_lock);
8100

8101
	diff1 = now - dev_priv->ips.last_time1;
8102 8103 8104 8105 8106 8107 8108

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
8109
		return dev_priv->ips.chipset_power;
8110 8111 8112 8113 8114 8115 8116 8117

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
8118 8119
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
8120 8121
		diff += total_count;
	} else {
8122
		diff = total_count - dev_priv->ips.last_count1;
8123 8124 8125
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8126 8127
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

8138 8139
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
8140

8141
	dev_priv->ips.chipset_power = ret;
8142 8143 8144 8145

	return ret;
}

8146 8147
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
8148 8149
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8150

8151
	if (!IS_GEN(dev_priv, 5))
8152 8153
		return 0;

8154 8155 8156 8157 8158
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8159 8160 8161 8162

	return val;
}

T
Tvrtko Ursulin 已提交
8163
unsigned long i915_mch_val(struct drm_i915_private *i915)
8164 8165 8166 8167
{
	unsigned long m, x, b;
	u32 tsfs;

T
Tvrtko Ursulin 已提交
8168
	tsfs = intel_uncore_read(&i915->uncore, TSFS);
8169 8170

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
T
Tvrtko Ursulin 已提交
8171
	x = intel_uncore_read8(&i915->uncore, TR1);
8172 8173 8174 8175 8176 8177

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8190
{
8191 8192 8193
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

8194
	if (INTEL_INFO(dev_priv)->is_mobile)
8195 8196 8197
		return vm > 0 ? vm : 0;

	return vd;
8198 8199
}

8200
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8201
{
8202
	u64 now, diff, diffms;
8203 8204
	u32 count;

8205
	lockdep_assert_held(&mchdev_lock);
8206

8207 8208 8209
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
8210 8211 8212 8213 8214 8215 8216

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

8217 8218
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
8219 8220
		diff += count;
	} else {
8221
		diff = count - dev_priv->ips.last_count2;
8222 8223
	}

8224 8225
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
8226 8227 8228 8229

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
8230
	dev_priv->ips.gfx_power = diff;
8231 8232
}

8233 8234
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
8235 8236
	intel_wakeref_t wakeref;

8237
	if (!IS_GEN(dev_priv, 5))
8238 8239
		return;

8240 8241 8242 8243 8244
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8245 8246
}

8247
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8248 8249 8250 8251
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

8252
	lockdep_assert_held(&mchdev_lock);
8253

8254
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
8274
	corr2 = (corr * dev_priv->ips.corr);
8275 8276 8277 8278

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

8279
	__i915_update_gfx_val(dev_priv);
8280

8281
	return dev_priv->ips.gfx_power + state2;
8282 8283
}

8284 8285
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
8286 8287
	intel_wakeref_t wakeref;
	unsigned long val = 0;
8288

8289
	if (!IS_GEN(dev_priv, 5))
8290 8291
		return 0;

8292 8293 8294 8295 8296
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
8297

8298 8299
	return val;
}
8300

8301
static struct drm_i915_private __rcu *i915_mch_dev;
8302

8303 8304 8305 8306 8307
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
8308
	i915 = rcu_dereference(i915_mch_dev);
8309 8310 8311 8312 8313
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
8314 8315
}

8316 8317 8318 8319 8320 8321 8322 8323
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
8324 8325 8326 8327
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
8328

8329 8330 8331
	i915 = mchdev_get();
	if (!i915)
		return 0;
8332

8333 8334 8335 8336 8337 8338
	with_intel_runtime_pm(i915, wakeref) {
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
8339

8340 8341
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
8352
	struct drm_i915_private *i915;
8353

8354 8355 8356
	i915 = mchdev_get();
	if (!i915)
		return false;
8357

8358 8359 8360
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
8361
	spin_unlock_irq(&mchdev_lock);
8362

8363 8364
	drm_dev_put(&i915->drm);
	return true;
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
8376
	struct drm_i915_private *i915;
8377

8378 8379 8380
	i915 = mchdev_get();
	if (!i915)
		return false;
8381

8382 8383 8384
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
8385
	spin_unlock_irq(&mchdev_lock);
8386

8387 8388
	drm_dev_put(&i915->drm);
	return true;
8389 8390 8391 8392 8393 8394 8395 8396 8397 8398
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
8399 8400
	struct drm_i915_private *i915;
	bool ret;
8401

8402 8403 8404
	i915 = mchdev_get();
	if (!i915)
		return false;
8405

8406 8407 8408
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
8421 8422
	struct drm_i915_private *i915;
	bool ret;
8423

8424 8425 8426
	i915 = mchdev_get();
	if (!i915)
		return false;
8427

8428 8429 8430
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
8431
	spin_unlock_irq(&mchdev_lock);
8432

8433
	drm_dev_put(&i915->drm);
8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
8460 8461
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8462
	rcu_assign_pointer(i915_mch_dev, dev_priv);
8463 8464 8465 8466 8467 8468

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
8469
	rcu_assign_pointer(i915_mch_dev, NULL);
8470
}
8471

8472
static void intel_init_emon(struct drm_i915_private *dev_priv)
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
8489
		I915_WRITE(PEW(i), 0);
8490
	for (i = 0; i < 3; i++)
8491
		I915_WRITE(DEW(i), 0);
8492 8493 8494

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
8495
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8516
		I915_WRITE(PXW(i), val);
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
8532
		I915_WRITE(PXWL(i), 0);
8533 8534 8535 8536 8537 8538

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

8539
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8540 8541
}

8542
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8543
{
8544 8545
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

8546 8547 8548 8549
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
8550
	if (!sanitize_rc6(dev_priv)) {
8551
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8552
		pm_runtime_get(&dev_priv->drm.pdev->dev);
8553
	}
I
Imre Deak 已提交
8554

8555
	/* Initialize RPS limits (for userspace) */
8556 8557 8558 8559
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
8560
	else if (INTEL_GEN(dev_priv) >= 6)
8561 8562 8563
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
8564 8565
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
8566

8567
	/* After setting max-softlimit, find the overclock max freq */
8568
	if (IS_GEN(dev_priv, 6) ||
8569 8570 8571
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

8572 8573
		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
				       &params, NULL);
8574 8575
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8576
					 (rps->max_freq & 0xff) * 50,
8577
					 (params & 0xff) * 50);
8578
			rps->max_freq = params & 0xff;
8579 8580 8581
		}
	}

8582
	/* Finally allow us to boost to max by default */
8583
	rps->boost_freq = rps->max_freq;
8584 8585
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
8586 8587
}

8588
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8589
{
8590
	if (IS_VALLEYVIEW(dev_priv))
8591
		valleyview_cleanup_gt_powersave(dev_priv);
8592

8593
	if (!HAS_RC6(dev_priv))
8594
		pm_runtime_put(&dev_priv->drm.pdev->dev);
8595 8596
}

8597 8598
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8599 8600
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8601
	intel_disable_gt_powersave(dev_priv);
8602

8603 8604
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
8605
	else if (INTEL_GEN(dev_priv) >= 6)
8606
		gen6_reset_rps_interrupts(dev_priv);
8607 8608
}

8609 8610
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
8611
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8612

8613 8614 8615
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8616
	/* Currently there is no HW configuration to be done to disable. */
8617 8618

	i915->gt_pm.llc_pstate.enabled = false;
8619 8620
}

8621
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8622
{
8623
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8624

8625 8626 8627
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8628 8629 8630 8631 8632 8633 8634 8635
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8636 8637

	dev_priv->gt_pm.rc6.enabled = false;
8638
}
8639

8640 8641
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
8642
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8643

8644 8645 8646
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8647
	if (INTEL_GEN(dev_priv) >= 9)
8648
		gen9_disable_rps(dev_priv);
8649
	else if (IS_CHERRYVIEW(dev_priv))
8650
		cherryview_disable_rps(dev_priv);
8651
	else if (IS_VALLEYVIEW(dev_priv))
8652
		valleyview_disable_rps(dev_priv);
8653
	else if (INTEL_GEN(dev_priv) >= 6)
8654
		gen6_disable_rps(dev_priv);
8655
	else if (IS_IRONLAKE_M(dev_priv))
8656
		ironlake_disable_drps(dev_priv);
8657 8658

	dev_priv->gt_pm.rps.enabled = false;
8659 8660 8661 8662
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
8663
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8664

8665 8666
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8667 8668 8669
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8670
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8671 8672
}

8673 8674
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
8675
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8676

8677 8678 8679
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8680
	gen6_update_ring_freq(i915);
8681 8682

	i915->gt_pm.llc_pstate.enabled = true;
8683 8684
}

8685
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8686
{
8687
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8688

8689 8690 8691
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8692 8693 8694 8695
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
8696 8697
	else if (INTEL_GEN(dev_priv) >= 11)
		gen11_enable_rc6(dev_priv);
8698 8699 8700 8701 8702 8703
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8704 8705

	dev_priv->gt_pm.rc6.enabled = true;
8706
}
8707

8708 8709 8710
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8711

8712
	lockdep_assert_held(&rps->lock);
8713

8714 8715 8716
	if (rps->enabled)
		return;

8717 8718 8719 8720
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8721
	} else if (INTEL_GEN(dev_priv) >= 9) {
8722 8723 8724
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8725
	} else if (INTEL_GEN(dev_priv) >= 6) {
8726
		gen6_enable_rps(dev_priv);
8727 8728 8729
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8730
	}
8731

8732 8733
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8734

8735 8736
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8737 8738

	rps->enabled = true;
8739 8740 8741 8742 8743 8744 8745 8746
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

8747
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8748

8749 8750
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8751 8752
	if (HAS_RPS(dev_priv))
		intel_enable_rps(dev_priv);
8753 8754
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8755

8756
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8757
}
I
Imre Deak 已提交
8758

8759
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8760 8761 8762 8763 8764 8765 8766 8767 8768
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8769
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8770
{
8771
	enum pipe pipe;
8772

8773
	for_each_pipe(dev_priv, pipe) {
8774 8775 8776
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8777 8778 8779

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8780 8781 8782
	}
}

8783
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8784
{
8785
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8786

8787 8788 8789 8790
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8791 8792 8793
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8811
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8812 8813 8814
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8815

8816 8817 8818 8819 8820 8821 8822
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8823
	if (IS_IRONLAKE_M(dev_priv)) {
8824
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8825 8826 8827 8828 8829 8830 8831 8832
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8833 8834
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8835 8836 8837 8838 8839 8840
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8841

8842
	/* WaDisableRenderCachePipelinedFlush:ilk */
8843 8844
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8845

8846 8847 8848
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8849
	g4x_disable_trickle_feed(dev_priv);
8850

8851
	ibx_init_clock_gating(dev_priv);
8852 8853
}

8854
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8855 8856
{
	int pipe;
8857
	u32 val;
8858 8859 8860 8861 8862 8863

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8864 8865 8866
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8867 8868
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8869 8870 8871
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8872
	for_each_pipe(dev_priv, pipe) {
8873 8874 8875
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8876
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8877
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8878 8879 8880
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8881 8882
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8883
	/* WADP0ClockGatingDisable */
8884
	for_each_pipe(dev_priv, pipe) {
8885 8886 8887
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8888 8889
}

8890
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8891
{
8892
	u32 tmp;
8893 8894

	tmp = I915_READ(MCH_SSKPD);
8895 8896 8897
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8898 8899
}

8900
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8901
{
8902
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8903

8904
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8905 8906 8907 8908 8909

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8910
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8911 8912 8913
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8914 8915 8916
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8917 8918 8919
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8920 8921 8922 8923
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8924 8925
	 */
	I915_WRITE(GEN6_GT_MODE,
8926
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8927

8928
	I915_WRITE(CACHE_MODE_0,
8929
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8945
	 *
8946 8947
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8948 8949 8950 8951 8952
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8953
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8954 8955
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8956

8957 8958 8959 8960 8961 8962 8963 8964
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8965 8966 8967 8968 8969 8970 8971 8972
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8973 8974
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8975 8976 8977 8978 8979 8980 8981
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8982 8983 8984 8985
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8986

8987
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8988

8989
	cpt_init_clock_gating(dev_priv);
8990

8991
	gen6_check_mch_setup(dev_priv);
8992 8993 8994 8995
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8996
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8997

8998
	/*
8999
	 * WaVSThreadDispatchOverride:ivb,vlv
9000 9001 9002 9003
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
9004 9005 9006 9007 9008 9009 9010 9011
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

9012
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
9013 9014 9015 9016 9017
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
9018
	if (HAS_PCH_LPT_LP(dev_priv))
9019 9020 9021
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
9022 9023

	/* WADPOClockGatingDisable:hsw */
9024 9025
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9026
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9027 9028
}

9029
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9030
{
9031
	if (HAS_PCH_LPT_LP(dev_priv)) {
9032
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9033 9034 9035 9036 9037 9038

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

9039 9040 9041 9042 9043
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
9044
	u32 val;
9045 9046 9047 9048 9049

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

9050 9051 9052 9053 9054
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
9055 9056 9057 9058 9059 9060 9061 9062 9063 9064

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
9065 9066 9067 9068 9069
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9070 9071 9072 9073

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
9074 9075
}

9076 9077 9078 9079 9080
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

9081
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9082 9083
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
9084 9085
}

9086
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9087
{
9088
	u32 val;
9089 9090
	cnp_init_clock_gating(dev_priv);

9091 9092 9093 9094
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

9095 9096 9097 9098 9099 9100 9101 9102
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

9103 9104 9105
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
9106 9107
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9108 9109
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9110

R
Rodrigo Vivi 已提交
9111 9112 9113 9114 9115
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

9116
	/* WaDisableVFclkgate:cnl */
9117
	/* WaVFUnitClockGatingDisable:cnl */
9118 9119 9120
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9121 9122
}

9123 9124 9125 9126 9127 9128 9129 9130 9131 9132
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

9133
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9134
{
9135
	gen9_init_clock_gating(dev_priv);
9136 9137 9138 9139 9140

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9141 9142 9143 9144 9145

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9146

9147
	/* WaFbcNukeOnHostModify:kbl */
9148 9149
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9150 9151
}

9152
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9153
{
9154
	gen9_init_clock_gating(dev_priv);
9155 9156 9157 9158

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
9159 9160 9161 9162

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9163 9164
}

9165
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
9166
{
9167 9168 9169
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
9170
	enum pipe pipe;
B
Ben Widawsky 已提交
9171

9172
	/* WaSwitchSolVfFArbitrationPriority:bdw */
9173
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9174

9175
	/* WaPsrDPAMaskVBlankInSRD:bdw */
9176 9177 9178
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

9179
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9180
	for_each_pipe(dev_priv, pipe) {
9181
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
9182
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
9183
			   BDW_DPRS_MASK_VBLANK_SRD);
9184
	}
9185

9186 9187 9188 9189 9190
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9191

9192 9193
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9194 9195 9196 9197

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9198

9199 9200
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
9201

9202 9203
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
9204

9205 9206 9207 9208
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

9209
	lpt_init_clock_gating(dev_priv);
9210 9211 9212 9213 9214 9215 9216 9217

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
9218 9219
}

9220
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9221
{
9222 9223 9224 9225 9226
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

9227
	/* This is required by WaCatErrorRejectionIssue:hsw */
9228 9229 9230 9231
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9232 9233 9234
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9235

9236 9237 9238
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9239 9240 9241 9242
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

9243
	/* WaDisable4x2SubspanOptimization:hsw */
9244 9245
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9246

9247 9248 9249
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9250 9251 9252 9253
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9254 9255
	 */
	I915_WRITE(GEN7_GT_MODE,
9256
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9257

9258 9259 9260 9261
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

9262
	/* WaSwitchSolVfFArbitrationPriority:hsw */
9263 9264
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

9265
	lpt_init_clock_gating(dev_priv);
9266 9267
}

9268
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9269
{
9270
	u32 snpcr;
9271

9272
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9273

9274
	/* WaDisableEarlyCull:ivb */
9275 9276 9277
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9278
	/* WaDisableBackToBackFlipFix:ivb */
9279 9280 9281 9282
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9283
	/* WaDisablePSDDualDispatchEnable:ivb */
9284
	if (IS_IVB_GT1(dev_priv))
9285 9286 9287
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

9288 9289 9290
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9291
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9292 9293 9294
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

9295
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9296 9297 9298
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9299
		   GEN7_WA_L3_CHICKEN_MODE);
9300
	if (IS_IVB_GT1(dev_priv))
9301 9302
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9303 9304 9305 9306
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9307 9308
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9309
	}
9310

9311
	/* WaForceL3Serialization:ivb */
9312 9313 9314
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9315
	/*
9316
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9317
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9318 9319
	 */
	I915_WRITE(GEN6_UCGCTL2,
9320
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9321

9322
	/* This is required by WaCatErrorRejectionIssue:ivb */
9323 9324 9325 9326
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9327
	g4x_disable_trickle_feed(dev_priv);
9328 9329

	gen7_setup_fixed_func_scheduler(dev_priv);
9330

9331 9332 9333 9334 9335
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
9336

9337
	/* WaDisable4x2SubspanOptimization:ivb */
9338 9339
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9340

9341 9342 9343
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
9344 9345 9346 9347
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9348 9349
	 */
	I915_WRITE(GEN7_GT_MODE,
9350
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9351

9352 9353 9354 9355
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9356

9357
	if (!HAS_PCH_NOP(dev_priv))
9358
		cpt_init_clock_gating(dev_priv);
9359

9360
	gen6_check_mch_setup(dev_priv);
9361 9362
}

9363
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9364
{
9365
	/* WaDisableEarlyCull:vlv */
9366 9367 9368
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

9369
	/* WaDisableBackToBackFlipFix:vlv */
9370 9371 9372 9373
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

9374
	/* WaPsdDispatchEnable:vlv */
9375
	/* WaDisablePSDDualDispatchEnable:vlv */
9376
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9377 9378
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9379

9380 9381 9382
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9383
	/* WaForceL3Serialization:vlv */
9384 9385 9386
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

9387
	/* WaDisableDopClockGating:vlv */
9388 9389 9390
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

9391
	/* This is required by WaCatErrorRejectionIssue:vlv */
9392 9393 9394 9395
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

9396 9397
	gen7_setup_fixed_func_scheduler(dev_priv);

9398
	/*
9399
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9400
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9401 9402
	 */
	I915_WRITE(GEN6_UCGCTL2,
9403
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9404

9405 9406 9407 9408 9409
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9410

9411 9412 9413 9414
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
9415 9416
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9417

9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

9429 9430 9431 9432 9433 9434
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

9435
	/*
9436
	 * WaDisableVLVClockGating_VBIIssue:vlv
9437 9438 9439
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
9440
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9441 9442
}

9443
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9444
{
9445 9446 9447 9448 9449
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9450 9451 9452 9453

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9454 9455 9456 9457

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9458 9459 9460 9461

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9462

9463 9464 9465 9466 9467 9468 9469
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

9470 9471 9472 9473 9474
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9475 9476
}

9477
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9478
{
9479
	u32 dspclk_gate;
9480 9481 9482 9483 9484 9485 9486 9487 9488

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
9489
	if (IS_GM45(dev_priv))
9490 9491
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9492 9493 9494 9495

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9496

9497 9498 9499
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

9500
	g4x_disable_trickle_feed(dev_priv);
9501 9502
}

9503
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9504 9505 9506 9507 9508 9509
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
9510 9511
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9512 9513 9514

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9515 9516
}

9517
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9518 9519 9520 9521 9522 9523 9524
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
9525 9526
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9527 9528 9529

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9530 9531
}

9532
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9533 9534 9535 9536 9537 9538
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
9539

9540
	if (IS_PINEVIEW(dev_priv))
9541
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9542 9543 9544

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9545 9546

	/* interrupts should cause a wake up from C3 */
9547
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9548 9549 9550

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9551 9552 9553

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9554 9555
}

9556
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9557 9558
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9559 9560 9561 9562

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9563 9564 9565

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9566 9567
}

9568
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9569
{
9570 9571 9572
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9573 9574
}

9575
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9576
{
9577
	dev_priv->display.init_clock_gating(dev_priv);
9578 9579
}

9580
void intel_suspend_hw(struct drm_i915_private *dev_priv)
9581
{
9582 9583
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
9584 9585
}

9586
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9602
	if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
9603
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9604
	else if (IS_CANNONLAKE(dev_priv))
9605
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9606 9607
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9608
	else if (IS_SKYLAKE(dev_priv))
9609
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9610
	else if (IS_KABYLAKE(dev_priv))
9611
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9612
	else if (IS_BROXTON(dev_priv))
9613
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9614 9615
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9616
	else if (IS_BROADWELL(dev_priv))
9617
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9618
	else if (IS_CHERRYVIEW(dev_priv))
9619
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9620
	else if (IS_HASWELL(dev_priv))
9621
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9622
	else if (IS_IVYBRIDGE(dev_priv))
9623
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9624
	else if (IS_VALLEYVIEW(dev_priv))
9625
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9626
	else if (IS_GEN(dev_priv, 6))
9627
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9628
	else if (IS_GEN(dev_priv, 5))
9629
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9630 9631
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9632
	else if (IS_I965GM(dev_priv))
9633
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9634
	else if (IS_I965G(dev_priv))
9635
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9636
	else if (IS_GEN(dev_priv, 3))
9637 9638 9639
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9640
	else if (IS_GEN(dev_priv, 2))
9641 9642 9643 9644 9645 9646 9647
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9648
/* Set up chip specific power management-related functions */
9649
void intel_init_pm(struct drm_i915_private *dev_priv)
9650
{
9651
	/* For cxsr */
9652
	if (IS_PINEVIEW(dev_priv))
9653
		i915_pineview_get_mem_freq(dev_priv);
9654
	else if (IS_GEN(dev_priv, 5))
9655
		i915_ironlake_get_mem_freq(dev_priv);
9656

9657
	/* For FIFO watermark updates */
9658
	if (INTEL_GEN(dev_priv) >= 9) {
9659
		skl_setup_wm_latency(dev_priv);
9660
		dev_priv->display.initial_watermarks = skl_initial_wm;
9661
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9662
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9663
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9664
		ilk_setup_wm_latency(dev_priv);
9665

9666
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9667
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9668
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9669
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9670
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9671 9672 9673 9674 9675 9676
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9677 9678 9679 9680
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9681
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9682
		vlv_setup_wm_latency(dev_priv);
9683
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9684
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9685
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9686
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9687
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9688 9689 9690 9691 9692 9693
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9694
	} else if (IS_PINEVIEW(dev_priv)) {
9695
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9696 9697 9698 9699 9700 9701 9702 9703 9704
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9705
			intel_set_memory_cxsr(dev_priv, false);
9706 9707 9708
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9709
	} else if (IS_GEN(dev_priv, 4)) {
9710
		dev_priv->display.update_wm = i965_update_wm;
9711
	} else if (IS_GEN(dev_priv, 3)) {
9712 9713
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9714
	} else if (IS_GEN(dev_priv, 2)) {
9715
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9716
			dev_priv->display.update_wm = i845_update_wm;
9717
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9718 9719
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9720
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9721 9722 9723
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9724 9725 9726
	}
}

9727 9728
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9729 9730
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9731 9732 9733 9734
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9735
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9736 9737
}

9738
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9739
{
9740 9741 9742
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9743 9744
}

9745
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9746
{
9747 9748
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9749 9750 9751 9752
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9753
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9754 9755
}

9756
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9757
{
9758 9759
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9760
	/* CHV needs even values */
9761
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9762 9763
}

9764
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9765
{
9766
	if (INTEL_GEN(dev_priv) >= 9)
9767 9768
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9769
	else if (IS_CHERRYVIEW(dev_priv))
9770
		return chv_gpu_freq(dev_priv, val);
9771
	else if (IS_VALLEYVIEW(dev_priv))
9772 9773 9774
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9775 9776
}

9777 9778
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9779
	if (INTEL_GEN(dev_priv) >= 9)
9780 9781
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9782
	else if (IS_CHERRYVIEW(dev_priv))
9783
		return chv_freq_opcode(dev_priv, val);
9784
	else if (IS_VALLEYVIEW(dev_priv))
9785 9786
		return byt_freq_opcode(dev_priv, val);
	else
9787
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9788
}
9789

9790
void intel_pm_setup(struct drm_i915_private *dev_priv)
9791
{
9792
	mutex_init(&dev_priv->gt_pm.rps.lock);
C
Chris Wilson 已提交
9793
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9794

9795
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9796

9797 9798
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9799
}
9800

9801 9802 9803
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9804
	u32 lower, upper, tmp;
9805
	int loop = 2;
9806

9807 9808
	/*
	 * The register accessed do not need forcewake. We borrow
9809 9810
	 * uncore lock to prevent concurrent access to range reg.
	 */
9811
	lockdep_assert_held(&dev_priv->uncore.lock);
9812

9813 9814
	/*
	 * vlv and chv residency counters are 40 bits in width.
9815 9816
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9817 9818 9819 9820 9821
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9822
	 */
9823 9824
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9836
	} while (upper != tmp && --loop);
9837

9838 9839
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9840 9841 9842 9843
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9844 9845 9846
	return lower | (u64)upper << 8;
}

9847
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9848
			   const i915_reg_t reg)
9849
{
9850
	struct intel_uncore *uncore = &dev_priv->uncore;
9851 9852 9853 9854
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9855
	u32 mul, div;
9856

9857
	if (!HAS_RC6(dev_priv))
9858 9859
		return 0;

9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

9872
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
9873

9874 9875
	spin_lock_irqsave(&uncore->lock, flags);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
9876

9877 9878
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9879
		mul = 1000000;
9880
		div = dev_priv->czclk_freq;
9881
		overflow_hw = BIT_ULL(40);
9882 9883
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9884 9885 9886 9887 9888 9889 9890 9891
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9892

9893
		overflow_hw = BIT_ULL(32);
9894
		time_hw = intel_uncore_read_fw(uncore, reg);
9895
	}
9896

9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

9916 9917
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irqrestore(&uncore->lock, flags);
9918 9919

	return mul_u64_u32_div(time_hw, mul, div);
9920
}
T
Tvrtko Ursulin 已提交
9921

9922 9923 9924 9925 9926 9927
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   i915_reg_t reg)
{
	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
}

T
Tvrtko Ursulin 已提交
9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940
u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}