intel_pm.c 217.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_fixed.h"
44
#include "i915_irq.h"
45
#include "i915_trace.h"
46
#include "intel_pm.h"
47
#include "intel_sideband.h"
48
#include "../../../platform/x86/intel_ips.h"
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

73
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
74
{
75 76 77
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
78
		 * Display WA #0390: skl,kbl
79 80 81 82 83 84 85 86 87
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

88
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
89 90 91
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

92
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
93 94
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
95

96 97
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
98 99 100
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
101

102
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
103 104
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
105 106 107 108 109 110

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
111 112
}

113
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
114
{
115
	gen9_init_clock_gating(dev_priv);
116

117 118 119 120
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

121 122
	/*
	 * FIXME:
123
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
124 125
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
126
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
127 128 129 130 131

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
132 133
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
134 135 136 137 138 139 140 141

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

157
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

195
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
196 197 198
{
	u16 ddrpll, csipll;

199 200
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
216 217
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
245 246
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
247 248 249 250 251
		dev_priv->fsb_freq = 0;
		break;
	}
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

290 291
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

318
	vlv_punit_get(dev_priv);
319 320 321 322 323 324 325 326 327 328 329 330

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
331 332
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
333

334
	vlv_punit_put(dev_priv);
335 336
}

337 338 339 340
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

341
	vlv_punit_get(dev_priv);
342

343
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
344 345 346 347
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
348
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
349

350
	vlv_punit_put(dev_priv);
351 352
}

353 354 355
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

356
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
357
{
358
	bool was_enabled;
359
	u32 val;
360

361
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
362
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
363
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
364
		POSTING_READ(FW_BLC_SELF_VLV);
365
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
366
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
367
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
368
		POSTING_READ(FW_BLC_SELF);
369
	} else if (IS_PINEVIEW(dev_priv)) {
370 371 372 373 374 375
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
376
		I915_WRITE(DSPFW3, val);
377
		POSTING_READ(DSPFW3);
378
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
379
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
380 381 382
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
383
		POSTING_READ(FW_BLC_SELF);
384
	} else if (IS_I915GM(dev_priv)) {
385 386 387 388 389
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
390
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
391 392 393
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
394
		POSTING_READ(INSTPM);
395
	} else {
396
		return false;
397
	}
398

399 400
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

401 402 403
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
404 405

	return was_enabled;
406 407
}

V
Ville Syrjälä 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
445
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
446
{
447 448
	bool ret;

449
	mutex_lock(&dev_priv->wm.wm_mutex);
450
	ret = _intel_set_memory_cxsr(dev_priv, enable);
451 452 453 454
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
455
	mutex_unlock(&dev_priv->wm.wm_mutex);
456 457

	return ret;
458
}
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
474
static const int pessimal_latency_ns = 5000;
475

476 477 478
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

479
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
480
{
481
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
482
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
483
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
484 485
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
486
	u32 dsparb, dsparb2, dsparb3;
487

488
	switch (pipe) {
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
508 509
		MISSING_CASE(pipe);
		return;
510 511
	}

512 513 514 515
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
516 517
}

518 519
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
520
{
521
	u32 dsparb = I915_READ(DSPARB);
522 523 524
	int size;

	size = dsparb & 0x7f;
525
	if (i9xx_plane == PLANE_B)
526 527
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

528 529
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
530 531 532 533

	return size;
}

534 535
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
536
{
537
	u32 dsparb = I915_READ(DSPARB);
538 539 540
	int size;

	size = dsparb & 0x1ff;
541
	if (i9xx_plane == PLANE_B)
542 543 544
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

545 546
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
547 548 549 550

	return size;
}

551 552
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
553
{
554
	u32 dsparb = I915_READ(DSPARB);
555 556 557 558 559
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

560 561
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
562 563 564 565 566

	return size;
}

/* Pineview has different values for various configs */
567
static const struct intel_watermark_params pnv_display_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573
};
574 575

static const struct intel_watermark_params pnv_display_hplloff_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581
};
582 583

static const struct intel_watermark_params pnv_cursor_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589
};
590 591

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
592 593 594 595 596
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
597
};
598

599
static const struct intel_watermark_params i965_cursor_wm_info = {
600 601 602 603 604
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
605
};
606

607
static const struct intel_watermark_params i945_wm_info = {
608 609 610 611 612
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
613
};
614

615
static const struct intel_watermark_params i915_wm_info = {
616 617 618 619 620
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
621
};
622

623
static const struct intel_watermark_params i830_a_wm_info = {
624 625 626 627 628
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
629
};
630

631 632 633 634 635 636 637
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
638

639
static const struct intel_watermark_params i845_wm_info = {
640 641 642 643 644
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
645 646
};

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
684
	u64 ret;
685

686
	ret = mul_u32_u32(pixel_rate, cpp * latency);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

743 744
/**
 * intel_calculate_wm - calculate watermark level
745
 * @pixel_rate: pixel clock
746
 * @wm: chip FIFO params
747
 * @fifo_size: size of the FIFO buffer
748
 * @cpp: bytes per pixel
749 750 751 752 753 754 755 756 757 758 759 760 761
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
762 763 764 765
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
766
{
767
	int entries, wm_size;
768 769 770 771 772 773 774

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
775 776 777 778 779
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
780

781 782
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
783 784

	/* Don't promote wm_size to unsigned... */
785
	if (wm_size > wm->max_wm)
786 787 788
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
789 790 791 792 793 794 795 796 797 798 799

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

800 801 802
	return wm_size;
}

803 804 805 806 807 808 809 810 811 812
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

813 814 815 816 817
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

818 819 820
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
821
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
822 823

	/* FIXME check the 'enable' instead */
824
	if (!crtc_state->hw.active)
825 826 827 828 829 830 831 832 833 834 835
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
836
		return plane_state->hw.fb != NULL;
837
	else
838
		return plane_state->uapi.visible;
839 840
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

860
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
861
{
862
	struct intel_crtc *crtc, *enabled = NULL;
863

864
	for_each_intel_crtc(&dev_priv->drm, crtc) {
865
		if (intel_crtc_active(crtc)) {
866 867 868 869 870 871 872 873 874
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

875
static void pnv_update_wm(struct intel_crtc *unused_crtc)
876
{
877
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
878
	struct intel_crtc *crtc;
879 880
	const struct cxsr_latency *latency;
	u32 reg;
881
	unsigned int wm;
882

883
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
884 885 886
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
887
	if (!latency) {
888 889
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
890
		intel_set_memory_cxsr(dev_priv, false);
891 892 893
		return;
	}

894
	crtc = single_enabled_crtc(dev_priv);
895
	if (crtc) {
896
		const struct drm_display_mode *adjusted_mode =
897
			&crtc->config->hw.adjusted_mode;
898 899
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
900
		int cpp = fb->format->cpp[0];
901
		int clock = adjusted_mode->crtc_clock;
902 903

		/* Display SR */
904 905
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
906
					cpp, latency->display_sr);
907 908
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
909
		reg |= FW_WM(wm, SR);
910
		I915_WRITE(DSPFW1, reg);
911
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
912 913

		/* cursor SR */
914 915
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
916
					4, latency->cursor_sr);
917 918
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
919
		reg |= FW_WM(wm, CURSOR_SR);
920 921 922
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
923 924
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
925
					cpp, latency->display_hpll_disable);
926 927
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
928
		reg |= FW_WM(wm, HPLL_SR);
929 930 931
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
932 933
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
934
					4, latency->cursor_hpll_disable);
935 936
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
937
		reg |= FW_WM(wm, HPLL_CURSOR);
938
		I915_WRITE(DSPFW3, reg);
939
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
940

941
		intel_set_memory_cxsr(dev_priv, true);
942
	} else {
943
		intel_set_memory_cxsr(dev_priv, false);
944 945 946
	}
}

947 948 949 950 951 952 953 954 955 956
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
957
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
958 959 960 961 962 963
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

964 965
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
966
{
967 968 969 970 971
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
989

990
	POSTING_READ(DSPFW1);
991 992
}

993 994 995
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

996
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
997 998
				const struct vlv_wm_values *wm)
{
999 1000 1001
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1002 1003
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1004 1005 1006 1007 1008 1009
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

1022
	I915_WRITE(DSPFW1,
1023
		   FW_WM(wm->sr.plane, SR) |
1024 1025 1026
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1027
	I915_WRITE(DSPFW2,
1028 1029 1030
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1031
	I915_WRITE(DSPFW3,
1032
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1033 1034 1035

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1036 1037
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1038
		I915_WRITE(DSPFW8_CHV,
1039 1040
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1041
		I915_WRITE(DSPFW9_CHV,
1042 1043
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1044
		I915_WRITE(DSPHOWM,
1045
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1046 1047 1048 1049 1050 1051 1052 1053 1054
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1055 1056
	} else {
		I915_WRITE(DSPFW7,
1057 1058
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1059
		I915_WRITE(DSPHOWM,
1060
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1061 1062 1063 1064 1065 1066
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1067 1068 1069
	}

	POSTING_READ(DSPFW1);
1070 1071
}

1072 1073
#undef FW_WM_VLV

1074 1075 1076 1077 1078
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1079
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1080

1081
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1126 1127 1128
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1129
{
1130
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1131 1132
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1133
		&crtc_state->hw.adjusted_mode;
1134 1135
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1136 1137 1138 1139 1140 1141 1142

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1143
	cpp = plane_state->hw.fb->format->cpp[0];
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1158
		cpp = max(cpp, 4u);
1159 1160 1161 1162

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1163
	width = drm_rect_width(&plane_state->uapi.dst);
1164 1165 1166 1167 1168 1169 1170

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1171
		unsigned int small, large;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1184
	return min_t(unsigned int, wm, USHRT_MAX);
1185 1186 1187 1188 1189
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1190
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1206
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1222 1223
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1224
			      u32 pri_val);
1225 1226 1227 1228

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1229
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1230
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1283 1284 1285 1286 1287 1288
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1289 1290

		if (plane_id == PLANE_PRIMARY)
1291 1292 1293 1294
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1311
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1349
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1350
	struct intel_atomic_state *state =
1351
		to_intel_atomic_state(crtc_state->uapi.state);
1352
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1353 1354
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1355
	const struct g4x_pipe_wm *raw;
1356 1357
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1358 1359 1360 1361 1362
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1363 1364 1365
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1366 1367
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1368 1369
			continue;

1370
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1436
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1437
{
1438
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1439 1440 1441
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1442
		to_intel_atomic_state(new_crtc_state->uapi.state);
1443 1444 1445
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1446 1447
	enum plane_id plane_id;

1448
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1449 1450 1451 1452 1453 1454 1455
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1456
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1457
		!new_crtc_state->disable_cxsr;
1458
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1459
		!new_crtc_state->disable_cxsr;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1501
out:
1502 1503 1504 1505 1506
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1507
		new_crtc_state->wm.need_postvbl_update = true;
1508 1509 1510 1511 1512 1513 1514 1515

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1516
	int num_active_pipes = 0;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1535
		num_active_pipes++;
1536 1537
	}

1538
	if (num_active_pipes != 1) {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1578
				   struct intel_crtc *crtc)
1579
{
1580 1581 1582
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1583 1584 1585 1586 1587 1588 1589 1590

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1591
				    struct intel_crtc *crtc)
1592
{
1593 1594 1595
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1596 1597 1598 1599 1600

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1601
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1602 1603 1604 1605
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1606 1607
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1608 1609
				   unsigned int htotal,
				   unsigned int width,
1610
				   unsigned int cpp,
1611 1612 1613 1614
				   unsigned int latency)
{
	unsigned int ret;

1615 1616
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1617 1618 1619 1620 1621
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1622
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1623 1624 1625 1626
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1627 1628
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1629 1630 1631
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1632 1633

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1634 1635 1636
	}
}

1637 1638 1639
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1640
{
1641
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1642
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1643
	const struct drm_display_mode *adjusted_mode =
1644
		&crtc_state->hw.adjusted_mode;
1645
	unsigned int clock, htotal, cpp, width, wm;
1646 1647 1648 1649

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1650
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1651 1652
		return 0;

1653
	cpp = plane_state->hw.fb->format->cpp[0];
1654 1655 1656
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1657

1658
	if (plane->id == PLANE_CURSOR) {
1659 1660 1661 1662 1663 1664 1665 1666
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1667
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1668 1669 1670
				    dev_priv->wm.pri_latency[level] * 10);
	}

1671
	return min_t(unsigned int, wm, USHRT_MAX);
1672 1673
}

1674 1675 1676 1677 1678 1679
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1680
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1681
{
1682
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1683
	const struct g4x_pipe_wm *raw =
1684
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1685
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1686
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1687
	int num_active_planes = hweight8(active_planes);
1688
	const int fifo_size = 511;
1689
	int fifo_extra, fifo_left = fifo_size;
1690
	int sprite0_fifo_extra = 0;
1691 1692
	unsigned int total_rate;
	enum plane_id plane_id;
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1705 1706
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1707 1708
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1709

1710 1711
	if (total_rate > fifo_size)
		return -EINVAL;
1712

1713 1714
	if (total_rate == 0)
		total_rate = 1;
1715

1716
	for_each_plane_id_on_crtc(crtc, plane_id) {
1717 1718
		unsigned int rate;

1719 1720
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1721 1722 1723
			continue;
		}

1724 1725 1726
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1727 1728
	}

1729 1730 1731
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1732 1733 1734
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1735 1736

	/* spread the remainder evenly */
1737
	for_each_plane_id_on_crtc(crtc, plane_id) {
1738 1739 1740 1741 1742
		int plane_extra;

		if (fifo_left == 0)
			break;

1743
		if ((active_planes & BIT(plane_id)) == 0)
1744 1745 1746
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1747
		fifo_state->plane[plane_id] += plane_extra;
1748 1749 1750
		fifo_left -= plane_extra;
	}

1751 1752 1753 1754 1755 1756 1757 1758 1759
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1760 1761
}

1762 1763 1764 1765 1766 1767
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1768
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1779 1780 1781 1782 1783 1784 1785 1786
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1787 1788 1789 1790
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1791
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1792
				 int level, enum plane_id plane_id, u16 value)
1793
{
1794
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1795
	int num_levels = intel_wm_num_levels(dev_priv);
1796
	bool dirty = false;
1797

1798
	for (; level < num_levels; level++) {
1799
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1800

1801
		dirty |= raw->plane[plane_id] != value;
1802
		raw->plane[plane_id] = value;
1803
	}
1804 1805

	return dirty;
1806 1807
}

1808 1809
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1810
{
1811
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1812
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1813
	enum plane_id plane_id = plane->id;
1814
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1815
	int level;
1816
	bool dirty = false;
1817

1818
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1819 1820
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1821
	}
1822

1823
	for (level = 0; level < num_levels; level++) {
1824
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1825 1826
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1827

1828 1829
		if (wm > max_wm)
			break;
1830

1831
		dirty |= raw->plane[plane_id] != wm;
1832 1833
		raw->plane[plane_id] = wm;
	}
1834

1835
	/* mark all higher levels as invalid */
1836
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1837

1838 1839
out:
	if (dirty)
1840 1841 1842 1843 1844 1845
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1846 1847

	return dirty;
1848
}
1849

1850 1851
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1852
{
1853
	const struct g4x_pipe_wm *raw =
1854 1855 1856
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1857

1858 1859
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1860

1861
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1862
{
1863 1864 1865 1866
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1867 1868 1869 1870
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1871
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1872 1873
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1874
		to_intel_atomic_state(crtc_state->uapi.state);
1875 1876 1877
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1878 1879
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1880
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1881 1882
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1883 1884 1885
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1886
	unsigned int dirty = 0;
1887

1888 1889 1890
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1891 1892
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1893
			continue;
1894

1895
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1914
			intel_atomic_get_old_crtc_state(state, crtc);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1926
	}
1927

1928
	/* initially allow all levels */
1929
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1930 1931 1932 1933 1934
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1935
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1936

1937
	for (level = 0; level < wm_state->num_levels; level++) {
1938
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1939
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1940

1941
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1942
			break;
1943

1944 1945 1946 1947 1948 1949 1950 1951
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1952
						 raw->plane[PLANE_SPRITE0],
1953 1954
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1955

1956 1957 1958
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1959 1960
	}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1971 1972
}

1973 1974 1975
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1976
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1977
				   struct intel_crtc *crtc)
1978
{
1979
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1980
	struct intel_uncore *uncore = &dev_priv->uncore;
1981 1982
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1983 1984
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1985
	int sprite0_start, sprite1_start, fifo_size;
1986
	u32 dsparb, dsparb2, dsparb3;
1987

1988 1989 1990
	if (!crtc_state->fifo_changed)
		return;

1991 1992 1993
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1994

1995 1996
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1997

1998 1999
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2009
	spin_lock(&uncore->lock);
2010

2011 2012
	switch (crtc->pipe) {
	case PIPE_A:
2013 2014
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2026 2027
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2028 2029
		break;
	case PIPE_B:
2030 2031
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2043 2044
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2045 2046
		break;
	case PIPE_C:
2047 2048
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2060 2061
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2062 2063 2064 2065
		break;
	default:
		break;
	}
2066

2067
	intel_uncore_posting_read_fw(uncore, DSPARB);
2068

2069
	spin_unlock(&uncore->lock);
2070 2071 2072 2073
}

#undef VLV_FIFO

2074
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2075
{
2076
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2077 2078 2079
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2080
		to_intel_atomic_state(new_crtc_state->uapi.state);
2081 2082 2083
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2084 2085
	int level;

2086
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2087 2088 2089 2090 2091 2092
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2093
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2094
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2095
		!new_crtc_state->disable_cxsr;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2114
out:
2115 2116 2117 2118
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2119
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2120
		new_crtc_state->wm.need_postvbl_update = true;
2121 2122 2123 2124

	return 0;
}

2125
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2126 2127 2128
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2129
	int num_active_pipes = 0;
2130

2131
	wm->level = dev_priv->wm.max_level;
2132 2133
	wm->cxsr = true;

2134
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2135
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2136 2137 2138 2139 2140 2141 2142

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2143
		num_active_pipes++;
2144 2145 2146
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2147
	if (num_active_pipes != 1)
2148 2149
		wm->cxsr = false;

2150
	if (num_active_pipes > 1)
2151 2152
		wm->level = VLV_WM_LEVEL_PM2;

2153
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2154
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2155 2156 2157
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2158
		if (crtc->active && wm->cxsr)
2159 2160
			wm->sr = wm_state->sr[wm->level];

2161 2162 2163 2164
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2165 2166 2167
	}
}

2168
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2169
{
2170 2171
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2172

2173
	vlv_merge_wm(dev_priv, &new_wm);
2174

2175
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2176 2177
		return;

2178
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2179 2180
		chv_set_memory_dvfs(dev_priv, false);

2181
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2182 2183
		chv_set_memory_pm5(dev_priv, false);

2184
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2185
		_intel_set_memory_cxsr(dev_priv, false);
2186

2187
	vlv_write_wm_values(dev_priv, &new_wm);
2188

2189
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2190
		_intel_set_memory_cxsr(dev_priv, true);
2191

2192
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2193 2194
		chv_set_memory_pm5(dev_priv, true);

2195
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2196 2197
		chv_set_memory_dvfs(dev_priv, true);

2198
	*old_wm = new_wm;
2199 2200
}

2201
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2202
				   struct intel_crtc *crtc)
2203
{
2204 2205 2206
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2207 2208

	mutex_lock(&dev_priv->wm.wm_mutex);
2209 2210 2211 2212 2213 2214
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2215
				    struct intel_crtc *crtc)
2216
{
2217 2218 2219
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2220 2221 2222 2223 2224

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2225
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2226 2227 2228 2229
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2230
static void i965_update_wm(struct intel_crtc *unused_crtc)
2231
{
2232
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2233
	struct intel_crtc *crtc;
2234 2235
	int srwm = 1;
	int cursor_sr = 16;
2236
	bool cxsr_enabled;
2237 2238

	/* Calc sr entries for one plane configs */
2239
	crtc = single_enabled_crtc(dev_priv);
2240 2241 2242
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2243
		const struct drm_display_mode *adjusted_mode =
2244
			&crtc->config->hw.adjusted_mode;
2245 2246
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2247
		int clock = adjusted_mode->crtc_clock;
2248
		int htotal = adjusted_mode->crtc_htotal;
2249
		int hdisplay = crtc->config->pipe_src_w;
2250
		int cpp = fb->format->cpp[0];
2251 2252
		int entries;

2253 2254
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2255 2256 2257 2258 2259
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2260 2261 2262
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2263

2264 2265 2266
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2267
		entries = DIV_ROUND_UP(entries,
2268 2269
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2270

2271
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2272 2273 2274
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2275 2276 2277
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2278

2279
		cxsr_enabled = true;
2280
	} else {
2281
		cxsr_enabled = false;
2282
		/* Turn off self refresh if both pipes are enabled */
2283
		intel_set_memory_cxsr(dev_priv, false);
2284 2285
	}

2286 2287 2288
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2289 2290

	/* 965 has limitations... */
2291 2292 2293 2294 2295 2296
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2297
	/* update cursor SR watermark */
2298
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2299 2300 2301

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2302 2303
}

2304 2305
#undef FW_WM

2306
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2307
{
2308
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2309
	const struct intel_watermark_params *wm_info;
2310 2311
	u32 fwater_lo;
	u32 fwater_hi;
2312 2313 2314
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2315
	struct intel_crtc *crtc, *enabled = NULL;
2316

2317
	if (IS_I945GM(dev_priv))
2318
		wm_info = &i945_wm_info;
2319
	else if (!IS_GEN(dev_priv, 2))
2320 2321
		wm_info = &i915_wm_info;
	else
2322
		wm_info = &i830_a_wm_info;
2323

2324 2325
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2326 2327
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2328
			&crtc->config->hw.adjusted_mode;
2329 2330 2331 2332
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2333
		if (IS_GEN(dev_priv, 2))
2334
			cpp = 4;
2335
		else
2336
			cpp = fb->format->cpp[0];
2337

2338
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2339
					       wm_info, fifo_size, cpp,
2340
					       pessimal_latency_ns);
2341
		enabled = crtc;
2342
	} else {
2343
		planea_wm = fifo_size - wm_info->guard_size;
2344 2345 2346 2347
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2348
	if (IS_GEN(dev_priv, 2))
2349
		wm_info = &i830_bc_wm_info;
2350

2351 2352
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2353 2354
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2355
			&crtc->config->hw.adjusted_mode;
2356 2357 2358 2359
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2360
		if (IS_GEN(dev_priv, 2))
2361
			cpp = 4;
2362
		else
2363
			cpp = fb->format->cpp[0];
2364

2365
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2366
					       wm_info, fifo_size, cpp,
2367
					       pessimal_latency_ns);
2368 2369 2370 2371
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2372
	} else {
2373
		planeb_wm = fifo_size - wm_info->guard_size;
2374 2375 2376
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2377

2378 2379
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2380

2381
	if (IS_I915GM(dev_priv) && enabled) {
2382
		struct drm_i915_gem_object *obj;
2383

2384
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2385 2386

		/* self-refresh seems busted with untiled */
2387
		if (!i915_gem_object_is_tiled(obj))
2388 2389 2390
			enabled = NULL;
	}

2391 2392 2393 2394 2395 2396
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2397
	intel_set_memory_cxsr(dev_priv, false);
2398 2399

	/* Calc sr entries for one plane configs */
2400
	if (HAS_FW_BLC(dev_priv) && enabled) {
2401 2402
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2403
		const struct drm_display_mode *adjusted_mode =
2404
			&enabled->config->hw.adjusted_mode;
2405 2406
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2407
		int clock = adjusted_mode->crtc_clock;
2408
		int htotal = adjusted_mode->crtc_htotal;
2409 2410
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2411 2412
		int entries;

2413
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2414
			cpp = 4;
2415
		else
2416
			cpp = fb->format->cpp[0];
2417

2418 2419
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2420
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2421 2422
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2423 2424 2425 2426
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2427
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2428 2429
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2430
		else
2431 2432 2433
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

2434 2435 2436
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2448 2449
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2450 2451
}

2452
static void i845_update_wm(struct intel_crtc *unused_crtc)
2453
{
2454
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2455
	struct intel_crtc *crtc;
2456
	const struct drm_display_mode *adjusted_mode;
2457
	u32 fwater_lo;
2458 2459
	int planea_wm;

2460
	crtc = single_enabled_crtc(dev_priv);
2461 2462 2463
	if (crtc == NULL)
		return;

2464
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2465
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2466
				       &i845_wm_info,
2467
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2468
				       4, pessimal_latency_ns);
2469 2470 2471
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

2472 2473
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2474 2475 2476 2477

	I915_WRITE(FW_BLC, fwater_lo);
}

2478
/* latency must be in 0.1us units. */
2479 2480 2481
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2482
{
2483
	unsigned int ret;
2484

2485 2486
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2487 2488 2489 2490

	return ret;
}

2491
/* latency must be in 0.1us units. */
2492 2493 2494 2495 2496
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2497
{
2498
	unsigned int ret;
2499

2500 2501
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2502
	ret = DIV_ROUND_UP(ret, 64) + 2;
2503

2504 2505 2506
	return ret;
}

2507
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2508
{
2509 2510 2511 2512 2513 2514
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2515
	if (WARN_ON(!cpp))
2516 2517 2518 2519
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2520
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2521 2522
}

2523
struct ilk_wm_maximums {
2524 2525 2526 2527
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2528 2529
};

2530 2531 2532 2533
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2534 2535
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2536
			      u32 mem_value, bool is_lp)
2537
{
2538
	u32 method1, method2;
2539
	int cpp;
2540

2541 2542 2543
	if (mem_value == 0)
		return U32_MAX;

2544
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2545 2546
		return 0;

2547
	cpp = plane_state->hw.fb->format->cpp[0];
2548

2549
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2550 2551 2552 2553

	if (!is_lp)
		return method1;

2554
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2555
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2556
				 drm_rect_width(&plane_state->uapi.dst),
2557
				 cpp, mem_value);
2558 2559

	return min(method1, method2);
2560 2561
}

2562 2563 2564 2565
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2566 2567
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2568
			      u32 mem_value)
2569
{
2570
	u32 method1, method2;
2571
	int cpp;
2572

2573 2574 2575
	if (mem_value == 0)
		return U32_MAX;

2576
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2577 2578
		return 0;

2579
	cpp = plane_state->hw.fb->format->cpp[0];
2580

2581 2582
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2583
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2584
				 drm_rect_width(&plane_state->uapi.dst),
2585
				 cpp, mem_value);
2586 2587 2588
	return min(method1, method2);
}

2589 2590 2591 2592
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2593 2594
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2595
			      u32 mem_value)
2596
{
2597 2598
	int cpp;

2599 2600 2601
	if (mem_value == 0)
		return U32_MAX;

2602
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2603 2604
		return 0;

2605
	cpp = plane_state->hw.fb->format->cpp[0];
2606

2607
	return ilk_wm_method2(crtc_state->pixel_rate,
2608
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2609
			      drm_rect_width(&plane_state->uapi.dst),
2610
			      cpp, mem_value);
2611 2612
}

2613
/* Only for WM_LP. */
2614 2615
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2616
			      u32 pri_val)
2617
{
2618
	int cpp;
2619

2620
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2621 2622
		return 0;

2623
	cpp = plane_state->hw.fb->format->cpp[0];
2624

2625 2626
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2627 2628
}

2629 2630
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2631
{
2632
	if (INTEL_GEN(dev_priv) >= 8)
2633
		return 3072;
2634
	else if (INTEL_GEN(dev_priv) >= 7)
2635 2636 2637 2638 2639
		return 768;
	else
		return 512;
}

2640 2641 2642
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2643
{
2644
	if (INTEL_GEN(dev_priv) >= 8)
2645 2646
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2647
	else if (INTEL_GEN(dev_priv) >= 7)
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2658 2659
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2660
{
2661
	if (INTEL_GEN(dev_priv) >= 7)
2662 2663 2664 2665 2666
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2667
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2668
{
2669
	if (INTEL_GEN(dev_priv) >= 8)
2670 2671 2672 2673 2674
		return 31;
	else
		return 15;
}

2675
/* Calculate the maximum primary/sprite plane watermark */
2676
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2677
				     int level,
2678
				     const struct intel_wm_config *config,
2679 2680 2681
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2682
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2683 2684

	/* if sprites aren't enabled, sprites get nothing */
2685
	if (is_sprite && !config->sprites_enabled)
2686 2687 2688
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2689
	if (level == 0 || config->num_pipes_active > 1) {
2690
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2691 2692 2693 2694 2695 2696

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2697
		if (INTEL_GEN(dev_priv) <= 6)
2698 2699 2700
			fifo_size /= 2;
	}

2701
	if (config->sprites_enabled) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2713
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2714 2715 2716
}

/* Calculate the maximum cursor plane watermark */
2717
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2718 2719
				      int level,
				      const struct intel_wm_config *config)
2720 2721
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2722
	if (level > 0 && config->num_pipes_active > 1)
2723 2724 2725
		return 64;

	/* otherwise just report max that registers can hold */
2726
	return ilk_cursor_wm_reg_max(dev_priv, level);
2727 2728
}

2729
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2730 2731 2732
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2733
				    struct ilk_wm_maximums *max)
2734
{
2735 2736 2737 2738
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2739 2740
}

2741
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2742 2743 2744
					int level,
					struct ilk_wm_maximums *max)
{
2745 2746 2747 2748
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2749 2750
}

2751
static bool ilk_validate_wm_level(int level,
2752
				  const struct ilk_wm_maximums *max,
2753
				  struct intel_wm_level *result)
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2783 2784 2785
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2786 2787 2788 2789 2790 2791
		result->enable = true;
	}

	return ret;
}

2792
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2793
				 const struct intel_crtc *crtc,
2794
				 int level,
2795
				 struct intel_crtc_state *crtc_state,
2796 2797 2798
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2799
				 struct intel_wm_level *result)
2800
{
2801 2802 2803
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2804 2805 2806 2807 2808 2809 2810 2811

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2812
	if (pristate) {
2813
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2814
						     pri_latency, level);
2815
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2816 2817 2818
	}

	if (sprstate)
2819
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2820 2821

	if (curstate)
2822
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2823

2824 2825 2826
	result->enable = true;
}

2827
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2828
				  u16 wm[8])
2829
{
2830 2831
	struct intel_uncore *uncore = &dev_priv->uncore;

2832
	if (INTEL_GEN(dev_priv) >= 9) {
2833
		u32 val;
2834
		int ret, i;
2835
		int level, max_level = ilk_wm_max_level(dev_priv);
2836 2837 2838 2839 2840

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2841
					     &val, NULL);
2842 2843

		if (ret) {
2844 2845
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2861
					     &val, NULL);
2862
		if (ret) {
2863 2864
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2889
		/*
2890
		 * WaWmMemoryReadLatency:skl+,glk
2891
		 *
2892
		 * punit doesn't take into account the read latency so we need
2893 2894
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2895
		 */
2896 2897 2898 2899 2900
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2901
				wm[level] += 2;
2902
			}
2903 2904
		}

2905 2906 2907 2908 2909 2910
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2911
		if (dev_priv->dram_info.is_16gb_dimm)
2912 2913
			wm[0] += 1;

2914
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2915
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2916 2917 2918 2919

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2920 2921 2922 2923
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2924
	} else if (INTEL_GEN(dev_priv) >= 6) {
2925
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2926 2927 2928 2929 2930

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2931
	} else if (INTEL_GEN(dev_priv) >= 5) {
2932
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2933 2934 2935 2936 2937

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2938 2939
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2940 2941 2942
	}
}

2943
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2944
				       u16 wm[5])
2945 2946
{
	/* ILK sprite LP0 latency is 1300 ns */
2947
	if (IS_GEN(dev_priv, 5))
2948 2949 2950
		wm[0] = 13;
}

2951
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2952
				       u16 wm[5])
2953 2954
{
	/* ILK cursor LP0 latency is 1300 ns */
2955
	if (IS_GEN(dev_priv, 5))
2956 2957 2958
		wm[0] = 13;
}

2959
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2960 2961
{
	/* how many WM levels are we expecting */
2962
	if (INTEL_GEN(dev_priv) >= 9)
2963
		return 7;
2964
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2965
		return 4;
2966
	else if (INTEL_GEN(dev_priv) >= 6)
2967
		return 3;
2968
	else
2969 2970
		return 2;
}
2971

2972
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2973
				   const char *name,
2974
				   const u16 wm[8])
2975
{
2976
	int level, max_level = ilk_wm_max_level(dev_priv);
2977 2978 2979 2980 2981

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2982 2983 2984
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
2985 2986 2987
			continue;
		}

2988 2989 2990 2991
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2992
		if (INTEL_GEN(dev_priv) >= 9)
2993 2994
			latency *= 10;
		else if (level > 0)
2995 2996
			latency *= 5;

2997 2998 2999
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3000 3001 3002
	}
}

3003
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3004
				    u16 wm[5], u16 min)
3005
{
3006
	int level, max_level = ilk_wm_max_level(dev_priv);
3007 3008 3009 3010 3011 3012

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3013
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3014 3015 3016 3017

	return true;
}

3018
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3033 3034
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3035 3036 3037
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3038 3039
}

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3062 3063
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3064 3065 3066 3067 3068
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3069
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3070
{
3071
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3072 3073 3074 3075 3076 3077

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3078
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3079
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3080

3081 3082 3083
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3084

3085
	if (IS_GEN(dev_priv, 6)) {
3086
		snb_wm_latency_quirk(dev_priv);
3087 3088
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3089 3090
}

3091
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3092
{
3093
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3094
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3095 3096
}

3097
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3109
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3110 3111 3112

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3113
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3114 3115 3116 3117 3118 3119
		return false;
	}

	return true;
}

3120
/* Compute new watermarks for the pipe */
3121
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3122
{
3123
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3124
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3125
	struct intel_pipe_wm *pipe_wm;
3126 3127
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3128 3129 3130
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3131
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3132
	struct ilk_wm_maximums max;
3133

3134
	pipe_wm = &crtc_state->wm.ilk.optimal;
3135

3136 3137 3138 3139 3140 3141 3142
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3143 3144
	}

3145
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3146
	if (sprstate) {
3147 3148 3149 3150
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3151 3152
	}

3153 3154
	usable_level = max_level;

3155
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3156
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3157
		usable_level = 1;
3158 3159

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3160
	if (pipe_wm->sprites_scaled)
3161
		usable_level = 0;
3162

3163
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3164
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3165
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3166

3167
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3168
		return -EINVAL;
3169

3170
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3171

3172 3173
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3174

3175
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3176
				     pristate, sprstate, curstate, wm);
3177 3178 3179 3180 3181 3182

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3183 3184 3185 3186
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3187 3188
	}

3189
	return 0;
3190 3191
}

3192 3193 3194 3195 3196
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3197
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3198
{
3199
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3200
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3201
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3202
	struct intel_atomic_state *intel_state =
3203
		to_intel_atomic_state(newstate->uapi.state);
3204 3205 3206
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3207
	int level, max_level = ilk_wm_max_level(dev_priv);
3208 3209 3210 3211 3212 3213

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3214
	*a = newstate->wm.ilk.optimal;
3215
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3216
	    intel_state->skip_intermediate_wm)
3217 3218
		return 0;

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3240
	if (!ilk_validate_pipe_wm(dev_priv, a))
3241 3242 3243 3244 3245 3246
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3247 3248
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3249 3250 3251 3252

	return 0;
}

3253 3254 3255
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3256
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3257 3258 3259 3260 3261
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3262 3263
	ret_wm->enable = true;

3264
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3265
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3266 3267 3268 3269
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3270

3271 3272 3273 3274 3275
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3276
		if (!wm->enable)
3277
			ret_wm->enable = false;
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3289
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3290
			 const struct intel_wm_config *config,
3291
			 const struct ilk_wm_maximums *max,
3292 3293
			 struct intel_pipe_wm *merged)
{
3294
	int level, max_level = ilk_wm_max_level(dev_priv);
3295
	int last_enabled_level = max_level;
3296

3297
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3298
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3299
	    config->num_pipes_active > 1)
3300
		last_enabled_level = 0;
3301

3302
	/* ILK: FBC WM must be disabled always */
3303
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3304 3305 3306 3307 3308

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3309
		ilk_merge_wm_level(dev_priv, level, wm);
3310

3311 3312 3313 3314 3315
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3316 3317 3318 3319 3320 3321

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3322 3323
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3324 3325 3326
			wm->fbc_val = 0;
		}
	}
3327 3328 3329 3330 3331 3332 3333

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3334
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3335
	    intel_fbc_is_active(dev_priv)) {
3336 3337 3338 3339 3340 3341
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3342 3343
}

3344 3345 3346 3347 3348 3349
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3350
/* The value we need to program into the WM_LPx latency field */
3351 3352
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3353
{
3354
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3355 3356 3357 3358 3359
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3360
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3361
				   const struct intel_pipe_wm *merged,
3362
				   enum intel_ddb_partitioning partitioning,
3363
				   struct ilk_wm_values *results)
3364
{
3365 3366
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3367

3368
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3369
	results->partitioning = partitioning;
3370

3371
	/* LP1+ register values */
3372
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3373
		const struct intel_wm_level *r;
3374

3375
		level = ilk_wm_lp_to_level(wm_lp, merged);
3376

3377
		r = &merged->wm[level];
3378

3379 3380 3381 3382 3383
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3384
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3385 3386 3387
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3388 3389 3390
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3391
		if (INTEL_GEN(dev_priv) >= 8)
3392 3393 3394 3395 3396 3397
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3398 3399 3400 3401
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3402
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3403
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3404 3405 3406
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3407
	}
3408

3409
	/* LP0 register values */
3410
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3411
		enum pipe pipe = intel_crtc->pipe;
3412 3413
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3414

3415
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3416
			continue;
3417

3418 3419 3420 3421
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3422 3423 3424
	}
}

3425 3426
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3427 3428 3429 3430
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3431
{
3432
	int level, max_level = ilk_wm_max_level(dev_priv);
3433
	int level1 = 0, level2 = 0;
3434

3435 3436 3437 3438 3439
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3440 3441
	}

3442 3443
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3444 3445 3446
			return r2;
		else
			return r1;
3447
	} else if (level1 > level2) {
3448 3449 3450 3451 3452 3453
		return r1;
	} else {
		return r2;
	}
}

3454 3455 3456 3457 3458 3459 3460
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3461
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3462 3463
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3464 3465 3466 3467 3468
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3469
	for_each_pipe(dev_priv, pipe) {
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3507 3508
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3509
{
3510
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3511
	bool changed = false;
3512

3513 3514 3515
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3516
		changed = true;
3517 3518 3519 3520
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3521
		changed = true;
3522 3523 3524 3525
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3526
		changed = true;
3527
	}
3528

3529 3530 3531 3532
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3533

3534 3535 3536 3537 3538 3539 3540
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3541 3542
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3543
{
3544
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3545
	unsigned int dirty;
3546
	u32 val;
3547

3548
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3549 3550 3551 3552 3553
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3554
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3555
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3556
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3557
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3558
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3559 3560
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3561
	if (dirty & WM_DIRTY_DDB) {
3562
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3577 3578
	}

3579
	if (dirty & WM_DIRTY_FBC) {
3580 3581 3582 3583 3584 3585 3586 3587
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3588 3589 3590 3591
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3592
	if (INTEL_GEN(dev_priv) >= 7) {
3593 3594 3595 3596 3597
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3598

3599
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3600
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3601
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3602
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3603
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3604
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3605 3606

	dev_priv->wm.hw = *results;
3607 3608
}

3609
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3610 3611 3612 3613
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3614
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3615
{
3616 3617 3618
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3619

3620 3621 3622 3623
	for (i = 0; i < max_slices; i++) {
		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
			enabled_slices_mask |= BIT(i);
	}
3624

3625
	return enabled_slices_mask;
3626 3627
}

3628 3629 3630 3631
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3632
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3633
{
3634
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3635 3636
}

3637 3638 3639
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3640 3641 3642 3643
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3644 3645
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3646 3647
}

3648 3649 3650
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3663
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3664
	} else if (IS_GEN(dev_priv, 11)) {
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3693
intel_enable_sagv(struct drm_i915_private *dev_priv)
3694 3695 3696
{
	int ret;

3697 3698 3699 3700
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3701 3702
		return 0;

3703
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3704 3705 3706
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3707
	/* We don't need to wait for SAGV when enabling */
3708 3709 3710

	/*
	 * Some skl systems, pre-release machines in particular,
3711
	 * don't actually have SAGV.
3712
	 */
3713
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3714
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3715
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3716 3717
		return 0;
	} else if (ret < 0) {
3718
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3719 3720 3721
		return ret;
	}

3722
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3723 3724 3725 3726
	return 0;
}

int
3727
intel_disable_sagv(struct drm_i915_private *dev_priv)
3728
{
3729
	int ret;
3730

3731 3732 3733 3734
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3735 3736
		return 0;

3737
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3738
	/* bspec says to keep retrying for at least 1 ms */
3739 3740 3741 3742
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3743 3744
	/*
	 * Some skl systems, pre-release machines in particular,
3745
	 * don't actually have SAGV.
3746
	 */
3747
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3748
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3749
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3750
		return 0;
3751
	} else if (ret < 0) {
3752
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3753
		return ret;
3754 3755
	}

3756
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3757 3758 3759
	return 0;
}

3760
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3761
{
3762
	struct drm_device *dev = state->base.dev;
3763
	struct drm_i915_private *dev_priv = to_i915(dev);
3764 3765
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3766
	struct intel_crtc_state *crtc_state;
3767
	enum pipe pipe;
3768
	int level, latency;
3769

3770 3771 3772
	if (!intel_has_sagv(dev_priv))
		return false;

3773 3774 3775
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3776
	if (hweight8(state->active_pipes) == 0)
3777
		return true;
3778 3779 3780 3781 3782

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3783
	if (hweight8(state->active_pipes) > 1)
3784 3785 3786
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3787
	pipe = ffs(state->active_pipes) - 1;
3788
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3789
	crtc_state = to_intel_crtc_state(crtc->base.state);
3790

3791
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3792 3793
		return false;

3794
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3795
		struct skl_plane_wm *wm =
3796
			&crtc_state->wm.skl.optimal.planes[plane->id];
3797

3798
		/* Skip this plane if it's not enabled */
3799
		if (!wm->wm[0].plane_en)
3800 3801 3802
			continue;

		/* Find the highest enabled wm level for this plane */
3803
		for (level = ilk_wm_max_level(dev_priv);
3804
		     !wm->wm[level].plane_en; --level)
3805 3806
		     { }

3807 3808
		latency = dev_priv->wm.skl_latency[level];

3809
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3810
		    plane->base.state->fb->modifier ==
3811 3812 3813
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3814
		/*
3815 3816
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3817
		 * can't enable SAGV.
3818
		 */
3819
		if (latency < dev_priv->sagv_block_time_us)
3820 3821 3822 3823 3824 3825
			return false;
	}

	return true;
}

3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
3848 3849 3850
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

3851
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
3852 3853 3854 3855 3856 3857 3858

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

3859
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
3860
				  u8 active_pipes);
3861

3862
static void
3863
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3864
				   const struct intel_crtc_state *crtc_state,
3865
				   const u64 total_data_rate,
3866 3867
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3868
{
3869
	struct drm_atomic_state *state = crtc_state->uapi.state;
3870
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3871
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
3872
	const struct intel_crtc *crtc;
3873
	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
3874 3875
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
3876
	u32 ddb_range_size;
3877
	u32 i;
3878 3879 3880 3881 3882 3883
	u32 dbuf_slice_mask;
	u32 active_pipes;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
3884

3885
	if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) {
3886 3887
		alloc->start = 0;
		alloc->end = 0;
3888
		*num_active = hweight8(dev_priv->active_pipes);
3889 3890 3891
		return;
	}

3892
	if (intel_state->active_pipe_changes)
3893
		active_pipes = intel_state->active_pipes;
3894
	else
3895 3896 3897 3898 3899
		active_pipes = dev_priv->active_pipes;

	*num_active = hweight8(active_pipes);

	ddb_size = intel_get_ddb_size(dev_priv);
3900

3901
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3902

3903
	/*
3904 3905 3906 3907 3908 3909
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3910
	 */
3911
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3912 3913 3914 3915 3916
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3917
		return;
3918
	}
3919

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);

	DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n",
		      dbuf_slice_mask,
		      pipe_name(for_pipe), active_pipes);

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

3944 3945 3946 3947 3948
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3949
	total_slice_mask = dbuf_slice_mask;
3950 3951
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
3952
			&crtc_state->hw.adjusted_mode;
3953
		enum pipe pipe = crtc->pipe;
3954
		int hdisplay, vdisplay;
3955
		u32 pipe_dbuf_slice_mask;
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
		if (!crtc_state->hw.active)
			continue;

		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
							       active_pipes);

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
3980 3981 3982
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3983 3984

		total_width_in_range += hdisplay;
3985 3986

		if (pipe < for_pipe)
3987
			width_before_pipe_in_range += hdisplay;
3988 3989 3990 3991
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
	intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1);

	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
	end = ddb_range_size *
		(width_before_pipe_in_range + pipe_width) / total_width_in_range;

	alloc->start = offset + start;
	alloc->end = offset + end;

	DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe,
		      alloc->start, alloc->end);
	DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n",
		      intel_state->enabled_dbuf_slices_mask,
		      INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
4010 4011
}

4012 4013 4014 4015 4016
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4017
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4018 4019 4020 4021 4022 4023 4024 4025
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4026
{
4027
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4038
	drm_WARN_ON(&dev_priv->drm, ret);
4039 4040

	for (level = 0; level <= max_level; level++) {
4041
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
4042 4043 4044 4045 4046
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4047

4048
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4049 4050
}

4051 4052
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4053
{
4054

4055 4056
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4057

4058 4059
	if (entry->end)
		entry->end += 1;
4060 4061
}

4062 4063 4064 4065
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4066 4067
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4068
{
4069 4070
	u32 val, val2;
	u32 fourcc = 0;
4071 4072 4073 4074

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4075
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4076 4077 4078 4079 4080 4081
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4082 4083 4084 4085
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4086

4087 4088 4089 4090 4091
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4092
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4093

4094 4095
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4096 4097 4098 4099
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4100 4101 4102
	}
}

4103 4104 4105
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4106
{
4107 4108 4109
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4110
	intel_wakeref_t wakeref;
4111
	enum plane_id plane_id;
4112

4113
	power_domain = POWER_DOMAIN_PIPE(pipe);
4114 4115
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4116
		return;
4117

4118 4119 4120 4121 4122
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4123

4124
	intel_display_power_put(dev_priv, power_domain, wakeref);
4125
}
4126

4127
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv)
4128
{
4129 4130
	dev_priv->enabled_dbuf_slices_mask =
				intel_enabled_dbuf_slices_mask(dev_priv);
4131 4132
}

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4149
static uint_fixed_16_16_t
4150 4151
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4152
{
4153
	u32 src_w, src_h, dst_w, dst_h;
4154 4155
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4156

4157
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4158
		return u32_to_fixed16(0);
4159

4160 4161 4162 4163 4164 4165 4166
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4167 4168 4169 4170
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4171

4172 4173 4174 4175
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4176

4177
	return mul_fixed16(downscale_w, downscale_h);
4178 4179
}

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4195
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4196 4197 4198 4199 4200
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4201 4202
			[PIPE_A] = BIT(DBUF_S1),
		},
4203 4204 4205 4206
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4207 4208
			[PIPE_B] = BIT(DBUF_S1),
		},
4209 4210 4211 4212 4213
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4214 4215
			[PIPE_B] = BIT(DBUF_S2),
		},
4216 4217 4218 4219
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4220 4221
			[PIPE_C] = BIT(DBUF_S2),
		},
4222 4223 4224 4225 4226
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4227 4228
			[PIPE_C] = BIT(DBUF_S2),
		},
4229 4230 4231 4232 4233
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4234 4235
			[PIPE_C] = BIT(DBUF_S2),
		},
4236 4237 4238 4239 4240 4241
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4242 4243
			[PIPE_C] = BIT(DBUF_S2),
		},
4244
	},
4245
	{}
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4258
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4259 4260 4261 4262 4263
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4264 4265
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4266 4267 4268 4269
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4270 4271
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4272 4273 4274 4275 4276
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4277 4278
			[PIPE_B] = BIT(DBUF_S1),
		},
4279 4280 4281 4282
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4283 4284
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4285 4286 4287 4288 4289
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4290 4291
			[PIPE_C] = BIT(DBUF_S2),
		},
4292 4293 4294 4295 4296
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4297 4298
			[PIPE_C] = BIT(DBUF_S2),
		},
4299 4300 4301 4302 4303 4304
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4305 4306
			[PIPE_C] = BIT(DBUF_S2),
		},
4307 4308 4309 4310
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4311 4312
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4313 4314 4315 4316 4317
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4318 4319
			[PIPE_D] = BIT(DBUF_S2),
		},
4320 4321 4322 4323 4324
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4325 4326
			[PIPE_D] = BIT(DBUF_S2),
		},
4327 4328 4329 4330 4331 4332
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4333 4334
			[PIPE_D] = BIT(DBUF_S2),
		},
4335 4336 4337 4338 4339
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4340 4341
			[PIPE_D] = BIT(DBUF_S2),
		},
4342 4343 4344 4345 4346 4347
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4348 4349
			[PIPE_D] = BIT(DBUF_S2),
		},
4350 4351 4352 4353 4354 4355
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4356 4357
			[PIPE_D] = BIT(DBUF_S2),
		},
4358 4359 4360 4361 4362 4363 4364
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4365 4366
			[PIPE_D] = BIT(DBUF_S2),
		},
4367
	},
4368
	{}
4369 4370
};

4371 4372
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4373 4374 4375
{
	int i;

4376
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4388
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4402
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4403 4404
}

4405
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4406
{
4407
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4408 4409 4410
}

static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4411
				  u8 active_pipes)
4412 4413 4414 4415 4416 4417
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4418
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4419
	else if (IS_GEN(dev_priv, 11))
4420
		return icl_compute_dbuf_slices(pipe, active_pipes);
4421 4422 4423 4424 4425 4426 4427
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
	return BIT(DBUF_S1);
}

4428
static u64
4429 4430
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4431
			     int color_plane)
4432
{
4433
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4434
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4435 4436
	u32 data_rate;
	u32 width = 0, height = 0;
4437
	uint_fixed_16_16_t down_scale_amount;
4438
	u64 rate;
4439

4440
	if (!plane_state->uapi.visible)
4441
		return 0;
4442

4443
	if (plane->id == PLANE_CURSOR)
4444
		return 0;
4445 4446

	if (color_plane == 1 &&
4447
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4448
		return 0;
4449

4450 4451 4452 4453 4454
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4455 4456
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4457

4458
	/* UV plane does 1/2 pixel sub-sampling */
4459
	if (color_plane == 1) {
4460 4461
		width /= 2;
		height /= 2;
4462 4463
	}

4464
	data_rate = width * height;
4465

4466
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4467

4468 4469
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4470
	rate *= fb->format->cpp[color_plane];
4471
	return rate;
4472 4473
}

4474
static u64
4475
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4476 4477
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4478
{
4479 4480
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4481
	u64 total_data_rate = 0;
4482

4483
	/* Calculate and cache data rate for each plane */
4484 4485
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4486
		u64 rate;
4487

4488
		/* packed/y */
4489
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4490
		plane_data_rate[plane_id] = rate;
4491
		total_data_rate += rate;
4492

4493
		/* uv-plane */
4494
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4495
		uv_plane_data_rate[plane_id] = rate;
4496
		total_data_rate += rate;
4497 4498 4499 4500 4501
	}

	return total_data_rate;
}

4502
static u64
4503
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4504 4505
				 u64 *plane_data_rate)
{
4506 4507
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4508 4509 4510
	u64 total_data_rate = 0;

	/* Calculate and cache data rate for each plane */
4511 4512
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4513 4514
		u64 rate;

4515
		if (!plane_state->planar_linked_plane) {
4516
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4517 4518 4519 4520 4521 4522 4523
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4524
			 * intel_atomic_crtc_state_for_each_plane_state(),
4525 4526 4527 4528
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4529
			if (plane_state->planar_slave)
4530 4531 4532
				continue;

			/* Y plane rate is calculated on the slave */
4533
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4534
			y_plane_id = plane_state->planar_linked_plane->id;
4535 4536 4537
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4538
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4539 4540 4541 4542 4543 4544 4545 4546
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4547
static int
4548
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4549
{
4550 4551
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4552
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4553 4554 4555
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4556
	u64 total_data_rate;
4557
	enum plane_id plane_id;
4558
	int num_active;
4559 4560
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4561
	u32 blocks;
4562
	int level;
4563

4564
	/* Clear the partitioning for disabled planes. */
4565 4566
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4567

4568
	if (!crtc_state->hw.active) {
4569
		alloc->start = alloc->end = 0;
4570 4571 4572
		return 0;
	}

4573 4574
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4575
			icl_get_total_relative_data_rate(crtc_state,
4576 4577
							 plane_data_rate);
	else
4578
		total_data_rate =
4579
			skl_get_total_relative_data_rate(crtc_state,
4580 4581
							 plane_data_rate,
							 uv_plane_data_rate);
4582

4583

4584
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4585
					   alloc, &num_active);
4586
	alloc_size = skl_ddb_entry_size(alloc);
4587
	if (alloc_size == 0)
4588
		return 0;
4589

4590
	/* Allocate fixed number of blocks for cursor. */
4591
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4592
	alloc_size -= total[PLANE_CURSOR];
4593
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4594
		alloc->end - total[PLANE_CURSOR];
4595
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4596 4597 4598

	if (total_data_rate == 0)
		return 0;
4599

4600
	/*
4601 4602
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4603
	 */
4604
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4605
		blocks = 0;
4606
		for_each_plane_id_on_crtc(crtc, plane_id) {
4607
			const struct skl_plane_wm *wm =
4608
				&crtc_state->wm.skl.optimal.planes[plane_id];
4609 4610

			if (plane_id == PLANE_CURSOR) {
4611
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4612 4613
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4614 4615 4616
					blocks = U32_MAX;
					break;
				}
4617
				continue;
4618
			}
4619

4620 4621
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4622 4623
		}

4624
		if (blocks <= alloc_size) {
4625 4626 4627
			alloc_size -= blocks;
			break;
		}
4628 4629
	}

4630
	if (level < 0) {
4631 4632 4633 4634
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4635 4636 4637
		return -EINVAL;
	}

4638
	/*
4639 4640 4641
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4642
	 */
4643
	for_each_plane_id_on_crtc(crtc, plane_id) {
4644
		const struct skl_plane_wm *wm =
4645
			&crtc_state->wm.skl.optimal.planes[plane_id];
4646 4647
		u64 rate;
		u16 extra;
4648

4649
		if (plane_id == PLANE_CURSOR)
4650 4651
			continue;

4652
		/*
4653 4654
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4655
		 */
4656 4657
		if (total_data_rate == 0)
			break;
4658

4659 4660 4661 4662
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4663
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4664 4665
		alloc_size -= extra;
		total_data_rate -= rate;
4666

4667 4668
		if (total_data_rate == 0)
			break;
4669

4670 4671 4672 4673
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4674
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4675 4676 4677
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4678
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4679 4680 4681

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4682
	for_each_plane_id_on_crtc(crtc, plane_id) {
4683
		struct skl_ddb_entry *plane_alloc =
4684
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4685
		struct skl_ddb_entry *uv_plane_alloc =
4686
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4687 4688 4689 4690

		if (plane_id == PLANE_CURSOR)
			continue;

4691
		/* Gen11+ uses a separate plane for UV watermarks */
4692 4693
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4694 4695 4696 4697 4698 4699 4700

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4701

4702 4703 4704 4705
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4706
		}
4707
	}
4708

4709 4710 4711 4712 4713 4714 4715
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4716
		for_each_plane_id_on_crtc(crtc, plane_id) {
4717
			struct skl_plane_wm *wm =
4718
				&crtc_state->wm.skl.optimal.planes[plane_id];
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4735

4736
			/*
4737
			 * Wa_1408961008:icl, ehl
4738 4739
			 * Underruns with WM1+ disabled
			 */
4740
			if (IS_GEN(dev_priv, 11) &&
4741 4742
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4743 4744
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4745
			}
4746 4747 4748 4749 4750 4751 4752
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
4753
	for_each_plane_id_on_crtc(crtc, plane_id) {
4754
		struct skl_plane_wm *wm =
4755
			&crtc_state->wm.skl.optimal.planes[plane_id];
4756

4757
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4758
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4759 4760
	}

4761
	return 0;
4762 4763
}

4764 4765
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4766
 * for the read latency) and cpp should always be <= 8, so that
4767 4768 4769
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4770
static uint_fixed_16_16_t
4771 4772
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4773
{
4774
	u32 wm_intermediate_val;
4775
	uint_fixed_16_16_t ret;
4776 4777

	if (latency == 0)
4778
		return FP_16_16_MAX;
4779

4780
	wm_intermediate_val = latency * pixel_rate * cpp;
4781
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4782 4783 4784 4785

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4786 4787 4788
	return ret;
}

4789 4790 4791
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4792
{
4793
	u32 wm_intermediate_val;
4794
	uint_fixed_16_16_t ret;
4795 4796

	if (latency == 0)
4797
		return FP_16_16_MAX;
4798 4799

	wm_intermediate_val = latency * pixel_rate;
4800 4801
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4802
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4803 4804 4805
	return ret;
}

4806
static uint_fixed_16_16_t
4807
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4808
{
4809 4810
	u32 pixel_rate;
	u32 crtc_htotal;
4811 4812
	uint_fixed_16_16_t linetime_us;

4813
	if (!crtc_state->hw.active)
4814
		return u32_to_fixed16(0);
4815

4816
	pixel_rate = crtc_state->pixel_rate;
4817 4818

	if (WARN_ON(pixel_rate == 0))
4819
		return u32_to_fixed16(0);
4820

4821
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
4822
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4823 4824 4825 4826

	return linetime_us;
}

4827
static u32
4828 4829
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4830
{
4831
	u64 adjusted_pixel_rate;
4832
	uint_fixed_16_16_t downscale_amount;
4833 4834

	/* Shouldn't reach here on disabled planes... */
4835
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4836 4837 4838 4839 4840 4841
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4842 4843
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4844

4845 4846
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4847 4848
}

4849
static int
4850 4851 4852 4853 4854
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4855
{
4856
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4857
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4858
	u32 interm_pbpl;
4859

4860
	/* only planar format has two planes */
4861 4862
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
4863 4864
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
4865 4866 4867
		return -EINVAL;
	}

4868 4869 4870 4871 4872 4873 4874
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4875
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
4876

4877
	wp->width = width;
4878
	if (color_plane == 1 && wp->is_planar)
4879 4880
		wp->width /= 2;

4881 4882
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4883

4884
	if (INTEL_GEN(dev_priv) >= 11 &&
4885
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4886 4887 4888 4889
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4890
	if (drm_rotation_90_or_270(rotation)) {
4891
		switch (wp->cpp) {
4892
		case 1:
4893
			wp->y_min_scanlines = 16;
4894 4895
			break;
		case 2:
4896
			wp->y_min_scanlines = 8;
4897 4898
			break;
		case 4:
4899
			wp->y_min_scanlines = 4;
4900
			break;
4901
		default:
4902
			MISSING_CASE(wp->cpp);
4903
			return -EINVAL;
4904 4905
		}
	} else {
4906
		wp->y_min_scanlines = 4;
4907 4908
	}

4909
	if (skl_needs_memory_bw_wa(dev_priv))
4910
		wp->y_min_scanlines *= 2;
4911

4912 4913 4914
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4915 4916
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4917 4918 4919 4920

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4921 4922
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4923
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4924 4925
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4926
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4927
	} else {
4928 4929
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4930
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4931 4932
	}

4933 4934
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4935

4936
	wp->linetime_us = fixed16_to_u32_round_up(
4937
					intel_get_linetime_us(crtc_state));
4938 4939 4940 4941

	return 0;
}

4942 4943 4944 4945 4946
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
4947
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4948 4949
	int width;

4950 4951 4952 4953 4954
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4955
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4956 4957 4958

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
4959
				     plane_state->hw.rotation,
4960 4961 4962 4963
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4964 4965 4966 4967 4968 4969 4970 4971 4972
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4973
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4974 4975 4976 4977
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4978
{
4979
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4980
	u32 latency = dev_priv->wm.skl_latency[level];
4981 4982
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4983
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4984

4985 4986 4987
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4988
		return;
4989
	}
4990

4991 4992 4993 4994
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4995
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4996 4997 4998
	    dev_priv->ipc_enabled)
		latency += 4;

4999
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5000 5001 5002
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5003
				 wp->cpp, latency, wp->dbuf_block_size);
5004
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5005
				 crtc_state->hw.adjusted_mode.crtc_htotal,
5006
				 latency,
5007
				 wp->plane_blocks_per_line);
5008

5009 5010
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5011
	} else {
5012
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5013
		     wp->dbuf_block_size < 1) &&
5014
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5015
			selected_result = method2;
5016
		} else if (latency >= wp->linetime_us) {
5017
			if (IS_GEN(dev_priv, 9) &&
5018 5019 5020 5021 5022
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5023
			selected_result = method1;
5024
		}
5025
	}
5026

5027
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5028
	res_lines = div_round_up_fixed16(selected_result,
5029
					 wp->plane_blocks_per_line);
5030

5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5046

5047 5048 5049 5050 5051 5052 5053 5054 5055
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5056
	}
5057

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5076 5077 5078
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5079 5080 5081
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5082
		return;
5083
	}
5084 5085 5086 5087 5088 5089 5090

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5091 5092
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5093 5094
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5095
	result->plane_en = true;
5096 5097
}

5098
static void
5099
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5100
		      const struct skl_wm_params *wm_params,
5101
		      struct skl_wm_level *levels)
5102
{
5103
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5104
	int level, max_level = ilk_wm_max_level(dev_priv);
5105
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5106

5107
	for (level = 0; level <= max_level; level++) {
5108
		struct skl_wm_level *result = &levels[level];
5109

5110
		skl_compute_plane_wm(crtc_state, level, wm_params,
5111
				     result_prev, result);
5112 5113

		result_prev = result;
5114
	}
5115 5116
}

5117
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5118
				      const struct skl_wm_params *wp,
5119
				      struct skl_plane_wm *wm)
5120
{
5121
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5122
	const struct drm_i915_private *dev_priv = to_i915(dev);
5123 5124 5125
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5126 5127 5128

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
5129
		return;
5130 5131 5132

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5133
		return;
5134

5135 5136
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
5137 5138 5139 5140
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5151
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5152

5153
	if (wp->y_tiled) {
5154 5155
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5156
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5157 5158
				trans_offset_b;
	} else {
5159
		res_blocks = wm0_sel_res_b + trans_offset_b;
5160 5161 5162 5163 5164 5165 5166

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

5167 5168 5169 5170 5171 5172 5173
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5174 5175
}

5176
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5177 5178
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5179
{
5180
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5181 5182 5183
	struct skl_wm_params wm_params;
	int ret;

5184
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5185 5186 5187 5188
					  &wm_params, color_plane);
	if (ret)
		return ret;

5189
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5190
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5191 5192 5193 5194

	return 0;
}

5195
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5196 5197
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5198
{
5199
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5200 5201 5202
	struct skl_wm_params wm_params;
	int ret;

5203
	wm->is_planar = true;
5204 5205

	/* uv plane watermarks must also be validated for NV12/Planar */
5206
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5207 5208 5209
					  &wm_params, 1);
	if (ret)
		return ret;
5210

5211
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5212

5213
	return 0;
5214 5215
}

5216
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5217
			      const struct intel_plane_state *plane_state)
5218
{
5219
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5220
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5221
	enum plane_id plane_id = plane->id;
5222 5223
	int ret;

5224 5225 5226
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5227
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5228
					plane_id, 0);
5229 5230 5231
	if (ret)
		return ret;

5232
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5233
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5234 5235 5236 5237 5238 5239 5240 5241
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5242
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5243 5244
			      const struct intel_plane_state *plane_state)
{
5245
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5246 5247 5248
	int ret;

	/* Watermarks calculated in master */
5249
	if (plane_state->planar_slave)
5250 5251
		return 0;

5252
	if (plane_state->planar_linked_plane) {
5253
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5254
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5255 5256 5257 5258 5259

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5260
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5261 5262 5263 5264
						y_plane_id, 0);
		if (ret)
			return ret;

5265
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5266 5267 5268 5269
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5270
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5271 5272 5273 5274 5275 5276
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5277 5278
}

5279
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5280
{
5281
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5282
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5283 5284
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5285
	int ret;
5286

L
Lyude 已提交
5287 5288 5289 5290 5291 5292
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5293 5294
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5295

5296
		if (INTEL_GEN(dev_priv) >= 11)
5297
			ret = icl_build_plane_wm(crtc_state, plane_state);
5298
		else
5299
			ret = skl_build_plane_wm(crtc_state, plane_state);
5300 5301
		if (ret)
			return ret;
5302
	}
5303

5304
	return 0;
5305 5306
}

5307 5308
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5309 5310 5311
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5312 5313
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5314
	else
5315
		intel_de_write_fw(dev_priv, reg, 0);
5316 5317
}

5318 5319 5320 5321
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5322
	u32 val = 0;
5323

5324
	if (level->plane_en)
5325
		val |= PLANE_WM_EN;
5326 5327 5328 5329
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5330

5331
	intel_de_write_fw(dev_priv, reg, val);
5332 5333
}

5334 5335
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5336
{
5337
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5338
	int level, max_level = ilk_wm_max_level(dev_priv);
5339 5340 5341 5342 5343 5344 5345 5346
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5347 5348

	for (level = 0; level <= max_level; level++) {
5349
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5350
				   &wm->wm[level]);
5351
	}
5352
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5353
			   &wm->trans_wm);
5354

5355
	if (INTEL_GEN(dev_priv) >= 11) {
5356
		skl_ddb_entry_write(dev_priv,
5357 5358
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5359
	}
5360 5361 5362 5363 5364 5365 5366 5367

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5368 5369
}

5370 5371
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5372
{
5373
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5374
	int level, max_level = ilk_wm_max_level(dev_priv);
5375 5376 5377 5378 5379 5380
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5381 5382

	for (level = 0; level <= max_level; level++) {
5383 5384
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5385
	}
5386
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5387

5388
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5389 5390
}

5391 5392 5393
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5394
	return l1->plane_en == l2->plane_en &&
5395
		l1->ignore_lines == l2->ignore_lines &&
5396 5397 5398
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5399

5400 5401 5402 5403 5404
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5405

5406 5407 5408 5409 5410 5411 5412
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5413 5414
}

5415 5416
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5417
{
5418
	return a->start < b->end && b->start < a->end;
5419 5420
}

5421
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5422
				 const struct skl_ddb_entry *entries,
5423
				 int num_entries, int ignore_idx)
5424
{
5425
	int i;
5426

5427 5428 5429
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5430
			return true;
5431
	}
5432

5433
	return false;
5434 5435
}

5436
static int
5437 5438
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5439
{
5440 5441
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5442 5443
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5444

5445 5446 5447
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5448

5449 5450 5451 5452
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5453 5454
			continue;

5455
		plane_state = intel_atomic_get_plane_state(state, plane);
5456 5457
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5458

5459
		new_crtc_state->update_planes |= BIT(plane_id);
5460 5461 5462 5463 5464 5465
	}

	return 0;
}

static int
5466
skl_compute_ddb(struct intel_atomic_state *state)
5467
{
5468
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5469 5470
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5471 5472
	struct intel_crtc *crtc;
	int ret, i;
5473

5474
	state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask;
5475

5476
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5477
					    new_crtc_state, i) {
5478
		ret = skl_allocate_pipe_ddb(new_crtc_state);
5479 5480 5481
		if (ret)
			return ret;

5482 5483
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5484 5485
		if (ret)
			return ret;
5486 5487 5488 5489 5490
	}

	return 0;
}

5491 5492 5493 5494 5495
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5496
static void
5497
skl_print_wm_changes(struct intel_atomic_state *state)
5498
{
5499 5500 5501 5502 5503
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5504
	int i;
5505

5506
	if (!drm_debug_enabled(DRM_UT_KMS))
5507 5508
		return;

5509 5510
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5511 5512 5513 5514 5515
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5516 5517
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5518 5519
			const struct skl_ddb_entry *old, *new;

5520 5521
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5522 5523 5524 5525

			if (skl_ddb_entry_equal(old, new))
				continue;

5526 5527 5528 5529 5530
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				    enast(new_wm->trans_wm.plane_en));

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5560
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				    new_wm->trans_wm.plane_res_b);

			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				    new_wm->trans_wm.min_ddb_alloc);
5611 5612 5613 5614
		}
	}
}

V
Ville Syrjälä 已提交
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
static int intel_add_all_pipes(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5631
static int
5632
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5633
{
V
Ville Syrjälä 已提交
5634
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5635
	int ret;
5636

5637 5638 5639 5640 5641 5642 5643
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
V
Ville Syrjälä 已提交
5644
		ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5645
				       state->base.acquire_ctx);
5646 5647 5648
		if (ret)
			return ret;

5649
		state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask;
5650 5651

		/*
5652
		 * We usually only initialize state->active_pipes if we
5653 5654 5655 5656
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5657
		if (!state->modeset)
5658
			state->active_pipes = dev_priv->active_pipes;
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5674
	if (state->active_pipe_changes || state->modeset) {
V
Ville Syrjälä 已提交
5675 5676 5677
		ret = intel_add_all_pipes(state);
		if (ret)
			return ret;
5678 5679 5680 5681 5682
	}

	return 0;
}

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5727
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5743
static int
5744
skl_compute_wm(struct intel_atomic_state *state)
5745
{
5746
	struct intel_crtc *crtc;
5747
	struct intel_crtc_state *new_crtc_state;
5748
	struct intel_crtc_state *old_crtc_state;
5749 5750
	int ret, i;

5751 5752
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
5753 5754
		return ret;

5755 5756
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5757
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5758
	 * weren't otherwise being modified if pipe allocations had to change.
5759
	 */
5760
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5761 5762
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5763 5764 5765
		if (ret)
			return ret;

5766
		ret = skl_wm_add_affected_planes(state, crtc);
5767 5768 5769 5770
		if (ret)
			return ret;
	}

5771 5772 5773 5774
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5775
	skl_print_wm_changes(state);
5776

5777 5778 5779
	return 0;
}

5780
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5781 5782 5783 5784 5785
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5786
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5798
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5799
{
5800
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5801
	struct ilk_wm_maximums max;
5802
	struct intel_wm_config config = {};
5803
	struct ilk_wm_values results = {};
5804
	enum intel_ddb_partitioning partitioning;
5805

5806
	ilk_compute_wm_config(dev_priv, &config);
5807

5808 5809
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5810 5811

	/* 5/6 split only in single pipe config on IVB+ */
5812
	if (INTEL_GEN(dev_priv) >= 7 &&
5813
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5814 5815
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5816

5817
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5818
	} else {
5819
		best_lp_wm = &lp_wm_1_2;
5820 5821
	}

5822
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5823
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5824

5825
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5826

5827
	ilk_write_wm_values(dev_priv, &results);
5828 5829
}

5830
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5831
				   struct intel_crtc *crtc)
5832
{
5833 5834 5835
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5836

5837
	mutex_lock(&dev_priv->wm.wm_mutex);
5838
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5839 5840 5841
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5842

5843
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5844
				    struct intel_crtc *crtc)
5845
{
5846 5847 5848
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5849 5850 5851

	if (!crtc_state->wm.need_postvbl_update)
		return;
5852

5853
	mutex_lock(&dev_priv->wm.wm_mutex);
5854 5855
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5856
	mutex_unlock(&dev_priv->wm.wm_mutex);
5857 5858
}

5859
static inline void skl_wm_level_from_reg_val(u32 val,
5860
					     struct skl_wm_level *level)
5861
{
5862
	level->plane_en = val & PLANE_WM_EN;
5863
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5864 5865 5866
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5867 5868
}

5869
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5870
			      struct skl_pipe_wm *out)
5871
{
5872 5873
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5874 5875
	int level, max_level;
	enum plane_id plane_id;
5876
	u32 val;
5877

5878
	max_level = ilk_wm_max_level(dev_priv);
5879

5880
	for_each_plane_id_on_crtc(crtc, plane_id) {
5881
		struct skl_plane_wm *wm = &out->planes[plane_id];
5882

5883
		for (level = 0; level <= max_level; level++) {
5884 5885
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5886 5887
			else
				val = I915_READ(CUR_WM(pipe, level));
5888

5889
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5890 5891
		}

5892 5893
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5894 5895 5896 5897
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5898 5899
	}

5900
	if (!crtc->active)
5901
		return;
5902 5903
}

5904
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5905
{
5906
	struct intel_crtc *crtc;
5907
	struct intel_crtc_state *crtc_state;
5908

5909
	skl_ddb_get_hw_state(dev_priv);
5910
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5911
		crtc_state = to_intel_crtc_state(crtc->base.state);
5912

5913
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5914
	}
5915

5916
	if (dev_priv->active_pipes) {
5917 5918 5919
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5920 5921
}

5922
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5923
{
5924
	struct drm_device *dev = crtc->base.dev;
5925
	struct drm_i915_private *dev_priv = to_i915(dev);
5926
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5927 5928
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5929
	enum pipe pipe = crtc->pipe;
5930
	static const i915_reg_t wm0_pipe_reg[] = {
5931 5932 5933 5934 5935 5936 5937
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);

5938 5939
	memset(active, 0, sizeof(*active));

5940
	active->pipe_enabled = crtc->active;
5941 5942

	if (active->pipe_enabled) {
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
5956
		int level, max_level = ilk_wm_max_level(dev_priv);
5957 5958 5959 5960 5961 5962 5963 5964 5965

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5966

5967
	crtc->wm.active.ilk = *active;
5968 5969
}

5970 5971 5972 5973 5974
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5975 5976 5977
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5978
	u32 tmp;
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6001 6002 6003 6004
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6005
	u32 tmp;
6006 6007 6008 6009

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

6010
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6011
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6012
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6013
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6014
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6015
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6016
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6017 6018 6019 6020 6021
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
6022 6023 6024
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6025 6026

	tmp = I915_READ(DSPFW2);
6027 6028 6029
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6030 6031 6032 6033 6034 6035

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
6036 6037
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6038 6039

		tmp = I915_READ(DSPFW8_CHV);
6040 6041
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6042 6043

		tmp = I915_READ(DSPFW9_CHV);
6044 6045
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6046 6047 6048

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6049 6050 6051 6052 6053 6054 6055 6056 6057
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6058 6059
	} else {
		tmp = I915_READ(DSPFW7);
6060 6061
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6062 6063 6064

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6065 6066 6067 6068 6069 6070
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6071 6072 6073 6074 6075 6076
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6077
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6078 6079 6080 6081 6082 6083 6084 6085
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

6086
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6146 6147 6148 6149 6150 6151
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6152 6153
	}

6154 6155 6156 6157 6158 6159 6160 6161
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6182
		if (plane_state->uapi.visible)
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6220
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6221 6222
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6223
	struct intel_crtc *crtc;
6224 6225 6226 6227 6228 6229 6230 6231
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6232
		vlv_punit_get(dev_priv);
6233

6234
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6235 6236 6237
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6238 6239 6240 6241 6242 6243 6244 6245 6246
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6247
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6248 6249 6250 6251 6252
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6253 6254 6255
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6256 6257 6258 6259 6260 6261
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6262

6263
		vlv_punit_put(dev_priv);
6264 6265
	}

6266
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6282
			struct g4x_pipe_wm *raw =
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6304
		crtc_state->wm.vlv.intermediate = *active;
6305

6306 6307 6308 6309 6310 6311 6312
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6313
	}
6314

6315 6316 6317
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6318 6319
}

6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6340
		if (plane_state->uapi.visible)
6341 6342 6343
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6344
			struct g4x_pipe_wm *raw =
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6385
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6386
{
6387
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6388
	struct intel_crtc *crtc;
6389

6390 6391
	ilk_init_lp_watermarks(dev_priv);

6392
	for_each_intel_crtc(&dev_priv->drm, crtc)
6393 6394 6395 6396 6397 6398 6399
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6400
	if (INTEL_GEN(dev_priv) >= 7) {
6401 6402 6403
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6404

6405
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6406 6407
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6408
	else if (IS_IVYBRIDGE(dev_priv))
6409 6410
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6411 6412 6413 6414 6415

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6416 6417
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6418
 * @crtc: the #intel_crtc on which to compute the WM
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6449
void intel_update_watermarks(struct intel_crtc *crtc)
6450
{
6451
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6452 6453

	if (dev_priv->display.update_wm)
6454
		dev_priv->display.update_wm(crtc);
6455 6456
}

6457 6458 6459 6460
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6461 6462 6463
	if (!HAS_IPC(dev_priv))
		return;

6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6487 6488 6489 6490 6491
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6492
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6493

6494 6495 6496
	intel_enable_ipc(dev_priv);
}

6497 6498 6499 6500 6501 6502 6503 6504 6505
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6506

6507
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6508
{
6509
	enum pipe pipe;
6510

6511 6512 6513 6514
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6515

6516 6517
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6518 6519 6520
	}
}

6521
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6522
{
6523
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6524

6525 6526 6527 6528 6529 6530 6531
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6532

6533 6534 6535 6536 6537
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6538

6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6553 6554

	/*
6555 6556 6557 6558 6559
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6560
	 */
6561 6562 6563 6564 6565 6566 6567 6568 6569
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6570

6571
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6572

6573 6574 6575 6576 6577 6578
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6579

6580 6581 6582
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6583

6584 6585
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6586

6587
	g4x_disable_trickle_feed(dev_priv);
6588

6589
	ibx_init_clock_gating(dev_priv);
6590 6591
}

6592
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6593
{
6594 6595
	enum pipe pipe;
	u32 val;
6596

6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6625 6626
}

6627
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6628
{
6629
	u32 tmp;
6630

6631 6632
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6633 6634 6635
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6636 6637
}

6638
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6639
{
6640
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6641

6642
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6643

6644 6645 6646
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6647

6648 6649 6650
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6651

6652 6653
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6654

6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6665

6666 6667
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6668

6669 6670 6671 6672
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6673

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6686
	 */
6687 6688 6689
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6690

6691 6692 6693
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6694

6695 6696 6697 6698 6699 6700 6701
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6702

6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6724

6725
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6726

6727
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6728

6729
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6730 6731
}

6732
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6733
{
6734
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
6735

6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
6746

6747
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6748 6749
}

6750
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6751
{
6752 6753 6754
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
6755
	 */
6756
	if (HAS_PCH_LPT_LP(dev_priv))
6757 6758 6759
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6760 6761

	/* WADPOClockGatingDisable:hsw */
6762 6763
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6764
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6765 6766
}

6767
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
6768
{
6769
	if (HAS_PCH_LPT_LP(dev_priv)) {
6770
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6771 6772 6773 6774 6775 6776

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6777 6778 6779 6780 6781
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
6782
	u32 val;
6783 6784 6785 6786 6787

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

6788 6789 6790 6791 6792
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
6803 6804 6805 6806 6807
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
6808

6809 6810 6811
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
6812 6813
}

6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
6828 6829 6830 6831 6832

	/* Wa_1409825376:tgl (pre-prod)*/
	if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   TGL_VRH_GATING_DIS);
6833 6834
}

6835 6836 6837 6838 6839
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

6840
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
6841 6842
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
6843 6844
}

6845
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
6846
{
6847
	u32 val;
6848 6849
	cnp_init_clock_gating(dev_priv);

6850 6851 6852 6853
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

6854 6855 6856 6857 6858 6859 6860 6861
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

6862 6863 6864
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
6865 6866
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
6867 6868
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
6869

R
Rodrigo Vivi 已提交
6870 6871 6872 6873 6874
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

6875
	/* WaDisableVFclkgate:cnl */
6876
	/* WaVFUnitClockGatingDisable:cnl */
6877 6878 6879
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
6880 6881
}

6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

6892
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
6893
{
6894
	gen9_init_clock_gating(dev_priv);
6895 6896 6897 6898 6899

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6900 6901 6902 6903 6904

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6905

6906
	/* WaFbcNukeOnHostModify:kbl */
6907 6908
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6909 6910
}

6911
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
6912
{
6913
	gen9_init_clock_gating(dev_priv);
6914 6915 6916 6917

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
6918 6919 6920 6921

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
6922 6923
}

6924
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
6925
{
6926
	enum pipe pipe;
B
Ben Widawsky 已提交
6927

6928
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6929
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6930

6931
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6932 6933 6934
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6935
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6936
	for_each_pipe(dev_priv, pipe) {
6937
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6938
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6939
			   BDW_DPRS_MASK_VBLANK_SRD);
6940
	}
6941

6942 6943 6944 6945 6946
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6947

6948 6949
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6950 6951 6952 6953

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6954

6955 6956
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6957

6958 6959 6960 6961
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

6962
	lpt_init_clock_gating(dev_priv);
6963 6964 6965 6966 6967 6968 6969 6970

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
6971 6972
}

6973
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
6974
{
6975 6976 6977 6978 6979
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6980
	/* This is required by WaCatErrorRejectionIssue:hsw */
6981 6982 6983 6984
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6985 6986 6987
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6988

6989 6990 6991
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6992 6993 6994 6995
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6996
	/* WaDisable4x2SubspanOptimization:hsw */
6997 6998
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6999

7000 7001 7002
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7003 7004 7005 7006
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7007 7008
	 */
	I915_WRITE(GEN7_GT_MODE,
7009
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7010

7011 7012 7013 7014
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7015
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7016 7017
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7018
	lpt_init_clock_gating(dev_priv);
7019 7020
}

7021
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7022
{
7023
	u32 snpcr;
7024

7025
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7026

7027
	/* WaDisableEarlyCull:ivb */
7028 7029 7030
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7031
	/* WaDisableBackToBackFlipFix:ivb */
7032 7033 7034 7035
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7036
	/* WaDisablePSDDualDispatchEnable:ivb */
7037
	if (IS_IVB_GT1(dev_priv))
7038 7039 7040
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7041 7042 7043
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7044
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7045 7046 7047
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7048
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7049 7050 7051
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7052
		   GEN7_WA_L3_CHICKEN_MODE);
7053
	if (IS_IVB_GT1(dev_priv))
7054 7055
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7056 7057 7058 7059
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7060 7061
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7062
	}
7063

7064
	/* WaForceL3Serialization:ivb */
7065 7066 7067
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7068
	/*
7069
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7070
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7071 7072
	 */
	I915_WRITE(GEN6_UCGCTL2,
7073
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7074

7075
	/* This is required by WaCatErrorRejectionIssue:ivb */
7076 7077 7078 7079
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7080
	g4x_disable_trickle_feed(dev_priv);
7081 7082

	gen7_setup_fixed_func_scheduler(dev_priv);
7083

7084 7085 7086 7087 7088
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7089

7090
	/* WaDisable4x2SubspanOptimization:ivb */
7091 7092
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7093

7094 7095 7096
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7097 7098 7099 7100
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7101 7102
	 */
	I915_WRITE(GEN7_GT_MODE,
7103
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7104

7105 7106 7107 7108
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7109

7110
	if (!HAS_PCH_NOP(dev_priv))
7111
		cpt_init_clock_gating(dev_priv);
7112

7113
	gen6_check_mch_setup(dev_priv);
7114 7115
}

7116
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7117
{
7118
	/* WaDisableEarlyCull:vlv */
7119 7120 7121
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7122
	/* WaDisableBackToBackFlipFix:vlv */
7123 7124 7125 7126
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7127
	/* WaPsdDispatchEnable:vlv */
7128
	/* WaDisablePSDDualDispatchEnable:vlv */
7129
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7130 7131
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7132

7133 7134 7135
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7136
	/* WaForceL3Serialization:vlv */
7137 7138 7139
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7140
	/* WaDisableDopClockGating:vlv */
7141 7142 7143
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7144
	/* This is required by WaCatErrorRejectionIssue:vlv */
7145 7146 7147 7148
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7149 7150
	gen7_setup_fixed_func_scheduler(dev_priv);

7151
	/*
7152
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7153
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7154 7155
	 */
	I915_WRITE(GEN6_UCGCTL2,
7156
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7157

7158 7159 7160 7161 7162
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7163

7164 7165 7166 7167
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7168 7169
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7170

7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7182 7183 7184 7185 7186 7187
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7188
	/*
7189
	 * WaDisableVLVClockGating_VBIIssue:vlv
7190 7191 7192
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7193
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7194 7195
}

7196
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7197
{
7198 7199 7200 7201 7202
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7203 7204 7205 7206

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7207 7208 7209 7210

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7211 7212 7213 7214

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7215

7216 7217 7218 7219 7220 7221
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7222 7223
}

7224
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7225
{
7226
	u32 dspclk_gate;
7227 7228 7229 7230 7231 7232 7233 7234 7235

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7236
	if (IS_GM45(dev_priv))
7237 7238
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7239 7240 7241 7242

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7243

7244 7245 7246
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7247
	g4x_disable_trickle_feed(dev_priv);
7248 7249
}

7250
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7251
{
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7262 7263

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7264 7265 7266
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7267 7268
}

7269
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7270 7271 7272 7273 7274 7275 7276
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7277 7278
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7279 7280 7281

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7282 7283
}

7284
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7285 7286 7287 7288 7289 7290
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7291

7292
	if (IS_PINEVIEW(dev_priv))
7293
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7294 7295 7296

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7297 7298

	/* interrupts should cause a wake up from C3 */
7299
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7300 7301 7302

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7303 7304 7305

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7306 7307
}

7308
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7309 7310
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7311 7312 7313 7314

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7315 7316 7317

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7318 7319
}

7320
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7321
{
7322 7323 7324
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7325 7326
}

7327
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7328
{
7329
	dev_priv->display.init_clock_gating(dev_priv);
7330 7331
}

7332
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7333
{
7334 7335
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7336 7337
}

7338
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7339
{
7340 7341
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7355
	if (IS_GEN(dev_priv, 12))
7356
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7357
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7358
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7359
	else if (IS_CANNONLAKE(dev_priv))
7360
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7361 7362
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7363
	else if (IS_SKYLAKE(dev_priv))
7364
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7365
	else if (IS_KABYLAKE(dev_priv))
7366
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7367
	else if (IS_BROXTON(dev_priv))
7368
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7369 7370
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7371
	else if (IS_BROADWELL(dev_priv))
7372
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7373
	else if (IS_CHERRYVIEW(dev_priv))
7374
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7375
	else if (IS_HASWELL(dev_priv))
7376
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7377
	else if (IS_IVYBRIDGE(dev_priv))
7378
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7379
	else if (IS_VALLEYVIEW(dev_priv))
7380
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7381
	else if (IS_GEN(dev_priv, 6))
7382
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7383
	else if (IS_GEN(dev_priv, 5))
7384
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7385 7386
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7387
	else if (IS_I965GM(dev_priv))
7388
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7389
	else if (IS_I965G(dev_priv))
7390
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7391
	else if (IS_GEN(dev_priv, 3))
7392 7393 7394
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7395
	else if (IS_GEN(dev_priv, 2))
7396 7397 7398 7399 7400 7401 7402
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7403
/* Set up chip specific power management-related functions */
7404
void intel_init_pm(struct drm_i915_private *dev_priv)
7405
{
7406
	/* For cxsr */
7407
	if (IS_PINEVIEW(dev_priv))
7408
		pnv_get_mem_freq(dev_priv);
7409
	else if (IS_GEN(dev_priv, 5))
7410
		ilk_get_mem_freq(dev_priv);
7411

7412 7413 7414
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7415
	/* For FIFO watermark updates */
7416
	if (INTEL_GEN(dev_priv) >= 9) {
7417
		skl_setup_wm_latency(dev_priv);
7418
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7419
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7420
		ilk_setup_wm_latency(dev_priv);
7421

7422
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7423
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7424
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7425
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7426
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7427 7428 7429 7430 7431 7432
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7433
		} else {
7434 7435 7436
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7437
		}
7438
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7439
		vlv_setup_wm_latency(dev_priv);
7440
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7441
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7442
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7443
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7444
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7445 7446 7447 7448 7449 7450
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7451
	} else if (IS_PINEVIEW(dev_priv)) {
7452
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7453 7454 7455
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7456 7457
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7458 7459 7460 7461 7462
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7463
			intel_set_memory_cxsr(dev_priv, false);
7464 7465
			dev_priv->display.update_wm = NULL;
		} else
7466
			dev_priv->display.update_wm = pnv_update_wm;
7467
	} else if (IS_GEN(dev_priv, 4)) {
7468
		dev_priv->display.update_wm = i965_update_wm;
7469
	} else if (IS_GEN(dev_priv, 3)) {
7470 7471
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7472
	} else if (IS_GEN(dev_priv, 2)) {
7473
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7474
			dev_priv->display.update_wm = i845_update_wm;
7475
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7476 7477
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7478
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7479 7480
		}
	} else {
7481 7482
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7483 7484 7485
	}
}

7486
void intel_pm_setup(struct drm_i915_private *dev_priv)
7487
{
7488 7489
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7490
}