intel_pm.c 262.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <linux/module.h>
30
#include <linux/pm_runtime.h>
31 32 33

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
34
#include <drm/drm_plane_helper.h>
35

36
#include "display/intel_atomic.h"
37
#include "display/intel_display_types.h"
38 39 40
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

41
#include "i915_drv.h"
42
#include "i915_irq.h"
43
#include "i915_trace.h"
44
#include "intel_pm.h"
45
#include "intel_sideband.h"
46
#include "../../../platform/x86/intel_ips.h"
47

48
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
49
{
50 51 52
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
53
		 * Display WA #0390: skl,kbl
54 55 56 57 58 59 60 61 62
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
68 69
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
70

71 72
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
73 74 75
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
76

77
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
78 79
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
80 81 82 83 84 85

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
86 87
}

88
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
89
{
90
	gen9_init_clock_gating(dev_priv);
91

92 93 94 95
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

96 97
	/*
	 * FIXME:
98
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
99 100
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
101
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
102 103 104 105 106

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
107 108
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112 113 114 115 116 117 118 119 120 121
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
122 123 124 125 126 127 128 129 130 131

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

132 133
}

134
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

172
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
173 174 175
{
	u16 ddrpll, csipll;

176 177
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

199
	dev_priv->ips.r_t = dev_priv->mem_freq;
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
231
		dev_priv->ips.c_m = 0;
232
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
233
		dev_priv->ips.c_m = 1;
234
	} else {
235
		dev_priv->ips.c_m = 2;
236 237 238
	}
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

277 278
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

301 302 303 304
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

305
	vlv_punit_get(dev_priv);
306 307 308 309 310 311 312 313 314 315 316 317 318 319

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

320
	vlv_punit_put(dev_priv);
321 322
}

323 324 325 326
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

327
	vlv_punit_get(dev_priv);
328

329
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
330 331 332 333
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
334
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
335

336
	vlv_punit_put(dev_priv);
337 338
}

339 340 341
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

342
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
343
{
344
	bool was_enabled;
345
	u32 val;
346

347
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
348
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
349
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
350
		POSTING_READ(FW_BLC_SELF_VLV);
351
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
352
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
353
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
354
		POSTING_READ(FW_BLC_SELF);
355
	} else if (IS_PINEVIEW(dev_priv)) {
356 357 358 359 360 361
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
362
		I915_WRITE(DSPFW3, val);
363
		POSTING_READ(DSPFW3);
364
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
365
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
366 367 368
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_I915GM(dev_priv)) {
371 372 373 374 375
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
376
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
377 378 379
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
380
		POSTING_READ(INSTPM);
381
	} else {
382
		return false;
383
	}
384

385 386
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

387 388 389 390 391
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
392 393
}

V
Ville Syrjälä 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
431
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
432
{
433 434
	bool ret;

435
	mutex_lock(&dev_priv->wm.wm_mutex);
436
	ret = _intel_set_memory_cxsr(dev_priv, enable);
437 438 439 440
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
441
	mutex_unlock(&dev_priv->wm.wm_mutex);
442 443

	return ret;
444
}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
460
static const int pessimal_latency_ns = 5000;
461

462 463 464
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

465
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
466
{
467
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
468
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
469
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
470 471
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
472

473
	switch (pipe) {
474
		u32 dsparb, dsparb2, dsparb3;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
494 495
		MISSING_CASE(pipe);
		return;
496 497
	}

498 499 500 501
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
502 503
}

504 505
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
506
{
507
	u32 dsparb = I915_READ(DSPARB);
508 509 510
	int size;

	size = dsparb & 0x7f;
511
	if (i9xx_plane == PLANE_B)
512 513
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

514 515
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
516 517 518 519

	return size;
}

520 521
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
522
{
523
	u32 dsparb = I915_READ(DSPARB);
524 525 526
	int size;

	size = dsparb & 0x1ff;
527
	if (i9xx_plane == PLANE_B)
528 529 530
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

531 532
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
533 534 535 536

	return size;
}

537 538
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
539
{
540
	u32 dsparb = I915_READ(DSPARB);
541 542 543 544 545
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

546 547
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
548 549 550 551 552 553

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
554 555 556 557 558
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 560
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
561 562 563 564 565
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 567
};
static const struct intel_watermark_params pineview_cursor_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 574
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
575 576 577 578 579
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
580 581
};
static const struct intel_watermark_params i965_cursor_wm_info = {
582 583 584 585 586
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
587 588
};
static const struct intel_watermark_params i945_wm_info = {
589 590 591 592 593
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
594 595
};
static const struct intel_watermark_params i915_wm_info = {
596 597 598 599 600
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
601
};
602
static const struct intel_watermark_params i830_a_wm_info = {
603 604 605 606 607
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
608
};
609 610 611 612 613 614 615
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
616
static const struct intel_watermark_params i845_wm_info = {
617 618 619 620 621
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
622 623
};

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
661
	u64 ret;
662

663
	ret = mul_u32_u32(pixel_rate, cpp * latency);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

720 721
/**
 * intel_calculate_wm - calculate watermark level
722
 * @pixel_rate: pixel clock
723
 * @wm: chip FIFO params
724
 * @fifo_size: size of the FIFO buffer
725
 * @cpp: bytes per pixel
726 727 728 729 730 731 732 733 734 735 736 737 738
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
739 740 741 742
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
743
{
744
	int entries, wm_size;
745 746 747 748 749 750 751

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
752 753 754 755 756
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
757

758 759
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
760 761

	/* Don't promote wm_size to unsigned... */
762
	if (wm_size > wm->max_wm)
763 764 765
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
766 767 768 769 770 771 772 773 774 775 776

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

777 778 779
	return wm_size;
}

780 781 782 783 784 785 786 787 788 789
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

790 791 792 793 794
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

818
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
819
{
820
	struct intel_crtc *crtc, *enabled = NULL;
821

822
	for_each_intel_crtc(&dev_priv->drm, crtc) {
823
		if (intel_crtc_active(crtc)) {
824 825 826 827 828 829 830 831 832
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

833
static void pineview_update_wm(struct intel_crtc *unused_crtc)
834
{
835
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
836
	struct intel_crtc *crtc;
837 838
	const struct cxsr_latency *latency;
	u32 reg;
839
	unsigned int wm;
840

841
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
842 843 844
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
845 846
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
847
		intel_set_memory_cxsr(dev_priv, false);
848 849 850
		return;
	}

851
	crtc = single_enabled_crtc(dev_priv);
852
	if (crtc) {
853 854 855 856
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
857
		int cpp = fb->format->cpp[0];
858
		int clock = adjusted_mode->crtc_clock;
859 860 861 862

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
863
					cpp, latency->display_sr);
864 865
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
866
		reg |= FW_WM(wm, SR);
867 868 869 870 871 872
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
873
					4, latency->cursor_sr);
874 875
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
876
		reg |= FW_WM(wm, CURSOR_SR);
877 878 879 880 881
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
882
					cpp, latency->display_hpll_disable);
883 884
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
885
		reg |= FW_WM(wm, HPLL_SR);
886 887 888 889 890
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
891
					4, latency->cursor_hpll_disable);
892 893
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
894
		reg |= FW_WM(wm, HPLL_CURSOR);
895 896 897
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

898
		intel_set_memory_cxsr(dev_priv, true);
899
	} else {
900
		intel_set_memory_cxsr(dev_priv, false);
901 902 903
	}
}

904 905 906 907 908 909 910 911 912 913
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
914
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
915 916 917 918 919 920
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

921 922
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
923
{
924 925 926 927 928
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
946

947
	POSTING_READ(DSPFW1);
948 949
}

950 951 952
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

953
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
954 955
				const struct vlv_wm_values *wm)
{
956 957 958
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
959 960
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

961 962 963 964 965 966
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
967

968 969 970 971 972 973 974 975 976 977 978
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

979
	I915_WRITE(DSPFW1,
980
		   FW_WM(wm->sr.plane, SR) |
981 982 983
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
984
	I915_WRITE(DSPFW2,
985 986 987
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
988
	I915_WRITE(DSPFW3,
989
		   FW_WM(wm->sr.cursor, CURSOR_SR));
990 991 992

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
993 994
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
995
		I915_WRITE(DSPFW8_CHV,
996 997
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
998
		I915_WRITE(DSPFW9_CHV,
999 1000
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1001
		I915_WRITE(DSPHOWM,
1002
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1003 1004 1005 1006 1007 1008 1009 1010 1011
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1012 1013
	} else {
		I915_WRITE(DSPFW7,
1014 1015
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1016
		I915_WRITE(DSPHOWM,
1017
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1018 1019 1020 1021 1022 1023
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024 1025 1026
	}

	POSTING_READ(DSPFW1);
1027 1028
}

1029 1030
#undef FW_WM_VLV

1031 1032 1033 1034 1035
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1036
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1037

1038
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1083 1084 1085
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1086 1087 1088 1089 1090
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1091 1092
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1093 1094 1095 1096 1097 1098 1099

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1100 1101
	cpp = plane_state->base.fb->format->cpp[0];

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1115
		cpp = max(cpp, 4u);
1116 1117 1118 1119

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1120
	width = drm_rect_width(&plane_state->base.dst);
1121 1122 1123 1124 1125 1126 1127

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1128
		unsigned int small, large;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1141
	return min_t(unsigned int, wm, USHRT_MAX);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1179 1180
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1181
			      u32 pri_val);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1307 1308
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1309
	const struct g4x_pipe_wm *raw;
1310 1311
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1312 1313 1314 1315 1316
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1317 1318 1319 1320
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1321 1322 1323
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1324
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1390
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1391
{
1392
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1393 1394 1395 1396 1397 1398 1399
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1400 1401
	enum plane_id plane_id;

1402 1403 1404 1405 1406 1407 1408 1409
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1410
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1411
		!new_crtc_state->disable_cxsr;
1412
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1413
		!new_crtc_state->disable_cxsr;
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1455
out:
1456 1457 1458 1459 1460
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1461
		new_crtc_state->wm.need_postvbl_update = true;
1462 1463 1464 1465 1466 1467 1468 1469

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1470
	int num_active_pipes = 0;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1489
		num_active_pipes++;
1490 1491
	}

1492
	if (num_active_pipes != 1) {
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548 1549 1550 1551 1552

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1553
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1554 1555 1556 1557
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1558 1559
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1560 1561
				   unsigned int htotal,
				   unsigned int width,
1562
				   unsigned int cpp,
1563 1564 1565 1566
				   unsigned int latency)
{
	unsigned int ret;

1567 1568
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1569 1570 1571 1572 1573
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1574
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1575 1576 1577 1578
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1579 1580
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1581 1582 1583
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1584 1585

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1586 1587 1588
	}
}

1589 1590 1591
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1592
{
1593
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1594
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1595 1596
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1597
	unsigned int clock, htotal, cpp, width, wm;
1598 1599 1600 1601

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1602
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1603 1604
		return 0;

1605
	cpp = plane_state->base.fb->format->cpp[0];
1606 1607 1608
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1609

1610
	if (plane->id == PLANE_CURSOR) {
1611 1612 1613 1614 1615 1616 1617 1618
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1619
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1620 1621 1622
				    dev_priv->wm.pri_latency[level] * 10);
	}

1623
	return min_t(unsigned int, wm, USHRT_MAX);
1624 1625
}

1626 1627 1628 1629 1630 1631
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1632
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1633
{
1634
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1635
	const struct g4x_pipe_wm *raw =
1636
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1637
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1638
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1639
	int num_active_planes = hweight8(active_planes);
1640
	const int fifo_size = 511;
1641
	int fifo_extra, fifo_left = fifo_size;
1642
	int sprite0_fifo_extra = 0;
1643 1644
	unsigned int total_rate;
	enum plane_id plane_id;
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1657 1658
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1659 1660
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1661

1662 1663
	if (total_rate > fifo_size)
		return -EINVAL;
1664

1665 1666
	if (total_rate == 0)
		total_rate = 1;
1667

1668
	for_each_plane_id_on_crtc(crtc, plane_id) {
1669 1670
		unsigned int rate;

1671 1672
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1673 1674 1675
			continue;
		}

1676 1677 1678
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1679 1680
	}

1681 1682 1683
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1684 1685 1686
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1687 1688

	/* spread the remainder evenly */
1689
	for_each_plane_id_on_crtc(crtc, plane_id) {
1690 1691 1692 1693 1694
		int plane_extra;

		if (fifo_left == 0)
			break;

1695
		if ((active_planes & BIT(plane_id)) == 0)
1696 1697 1698
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1699
		fifo_state->plane[plane_id] += plane_extra;
1700 1701 1702
		fifo_left -= plane_extra;
	}

1703 1704 1705 1706 1707 1708 1709 1710 1711
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1712 1713
}

1714 1715 1716 1717 1718 1719
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1720
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1731 1732 1733 1734 1735 1736 1737 1738
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1739 1740 1741 1742
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1743
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1744
				 int level, enum plane_id plane_id, u16 value)
1745
{
1746
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1747
	int num_levels = intel_wm_num_levels(dev_priv);
1748
	bool dirty = false;
1749

1750
	for (; level < num_levels; level++) {
1751
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1752

1753
		dirty |= raw->plane[plane_id] != value;
1754
		raw->plane[plane_id] = value;
1755
	}
1756 1757

	return dirty;
1758 1759
}

1760 1761
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1762
{
1763 1764
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1765
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1766
	int level;
1767
	bool dirty = false;
1768

1769
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1770 1771
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1772
	}
1773

1774
	for (level = 0; level < num_levels; level++) {
1775
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1776 1777
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1778

1779 1780
		if (wm > max_wm)
			break;
1781

1782
		dirty |= raw->plane[plane_id] != wm;
1783 1784
		raw->plane[plane_id] = wm;
	}
1785

1786
	/* mark all higher levels as invalid */
1787
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1788

1789 1790
out:
	if (dirty)
1791
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1792 1793 1794 1795 1796 1797
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1798
}
1799

1800 1801
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1802
{
1803
	const struct g4x_pipe_wm *raw =
1804 1805 1806
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1807

1808 1809
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1810

1811
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1812
{
1813 1814 1815 1816
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1828 1829
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1830
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1831 1832
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1833 1834 1835
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1836
	unsigned int dirty = 0;
1837

1838 1839 1840 1841
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1842 1843
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1844

1845
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1864
			intel_atomic_get_old_crtc_state(state, crtc);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1876
	}
1877

1878
	/* initially allow all levels */
1879
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1880 1881 1882 1883 1884
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1885
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1886

1887
	for (level = 0; level < wm_state->num_levels; level++) {
1888
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1889
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1890

1891
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1892
			break;
1893

1894 1895 1896 1897 1898 1899 1900 1901
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1902
						 raw->plane[PLANE_SPRITE0],
1903 1904
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1905

1906 1907 1908
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1909 1910
	}

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1921 1922
}

1923 1924 1925
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1926 1927
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1928
{
1929
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1930
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1931
	struct intel_uncore *uncore = &dev_priv->uncore;
1932 1933
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1934
	int sprite0_start, sprite1_start, fifo_size;
1935

1936 1937 1938
	if (!crtc_state->fifo_changed)
		return;

1939 1940 1941
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1942

1943 1944
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1945

1946 1947
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
1957
	spin_lock(&uncore->lock);
1958

1959
	switch (crtc->pipe) {
1960
		u32 dsparb, dsparb2, dsparb3;
1961
	case PIPE_A:
1962 1963
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1975 1976
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1977 1978
		break;
	case PIPE_B:
1979 1980
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1992 1993
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
1994 1995
		break;
	case PIPE_C:
1996 1997
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2009 2010
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2011 2012 2013 2014
		break;
	default:
		break;
	}
2015

2016
	intel_uncore_posting_read_fw(uncore, DSPARB);
2017

2018
	spin_unlock(&uncore->lock);
2019 2020 2021 2022
}

#undef VLV_FIFO

2023
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2024
{
2025
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2026 2027 2028 2029 2030 2031 2032
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2033 2034
	int level;

2035 2036 2037 2038 2039 2040 2041
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2042
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2043
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2044
		!new_crtc_state->disable_cxsr;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2063
out:
2064 2065 2066 2067
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2068
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2069
		new_crtc_state->wm.need_postvbl_update = true;
2070 2071 2072 2073

	return 0;
}

2074
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2075 2076 2077
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2078
	int num_active_pipes = 0;
2079

2080
	wm->level = dev_priv->wm.max_level;
2081 2082
	wm->cxsr = true;

2083
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2084
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2085 2086 2087 2088 2089 2090 2091

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2092
		num_active_pipes++;
2093 2094 2095
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2096
	if (num_active_pipes != 1)
2097 2098
		wm->cxsr = false;

2099
	if (num_active_pipes > 1)
2100 2101
		wm->level = VLV_WM_LEVEL_PM2;

2102
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2103
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2104 2105 2106
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2107
		if (crtc->active && wm->cxsr)
2108 2109
			wm->sr = wm_state->sr[wm->level];

2110 2111 2112 2113
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2114 2115 2116
	}
}

2117
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2118
{
2119 2120
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2121

2122
	vlv_merge_wm(dev_priv, &new_wm);
2123

2124
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2125 2126
		return;

2127
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2128 2129
		chv_set_memory_dvfs(dev_priv, false);

2130
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2131 2132
		chv_set_memory_pm5(dev_priv, false);

2133
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2134
		_intel_set_memory_cxsr(dev_priv, false);
2135

2136
	vlv_write_wm_values(dev_priv, &new_wm);
2137

2138
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2139
		_intel_set_memory_cxsr(dev_priv, true);
2140

2141
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2142 2143
		chv_set_memory_pm5(dev_priv, true);

2144
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2145 2146
		chv_set_memory_dvfs(dev_priv, true);

2147
	*old_wm = new_wm;
2148 2149
}

2150 2151 2152 2153 2154 2155 2156
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2157 2158 2159 2160 2161 2162 2163 2164 2165
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2167 2168 2169 2170 2171

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2172
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2173 2174 2175 2176
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2177
static void i965_update_wm(struct intel_crtc *unused_crtc)
2178
{
2179
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2180
	struct intel_crtc *crtc;
2181 2182
	int srwm = 1;
	int cursor_sr = 16;
2183
	bool cxsr_enabled;
2184 2185

	/* Calc sr entries for one plane configs */
2186
	crtc = single_enabled_crtc(dev_priv);
2187 2188 2189
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2190 2191 2192 2193
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2194
		int clock = adjusted_mode->crtc_clock;
2195
		int htotal = adjusted_mode->crtc_htotal;
2196
		int hdisplay = crtc->config->pipe_src_w;
2197
		int cpp = fb->format->cpp[0];
2198 2199
		int entries;

2200 2201
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2202 2203 2204 2205 2206 2207 2208 2209
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2210 2211 2212
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2213
		entries = DIV_ROUND_UP(entries,
2214 2215
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2216

2217
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2218 2219 2220 2221 2222 2223
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2224
		cxsr_enabled = true;
2225
	} else {
2226
		cxsr_enabled = false;
2227
		/* Turn off self refresh if both pipes are enabled */
2228
		intel_set_memory_cxsr(dev_priv, false);
2229 2230 2231 2232 2233 2234
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2235 2236 2237 2238 2239 2240
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2241
	/* update cursor SR watermark */
2242
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2243 2244 2245

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2246 2247
}

2248 2249
#undef FW_WM

2250
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2251
{
2252
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2253
	const struct intel_watermark_params *wm_info;
2254 2255
	u32 fwater_lo;
	u32 fwater_hi;
2256 2257 2258
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2259
	struct intel_crtc *crtc, *enabled = NULL;
2260

2261
	if (IS_I945GM(dev_priv))
2262
		wm_info = &i945_wm_info;
2263
	else if (!IS_GEN(dev_priv, 2))
2264 2265
		wm_info = &i915_wm_info;
	else
2266
		wm_info = &i830_a_wm_info;
2267

2268 2269
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2270 2271 2272 2273 2274 2275 2276
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2277
		if (IS_GEN(dev_priv, 2))
2278
			cpp = 4;
2279
		else
2280
			cpp = fb->format->cpp[0];
2281

2282
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2283
					       wm_info, fifo_size, cpp,
2284
					       pessimal_latency_ns);
2285
		enabled = crtc;
2286
	} else {
2287
		planea_wm = fifo_size - wm_info->guard_size;
2288 2289 2290 2291
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2292
	if (IS_GEN(dev_priv, 2))
2293
		wm_info = &i830_bc_wm_info;
2294

2295 2296
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2297 2298 2299 2300 2301 2302 2303
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2304
		if (IS_GEN(dev_priv, 2))
2305
			cpp = 4;
2306
		else
2307
			cpp = fb->format->cpp[0];
2308

2309
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2310
					       wm_info, fifo_size, cpp,
2311
					       pessimal_latency_ns);
2312 2313 2314 2315
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2316
	} else {
2317
		planeb_wm = fifo_size - wm_info->guard_size;
2318 2319 2320
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2321 2322 2323

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2324
	if (IS_I915GM(dev_priv) && enabled) {
2325
		struct drm_i915_gem_object *obj;
2326

2327
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2328 2329

		/* self-refresh seems busted with untiled */
2330
		if (!i915_gem_object_is_tiled(obj))
2331 2332 2333
			enabled = NULL;
	}

2334 2335 2336 2337 2338 2339
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2340
	intel_set_memory_cxsr(dev_priv, false);
2341 2342

	/* Calc sr entries for one plane configs */
2343
	if (HAS_FW_BLC(dev_priv) && enabled) {
2344 2345
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2346 2347 2348 2349
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2350
		int clock = adjusted_mode->crtc_clock;
2351
		int htotal = adjusted_mode->crtc_htotal;
2352 2353
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2354 2355
		int entries;

2356
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2357
			cpp = 4;
2358
		else
2359
			cpp = fb->format->cpp[0];
2360

2361 2362
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2363 2364 2365 2366 2367 2368
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2369
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2370 2371
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2372
		else
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2389 2390
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2391 2392
}

2393
static void i845_update_wm(struct intel_crtc *unused_crtc)
2394
{
2395
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2396
	struct intel_crtc *crtc;
2397
	const struct drm_display_mode *adjusted_mode;
2398
	u32 fwater_lo;
2399 2400
	int planea_wm;

2401
	crtc = single_enabled_crtc(dev_priv);
2402 2403 2404
	if (crtc == NULL)
		return;

2405
	adjusted_mode = &crtc->config->base.adjusted_mode;
2406
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2407
				       &i845_wm_info,
2408
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2409
				       4, pessimal_latency_ns);
2410 2411 2412 2413 2414 2415 2416 2417
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2418
/* latency must be in 0.1us units. */
2419 2420 2421
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2422
{
2423
	unsigned int ret;
2424

2425 2426
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2427 2428 2429 2430

	return ret;
}

2431
/* latency must be in 0.1us units. */
2432 2433 2434 2435 2436
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2437
{
2438
	unsigned int ret;
2439

2440 2441
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2442
	ret = DIV_ROUND_UP(ret, 64) + 2;
2443

2444 2445 2446
	return ret;
}

2447
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2448
{
2449 2450 2451 2452 2453 2454
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2455
	if (WARN_ON(!cpp))
2456 2457 2458 2459
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2460
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2461 2462
}

2463
struct ilk_wm_maximums {
2464 2465 2466 2467
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2468 2469
};

2470 2471 2472 2473
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2474 2475
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2476
			      u32 mem_value, bool is_lp)
2477
{
2478
	u32 method1, method2;
2479
	int cpp;
2480

2481 2482 2483
	if (mem_value == 0)
		return U32_MAX;

2484
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2485 2486
		return 0;

2487
	cpp = plane_state->base.fb->format->cpp[0];
2488

2489
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2490 2491 2492 2493

	if (!is_lp)
		return method1;

2494 2495 2496
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
				 crtc_state->base.adjusted_mode.crtc_htotal,
				 drm_rect_width(&plane_state->base.dst),
2497
				 cpp, mem_value);
2498 2499

	return min(method1, method2);
2500 2501
}

2502 2503 2504 2505
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2506 2507
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2508
			      u32 mem_value)
2509
{
2510
	u32 method1, method2;
2511
	int cpp;
2512

2513 2514 2515
	if (mem_value == 0)
		return U32_MAX;

2516
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2517 2518
		return 0;

2519
	cpp = plane_state->base.fb->format->cpp[0];
2520

2521 2522 2523 2524
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
				 crtc_state->base.adjusted_mode.crtc_htotal,
				 drm_rect_width(&plane_state->base.dst),
2525
				 cpp, mem_value);
2526 2527 2528
	return min(method1, method2);
}

2529 2530 2531 2532
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2533 2534
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2535
			      u32 mem_value)
2536
{
2537 2538
	int cpp;

2539 2540 2541
	if (mem_value == 0)
		return U32_MAX;

2542
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2543 2544
		return 0;

2545
	cpp = plane_state->base.fb->format->cpp[0];
2546

2547 2548
	return ilk_wm_method2(crtc_state->pixel_rate,
			      crtc_state->base.adjusted_mode.crtc_htotal,
2549 2550
			      drm_rect_width(&plane_state->base.dst),
			      cpp, mem_value);
2551 2552
}

2553
/* Only for WM_LP. */
2554 2555
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2556
			      u32 pri_val)
2557
{
2558
	int cpp;
2559

2560
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2561 2562
		return 0;

2563
	cpp = plane_state->base.fb->format->cpp[0];
2564

2565
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2566 2567
}

2568 2569
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2570
{
2571
	if (INTEL_GEN(dev_priv) >= 8)
2572
		return 3072;
2573
	else if (INTEL_GEN(dev_priv) >= 7)
2574 2575 2576 2577 2578
		return 768;
	else
		return 512;
}

2579 2580 2581
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2582
{
2583
	if (INTEL_GEN(dev_priv) >= 8)
2584 2585
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2586
	else if (INTEL_GEN(dev_priv) >= 7)
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2597 2598
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2599
{
2600
	if (INTEL_GEN(dev_priv) >= 7)
2601 2602 2603 2604 2605
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2606
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2607
{
2608
	if (INTEL_GEN(dev_priv) >= 8)
2609 2610 2611 2612 2613
		return 31;
	else
		return 15;
}

2614
/* Calculate the maximum primary/sprite plane watermark */
2615
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2616
				     int level,
2617
				     const struct intel_wm_config *config,
2618 2619 2620
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2621
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2622 2623

	/* if sprites aren't enabled, sprites get nothing */
2624
	if (is_sprite && !config->sprites_enabled)
2625 2626 2627
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2628
	if (level == 0 || config->num_pipes_active > 1) {
2629
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2630 2631 2632 2633 2634 2635

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2636
		if (INTEL_GEN(dev_priv) <= 6)
2637 2638 2639
			fifo_size /= 2;
	}

2640
	if (config->sprites_enabled) {
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2652
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2653 2654 2655
}

/* Calculate the maximum cursor plane watermark */
2656
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2657 2658
				      int level,
				      const struct intel_wm_config *config)
2659 2660
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2661
	if (level > 0 && config->num_pipes_active > 1)
2662 2663 2664
		return 64;

	/* otherwise just report max that registers can hold */
2665
	return ilk_cursor_wm_reg_max(dev_priv, level);
2666 2667
}

2668
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2669 2670 2671
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2672
				    struct ilk_wm_maximums *max)
2673
{
2674 2675 2676 2677
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2678 2679
}

2680
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2681 2682 2683
					int level,
					struct ilk_wm_maximums *max)
{
2684 2685 2686 2687
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2688 2689
}

2690
static bool ilk_validate_wm_level(int level,
2691
				  const struct ilk_wm_maximums *max,
2692
				  struct intel_wm_level *result)
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2722 2723 2724
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2725 2726 2727 2728 2729 2730
		result->enable = true;
	}

	return ret;
}

2731
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2732
				 const struct intel_crtc *intel_crtc,
2733
				 int level,
2734
				 struct intel_crtc_state *crtc_state,
2735 2736 2737
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2738
				 struct intel_wm_level *result)
2739
{
2740 2741 2742
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2743 2744 2745 2746 2747 2748 2749 2750

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2751
	if (pristate) {
2752
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2753
						     pri_latency, level);
2754
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2755 2756 2757
	}

	if (sprstate)
2758
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2759 2760

	if (curstate)
2761
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2762

2763 2764 2765
	result->enable = true;
}

2766
static u32
2767
hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2768
{
2769
	const struct intel_atomic_state *intel_state =
2770
		to_intel_atomic_state(crtc_state->base.state);
2771
	const struct drm_display_mode *adjusted_mode =
2772
		&crtc_state->base.adjusted_mode;
2773
	u32 linetime, ips_linetime;
2774

2775
	if (!crtc_state->base.active)
2776 2777 2778
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2779
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2780
		return 0;
2781

2782 2783 2784
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2785 2786 2787
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2788
					 intel_state->cdclk.logical.cdclk);
2789

2790 2791
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2792 2793
}

2794
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2795
				  u16 wm[8])
2796
{
2797 2798
	struct intel_uncore *uncore = &dev_priv->uncore;

2799
	if (INTEL_GEN(dev_priv) >= 9) {
2800
		u32 val;
2801
		int ret, i;
2802
		int level, max_level = ilk_wm_max_level(dev_priv);
2803 2804 2805 2806 2807

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2808
					     &val, NULL);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2827
					     &val, NULL);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2854
		/*
2855
		 * WaWmMemoryReadLatency:skl+,glk
2856
		 *
2857
		 * punit doesn't take into account the read latency so we need
2858 2859
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2860
		 */
2861 2862 2863 2864 2865
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2866
				wm[level] += 2;
2867
			}
2868 2869
		}

2870 2871 2872 2873 2874 2875
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2876
		if (dev_priv->dram_info.is_16gb_dimm)
2877 2878
			wm[0] += 1;

2879
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2880
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2881 2882 2883 2884

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2885 2886 2887 2888
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2889
	} else if (INTEL_GEN(dev_priv) >= 6) {
2890
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2891 2892 2893 2894 2895

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2896
	} else if (INTEL_GEN(dev_priv) >= 5) {
2897
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2898 2899 2900 2901 2902

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2903 2904
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2905 2906 2907
	}
}

2908
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2909
				       u16 wm[5])
2910 2911
{
	/* ILK sprite LP0 latency is 1300 ns */
2912
	if (IS_GEN(dev_priv, 5))
2913 2914 2915
		wm[0] = 13;
}

2916
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2917
				       u16 wm[5])
2918 2919
{
	/* ILK cursor LP0 latency is 1300 ns */
2920
	if (IS_GEN(dev_priv, 5))
2921 2922 2923
		wm[0] = 13;
}

2924
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2925 2926
{
	/* how many WM levels are we expecting */
2927
	if (INTEL_GEN(dev_priv) >= 9)
2928
		return 7;
2929
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2930
		return 4;
2931
	else if (INTEL_GEN(dev_priv) >= 6)
2932
		return 3;
2933
	else
2934 2935
		return 2;
}
2936

2937
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2938
				   const char *name,
2939
				   const u16 wm[8])
2940
{
2941
	int level, max_level = ilk_wm_max_level(dev_priv);
2942 2943 2944 2945 2946

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2947 2948
			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
				      name, level);
2949 2950 2951
			continue;
		}

2952 2953 2954 2955
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2956
		if (INTEL_GEN(dev_priv) >= 9)
2957 2958
			latency *= 10;
		else if (level > 0)
2959 2960 2961 2962 2963 2964 2965 2966
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2967
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2968
				    u16 wm[5], u16 min)
2969
{
2970
	int level, max_level = ilk_wm_max_level(dev_priv);
2971 2972 2973 2974 2975 2976

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
2977
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
2978 2979 2980 2981

	return true;
}

2982
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2998 2999 3000
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3031
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3032
{
3033
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3034 3035 3036 3037 3038 3039

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3040
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3041
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3042

3043 3044 3045
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3046

3047
	if (IS_GEN(dev_priv, 6)) {
3048
		snb_wm_latency_quirk(dev_priv);
3049 3050
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3051 3052
}

3053
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3054
{
3055
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3056
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3057 3058
}

3059
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3071
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3082
/* Compute new watermarks for the pipe */
3083
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3084
{
3085 3086
	struct drm_atomic_state *state = crtc_state->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3087
	struct intel_pipe_wm *pipe_wm;
3088
	struct drm_device *dev = state->dev;
3089
	const struct drm_i915_private *dev_priv = to_i915(dev);
3090 3091
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3092 3093 3094
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3095
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3096
	struct ilk_wm_maximums max;
3097

3098
	pipe_wm = &crtc_state->wm.ilk.optimal;
3099

3100 3101 3102 3103 3104 3105 3106
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3107 3108
	}

3109
	pipe_wm->pipe_enabled = crtc_state->base.active;
3110
	if (sprstate) {
3111 3112 3113 3114
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3115 3116
	}

3117 3118
	usable_level = max_level;

3119
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3120
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3121
		usable_level = 1;
3122 3123

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3124
	if (pipe_wm->sprites_scaled)
3125
		usable_level = 0;
3126

3127
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3128
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3129
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3130

3131
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3132
		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3133

3134
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3135
		return -EINVAL;
3136

3137
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3138

3139 3140
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3141

3142
		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3143
				     pristate, sprstate, curstate, wm);
3144 3145 3146 3147 3148 3149

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3150 3151 3152 3153
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3154 3155
	}

3156
	return 0;
3157 3158
}

3159 3160 3161 3162 3163
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3164
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3165
{
3166 3167
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3168
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3169 3170 3171 3172 3173
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3174
	int level, max_level = ilk_wm_max_level(dev_priv);
3175 3176 3177 3178 3179 3180

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3181
	*a = newstate->wm.ilk.optimal;
3182 3183
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
	    intel_state->skip_intermediate_wm)
3184 3185
		return 0;

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3207
	if (!ilk_validate_pipe_wm(dev_priv, a))
3208 3209 3210 3211 3212 3213
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3214 3215
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3216 3217 3218 3219

	return 0;
}

3220 3221 3222
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3223
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3224 3225 3226 3227 3228
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3229 3230
	ret_wm->enable = true;

3231
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3232
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3233 3234 3235 3236
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3237

3238 3239 3240 3241 3242
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3243
		if (!wm->enable)
3244
			ret_wm->enable = false;
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3256
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3257
			 const struct intel_wm_config *config,
3258
			 const struct ilk_wm_maximums *max,
3259 3260
			 struct intel_pipe_wm *merged)
{
3261
	int level, max_level = ilk_wm_max_level(dev_priv);
3262
	int last_enabled_level = max_level;
3263

3264
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3265
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3266
	    config->num_pipes_active > 1)
3267
		last_enabled_level = 0;
3268

3269
	/* ILK: FBC WM must be disabled always */
3270
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3271 3272 3273 3274 3275

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3276
		ilk_merge_wm_level(dev_priv, level, wm);
3277

3278 3279 3280 3281 3282
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3283 3284 3285 3286 3287 3288

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3289 3290
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3291 3292 3293
			wm->fbc_val = 0;
		}
	}
3294 3295 3296 3297 3298 3299 3300

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3301
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3302
	    intel_fbc_is_active(dev_priv)) {
3303 3304 3305 3306 3307 3308
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3309 3310
}

3311 3312 3313 3314 3315 3316
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3317
/* The value we need to program into the WM_LPx latency field */
3318 3319
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3320
{
3321
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3322 3323 3324 3325 3326
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3327
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3328
				   const struct intel_pipe_wm *merged,
3329
				   enum intel_ddb_partitioning partitioning,
3330
				   struct ilk_wm_values *results)
3331
{
3332 3333
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3334

3335
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3336
	results->partitioning = partitioning;
3337

3338
	/* LP1+ register values */
3339
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3340
		const struct intel_wm_level *r;
3341

3342
		level = ilk_wm_lp_to_level(wm_lp, merged);
3343

3344
		r = &merged->wm[level];
3345

3346 3347 3348 3349 3350
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3351
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3352 3353 3354
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3355 3356 3357
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3358
		if (INTEL_GEN(dev_priv) >= 8)
3359 3360 3361 3362 3363 3364
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3365 3366 3367 3368
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3369
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3370 3371 3372 3373
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3374
	}
3375

3376
	/* LP0 register values */
3377
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3378
		enum pipe pipe = intel_crtc->pipe;
3379 3380
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3381 3382 3383 3384

		if (WARN_ON(!r->enable))
			continue;

3385
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3386

3387 3388 3389 3390
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3391 3392 3393
	}
}

3394 3395
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3396 3397 3398 3399
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3400
{
3401
	int level, max_level = ilk_wm_max_level(dev_priv);
3402
	int level1 = 0, level2 = 0;
3403

3404 3405 3406 3407 3408
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3409 3410
	}

3411 3412
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3413 3414 3415
			return r2;
		else
			return r1;
3416
	} else if (level1 > level2) {
3417 3418 3419 3420 3421 3422
		return r1;
	} else {
		return r2;
	}
}

3423 3424 3425 3426 3427 3428 3429 3430
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3431
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3432 3433
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3434 3435 3436 3437 3438
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3439
	for_each_pipe(dev_priv, pipe) {
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3483 3484
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3485
{
3486
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3487
	bool changed = false;
3488

3489 3490 3491
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3492
		changed = true;
3493 3494 3495 3496
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3497
		changed = true;
3498 3499 3500 3501
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3502
		changed = true;
3503
	}
3504

3505 3506 3507 3508
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3509

3510 3511 3512 3513 3514 3515 3516
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3517 3518
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3519
{
3520
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3521
	unsigned int dirty;
3522
	u32 val;
3523

3524
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3525 3526 3527 3528 3529
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3530
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3531
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3532
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3533
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3534
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3535 3536
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3537
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3538
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3539
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3540
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3541
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3542 3543
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3544
	if (dirty & WM_DIRTY_DDB) {
3545
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3560 3561
	}

3562
	if (dirty & WM_DIRTY_FBC) {
3563 3564 3565 3566 3567 3568 3569 3570
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3571 3572 3573 3574
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3575
	if (INTEL_GEN(dev_priv) >= 7) {
3576 3577 3578 3579 3580
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3581

3582
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3583
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3584
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3585
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3586
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3587
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3588 3589

	dev_priv->wm.hw = *results;
3590 3591
}

3592
bool ilk_disable_lp_wm(struct drm_device *dev)
3593
{
3594
	struct drm_i915_private *dev_priv = to_i915(dev);
3595 3596 3597 3598

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
{
	u8 enabled_slices;

	/* Slice 1 will always be enabled */
	enabled_slices = 1;

	/* Gen prior to GEN11 have only one DBuf slice */
	if (INTEL_GEN(dev_priv) < 11)
		return enabled_slices;

3610 3611 3612 3613 3614 3615
	/*
	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
	 * only that 1 slice enabled until we have a proper way for on-demand
	 * toggling of the second slice.
	 */
	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3616 3617 3618 3619 3620
		enabled_slices++;

	return enabled_slices;
}

3621 3622 3623 3624
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3625
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3626
{
3627
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3628 3629
}

3630 3631 3632
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3633 3634 3635 3636
	/* HACK! */
	if (IS_GEN(dev_priv, 12))
		return false;

3637 3638
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3639 3640
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
	if (IS_GEN(dev_priv, 11)) {
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3673
intel_enable_sagv(struct drm_i915_private *dev_priv)
3674 3675 3676
{
	int ret;

3677 3678 3679 3680
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3681 3682
		return 0;

3683
	DRM_DEBUG_KMS("Enabling SAGV\n");
3684 3685 3686
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3687
	/* We don't need to wait for SAGV when enabling */
3688 3689 3690

	/*
	 * Some skl systems, pre-release machines in particular,
3691
	 * don't actually have SAGV.
3692
	 */
3693
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3694
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3695
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3696 3697
		return 0;
	} else if (ret < 0) {
3698
		DRM_ERROR("Failed to enable SAGV\n");
3699 3700 3701
		return ret;
	}

3702
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3703 3704 3705 3706
	return 0;
}

int
3707
intel_disable_sagv(struct drm_i915_private *dev_priv)
3708
{
3709
	int ret;
3710

3711 3712 3713 3714
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3715 3716
		return 0;

3717
	DRM_DEBUG_KMS("Disabling SAGV\n");
3718
	/* bspec says to keep retrying for at least 1 ms */
3719 3720 3721 3722
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3723 3724
	/*
	 * Some skl systems, pre-release machines in particular,
3725
	 * don't actually have SAGV.
3726
	 */
3727
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3728
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3729
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3730
		return 0;
3731
	} else if (ret < 0) {
3732
		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3733
		return ret;
3734 3735
	}

3736
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3737 3738 3739
	return 0;
}

3740
bool intel_can_enable_sagv(struct intel_atomic_state *state)
3741
{
3742
	struct drm_device *dev = state->base.dev;
3743
	struct drm_i915_private *dev_priv = to_i915(dev);
3744 3745
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3746
	struct intel_crtc_state *crtc_state;
3747
	enum pipe pipe;
3748
	int level, latency;
3749

3750 3751 3752
	if (!intel_has_sagv(dev_priv))
		return false;

3753 3754 3755
	/*
	 * If there are no active CRTCs, no additional checks need be performed
	 */
3756
	if (hweight8(state->active_pipes) == 0)
3757
		return true;
3758 3759 3760 3761 3762

	/*
	 * SKL+ workaround: bspec recommends we disable SAGV when we have
	 * more then one pipe enabled
	 */
3763
	if (hweight8(state->active_pipes) > 1)
3764 3765 3766
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
3767
	pipe = ffs(state->active_pipes) - 1;
3768
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3769
	crtc_state = to_intel_crtc_state(crtc->base.state);
3770

3771
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3772 3773
		return false;

3774
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3775
		struct skl_plane_wm *wm =
3776
			&crtc_state->wm.skl.optimal.planes[plane->id];
3777

3778
		/* Skip this plane if it's not enabled */
3779
		if (!wm->wm[0].plane_en)
3780 3781 3782
			continue;

		/* Find the highest enabled wm level for this plane */
3783
		for (level = ilk_wm_max_level(dev_priv);
3784
		     !wm->wm[level].plane_en; --level)
3785 3786
		     { }

3787 3788
		latency = dev_priv->wm.skl_latency[level];

3789
		if (skl_needs_memory_bw_wa(dev_priv) &&
V
Ville Syrjälä 已提交
3790
		    plane->base.state->fb->modifier ==
3791 3792 3793
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3794
		/*
3795 3796
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3797
		 * can't enable SAGV.
3798
		 */
3799
		if (latency < dev_priv->sagv_block_time_us)
3800 3801 3802 3803 3804 3805
			return false;
	}

	return true;
}

M
Mahesh Kumar 已提交
3806
static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3807
			      const struct intel_crtc_state *crtc_state,
3808
			      const u64 total_data_rate,
M
Mahesh Kumar 已提交
3809 3810
			      const int num_active,
			      struct skl_ddb_allocation *ddb)
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
{
	const struct drm_display_mode *adjusted_mode;
	u64 total_data_bw;
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	WARN_ON(ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

3821
	adjusted_mode = &crtc_state->base.adjusted_mode;
3822
	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3823 3824 3825

	/*
	 * 12GB/s is maximum BW supported by single DBuf slice.
3826 3827 3828 3829 3830
	 *
	 * FIXME dbuf slice code is broken:
	 * - must wait for planes to stop using the slice before powering it off
	 * - plane straddling both slices is illegal in multi-pipe scenarios
	 * - should validate we stay within the hw bandwidth limits
3831
	 */
3832
	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3833 3834 3835 3836 3837 3838 3839 3840 3841
		ddb->enabled_slices = 2;
	} else {
		ddb->enabled_slices = 1;
		ddb_size /= 2;
	}

	return ddb_size;
}

3842
static void
3843
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3844
				   const struct intel_crtc_state *crtc_state,
3845
				   const u64 total_data_rate,
3846
				   struct skl_ddb_allocation *ddb,
3847 3848
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3849
{
3850
	struct drm_atomic_state *state = crtc_state->base.state;
3851
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3852 3853
	struct drm_crtc *for_crtc = crtc_state->base.crtc;
	const struct intel_crtc *crtc;
3854 3855 3856 3857
	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
	u16 ddb_size;
	u32 i;
3858

3859
	if (WARN_ON(!state) || !crtc_state->base.active) {
3860 3861
		alloc->start = 0;
		alloc->end = 0;
3862
		*num_active = hweight8(dev_priv->active_pipes);
3863 3864 3865
		return;
	}

3866
	if (intel_state->active_pipe_changes)
3867
		*num_active = hweight8(intel_state->active_pipes);
3868
	else
3869
		*num_active = hweight8(dev_priv->active_pipes);
3870

3871
	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3872
				      *num_active, ddb);
3873

3874
	/*
3875 3876 3877 3878 3879 3880
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
3881
	 */
3882
	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3883 3884 3885 3886 3887
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3888
		return;
3889
	}
3890

3891 3892 3893 3894 3895
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
3896 3897 3898 3899
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
			&crtc_state->base.adjusted_mode;
		enum pipe pipe = crtc->pipe;
3900 3901
		int hdisplay, vdisplay;

3902
		if (!crtc_state->base.enable)
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
		total_width += hdisplay;

		if (pipe < for_pipe)
			width_before_pipe += hdisplay;
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

	alloc->start = ddb_size * width_before_pipe / total_width;
	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3916 3917
}

3918 3919 3920 3921 3922
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
3923
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3924 3925 3926 3927 3928 3929 3930 3931
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
3932
{
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
	WARN_ON(ret);

	for (level = 0; level <= max_level; level++) {
3947
		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3948 3949 3950 3951 3952
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
3953

3954
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3955 3956
}

3957 3958
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
3959
{
3960

3961 3962
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3963

3964 3965
	if (entry->end)
		entry->end += 1;
3966 3967
}

3968 3969 3970 3971
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
3972 3973
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
3974
{
3975 3976
	u32 val, val2;
	u32 fourcc = 0;
3977 3978 3979 3980

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
3981
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3982 3983 3984 3985 3986 3987
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
3988 3989 3990 3991
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
3992

3993 3994 3995 3996 3997
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3998
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3999

4000 4001
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4002 4003 4004 4005
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4006 4007 4008
	}
}

4009 4010 4011
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4012
{
4013 4014 4015
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4016
	intel_wakeref_t wakeref;
4017
	enum plane_id plane_id;
4018

4019
	power_domain = POWER_DOMAIN_PIPE(pipe);
4020 4021
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4022
		return;
4023

4024 4025 4026 4027 4028
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4029

4030
	intel_display_power_put(dev_priv, power_domain, wakeref);
4031
}
4032

4033 4034 4035 4036
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
{
	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4037 4038
}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4055
static uint_fixed_16_16_t
4056 4057
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4058
{
4059
	u32 src_w, src_h, dst_w, dst_h;
4060 4061
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4062

4063
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4064
		return u32_to_fixed16(0);
4065

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
	src_w = drm_rect_width(&plane_state->base.src) >> 16;
	src_h = drm_rect_height(&plane_state->base.src) >> 16;
	dst_w = drm_rect_width(&plane_state->base.dst);
	dst_h = drm_rect_height(&plane_state->base.dst);
4077

4078 4079 4080 4081
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4082

4083
	return mul_fixed16(downscale_w, downscale_h);
4084 4085
}

4086 4087 4088
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
4089
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4090 4091 4092 4093 4094

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
4095 4096
		u32 src_w, src_h, dst_w, dst_h;
		u32 pfit_size = crtc_state->pch_pfit.size;
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

4108 4109 4110 4111
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4112 4113 4114 4115 4116 4117 4118 4119

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4120
				  struct intel_crtc_state *crtc_state)
4121
{
4122
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4123
	struct drm_atomic_state *state = crtc_state->base.state;
4124 4125
	const struct intel_plane_state *plane_state;
	struct intel_plane *plane;
4126
	int crtc_clock, dotclk;
4127
	u32 pipe_max_pixel_rate;
4128
	uint_fixed_16_16_t pipe_downscale;
4129
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4130

4131
	if (!crtc_state->base.enable)
4132 4133
		return 0;

4134
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4135
		uint_fixed_16_16_t plane_downscale;
4136
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4137 4138
		int bpp;

4139
		if (!intel_wm_plane_visible(crtc_state, plane_state))
4140 4141
			continue;

4142
		if (WARN_ON(!plane_state->base.fb))
4143 4144
			return -EINVAL;

4145 4146
		plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
		bpp = plane_state->base.fb->format->cpp[0] * 8;
4147 4148 4149 4150
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

4151
		max_downscale = max_fixed16(plane_downscale, max_downscale);
4152
	}
4153
	pipe_downscale = skl_pipe_downscale_amount(crtc_state);
4154 4155 4156

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

4157
	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
4158 4159
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

4160
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4161 4162 4163
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4164 4165

	if (pipe_max_pixel_rate < crtc_clock) {
4166
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4167 4168 4169 4170 4171 4172
		return -EINVAL;
	}

	return 0;
}

4173
static u64
4174 4175
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4176
			     int color_plane)
4177
{
4178 4179
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
4180 4181
	u32 data_rate;
	u32 width = 0, height = 0;
4182
	uint_fixed_16_16_t down_scale_amount;
4183
	u64 rate;
4184

4185
	if (!plane_state->base.visible)
4186
		return 0;
4187

4188
	if (plane->id == PLANE_CURSOR)
4189
		return 0;
4190 4191 4192

	if (color_plane == 1 &&
	    !drm_format_info_is_yuv_semiplanar(fb->format))
4193
		return 0;
4194

4195 4196 4197 4198 4199
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4200 4201
	width = drm_rect_width(&plane_state->base.src) >> 16;
	height = drm_rect_height(&plane_state->base.src) >> 16;
4202

4203
	/* UV plane does 1/2 pixel sub-sampling */
4204
	if (color_plane == 1) {
4205 4206
		width /= 2;
		height /= 2;
4207 4208
	}

4209
	data_rate = width * height;
4210

4211
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4212

4213 4214
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4215
	rate *= fb->format->cpp[color_plane];
4216
	return rate;
4217 4218
}

4219
static u64
4220
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4221 4222
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4223
{
4224
	struct drm_atomic_state *state = crtc_state->base.state;
4225 4226
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4227
	u64 total_data_rate = 0;
4228 4229 4230

	if (WARN_ON(!state))
		return 0;
4231

4232
	/* Calculate and cache data rate for each plane */
4233 4234
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4235
		u64 rate;
4236

4237
		/* packed/y */
4238
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4239
		plane_data_rate[plane_id] = rate;
4240
		total_data_rate += rate;
4241

4242
		/* uv-plane */
4243
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4244
		uv_plane_data_rate[plane_id] = rate;
4245
		total_data_rate += rate;
4246 4247 4248 4249 4250
	}

	return total_data_rate;
}

4251
static u64
4252
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4253 4254
				 u64 *plane_data_rate)
{
4255 4256
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4257 4258
	u64 total_data_rate = 0;

4259
	if (WARN_ON(!crtc_state->base.state))
4260 4261 4262
		return 0;

	/* Calculate and cache data rate for each plane */
4263 4264
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4265 4266
		u64 rate;

4267
		if (!plane_state->planar_linked_plane) {
4268
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4269 4270 4271 4272 4273 4274 4275
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4276
			 * intel_atomic_crtc_state_for_each_plane_state(),
4277 4278 4279 4280
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4281
			if (plane_state->planar_slave)
4282 4283 4284
				continue;

			/* Y plane rate is calculated on the slave */
4285
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4286
			y_plane_id = plane_state->planar_linked_plane->id;
4287 4288 4289
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4290
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4291 4292 4293 4294 4295 4296 4297 4298
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4299
static int
4300
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4301 4302
		      struct skl_ddb_allocation *ddb /* out */)
{
4303 4304
	struct drm_atomic_state *state = crtc_state->base.state;
	struct drm_crtc *crtc = crtc_state->base.crtc;
4305
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4306
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4307
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4308 4309 4310
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4311
	u64 total_data_rate;
4312
	enum plane_id plane_id;
4313
	int num_active;
4314 4315
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4316
	u32 blocks;
4317
	int level;
4318

4319
	/* Clear the partitioning for disabled planes. */
4320 4321
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4322

4323 4324 4325
	if (WARN_ON(!state))
		return 0;

4326
	if (!crtc_state->base.active) {
4327
		alloc->start = alloc->end = 0;
4328 4329 4330
		return 0;
	}

4331 4332
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4333
			icl_get_total_relative_data_rate(crtc_state,
4334 4335
							 plane_data_rate);
	else
4336
		total_data_rate =
4337
			skl_get_total_relative_data_rate(crtc_state,
4338 4339
							 plane_data_rate,
							 uv_plane_data_rate);
4340

4341

4342
	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4343
					   ddb, alloc, &num_active);
4344
	alloc_size = skl_ddb_entry_size(alloc);
4345
	if (alloc_size == 0)
4346
		return 0;
4347

4348
	/* Allocate fixed number of blocks for cursor. */
4349
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4350
	alloc_size -= total[PLANE_CURSOR];
4351
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4352
		alloc->end - total[PLANE_CURSOR];
4353
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4354 4355 4356

	if (total_data_rate == 0)
		return 0;
4357

4358
	/*
4359 4360
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4361
	 */
4362
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4363
		blocks = 0;
4364
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4365
			const struct skl_plane_wm *wm =
4366
				&crtc_state->wm.skl.optimal.planes[plane_id];
4367 4368 4369 4370 4371 4372 4373

			if (plane_id == PLANE_CURSOR) {
				if (WARN_ON(wm->wm[level].min_ddb_alloc >
					    total[PLANE_CURSOR])) {
					blocks = U32_MAX;
					break;
				}
4374
				continue;
4375
			}
4376

4377 4378
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4379 4380
		}

4381
		if (blocks <= alloc_size) {
4382 4383 4384
			alloc_size -= blocks;
			break;
		}
4385 4386
	}

4387
	if (level < 0) {
4388
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4389 4390
		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
			      alloc_size);
4391 4392 4393
		return -EINVAL;
	}

4394
	/*
4395 4396 4397
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4398
	 */
4399
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4400
		const struct skl_plane_wm *wm =
4401
			&crtc_state->wm.skl.optimal.planes[plane_id];
4402 4403
		u64 rate;
		u16 extra;
4404

4405
		if (plane_id == PLANE_CURSOR)
4406 4407
			continue;

4408
		/*
4409 4410
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4411
		 */
4412 4413
		if (total_data_rate == 0)
			break;
4414

4415 4416 4417 4418
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4419
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4420 4421
		alloc_size -= extra;
		total_data_rate -= rate;
4422

4423 4424
		if (total_data_rate == 0)
			break;
4425

4426 4427 4428 4429
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4430
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4431 4432 4433 4434 4435 4436 4437 4438
		alloc_size -= extra;
		total_data_rate -= rate;
	}
	WARN_ON(alloc_size != 0 || total_data_rate != 0);

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4439
		struct skl_ddb_entry *plane_alloc =
4440
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4441
		struct skl_ddb_entry *uv_plane_alloc =
4442
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4443 4444 4445 4446

		if (plane_id == PLANE_CURSOR)
			continue;

4447
		/* Gen11+ uses a separate plane for UV watermarks */
4448 4449 4450 4451 4452 4453 4454 4455
		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4456

4457 4458 4459 4460
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4461
		}
4462
	}
4463

4464 4465 4466 4467 4468 4469 4470 4471
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4472
			struct skl_plane_wm *wm =
4473
				&crtc_state->wm.skl.optimal.planes[plane_id];
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4490

4491
			/*
4492
			 * Wa_1408961008:icl, ehl
4493 4494
			 * Underruns with WM1+ disabled
			 */
4495
			if (IS_GEN(dev_priv, 11) &&
4496 4497
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4498 4499
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4500
			}
4501 4502 4503 4504 4505 4506 4507 4508
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4509
		struct skl_plane_wm *wm =
4510
			&crtc_state->wm.skl.optimal.planes[plane_id];
4511

4512
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4513
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4514 4515
	}

4516
	return 0;
4517 4518
}

4519 4520
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4521
 * for the read latency) and cpp should always be <= 8, so that
4522 4523 4524
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4525
static uint_fixed_16_16_t
4526 4527
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4528
{
4529
	u32 wm_intermediate_val;
4530
	uint_fixed_16_16_t ret;
4531 4532

	if (latency == 0)
4533
		return FP_16_16_MAX;
4534

4535
	wm_intermediate_val = latency * pixel_rate * cpp;
4536
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4537 4538 4539 4540

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4541 4542 4543
	return ret;
}

4544 4545 4546
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4547
{
4548
	u32 wm_intermediate_val;
4549
	uint_fixed_16_16_t ret;
4550 4551

	if (latency == 0)
4552
		return FP_16_16_MAX;
4553 4554

	wm_intermediate_val = latency * pixel_rate;
4555 4556
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4557
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4558 4559 4560
	return ret;
}

4561
static uint_fixed_16_16_t
4562
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4563
{
4564 4565
	u32 pixel_rate;
	u32 crtc_htotal;
4566 4567
	uint_fixed_16_16_t linetime_us;

4568
	if (!crtc_state->base.active)
4569
		return u32_to_fixed16(0);
4570

4571
	pixel_rate = crtc_state->pixel_rate;
4572 4573

	if (WARN_ON(pixel_rate == 0))
4574
		return u32_to_fixed16(0);
4575

4576
	crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
4577
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4578 4579 4580 4581

	return linetime_us;
}

4582
static u32
4583 4584
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
4585
{
4586
	u64 adjusted_pixel_rate;
4587
	uint_fixed_16_16_t downscale_amount;
4588 4589

	/* Shouldn't reach here on disabled planes... */
4590
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4591 4592 4593 4594 4595 4596
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4597 4598
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4599

4600 4601
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4602 4603
}

4604
static int
4605 4606 4607 4608 4609
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
4610
{
4611 4612
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4613
	u32 interm_pbpl;
4614

4615
	/* only planar format has two planes */
4616
	if (color_plane == 1 && !drm_format_info_is_yuv_semiplanar(format)) {
4617
		DRM_DEBUG_KMS("Non planar format have single plane\n");
4618 4619 4620
		return -EINVAL;
	}

4621 4622 4623 4624 4625 4626 4627
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4628
	wp->is_planar = drm_format_info_is_yuv_semiplanar(format);
4629

4630
	wp->width = width;
4631
	if (color_plane == 1 && wp->is_planar)
4632 4633
		wp->width /= 2;

4634 4635
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
4636

4637
	if (INTEL_GEN(dev_priv) >= 11 &&
4638
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4639 4640 4641 4642
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4643
	if (drm_rotation_90_or_270(rotation)) {
4644
		switch (wp->cpp) {
4645
		case 1:
4646
			wp->y_min_scanlines = 16;
4647 4648
			break;
		case 2:
4649
			wp->y_min_scanlines = 8;
4650 4651
			break;
		case 4:
4652
			wp->y_min_scanlines = 4;
4653
			break;
4654
		default:
4655
			MISSING_CASE(wp->cpp);
4656
			return -EINVAL;
4657 4658
		}
	} else {
4659
		wp->y_min_scanlines = 4;
4660 4661
	}

4662
	if (skl_needs_memory_bw_wa(dev_priv))
4663
		wp->y_min_scanlines *= 2;
4664

4665 4666 4667
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4668 4669
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4670 4671 4672 4673

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4674 4675
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
4676
	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4677 4678
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4679
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4680
	} else {
4681 4682
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4683
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4684 4685
	}

4686 4687
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
4688

4689
	wp->linetime_us = fixed16_to_u32_round_up(
4690
					intel_get_linetime_us(crtc_state));
4691 4692 4693 4694

	return 0;
}

4695 4696 4697 4698 4699 4700 4701 4702
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
	const struct drm_framebuffer *fb = plane_state->base.fb;
	int width;

4703 4704 4705 4706 4707 4708
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
	width = drm_rect_width(&plane_state->base.src) >> 16;
4709 4710 4711 4712 4713 4714 4715 4716

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
				     plane_state->base.rotation,
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

4717 4718 4719 4720 4721 4722 4723 4724 4725
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

4726
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4727 4728 4729 4730
				 int level,
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
4731
{
4732
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4733
	u32 latency = dev_priv->wm.skl_latency[level];
4734 4735
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
4736
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4737

4738 4739 4740
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4741
		return;
4742
	}
4743

4744 4745 4746 4747
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
4748
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4749 4750 4751
	    dev_priv->ipc_enabled)
		latency += 4;

4752
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4753 4754 4755
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4756
				 wp->cpp, latency, wp->dbuf_block_size);
4757
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4758
				 crtc_state->base.adjusted_mode.crtc_htotal,
4759
				 latency,
4760
				 wp->plane_blocks_per_line);
4761

4762 4763
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4764
	} else {
4765
		if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
4766
		     wp->dbuf_block_size < 1) &&
4767
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4768
			selected_result = method2;
4769
		} else if (latency >= wp->linetime_us) {
4770
			if (IS_GEN(dev_priv, 9) &&
4771 4772 4773 4774 4775
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
4776
			selected_result = method1;
4777
		}
4778
	}
4779

4780
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4781
	res_lines = div_round_up_fixed16(selected_result,
4782
					 wp->plane_blocks_per_line);
4783

4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
4799

4800 4801 4802 4803 4804 4805 4806 4807 4808
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
4809
	}
4810

4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

4829 4830 4831
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

4832 4833 4834
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
4835
		return;
4836
	}
4837 4838 4839 4840 4841 4842 4843

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
4844 4845
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
4846 4847
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4848
	result->plane_en = true;
4849 4850
}

4851
static void
4852
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4853
		      const struct skl_wm_params *wm_params,
4854
		      struct skl_wm_level *levels)
4855
{
4856
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4857
	int level, max_level = ilk_wm_max_level(dev_priv);
4858
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
4859

4860
	for (level = 0; level <= max_level; level++) {
4861
		struct skl_wm_level *result = &levels[level];
4862

4863
		skl_compute_plane_wm(crtc_state, level, wm_params,
4864
				     result_prev, result);
4865 4866

		result_prev = result;
4867
	}
4868 4869
}

4870
static u32
4871
skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4872
{
4873
	struct drm_atomic_state *state = crtc_state->base.state;
M
Mahesh Kumar 已提交
4874
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4875
	uint_fixed_16_16_t linetime_us;
4876
	u32 linetime_wm;
4877

4878
	linetime_us = intel_get_linetime_us(crtc_state);
4879
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4880

4881 4882
	/* Display WA #1135: BXT:ALL GLK:ALL */
	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4883
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4884 4885

	return linetime_wm;
4886 4887
}

4888
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4889
				      const struct skl_wm_params *wp,
4890
				      struct skl_plane_wm *wm)
4891
{
4892
	struct drm_device *dev = crtc_state->base.crtc->dev;
4893
	const struct drm_i915_private *dev_priv = to_i915(dev);
4894 4895 4896
	u16 trans_min, trans_y_tile_min;
	const u16 trans_amount = 10; /* This is configurable amount */
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4897 4898 4899

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
4900
		return;
4901 4902 4903

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
4904
		return;
4905

4906 4907
	trans_min = 14;
	if (INTEL_GEN(dev_priv) >= 11)
4908 4909 4910 4911
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
4922
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4923

4924
	if (wp->y_tiled) {
4925 4926
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4927
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4928 4929
				trans_offset_b;
	} else {
4930
		res_blocks = wm0_sel_res_b + trans_offset_b;
4931 4932 4933 4934 4935 4936 4937

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

4938 4939 4940 4941 4942 4943 4944
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
4945 4946
}

4947
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4948 4949
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
4950
{
4951
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4952 4953 4954
	struct skl_wm_params wm_params;
	int ret;

4955
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4956 4957 4958 4959
					  &wm_params, color_plane);
	if (ret)
		return ret;

4960
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
4961
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
4962 4963 4964 4965

	return 0;
}

4966
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
4967 4968
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
4969
{
4970
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4971 4972 4973
	struct skl_wm_params wm_params;
	int ret;

4974
	wm->is_planar = true;
4975 4976

	/* uv plane watermarks must also be validated for NV12/Planar */
4977
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4978 4979 4980
					  &wm_params, 1);
	if (ret)
		return ret;
4981

4982
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
4983

4984
	return 0;
4985 4986
}

4987
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
4988
			      const struct intel_plane_state *plane_state)
4989
{
4990 4991 4992
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	const struct drm_framebuffer *fb = plane_state->base.fb;
	enum plane_id plane_id = plane->id;
4993 4994
	int ret;

4995 4996 4997
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

4998
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
4999
					plane_id, 0);
5000 5001 5002
	if (ret)
		return ret;

5003
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5004
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5005 5006 5007 5008 5009 5010 5011 5012
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5013
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5014 5015 5016 5017 5018 5019
			      const struct intel_plane_state *plane_state)
{
	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
	int ret;

	/* Watermarks calculated in master */
5020
	if (plane_state->planar_slave)
5021 5022
		return 0;

5023
	if (plane_state->planar_linked_plane) {
5024
		const struct drm_framebuffer *fb = plane_state->base.fb;
5025
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5026 5027 5028 5029 5030

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5031
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5032 5033 5034 5035
						y_plane_id, 0);
		if (ret)
			return ret;

5036
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5037 5038 5039 5040
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5041
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5042 5043 5044 5045 5046 5047
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5048 5049
}

5050
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5051
{
5052 5053
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5054 5055
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5056
	int ret;
5057

L
Lyude 已提交
5058 5059 5060 5061 5062 5063
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5064 5065
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5066

5067
		if (INTEL_GEN(dev_priv) >= 11)
5068
			ret = icl_build_plane_wm(crtc_state, plane_state);
5069
		else
5070
			ret = skl_build_plane_wm(crtc_state, plane_state);
5071 5072
		if (ret)
			return ret;
5073
	}
5074

5075
	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5076

5077
	return 0;
5078 5079
}

5080 5081
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5082 5083 5084
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5085
		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5086
	else
5087
		I915_WRITE_FW(reg, 0);
5088 5089
}

5090 5091 5092 5093
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5094
	u32 val = 0;
5095

5096
	if (level->plane_en)
5097
		val |= PLANE_WM_EN;
5098 5099 5100 5101
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5102

5103
	I915_WRITE_FW(reg, val);
5104 5105
}

5106 5107
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5108
{
5109
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5110
	int level, max_level = ilk_wm_max_level(dev_priv);
5111 5112 5113 5114 5115 5116 5117 5118
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5119 5120

	for (level = 0; level <= max_level; level++) {
5121
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5122
				   &wm->wm[level]);
5123
	}
5124
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5125
			   &wm->trans_wm);
5126

5127
	if (INTEL_GEN(dev_priv) >= 11) {
5128
		skl_ddb_entry_write(dev_priv,
5129 5130
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5131
	}
5132 5133 5134 5135 5136 5137 5138 5139

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5140 5141
}

5142 5143
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5144
{
5145
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5146
	int level, max_level = ilk_wm_max_level(dev_priv);
5147 5148 5149 5150 5151 5152
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5153 5154

	for (level = 0; level <= max_level; level++) {
5155 5156
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
5157
	}
5158
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5159

5160
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5161 5162
}

5163 5164 5165
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5166
	return l1->plane_en == l2->plane_en &&
5167
		l1->ignore_lines == l2->ignore_lines &&
5168 5169 5170
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5171

5172 5173 5174 5175 5176
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5177

5178 5179 5180 5181 5182 5183 5184
	for (level = 0; level <= max_level; level++) {
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5185 5186
}

5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
			       const struct skl_pipe_wm *wm1,
			       const struct skl_pipe_wm *wm2)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum plane_id plane_id;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (!skl_plane_wm_equals(dev_priv,
					 &wm1->planes[plane_id],
					 &wm2->planes[plane_id]))
			return false;
	}

	return wm1->linetime == wm2->linetime;
}

5204 5205
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
5206
{
5207
	return a->start < b->end && b->start < a->end;
5208 5209
}

5210
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5211
				 const struct skl_ddb_entry *entries,
5212
				 int num_entries, int ignore_idx)
5213
{
5214
	int i;
5215

5216 5217 5218
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5219
			return true;
5220
	}
5221

5222
	return false;
5223 5224
}

5225
static u32
5226
pipes_modified(struct intel_atomic_state *state)
5227
{
5228
	struct intel_crtc *crtc;
5229
	struct intel_crtc_state *crtc_state;
5230
	u32 i, ret = 0;
5231

5232
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5233
		ret |= drm_crtc_mask(&crtc->base);
5234 5235 5236 5237

	return ret;
}

5238
static int
5239 5240
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5241
{
5242 5243 5244 5245
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5246

5247 5248 5249
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5250

5251 5252 5253 5254
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5255 5256
			continue;

5257
		plane_state = intel_atomic_get_plane_state(state, plane);
5258 5259
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5260

5261
		new_crtc_state->update_planes |= BIT(plane_id);
5262 5263 5264 5265 5266 5267
	}

	return 0;
}

static int
5268
skl_compute_ddb(struct intel_atomic_state *state)
5269
{
5270 5271
	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5272 5273
	struct intel_crtc_state *old_crtc_state;
	struct intel_crtc_state *new_crtc_state;
5274 5275
	struct intel_crtc *crtc;
	int ret, i;
5276

5277 5278
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5279
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5280 5281
					    new_crtc_state, i) {
		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5282 5283 5284
		if (ret)
			return ret;

5285 5286
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5287 5288
		if (ret)
			return ret;
5289 5290 5291 5292 5293
	}

	return 0;
}

5294 5295 5296 5297 5298
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5299
static void
5300
skl_print_wm_changes(struct intel_atomic_state *state)
5301
{
5302 5303 5304 5305 5306
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5307
	int i;
5308

5309 5310 5311
	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

5312 5313
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5314 5315 5316 5317 5318
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5319 5320
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5321 5322
			const struct skl_ddb_entry *old, *new;

5323 5324
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5325 5326 5327 5328

			if (skl_ddb_entry_equal(old, new))
				continue;

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				      plane->base.base.id, plane->base.name,
				      old->start, old->end, new->start, new->end,
				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
				      plane->base.base.id, plane->base.name,
				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				      enast(old_wm->trans_wm.plane_en),
				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
				      enast(new_wm->trans_wm.plane_en));

5359 5360
			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5361
				      plane->base.base.id, plane->base.name,
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,

				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
				      plane->base.base.id, plane->base.name,
				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				      old_wm->trans_wm.plane_res_b,
				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
				      new_wm->trans_wm.plane_res_b);

			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5398
				      plane->base.base.id, plane->base.name,
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				      old_wm->trans_wm.min_ddb_alloc,
				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
				      new_wm->trans_wm.min_ddb_alloc);
5409 5410 5411 5412
		}
	}
}

5413
static int
5414
skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5415
{
5416
	struct drm_device *dev = state->base.dev;
5417
	const struct drm_i915_private *dev_priv = to_i915(dev);
5418 5419
	struct intel_crtc *crtc;
	struct intel_crtc_state *crtc_state;
5420
	u32 realloc_pipes = pipes_modified(state);
5421
	int ret, i;
5422

5423 5424 5425 5426
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
5427 5428
	if (dev_priv->wm.distrust_bios_wm)
		(*changed) = true;
5429

5430 5431 5432 5433
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
5434
	 * which means we can safely use values like dev_priv->active_pipes
5435 5436 5437
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5438
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5439
		(*changed) = true;
5440

5441
	if (!*changed)
5442 5443
		return 0;

5444 5445 5446 5447 5448 5449 5450 5451
	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5452
				       state->base.acquire_ctx);
5453 5454 5455
		if (ret)
			return ret;

5456
		state->active_pipe_changes = ~0;
5457 5458

		/*
5459
		 * We usually only initialize state->active_pipes if we
5460 5461 5462 5463
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
5464
		if (!state->modeset)
5465
			state->active_pipes = dev_priv->active_pipes;
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
	}

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5481
	if (state->active_pipe_changes || state->modeset) {
5482
		realloc_pipes = ~0;
5483
		state->wm_results.dirty_pipes = ~0;
5484 5485 5486 5487 5488 5489
	}

	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
5490 5491 5492 5493
	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
5494 5495 5496 5497 5498
	}

	return 0;
}

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

5559
static int
5560
skl_compute_wm(struct intel_atomic_state *state)
5561
{
5562
	struct intel_crtc *crtc;
5563
	struct intel_crtc_state *new_crtc_state;
5564 5565
	struct intel_crtc_state *old_crtc_state;
	struct skl_ddb_values *results = &state->wm_results;
5566 5567 5568
	bool changed = false;
	int ret, i;

5569 5570 5571
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5572 5573 5574 5575
	ret = skl_ddb_add_affected_pipes(state, &changed);
	if (ret || !changed)
		return ret;

5576 5577
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
5578
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5579 5580 5581
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 */
5582
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5583 5584
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
5585 5586 5587
		if (ret)
			return ret;

5588
		ret = skl_wm_add_affected_planes(state, crtc);
5589 5590 5591
		if (ret)
			return ret;

5592 5593 5594
		if (!skl_pipe_wm_equals(crtc,
					&old_crtc_state->wm.skl.optimal,
					&new_crtc_state->wm.skl.optimal))
5595
			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5596 5597
	}

5598 5599 5600 5601
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

5602
	skl_print_wm_changes(state);
5603

5604 5605 5606
	return 0;
}

5607
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5608
				      struct intel_crtc_state *crtc_state)
5609
{
5610
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5611
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5612
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5613
	enum pipe pipe = crtc->pipe;
5614 5615 5616

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5617 5618 5619 5620

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
}

5621
static void skl_initial_wm(struct intel_atomic_state *state,
5622
			   struct intel_crtc_state *crtc_state)
5623
{
5624
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5625
	struct drm_device *dev = intel_crtc->base.dev;
5626
	struct drm_i915_private *dev_priv = to_i915(dev);
5627
	struct skl_ddb_values *results = &state->wm_results;
5628

5629
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5630 5631
		return;

5632
	mutex_lock(&dev_priv->wm.wm_mutex);
5633

5634 5635
	if (crtc_state->base.active_changed)
		skl_atomic_update_crtc_wm(state, crtc_state);
5636

5637
	mutex_unlock(&dev_priv->wm.wm_mutex);
5638 5639
}

5640
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5641 5642 5643 5644 5645
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
5646
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5658
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5659
{
5660
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5661
	struct ilk_wm_maximums max;
5662
	struct intel_wm_config config = {};
5663
	struct ilk_wm_values results = {};
5664
	enum intel_ddb_partitioning partitioning;
5665

5666
	ilk_compute_wm_config(dev_priv, &config);
5667

5668 5669
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5670 5671

	/* 5/6 split only in single pipe config on IVB+ */
5672
	if (INTEL_GEN(dev_priv) >= 7 &&
5673
	    config.num_pipes_active == 1 && config.sprites_enabled) {
5674 5675
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5676

5677
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5678
	} else {
5679
		best_lp_wm = &lp_wm_1_2;
5680 5681
	}

5682
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5683
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5684

5685
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5686

5687
	ilk_write_wm_values(dev_priv, &results);
5688 5689
}

5690
static void ilk_initial_watermarks(struct intel_atomic_state *state,
5691
				   struct intel_crtc_state *crtc_state)
5692
{
5693
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5694
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5695

5696
	mutex_lock(&dev_priv->wm.wm_mutex);
5697
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5698 5699 5700
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5701

5702
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5703
				    struct intel_crtc_state *crtc_state)
5704
{
5705
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5706 5707 5708 5709
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;
5710

5711
	mutex_lock(&dev_priv->wm.wm_mutex);
5712 5713
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
5714
	mutex_unlock(&dev_priv->wm.wm_mutex);
5715 5716
}

5717
static inline void skl_wm_level_from_reg_val(u32 val,
5718
					     struct skl_wm_level *level)
5719
{
5720
	level->plane_en = val & PLANE_WM_EN;
5721
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5722 5723 5724
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5725 5726
}

5727
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5728
			      struct skl_pipe_wm *out)
5729
{
5730 5731
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
5732 5733
	int level, max_level;
	enum plane_id plane_id;
5734
	u32 val;
5735

5736
	max_level = ilk_wm_max_level(dev_priv);
5737

5738
	for_each_plane_id_on_crtc(crtc, plane_id) {
5739
		struct skl_plane_wm *wm = &out->planes[plane_id];
5740

5741
		for (level = 0; level <= max_level; level++) {
5742 5743
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5744 5745
			else
				val = I915_READ(CUR_WM(pipe, level));
5746

5747
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5748 5749
		}

5750 5751
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5752 5753 5754 5755
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5756 5757
	}

5758
	if (!crtc->active)
5759
		return;
5760

5761
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5762 5763
}

5764
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5765
{
5766
	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5767
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5768
	struct intel_crtc *crtc;
5769
	struct intel_crtc_state *crtc_state;
5770

5771
	skl_ddb_get_hw_state(dev_priv, ddb);
5772
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5773
		crtc_state = to_intel_crtc_state(crtc->base.state);
5774

5775
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5776

5777 5778
		if (crtc->active)
			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5779
	}
5780

5781
	if (dev_priv->active_pipes) {
5782 5783 5784
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
5785 5786
}

5787
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5788
{
5789
	struct drm_device *dev = crtc->base.dev;
5790
	struct drm_i915_private *dev_priv = to_i915(dev);
5791
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5792 5793
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5794
	enum pipe pipe = crtc->pipe;
5795
	static const i915_reg_t wm0_pipe_reg[] = {
5796 5797 5798 5799 5800 5801
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5802
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5803
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5804

5805 5806
	memset(active, 0, sizeof(*active));

5807
	active->pipe_enabled = crtc->active;
5808 5809

	if (active->pipe_enabled) {
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5824
		int level, max_level = ilk_wm_max_level(dev_priv);
5825 5826 5827 5828 5829 5830 5831 5832 5833

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5834

5835
	crtc->wm.active.ilk = *active;
5836 5837
}

5838 5839 5840 5841 5842
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5843 5844 5845
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
5846
	u32 tmp;
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5869 5870 5871 5872
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
5873
	u32 tmp;
5874 5875 5876 5877

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5878
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5879
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5880
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5881
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5882
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5883
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5884
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5885 5886 5887 5888 5889
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5890 5891 5892
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5893 5894

	tmp = I915_READ(DSPFW2);
5895 5896 5897
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5898 5899 5900 5901 5902 5903

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5904 5905
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5906 5907

		tmp = I915_READ(DSPFW8_CHV);
5908 5909
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5910 5911

		tmp = I915_READ(DSPFW9_CHV);
5912 5913
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5914 5915 5916

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5917 5918 5919 5920 5921 5922 5923 5924 5925
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5926 5927
	} else {
		tmp = I915_READ(DSPFW7);
5928 5929
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5930 5931 5932

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5933 5934 5935 5936 5937 5938
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5939 5940 5941 5942 5943 5944
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5945
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5946 5947 5948 5949 5950 5951 5952 5953
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

5954
	for_each_intel_crtc(&dev_priv->drm, crtc) {
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6085
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6086 6087
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6088
	struct intel_crtc *crtc;
6089 6090 6091 6092 6093 6094 6095 6096
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6097
		vlv_punit_get(dev_priv);
6098

6099
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6100 6101 6102
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6103 6104 6105 6106 6107 6108 6109 6110 6111
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6112
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6126

6127
		vlv_punit_put(dev_priv);
6128 6129
	}

6130
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6146
			struct g4x_pipe_wm *raw =
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6168
		crtc_state->wm.vlv.intermediate = *active;
6169

6170
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6171 6172 6173 6174 6175
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6176
	}
6177 6178 6179 6180 6181

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6206
			struct g4x_pipe_wm *raw =
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6247
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6248
{
6249
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6250
	struct intel_crtc *crtc;
6251

6252 6253
	ilk_init_lp_watermarks(dev_priv);

6254
	for_each_intel_crtc(&dev_priv->drm, crtc)
6255 6256 6257 6258 6259 6260 6261
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6262
	if (INTEL_GEN(dev_priv) >= 7) {
6263 6264 6265
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6266

6267
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6268 6269
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6270
	else if (IS_IVYBRIDGE(dev_priv))
6271 6272
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6273 6274 6275 6276 6277

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6278 6279
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6280
 * @crtc: the #intel_crtc on which to compute the WM
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6311
void intel_update_watermarks(struct intel_crtc *crtc)
6312
{
6313
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6314 6315

	if (dev_priv->display.update_wm)
6316
		dev_priv->display.update_wm(crtc);
6317 6318
}

6319 6320 6321 6322
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6323 6324 6325
	if (!HAS_IPC(dev_priv))
		return;

6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6349 6350 6351 6352 6353
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6354
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6355

6356 6357 6358
	intel_enable_ipc(dev_priv);
}

6359
/*
6360 6361 6362 6363
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

T
Tvrtko Ursulin 已提交
6364
bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6365
{
T
Tvrtko Ursulin 已提交
6366
	struct intel_uncore *uncore = &i915->uncore;
6367 6368
	u16 rgvswctl;

6369
	lockdep_assert_held(&mchdev_lock);
6370

T
Tvrtko Ursulin 已提交
6371
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6372 6373 6374 6375 6376 6377 6378
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
T
Tvrtko Ursulin 已提交
6379 6380
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
	intel_uncore_posting_read16(uncore, MEMSWCTL);
6381 6382

	rgvswctl |= MEMCTL_CMD_STS;
T
Tvrtko Ursulin 已提交
6383
	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6384 6385 6386 6387

	return true;
}

6388
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6389
{
6390
	struct intel_uncore *uncore = &dev_priv->uncore;
6391
	u32 rgvmodectl;
6392 6393
	u8 fmax, fmin, fstart, vstart;

6394 6395
	spin_lock_irq(&mchdev_lock);

6396
	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6397

6398
	/* Enable temp reporting */
6399 6400
	intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6401 6402

	/* 100ms RC evaluation intervals */
6403 6404
	intel_uncore_write(uncore, RCUPEI, 100000);
	intel_uncore_write(uncore, RCDNEI, 100000);
6405 6406

	/* Set max/min thresholds to 90ms and 80ms respectively */
6407 6408
	intel_uncore_write(uncore, RCBMAXAVG, 90000);
	intel_uncore_write(uncore, RCBMINAVG, 80000);
6409

6410
	intel_uncore_write(uncore, MEMIHYST, 1);
6411 6412 6413 6414 6415 6416 6417

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

6418 6419
	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6420

6421 6422
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6423

6424 6425 6426
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6427 6428 6429 6430

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

6431 6432 6433
	intel_uncore_write(uncore,
			   MEMINTREN,
			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6434 6435 6436 6437 6438

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

6439 6440
	intel_uncore_write(uncore, VIDSTART, vstart);
	intel_uncore_posting_read(uncore, VIDSTART);
6441 6442

	rgvmodectl |= MEMMODE_SWMODE_EN;
6443
	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6444

6445 6446
	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
			     MEMCTL_CMD_STS) == 0, 10))
6447
		DRM_ERROR("stuck trying to change perf mode\n");
6448
	mdelay(1);
6449

6450
	ironlake_set_drps(dev_priv, fstart);
6451

6452 6453 6454 6455
	dev_priv->ips.last_count1 =
		intel_uncore_read(uncore, DMIEC) +
		intel_uncore_read(uncore, DDREC) +
		intel_uncore_read(uncore, CSIEC);
6456
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6457
	dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6458
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6459 6460

	spin_unlock_irq(&mchdev_lock);
6461 6462
}

6463
static void ironlake_disable_drps(struct drm_i915_private *i915)
6464
{
6465
	struct intel_uncore *uncore = &i915->uncore;
6466 6467 6468 6469
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

6470
	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6471 6472

	/* Ack interrupts, disable EFC interrupt */
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
	intel_uncore_write(uncore,
			   MEMINTREN,
			   intel_uncore_read(uncore, MEMINTREN) &
			   ~MEMINT_EVAL_CHG_EN);
	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
	intel_uncore_write(uncore,
			   DEIER,
			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
	intel_uncore_write(uncore,
			   DEIMR,
			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6485 6486

	/* Go back to the starting frequency */
6487
	ironlake_set_drps(i915, i915->ips.fstart);
6488
	mdelay(1);
6489
	rgvswctl |= MEMCTL_CMD_STS;
6490
	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6491
	mdelay(1);
6492

6493
	spin_unlock_irq(&mchdev_lock);
6494 6495
}

6496 6497 6498 6499 6500
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6501
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6502
{
6503
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6504
	u32 limits;
6505

6506 6507 6508 6509 6510 6511
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6512
	if (INTEL_GEN(dev_priv) >= 9) {
6513 6514 6515
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6516
	} else {
6517 6518 6519
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6520
	}
6521 6522 6523 6524

	return limits;
}

C
Chris Wilson 已提交
6525
static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6526
{
6527
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6528 6529
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6530

C
Chris Wilson 已提交
6531
	lockdep_assert_held(&rps->power.mutex);
6532

C
Chris Wilson 已提交
6533
	if (new_power == rps->power.mode)
6534 6535 6536 6537 6538 6539
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6540 6541
		ei_up = 16000;
		threshold_up = 95;
6542 6543

		/* Downclock if less than 85% busy over 32ms */
6544 6545
		ei_down = 32000;
		threshold_down = 85;
6546 6547 6548 6549
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6550 6551
		ei_up = 13000;
		threshold_up = 90;
6552 6553

		/* Downclock if less than 75% busy over 32ms */
6554 6555
		ei_down = 32000;
		threshold_down = 75;
6556 6557 6558 6559
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6560 6561
		ei_up = 10000;
		threshold_up = 85;
6562 6563

		/* Downclock if less than 60% busy over 32ms */
6564 6565
		ei_down = 32000;
		threshold_down = 60;
6566 6567 6568
		break;
	}

6569 6570 6571 6572 6573 6574
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6575
	I915_WRITE(GEN6_RP_UP_EI,
6576
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6577
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6578 6579
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6580 6581

	I915_WRITE(GEN6_RP_DOWN_EI,
6582
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6583
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6584 6585 6586 6587
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
6588
		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6589 6590 6591 6592 6593
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6594

6595
skip_hw_write:
C
Chris Wilson 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
	rps->power.mode = new_power;
	rps->power.up_threshold = threshold_up;
	rps->power.down_threshold = threshold_down;
}

static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	int new_power;

	new_power = rps->power.mode;
	switch (rps->power.mode) {
	case LOW_POWER:
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
			new_power = BETWEEN;
		break;

	case BETWEEN:
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
			new_power = LOW_POWER;
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
	if (val <= rps->min_freq_softlimit)
		new_power = LOW_POWER;
	if (val >= rps->max_freq_softlimit)
		new_power = HIGH_POWER;

	mutex_lock(&rps->power.mutex);
	if (rps->power.interactive)
		new_power = HIGH_POWER;
	rps_set_power(dev_priv, new_power);
	mutex_unlock(&rps->power.mutex);
6640 6641
}

C
Chris Wilson 已提交
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
{
	struct intel_rps *rps = &i915->gt_pm.rps;

	if (INTEL_GEN(i915) < 6)
		return;

	mutex_lock(&rps->power.mutex);
	if (interactive) {
		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
			rps_set_power(i915, HIGH_POWER);
	} else {
		GEM_BUG_ON(!rps->power.interactive);
		rps->power.interactive--;
	}
	mutex_unlock(&rps->power.mutex);
}

6660 6661
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6662
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6663 6664
	u32 mask = 0;

6665
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6666
	if (val > rps->min_freq_softlimit)
6667
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6668
	if (val < rps->max_freq_softlimit)
6669
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6670

6671 6672
	mask &= dev_priv->pm_rps_events;

6673
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6674 6675
}

6676 6677 6678
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6679
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6680
{
6681 6682
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6683 6684 6685
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6686
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6687
		gen6_set_rps_thresholds(dev_priv, val);
6688

6689
		if (INTEL_GEN(dev_priv) >= 9)
6690 6691
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6692
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6693 6694 6695 6696 6697 6698 6699
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6700
	}
6701 6702 6703 6704

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6705
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6706
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6707

6708
	rps->cur_freq = val;
6709
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6710 6711

	return 0;
6712 6713
}

6714
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6715
{
6716 6717
	int err;

6718
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6719 6720 6721
		      "Odd GPU freq value\n"))
		val &= ~1;

6722 6723
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6724
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6725
		vlv_punit_get(dev_priv);
6726
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6727
		vlv_punit_put(dev_priv);
6728 6729 6730
		if (err)
			return err;

6731
		gen6_set_rps_thresholds(dev_priv, val);
6732
	}
6733

6734
	dev_priv->gt_pm.rps.cur_freq = val;
6735
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6736 6737

	return 0;
6738 6739
}

6740
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6741 6742
 *
 * * If Gfx is Idle, then
6743 6744 6745
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6746 6747 6748
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6749 6750
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6751
	int err;
6752

6753
	if (rps->cur_freq <= val)
6754 6755
		return;

6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6768
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6769
	err = valleyview_set_rps(dev_priv, val);
6770
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6771 6772 6773

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6774 6775
}

6776 6777
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6778 6779
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6780
	mutex_lock(&rps->lock);
6781
	if (rps->enabled) {
6782 6783
		u8 freq;

6784
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6785 6786
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6787
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6788

6789 6790
		gen6_enable_rps_interrupts(dev_priv);

6791 6792 6793
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6794 6795
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6796

6797
		if (intel_set_rps(dev_priv,
6798
				  clamp(freq,
6799 6800
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6801
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6802
	}
6803
	mutex_unlock(&rps->lock);
6804 6805
}

6806 6807
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6808 6809
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6810 6811 6812 6813 6814 6815 6816
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6817
	mutex_lock(&rps->lock);
6818
	if (rps->enabled) {
6819
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6820
			vlv_set_rps_idle(dev_priv);
6821
		else
6822 6823
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6824 6825
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6826
	}
6827
	mutex_unlock(&rps->lock);
6828 6829
}

6830
void gen6_rps_boost(struct i915_request *rq)
6831
{
6832
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6833
	unsigned long flags;
6834 6835
	bool boost;

6836 6837 6838
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6839
	if (!rps->enabled)
6840
		return;
6841

6842
	if (i915_request_signaled(rq))
6843 6844
		return;

6845
	/* Serializes with i915_request_retire() */
6846
	boost = false;
6847
	spin_lock_irqsave(&rq->lock, flags);
6848 6849
	if (!i915_request_has_waitboost(rq) &&
	    !dma_fence_is_signaled_locked(&rq->fence)) {
6850
		boost = !atomic_fetch_inc(&rps->num_waiters);
6851
		rq->flags |= I915_REQUEST_WAITBOOST;
6852
	}
6853
	spin_unlock_irqrestore(&rq->lock, flags);
6854 6855 6856
	if (!boost)
		return;

6857 6858
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6859

6860
	atomic_inc(&rps->boosts);
6861 6862
}

6863
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6864
{
6865
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6866 6867
	int err;

6868
	lockdep_assert_held(&rps->lock);
6869 6870
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6871

6872 6873
	if (!rps->enabled) {
		rps->cur_freq = val;
6874 6875 6876
		return 0;
	}

6877
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6878
		err = valleyview_set_rps(dev_priv, val);
6879
	else
6880 6881 6882
		err = gen6_set_rps(dev_priv, val);

	return err;
6883 6884
}

6885
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6886 6887 6888 6889
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6890 6891
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6892
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6893
	I915_WRITE(GEN6_RP_CONTROL, 0);
6894 6895
}

6896 6897 6898 6899 6900
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6901 6902 6903 6904 6905
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6906
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6907
{
6908 6909
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6910
	/* All of these values are in units of 50MHz */
6911

6912
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6913
	if (IS_GEN9_LP(dev_priv)) {
6914
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6915 6916 6917
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6918
	} else {
6919
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6920 6921 6922
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6923
	}
6924
	/* hw_max = RP0 until we check for overclocking */
6925
	rps->max_freq = rps->rp0_freq;
6926

6927
	rps->efficient_freq = rps->rp1_freq;
6928
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6929
	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6930 6931 6932 6933
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6934
					   &ddcc_status, NULL) == 0)
6935
			rps->efficient_freq =
6936 6937
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6938 6939
					rps->min_freq,
					rps->max_freq);
6940 6941
	}

6942
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6943
		/* Store the frequency values in 16.66 MHZ units, which is
6944 6945
		 * the natural hardware unit for SKL
		 */
6946 6947 6948 6949 6950
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6951
	}
6952 6953
}

6954
static void reset_rps(struct drm_i915_private *dev_priv,
6955
		      int (*set)(struct drm_i915_private *, u8))
6956
{
6957 6958
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6959 6960

	/* force a reset */
C
Chris Wilson 已提交
6961
	rps->power.mode = -1;
6962
	rps->cur_freq = -1;
6963

6964 6965
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6966 6967
}

J
Jesse Barnes 已提交
6968
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6969
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6970
{
6971
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
6972

6973
	/* Program defaults and thresholds for RPS */
6974
	if (IS_GEN(dev_priv, 9))
6975 6976
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6977 6978 6979 6980 6981

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6982 6983
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6984 6985 6986
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6987
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6988

6989
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
J
Jesse Barnes 已提交
6990 6991
}

6992 6993
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6994 6995
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6996
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6997 6998

	/* 1 Program defaults and thresholds for RPS*/
6999
	I915_WRITE(GEN6_RPNSWREQ,
7000
		   HSW_FREQUENCY(rps->rp1_freq));
7001
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7002
		   HSW_FREQUENCY(rps->rp1_freq));
7003 7004 7005 7006 7007
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7008 7009
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
7010 7011 7012 7013 7014 7015 7016

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7017

7018
	/* 2: Enable RPS */
7019 7020 7021 7022 7023 7024 7025 7026
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

7027
	reset_rps(dev_priv, gen6_set_rps);
7028

7029
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7030 7031
}

7032 7033 7034 7035 7036 7037 7038 7039
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
7040
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7041 7042 7043 7044 7045 7046 7047

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

7048
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7049 7050
}

7051
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7052
{
7053
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7054 7055
	const int min_freq = 15;
	const int scaling_factor = 180;
7056 7057
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
7058
	unsigned int max_gpu_freq, min_gpu_freq;
7059
	struct cpufreq_policy *policy;
7060

7061
	lockdep_assert_held(&rps->lock);
7062

7063 7064 7065
	if (rps->max_freq <= rps->min_freq)
		return;

7066 7067 7068 7069 7070 7071 7072 7073 7074
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
7075
		max_ia_freq = tsc_khz;
7076
	}
7077 7078 7079 7080

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

7081
	min_ring_freq = I915_READ(DCLK) & 0xf;
7082 7083
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7084

7085 7086
	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
7087
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7088
		/* Convert GT frequency to 50 HZ units */
7089 7090
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
7091 7092
	}

7093 7094 7095 7096 7097
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
7098
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7099
		const int diff = max_gpu_freq - gpu_freq;
7100 7101
		unsigned int ia_freq = 0, ring_freq = 0;

7102
		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7103 7104 7105 7106 7107
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
7108
		} else if (INTEL_GEN(dev_priv) >= 8) {
7109 7110
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
7111
		} else if (IS_HASWELL(dev_priv)) {
7112
			ring_freq = mult_frac(gpu_freq, 5, 4);
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
7129

B
Ben Widawsky 已提交
7130 7131
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7132 7133 7134
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
7135 7136 7137
	}
}

7138
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7139 7140 7141
{
	u32 val, rp0;

7142
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7143

7144
	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
7159
	}
7160 7161 7162

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7176 7177 7178 7179
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7180 7181 7182
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7183 7184 7185
	return rp1;
}

7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7208
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7209 7210 7211
{
	u32 val, rp0;

7212
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7225
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7226
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7227
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7228 7229 7230 7231 7232
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7233
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7234
{
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7246 7247
}

7248 7249
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7250
	dev_priv->gt_pm.rps.gpll_ref_freq =
7251 7252 7253 7254 7255
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7256
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7257 7258
}

7259
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7260
{
7261
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7262
	u32 val;
7263

7264 7265 7266 7267 7268
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7269 7270
	vlv_init_gpll_ref_freq(dev_priv);

7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7284
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7285

7286 7287
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7288
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7289 7290
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7291

7292
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7293
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7294 7295
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7296

7297
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7298
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7299 7300
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7301

7302
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7303
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7304 7305
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7306 7307 7308 7309 7310

	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));
7311 7312
}

7313
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7314
{
7315
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7316
	u32 val;
7317

7318 7319 7320 7321 7322
	vlv_iosf_sb_get(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7323 7324
	vlv_init_gpll_ref_freq(dev_priv);

7325 7326
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);

7327 7328 7329 7330
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7331
	default:
7332 7333 7334
		dev_priv->mem_freq = 1600;
		break;
	}
7335
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7336

7337 7338
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7339
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7340 7341
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7342

7343
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7344
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7345 7346
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7347

7348
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7349
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7350 7351
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7352

7353
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7354
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7355 7356
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7357

7358 7359 7360 7361 7362
	vlv_iosf_sb_put(dev_priv,
			BIT(VLV_IOSF_SB_PUNIT) |
			BIT(VLV_IOSF_SB_NC) |
			BIT(VLV_IOSF_SB_CCK));

7363 7364
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7365
		  "Odd GPU freq values\n");
7366 7367
}

7368 7369 7370 7371
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7372
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7373 7374

	/* 1: Program defaults and thresholds for RPS*/
7375
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7376 7377 7378 7379 7380 7381 7382
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7383
	/* 2: Enable RPS */
7384 7385
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7386
		   GEN6_RP_MEDIA_IS_GFX |
7387 7388 7389 7390
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7391
	/* Setting Fixed Bias */
7392 7393 7394
	vlv_punit_get(dev_priv);

	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
D
Deepak S 已提交
7395 7396
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7397 7398
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7399 7400
	vlv_punit_put(dev_priv);

7401 7402 7403
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7404
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7405 7406
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7407
	reset_rps(dev_priv, valleyview_set_rps);
7408

7409
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7410 7411
}

7412 7413 7414 7415
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

7416
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

7434 7435
	vlv_punit_get(dev_priv);

D
Deepak S 已提交
7436
	/* Setting Fixed Bias */
7437
	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
D
Deepak S 已提交
7438 7439
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7440
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7441

7442 7443
	vlv_punit_put(dev_priv);

7444 7445 7446
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7447
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7448 7449
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7450
	reset_rps(dev_priv, valleyview_set_rps);
7451

7452
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7453 7454
}

7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7484
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7485 7486 7487 7488 7489 7490
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7491
	lockdep_assert_held(&mchdev_lock);
7492

7493
	diff1 = now - dev_priv->ips.last_time1;
7494 7495 7496 7497 7498 7499 7500

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7501
		return dev_priv->ips.chipset_power;
7502 7503 7504 7505 7506 7507 7508 7509

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7510 7511
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7512 7513
		diff += total_count;
	} else {
7514
		diff = total_count - dev_priv->ips.last_count1;
7515 7516 7517
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7518 7519
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7530 7531
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7532

7533
	dev_priv->ips.chipset_power = ret;
7534 7535 7536 7537

	return ret;
}

7538 7539
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
7540 7541
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7542

7543
	if (!IS_GEN(dev_priv, 5))
7544 7545
		return 0;

7546
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7547 7548 7549 7550
		spin_lock_irq(&mchdev_lock);
		val = __i915_chipset_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7551 7552 7553 7554

	return val;
}

T
Tvrtko Ursulin 已提交
7555
unsigned long i915_mch_val(struct drm_i915_private *i915)
7556 7557 7558 7559
{
	unsigned long m, x, b;
	u32 tsfs;

T
Tvrtko Ursulin 已提交
7560
	tsfs = intel_uncore_read(&i915->uncore, TSFS);
7561 7562

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
T
Tvrtko Ursulin 已提交
7563
	x = intel_uncore_read8(&i915->uncore, TR1);
7564 7565 7566 7567 7568 7569

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7582
{
7583 7584 7585
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7586
	if (INTEL_INFO(dev_priv)->is_mobile)
7587 7588 7589
		return vm > 0 ? vm : 0;

	return vd;
7590 7591
}

7592
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7593
{
7594
	u64 now, diff, diffms;
7595 7596
	u32 count;

7597
	lockdep_assert_held(&mchdev_lock);
7598

7599 7600 7601
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7602 7603 7604 7605 7606 7607 7608

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7609 7610
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7611 7612
		diff += count;
	} else {
7613
		diff = count - dev_priv->ips.last_count2;
7614 7615
	}

7616 7617
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7618 7619 7620 7621

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7622
	dev_priv->ips.gfx_power = diff;
7623 7624
}

7625 7626
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7627 7628
	intel_wakeref_t wakeref;

7629
	if (!IS_GEN(dev_priv, 5))
7630 7631
		return;

7632
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7633 7634 7635 7636
		spin_lock_irq(&mchdev_lock);
		__i915_update_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7637 7638
}

7639
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7640 7641 7642 7643
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7644
	lockdep_assert_held(&mchdev_lock);
7645

7646
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7666
	corr2 = (corr * dev_priv->ips.corr);
7667 7668 7669 7670

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7671
	__i915_update_gfx_val(dev_priv);
7672

7673
	return dev_priv->ips.gfx_power + state2;
7674 7675
}

7676 7677
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
7678 7679
	intel_wakeref_t wakeref;
	unsigned long val = 0;
7680

7681
	if (!IS_GEN(dev_priv, 5))
7682 7683
		return 0;

7684
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
7685 7686 7687 7688
		spin_lock_irq(&mchdev_lock);
		val = __i915_gfx_val(dev_priv);
		spin_unlock_irq(&mchdev_lock);
	}
7689

7690 7691
	return val;
}
7692

7693
static struct drm_i915_private __rcu *i915_mch_dev;
7694

7695 7696 7697 7698 7699
static struct drm_i915_private *mchdev_get(void)
{
	struct drm_i915_private *i915;

	rcu_read_lock();
7700
	i915 = rcu_dereference(i915_mch_dev);
7701 7702 7703 7704 7705
	if (!kref_get_unless_zero(&i915->drm.ref))
		i915 = NULL;
	rcu_read_unlock();

	return i915;
7706 7707
}

7708 7709 7710 7711 7712 7713 7714 7715
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
7716 7717 7718 7719
	struct drm_i915_private *i915;
	unsigned long chipset_val = 0;
	unsigned long graphics_val = 0;
	intel_wakeref_t wakeref;
7720

7721 7722 7723
	i915 = mchdev_get();
	if (!i915)
		return 0;
7724

7725
	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
7726 7727 7728 7729 7730
		spin_lock_irq(&mchdev_lock);
		chipset_val = __i915_chipset_val(i915);
		graphics_val = __i915_gfx_val(i915);
		spin_unlock_irq(&mchdev_lock);
	}
7731

7732 7733
	drm_dev_put(&i915->drm);
	return chipset_val + graphics_val;
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
7744
	struct drm_i915_private *i915;
7745

7746 7747 7748
	i915 = mchdev_get();
	if (!i915)
		return false;
7749

7750 7751 7752
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay > i915->ips.fmax)
		i915->ips.max_delay--;
7753
	spin_unlock_irq(&mchdev_lock);
7754

7755 7756
	drm_dev_put(&i915->drm);
	return true;
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
7768
	struct drm_i915_private *i915;
7769

7770 7771 7772
	i915 = mchdev_get();
	if (!i915)
		return false;
7773

7774 7775 7776
	spin_lock_irq(&mchdev_lock);
	if (i915->ips.max_delay < i915->ips.min_delay)
		i915->ips.max_delay++;
7777
	spin_unlock_irq(&mchdev_lock);
7778

7779 7780
	drm_dev_put(&i915->drm);
	return true;
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
7791 7792
	struct drm_i915_private *i915;
	bool ret;
7793

7794 7795 7796
	i915 = mchdev_get();
	if (!i915)
		return false;
7797

7798 7799 7800
	ret = i915->gt.awake;

	drm_dev_put(&i915->drm);
7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
7813 7814
	struct drm_i915_private *i915;
	bool ret;
7815

7816 7817 7818
	i915 = mchdev_get();
	if (!i915)
		return false;
7819

7820 7821 7822
	spin_lock_irq(&mchdev_lock);
	i915->ips.max_delay = i915->ips.fstart;
	ret = ironlake_set_drps(i915, i915->ips.fstart);
7823
	spin_unlock_irq(&mchdev_lock);
7824

7825
	drm_dev_put(&i915->drm);
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7852 7853
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7854
	rcu_assign_pointer(i915_mch_dev, dev_priv);
7855 7856 7857 7858 7859 7860

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7861
	rcu_assign_pointer(i915_mch_dev, NULL);
7862
}
7863

7864
static void intel_init_emon(struct drm_i915_private *dev_priv)
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7881
		I915_WRITE(PEW(i), 0);
7882
	for (i = 0; i < 3; i++)
7883
		I915_WRITE(DEW(i), 0);
7884 7885 7886

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7887
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7908
		I915_WRITE(PXW(i), val);
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7924
		I915_WRITE(PXWL(i), 0);
7925 7926 7927 7928 7929 7930

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7931
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7932 7933
}

7934
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7935
{
7936 7937
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7938 7939 7940
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		mkwrite_device_info(dev_priv)->has_rps = false;
I
Imre Deak 已提交
7941

7942
	/* Initialize RPS limits (for userspace) */
7943 7944 7945 7946
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7947
	else if (INTEL_GEN(dev_priv) >= 6)
7948 7949 7950
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
7951 7952
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
7953

7954
	/* After setting max-softlimit, find the overclock max freq */
7955
	if (IS_GEN(dev_priv, 6) ||
7956 7957 7958
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

7959 7960
		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
				       &params, NULL);
7961 7962
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7963
					 (rps->max_freq & 0xff) * 50,
7964
					 (params & 0xff) * 50);
7965
			rps->max_freq = params & 0xff;
7966 7967 7968
		}
	}

7969
	/* Finally allow us to boost to max by default */
7970
	rps->boost_freq = rps->max_freq;
7971 7972
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
7973 7974
}

7975 7976
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
7977
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
7978
	intel_disable_gt_powersave(dev_priv);
7979

7980 7981
	if (INTEL_GEN(dev_priv) >= 11)
		gen11_reset_rps_interrupts(dev_priv);
7982
	else if (INTEL_GEN(dev_priv) >= 6)
7983
		gen6_reset_rps_interrupts(dev_priv);
7984 7985
}

7986 7987
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
7988
	lockdep_assert_held(&i915->gt_pm.rps.lock);
7989

7990 7991 7992
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

7993
	/* Currently there is no HW configuration to be done to disable. */
7994 7995

	i915->gt_pm.llc_pstate.enabled = false;
7996 7997
}

7998 7999
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
8000
	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8001

8002 8003 8004
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8005
	if (INTEL_GEN(dev_priv) >= 9)
8006
		gen9_disable_rps(dev_priv);
8007
	else if (IS_CHERRYVIEW(dev_priv))
8008
		cherryview_disable_rps(dev_priv);
8009
	else if (IS_VALLEYVIEW(dev_priv))
8010
		valleyview_disable_rps(dev_priv);
8011
	else if (INTEL_GEN(dev_priv) >= 6)
8012
		gen6_disable_rps(dev_priv);
8013
	else if (IS_IRONLAKE_M(dev_priv))
8014
		ironlake_disable_drps(dev_priv);
8015 8016

	dev_priv->gt_pm.rps.enabled = false;
8017 8018 8019 8020
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
8021
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8022

8023
	intel_disable_rps(dev_priv);
8024 8025 8026
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8027
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8028 8029
}

8030 8031
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
8032
	lockdep_assert_held(&i915->gt_pm.rps.lock);
8033

8034 8035 8036
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8037
	gen6_update_ring_freq(i915);
8038 8039

	i915->gt_pm.llc_pstate.enabled = true;
8040 8041
}

8042 8043 8044
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8045

8046
	lockdep_assert_held(&rps->lock);
8047

8048 8049 8050
	if (rps->enabled)
		return;

8051 8052 8053 8054
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8055
	} else if (INTEL_GEN(dev_priv) >= 9) {
8056 8057 8058
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8059
	} else if (INTEL_GEN(dev_priv) >= 6) {
8060
		gen6_enable_rps(dev_priv);
8061 8062 8063
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8064
	}
8065

8066 8067
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8068

8069 8070
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8071 8072

	rps->enabled = true;
8073 8074 8075 8076 8077 8078 8079 8080
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

8081
	mutex_lock(&dev_priv->gt_pm.rps.lock);
8082

8083 8084
	if (HAS_RPS(dev_priv))
		intel_enable_rps(dev_priv);
8085 8086
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8087

8088
	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8089
}
I
Imre Deak 已提交
8090

8091
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8092 8093 8094 8095 8096 8097 8098 8099 8100
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8101
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8102
{
8103
	enum pipe pipe;
8104

8105
	for_each_pipe(dev_priv, pipe) {
8106 8107 8108
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8109 8110 8111

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8112 8113 8114
	}
}

8115
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8116
{
8117
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8118

8119 8120 8121 8122
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8123 8124 8125
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8143
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8144 8145 8146
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8147

8148 8149 8150 8151 8152 8153 8154
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8155
	if (IS_IRONLAKE_M(dev_priv)) {
8156
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8157 8158 8159 8160 8161 8162 8163 8164
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8165 8166
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8167 8168 8169 8170 8171 8172
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8173

8174
	/* WaDisableRenderCachePipelinedFlush:ilk */
8175 8176
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8177

8178 8179 8180
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8181
	g4x_disable_trickle_feed(dev_priv);
8182

8183
	ibx_init_clock_gating(dev_priv);
8184 8185
}

8186
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8187
{
8188
	enum pipe pipe;
8189
	u32 val;
8190 8191 8192 8193 8194 8195

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8196 8197 8198
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8199 8200
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8201 8202 8203
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8204
	for_each_pipe(dev_priv, pipe) {
8205 8206 8207
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8208
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8209
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8210 8211 8212
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8213 8214
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8215
	/* WADP0ClockGatingDisable */
8216
	for_each_pipe(dev_priv, pipe) {
8217 8218 8219
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8220 8221
}

8222
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8223
{
8224
	u32 tmp;
8225 8226

	tmp = I915_READ(MCH_SSKPD);
8227 8228 8229
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8230 8231
}

8232
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8233
{
8234
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8235

8236
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8237 8238 8239 8240 8241

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8242
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8243 8244 8245
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8246 8247 8248
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8249 8250 8251
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8252 8253 8254 8255
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8256 8257
	 */
	I915_WRITE(GEN6_GT_MODE,
8258
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8259

8260
	I915_WRITE(CACHE_MODE_0,
8261
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8277
	 *
8278 8279
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8280 8281 8282 8283 8284
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8285
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8286 8287
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8288

8289 8290 8291 8292 8293 8294 8295 8296
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8297 8298 8299 8300 8301 8302 8303 8304
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8305 8306
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8307 8308 8309 8310 8311 8312 8313
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8314 8315 8316 8317
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8318

8319
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8320

8321
	cpt_init_clock_gating(dev_priv);
8322

8323
	gen6_check_mch_setup(dev_priv);
8324 8325 8326 8327
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
8328
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
8329

8330
	/*
8331
	 * WaVSThreadDispatchOverride:ivb,vlv
8332 8333 8334 8335
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8336 8337 8338 8339 8340 8341 8342 8343
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8344
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8345 8346 8347 8348 8349
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8350
	if (HAS_PCH_LPT_LP(dev_priv))
8351 8352 8353
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8354 8355

	/* WADPOClockGatingDisable:hsw */
8356 8357
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8358
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8359 8360
}

8361
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8362
{
8363
	if (HAS_PCH_LPT_LP(dev_priv)) {
8364
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8365 8366 8367 8368 8369 8370

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8371 8372 8373 8374 8375
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8376
	u32 val;
8377 8378 8379 8380 8381

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8382 8383 8384 8385 8386
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8387 8388 8389 8390 8391 8392 8393 8394 8395 8396

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
8397 8398 8399 8400 8401
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8402 8403 8404 8405

	/* WaEnable32PlaneMode:icl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
O
Oscar Mateo 已提交
8406 8407
}

8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
}

8424 8425 8426 8427 8428
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

8429
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8430 8431
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8432 8433
}

8434
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8435
{
8436
	u32 val;
8437 8438
	cnp_init_clock_gating(dev_priv);

8439 8440 8441 8442
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8443 8444 8445 8446 8447 8448 8449 8450
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8451 8452 8453
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8454 8455
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8456 8457
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8458

R
Rodrigo Vivi 已提交
8459 8460 8461 8462 8463
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

8464
	/* WaDisableVFclkgate:cnl */
8465
	/* WaVFUnitClockGatingDisable:cnl */
8466 8467 8468
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8469 8470
}

8471 8472 8473 8474 8475 8476 8477 8478 8479 8480
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8481
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8482
{
8483
	gen9_init_clock_gating(dev_priv);
8484 8485 8486 8487 8488

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8489 8490 8491 8492 8493

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8494

8495
	/* WaFbcNukeOnHostModify:kbl */
8496 8497
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8498 8499
}

8500
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8501
{
8502
	gen9_init_clock_gating(dev_priv);
8503 8504 8505 8506

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8507 8508 8509 8510

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8511 8512
}

8513
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8514
{
8515
	enum pipe pipe;
B
Ben Widawsky 已提交
8516

8517
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8518
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8519

8520
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8521 8522 8523
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8524
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8525
	for_each_pipe(dev_priv, pipe) {
8526
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8527
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8528
			   BDW_DPRS_MASK_VBLANK_SRD);
8529
	}
8530

8531 8532 8533 8534 8535
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8536

8537 8538
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8539 8540 8541 8542

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8543

8544 8545
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8546

8547 8548 8549 8550
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8551
	lpt_init_clock_gating(dev_priv);
8552 8553 8554 8555 8556 8557 8558 8559

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8560 8561
}

8562
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8563
{
8564 8565 8566 8567 8568
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8569
	/* This is required by WaCatErrorRejectionIssue:hsw */
8570 8571 8572 8573
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8574 8575 8576
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8577

8578 8579 8580
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8581 8582 8583 8584
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8585
	/* WaDisable4x2SubspanOptimization:hsw */
8586 8587
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8588

8589 8590 8591
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8592 8593 8594 8595
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8596 8597
	 */
	I915_WRITE(GEN7_GT_MODE,
8598
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8599

8600 8601 8602 8603
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8604
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8605 8606
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8607
	lpt_init_clock_gating(dev_priv);
8608 8609
}

8610
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8611
{
8612
	u32 snpcr;
8613

8614
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8615

8616
	/* WaDisableEarlyCull:ivb */
8617 8618 8619
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8620
	/* WaDisableBackToBackFlipFix:ivb */
8621 8622 8623 8624
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8625
	/* WaDisablePSDDualDispatchEnable:ivb */
8626
	if (IS_IVB_GT1(dev_priv))
8627 8628 8629
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8630 8631 8632
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8633
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8634 8635 8636
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8637
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8638 8639 8640
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8641
		   GEN7_WA_L3_CHICKEN_MODE);
8642
	if (IS_IVB_GT1(dev_priv))
8643 8644
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8645 8646 8647 8648
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8649 8650
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8651
	}
8652

8653
	/* WaForceL3Serialization:ivb */
8654 8655 8656
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8657
	/*
8658
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8659
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8660 8661
	 */
	I915_WRITE(GEN6_UCGCTL2,
8662
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8663

8664
	/* This is required by WaCatErrorRejectionIssue:ivb */
8665 8666 8667 8668
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8669
	g4x_disable_trickle_feed(dev_priv);
8670 8671

	gen7_setup_fixed_func_scheduler(dev_priv);
8672

8673 8674 8675 8676 8677
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8678

8679
	/* WaDisable4x2SubspanOptimization:ivb */
8680 8681
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8682

8683 8684 8685
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8686 8687 8688 8689
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8690 8691
	 */
	I915_WRITE(GEN7_GT_MODE,
8692
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8693

8694 8695 8696 8697
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8698

8699
	if (!HAS_PCH_NOP(dev_priv))
8700
		cpt_init_clock_gating(dev_priv);
8701

8702
	gen6_check_mch_setup(dev_priv);
8703 8704
}

8705
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8706
{
8707
	/* WaDisableEarlyCull:vlv */
8708 8709 8710
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8711
	/* WaDisableBackToBackFlipFix:vlv */
8712 8713 8714 8715
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8716
	/* WaPsdDispatchEnable:vlv */
8717
	/* WaDisablePSDDualDispatchEnable:vlv */
8718
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8719 8720
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8721

8722 8723 8724
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8725
	/* WaForceL3Serialization:vlv */
8726 8727 8728
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8729
	/* WaDisableDopClockGating:vlv */
8730 8731 8732
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8733
	/* This is required by WaCatErrorRejectionIssue:vlv */
8734 8735 8736 8737
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8738 8739
	gen7_setup_fixed_func_scheduler(dev_priv);

8740
	/*
8741
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8742
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8743 8744
	 */
	I915_WRITE(GEN6_UCGCTL2,
8745
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8746

8747 8748 8749 8750 8751
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8752

8753 8754 8755 8756
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8757 8758
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8759

8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8771 8772 8773 8774 8775 8776
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8777
	/*
8778
	 * WaDisableVLVClockGating_VBIIssue:vlv
8779 8780 8781
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8782
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8783 8784
}

8785
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8786
{
8787 8788 8789 8790 8791
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8792 8793 8794 8795

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8796 8797 8798 8799

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8800 8801 8802 8803

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8804

8805 8806 8807 8808 8809 8810
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
8811 8812
}

8813
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8814
{
8815
	u32 dspclk_gate;
8816 8817 8818 8819 8820 8821 8822 8823 8824

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8825
	if (IS_GM45(dev_priv))
8826 8827
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8828 8829 8830 8831

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8832

8833 8834 8835
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8836
	g4x_disable_trickle_feed(dev_priv);
8837 8838
}

8839
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8840
{
8841 8842 8843 8844 8845 8846 8847 8848 8849 8850
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8851 8852

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
8853 8854 8855
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8856 8857
}

8858
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8859 8860 8861 8862 8863 8864 8865
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8866 8867
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8868 8869 8870

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8871 8872
}

8873
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8874 8875 8876 8877 8878 8879
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8880

8881
	if (IS_PINEVIEW(dev_priv))
8882
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8883 8884 8885

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8886 8887

	/* interrupts should cause a wake up from C3 */
8888
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8889 8890 8891

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8892 8893 8894

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8895 8896
}

8897
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8898 8899
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8900 8901 8902 8903

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8904 8905 8906

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8907 8908
}

8909
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8910
{
8911 8912 8913
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8914 8915
}

8916
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8917
{
8918
	dev_priv->display.init_clock_gating(dev_priv);
8919 8920
}

8921
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8922
{
8923 8924
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8925 8926
}

8927
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
8943
	if (IS_GEN(dev_priv, 12))
8944
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
8945
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
8946
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
8947
	else if (IS_CANNONLAKE(dev_priv))
8948
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
8949 8950
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
8951
	else if (IS_SKYLAKE(dev_priv))
8952
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
8953
	else if (IS_KABYLAKE(dev_priv))
8954
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
8955
	else if (IS_BROXTON(dev_priv))
8956
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8957 8958
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8959
	else if (IS_BROADWELL(dev_priv))
8960
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
8961
	else if (IS_CHERRYVIEW(dev_priv))
8962
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
8963
	else if (IS_HASWELL(dev_priv))
8964
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
8965
	else if (IS_IVYBRIDGE(dev_priv))
8966
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
8967
	else if (IS_VALLEYVIEW(dev_priv))
8968
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
8969
	else if (IS_GEN(dev_priv, 6))
8970
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8971
	else if (IS_GEN(dev_priv, 5))
8972
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
8973 8974
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8975
	else if (IS_I965GM(dev_priv))
8976
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
8977
	else if (IS_I965G(dev_priv))
8978
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
8979
	else if (IS_GEN(dev_priv, 3))
8980 8981 8982
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8983
	else if (IS_GEN(dev_priv, 2))
8984 8985 8986 8987 8988 8989 8990
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8991
/* Set up chip specific power management-related functions */
8992
void intel_init_pm(struct drm_i915_private *dev_priv)
8993
{
8994
	/* For cxsr */
8995
	if (IS_PINEVIEW(dev_priv))
8996
		i915_pineview_get_mem_freq(dev_priv);
8997
	else if (IS_GEN(dev_priv, 5))
8998
		i915_ironlake_get_mem_freq(dev_priv);
8999

9000 9001 9002
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

9003
	/* For FIFO watermark updates */
9004
	if (INTEL_GEN(dev_priv) >= 9) {
9005
		skl_setup_wm_latency(dev_priv);
9006
		dev_priv->display.initial_watermarks = skl_initial_wm;
9007
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9008
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9009
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9010
		ilk_setup_wm_latency(dev_priv);
9011

9012
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9013
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9014
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9015
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9016
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9017 9018 9019 9020 9021 9022
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9023 9024 9025 9026
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9027
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9028
		vlv_setup_wm_latency(dev_priv);
9029
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9030
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9031
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9032
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9033
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9034 9035 9036 9037 9038 9039
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9040
	} else if (IS_PINEVIEW(dev_priv)) {
9041
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9042 9043 9044 9045 9046 9047 9048 9049 9050
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9051
			intel_set_memory_cxsr(dev_priv, false);
9052 9053 9054
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9055
	} else if (IS_GEN(dev_priv, 4)) {
9056
		dev_priv->display.update_wm = i965_update_wm;
9057
	} else if (IS_GEN(dev_priv, 3)) {
9058 9059
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9060
	} else if (IS_GEN(dev_priv, 2)) {
9061
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
9062
			dev_priv->display.update_wm = i845_update_wm;
9063
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9064 9065
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9066
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9067 9068 9069
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9070 9071 9072
	}
}

9073 9074
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9075 9076
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9077 9078 9079 9080
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9081
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9082 9083
}

9084
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9085
{
9086 9087 9088
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9089 9090
}

9091
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9092
{
9093 9094
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9095 9096 9097 9098
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9099
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9100 9101
}

9102
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9103
{
9104 9105
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9106
	/* CHV needs even values */
9107
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9108 9109
}

9110
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9111
{
9112
	if (INTEL_GEN(dev_priv) >= 9)
9113 9114
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9115
	else if (IS_CHERRYVIEW(dev_priv))
9116
		return chv_gpu_freq(dev_priv, val);
9117
	else if (IS_VALLEYVIEW(dev_priv))
9118 9119 9120
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9121 9122
}

9123 9124
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9125
	if (INTEL_GEN(dev_priv) >= 9)
9126 9127
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9128
	else if (IS_CHERRYVIEW(dev_priv))
9129
		return chv_freq_opcode(dev_priv, val);
9130
	else if (IS_VALLEYVIEW(dev_priv))
9131 9132
		return byt_freq_opcode(dev_priv, val);
	else
9133
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9134
}
9135

9136
void intel_pm_setup(struct drm_i915_private *dev_priv)
9137
{
9138
	mutex_init(&dev_priv->gt_pm.rps.lock);
C
Chris Wilson 已提交
9139
	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
D
Daniel Vetter 已提交
9140

9141
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9142

9143 9144
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9145
}
9146

T
Tvrtko Ursulin 已提交
9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159
u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}