intel_pm.c 232.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_atomic_plane.h"
37
#include "display/intel_bw.h"
38
#include "display/intel_display_types.h"
39 40
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"
41
#include "display/skl_universal_plane.h"
42

A
Andi Shyti 已提交
43 44
#include "gt/intel_llc.h"

45
#include "i915_drv.h"
46
#include "i915_fixed.h"
47
#include "i915_irq.h"
48
#include "i915_trace.h"
49
#include "intel_pm.h"
50
#include "intel_sideband.h"
51
#include "../../../platform/x86/intel_ips.h"
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

76
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
77
{
78 79 80
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
81
		 * Display WA #0390: skl,kbl
82 83 84 85
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
86 87
		intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
88 89 90
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

91
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
92 93
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
94

95
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
96 97
	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
98

99 100 101 102
	/*
	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
	 * Display WA #0859: skl,bxt,kbl,glk,cfl
	 */
103
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
104
		   DISP_FBC_MEMORY_WAKE);
105 106
}

107
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
108
{
109
	gen9_init_clock_gating(dev_priv);
110

111
	/* WaDisableSDEUnitClockGating:bxt */
112
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
113 114
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

115 116
	/*
	 * FIXME:
117
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
118
	 */
119
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
120
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
121 122 123 124 125

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
126
	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
127
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
128 129 130 131 132 133 134

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
135
	intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
136

137 138 139 140
	/*
	 * WaFbcTurnOffFbcWatermark:bxt
	 * Display WA #0562: bxt
	 */
141
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
142
		   DISP_FBC_WM_DIS);
143

144 145 146 147
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:bxt
	 * Display WA #0883: bxt
	 */
148
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
149
		   ILK_DPFC_DISABLE_DUMMY0);
150 151
}

152 153 154 155 156 157 158 159 160
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
161
	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
162 163 164
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

165
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
166 167 168
{
	u32 tmp;

169
	tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
199
	tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
200 201 202
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

203
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
204 205 206
{
	u16 ddrpll, csipll;

207 208
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
224 225
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
253 254
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
255 256 257 258 259
		dev_priv->fsb_freq = 0;
		break;
	}
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

298 299
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

322 323 324 325
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

326
	vlv_punit_get(dev_priv);
327 328 329 330 331 332 333 334 335 336 337 338

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
339 340
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
341

342
	vlv_punit_put(dev_priv);
343 344
}

345 346 347 348
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

349
	vlv_punit_get(dev_priv);
350

351
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
352 353 354 355
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
356
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
357

358
	vlv_punit_put(dev_priv);
359 360
}

361 362 363
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

364
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
365
{
366
	bool was_enabled;
367
	u32 val;
368

369
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
370 371 372
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
373
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
374 375 376
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
377
	} else if (IS_PINEVIEW(dev_priv)) {
378
		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
379 380 381 382 383
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
384 385
		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
386
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
387
		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
388 389
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
390 391
		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
392
	} else if (IS_I915GM(dev_priv)) {
393 394 395 396 397
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
398
		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
399 400
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
401 402
		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
403
	} else {
404
		return false;
405
	}
406

407 408
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

409 410 411
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
412 413

	return was_enabled;
414 415
}

V
Ville Syrjälä 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
453
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
454
{
455 456
	bool ret;

457
	mutex_lock(&dev_priv->wm.wm_mutex);
458
	ret = _intel_set_memory_cxsr(dev_priv, enable);
459 460 461 462
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
463
	mutex_unlock(&dev_priv->wm.wm_mutex);
464 465

	return ret;
466
}
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
482
static const int pessimal_latency_ns = 5000;
483

484 485 486
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

487
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
488
{
489
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
490
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
491
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
492 493
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
494
	u32 dsparb, dsparb2, dsparb3;
495

496
	switch (pipe) {
497
	case PIPE_A:
498 499
		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
500 501 502 503
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
504 505
		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
506 507 508 509
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
510 511
		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
512 513 514 515
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
516 517
		MISSING_CASE(pipe);
		return;
518 519
	}

520 521 522 523
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
524 525
}

526 527
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
528
{
529
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
530 531 532
	int size;

	size = dsparb & 0x7f;
533
	if (i9xx_plane == PLANE_B)
534 535
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

536 537
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
538 539 540 541

	return size;
}

542 543
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
544
{
545
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
546 547 548
	int size;

	size = dsparb & 0x1ff;
549
	if (i9xx_plane == PLANE_B)
550 551 552
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

553 554
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
555 556 557 558

	return size;
}

559 560
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
561
{
562
	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
563 564 565 566 567
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

568 569
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
570 571 572 573 574

	return size;
}

/* Pineview has different values for various configs */
575
static const struct intel_watermark_params pnv_display_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581
};
582 583

static const struct intel_watermark_params pnv_display_hplloff_wm = {
584 585 586 587 588
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589
};
590 591

static const struct intel_watermark_params pnv_cursor_wm = {
592 593 594 595 596
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
597
};
598 599

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
600 601 602 603 604
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
605
};
606

607
static const struct intel_watermark_params i965_cursor_wm_info = {
608 609 610 611 612
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
613
};
614

615
static const struct intel_watermark_params i945_wm_info = {
616 617 618 619 620
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
621
};
622

623
static const struct intel_watermark_params i915_wm_info = {
624 625 626 627 628
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
629
};
630

631
static const struct intel_watermark_params i830_a_wm_info = {
632 633 634 635 636
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
637
};
638

639 640 641 642 643 644 645
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
646

647
static const struct intel_watermark_params i845_wm_info = {
648 649 650 651 652
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
653 654
};

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
692
	u64 ret;
693

694
	ret = mul_u32_u32(pixel_rate, cpp * latency);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

751 752
/**
 * intel_calculate_wm - calculate watermark level
753
 * @pixel_rate: pixel clock
754
 * @wm: chip FIFO params
755
 * @fifo_size: size of the FIFO buffer
756
 * @cpp: bytes per pixel
757 758 759 760 761 762 763 764 765 766 767 768 769
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
770 771 772 773
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
774
{
775
	int entries, wm_size;
776 777 778 779 780 781 782

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
783 784 785 786 787
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
788

789 790
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
791 792

	/* Don't promote wm_size to unsigned... */
793
	if (wm_size > wm->max_wm)
794 795 796
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
797 798 799 800 801 802 803 804 805 806 807

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

808 809 810
	return wm_size;
}

811 812 813 814 815 816 817 818 819 820
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

821 822 823 824 825
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

826 827 828
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
829
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
830 831

	/* FIXME check the 'enable' instead */
832
	if (!crtc_state->hw.active)
833 834 835 836 837 838 839 840 841 842 843
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
844
		return plane_state->hw.fb != NULL;
845
	else
846
		return plane_state->uapi.visible;
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

868
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
869
{
870
	struct intel_crtc *crtc, *enabled = NULL;
871

872
	for_each_intel_crtc(&dev_priv->drm, crtc) {
873
		if (intel_crtc_active(crtc)) {
874 875 876 877 878 879 880 881 882
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

883
static void pnv_update_wm(struct intel_crtc *unused_crtc)
884
{
885
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
886
	struct intel_crtc *crtc;
887 888
	const struct cxsr_latency *latency;
	u32 reg;
889
	unsigned int wm;
890

891
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
892 893 894
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
895
	if (!latency) {
896 897
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
898
		intel_set_memory_cxsr(dev_priv, false);
899 900 901
		return;
	}

902
	crtc = single_enabled_crtc(dev_priv);
903
	if (crtc) {
904 905
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
906 907
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
908
		int cpp = fb->format->cpp[0];
909
		int clock = pipe_mode->crtc_clock;
910 911

		/* Display SR */
912 913
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
914
					cpp, latency->display_sr);
915
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
916
		reg &= ~DSPFW_SR_MASK;
917
		reg |= FW_WM(wm, SR);
918
		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
919
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
920 921

		/* cursor SR */
922 923
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
924
					4, latency->cursor_sr);
925
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
926
		reg &= ~DSPFW_CURSOR_SR_MASK;
927
		reg |= FW_WM(wm, CURSOR_SR);
928
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
929 930

		/* Display HPLL off SR */
931 932
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
933
					cpp, latency->display_hpll_disable);
934
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
935
		reg &= ~DSPFW_HPLL_SR_MASK;
936
		reg |= FW_WM(wm, HPLL_SR);
937
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
938 939

		/* cursor HPLL off SR */
940 941
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
942
					4, latency->cursor_hpll_disable);
943
		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
944
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
945
		reg |= FW_WM(wm, HPLL_CURSOR);
946
		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
947
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
948

949
		intel_set_memory_cxsr(dev_priv, true);
950
	} else {
951
		intel_set_memory_cxsr(dev_priv, false);
952 953 954
	}
}

955 956 957 958 959 960 961 962 963 964
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
965
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
966 967 968 969 970 971
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

972 973
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
974
{
975 976 977 978 979
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

980
	intel_uncore_write(&dev_priv->uncore, DSPFW1,
981 982 983 984
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
985
	intel_uncore_write(&dev_priv->uncore, DSPFW2,
986 987 988 989 990 991
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
992
	intel_uncore_write(&dev_priv->uncore, DSPFW3,
993 994 995 996
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
997

998
	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
999 1000
}

1001 1002 1003
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

1004
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1005 1006
				const struct vlv_wm_values *wm)
{
1007 1008 1009
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1010 1011
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1012
		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
1013 1014 1015 1016 1017
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1018

1019 1020 1021 1022 1023
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
1024 1025 1026 1027 1028
	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
1029

1030
	intel_uncore_write(&dev_priv->uncore, DSPFW1,
1031
		   FW_WM(wm->sr.plane, SR) |
1032 1033 1034
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1035
	intel_uncore_write(&dev_priv->uncore, DSPFW2,
1036 1037 1038
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1039
	intel_uncore_write(&dev_priv->uncore, DSPFW3,
1040
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1041 1042

	if (IS_CHERRYVIEW(dev_priv)) {
1043
		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
1044 1045
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1046
		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
1047 1048
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1049
		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
1050 1051
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1052
		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1053
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1054 1055 1056 1057 1058 1059 1060 1061 1062
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1063
	} else {
1064
		intel_uncore_write(&dev_priv->uncore, DSPFW7,
1065 1066
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1067
		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
1068
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1069 1070 1071 1072 1073 1074
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1075 1076
	}

1077
	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
1078 1079
}

1080 1081
#undef FW_WM_VLV

1082 1083 1084 1085 1086
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1087
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1088

1089
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1134 1135 1136
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1137
{
1138
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1139
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1140 1141
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1142 1143
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1144 1145 1146 1147 1148 1149 1150

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1151
	cpp = plane_state->hw.fb->format->cpp[0];
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1166
		cpp = max(cpp, 4u);
1167

1168 1169
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1170

1171
	width = drm_rect_width(&plane_state->uapi.dst);
1172 1173 1174 1175 1176 1177 1178

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1179
		unsigned int small, large;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1192
	return min_t(unsigned int, wm, USHRT_MAX);
1193 1194 1195 1196 1197
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1198
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1214
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1230 1231
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1232
			      u32 pri_val);
1233 1234 1235 1236

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1237
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1238
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1291 1292 1293 1294 1295 1296
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1297 1298

		if (plane_id == PLANE_PRIMARY)
1299 1300 1301 1302
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1319
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
			       int level)
{
	if (level < G4X_WM_LEVEL_SR)
		return false;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		return false;

	if (level >= G4X_WM_LEVEL_HPLL &&
	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		return false;

	return true;
}

1372 1373
static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1374
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1375
	struct intel_atomic_state *state =
1376
		to_intel_atomic_state(crtc_state->uapi.state);
1377
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1378 1379
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1380
	const struct g4x_pipe_wm *raw;
1381 1382
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1383 1384 1385 1386 1387
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1388 1389 1390
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1391 1392
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1393 1394
			continue;

1395
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
1444 1445 1446
	 * watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely. 'level-1' is the highest valid
	 * level here.
1447
	 */
1448
	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1449 1450 1451 1452

	return 0;
}

1453
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1454
{
1455
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1456
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1457 1458 1459
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1460
		to_intel_atomic_state(new_crtc_state->uapi.state);
1461 1462 1463
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1464 1465
	enum plane_id plane_id;

1466
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1467 1468 1469 1470 1471 1472 1473
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1474
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1475
		!new_crtc_state->disable_cxsr;
1476
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1477
		!new_crtc_state->disable_cxsr;
1478 1479 1480 1481 1482 1483 1484
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

1485 1486
		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		    intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    (intermediate->sr.plane >
		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		     intermediate->sr.cursor >
		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		    intermediate->hpll_en);

	drm_WARN_ON(&dev_priv->drm,
		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		    intermediate->fbc_en && intermediate->cxsr);
	drm_WARN_ON(&dev_priv->drm,
		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		    intermediate->fbc_en && intermediate->hpll_en);
1522

1523
out:
1524 1525 1526 1527 1528
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1529
		new_crtc_state->wm.need_postvbl_update = true;
1530 1531 1532 1533 1534 1535 1536 1537

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1538
	int num_active_pipes = 0;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1557
		num_active_pipes++;
1558 1559
	}

1560
	if (num_active_pipes != 1) {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1600
				   struct intel_crtc *crtc)
1601
{
1602 1603 1604
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1605 1606 1607 1608 1609 1610 1611 1612

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1613
				    struct intel_crtc *crtc)
1614
{
1615 1616 1617
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1618 1619 1620 1621 1622

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1623
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1624 1625 1626 1627
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1628 1629
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1630 1631
				   unsigned int htotal,
				   unsigned int width,
1632
				   unsigned int cpp,
1633 1634 1635 1636
				   unsigned int latency)
{
	unsigned int ret;

1637 1638
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1639 1640 1641 1642 1643
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1644
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1645 1646 1647 1648
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1649 1650
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1651 1652 1653
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1654 1655

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1656 1657 1658
	}
}

1659 1660 1661
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1662
{
1663
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1664
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1665 1666
	const struct drm_display_mode *pipe_mode =
		&crtc_state->hw.pipe_mode;
1667
	unsigned int clock, htotal, cpp, width, wm;
1668 1669 1670 1671

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1672
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1673 1674
		return 0;

1675
	cpp = plane_state->hw.fb->format->cpp[0];
1676 1677
	clock = pipe_mode->crtc_clock;
	htotal = pipe_mode->crtc_htotal;
1678
	width = crtc_state->pipe_src_w;
1679

1680
	if (plane->id == PLANE_CURSOR) {
1681 1682 1683 1684 1685 1686 1687 1688
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1689
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1690 1691 1692
				    dev_priv->wm.pri_latency[level] * 10);
	}

1693
	return min_t(unsigned int, wm, USHRT_MAX);
1694 1695
}

1696 1697 1698 1699 1700 1701
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1702
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1703
{
1704
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1705
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1706
	const struct g4x_pipe_wm *raw =
1707
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1708
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1709
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1710
	int num_active_planes = hweight8(active_planes);
1711
	const int fifo_size = 511;
1712
	int fifo_extra, fifo_left = fifo_size;
1713
	int sprite0_fifo_extra = 0;
1714 1715
	unsigned int total_rate;
	enum plane_id plane_id;
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1728 1729
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1730 1731
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1732

1733 1734
	if (total_rate > fifo_size)
		return -EINVAL;
1735

1736 1737
	if (total_rate == 0)
		total_rate = 1;
1738

1739
	for_each_plane_id_on_crtc(crtc, plane_id) {
1740 1741
		unsigned int rate;

1742 1743
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1744 1745 1746
			continue;
		}

1747 1748 1749
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1750 1751
	}

1752 1753 1754
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1755 1756 1757
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1758 1759

	/* spread the remainder evenly */
1760
	for_each_plane_id_on_crtc(crtc, plane_id) {
1761 1762 1763 1764 1765
		int plane_extra;

		if (fifo_left == 0)
			break;

1766
		if ((active_planes & BIT(plane_id)) == 0)
1767 1768 1769
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1770
		fifo_state->plane[plane_id] += plane_extra;
1771 1772 1773
		fifo_left -= plane_extra;
	}

1774
	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1775 1776 1777

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
1778
		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1779 1780 1781 1782
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1783 1784
}

1785 1786 1787 1788 1789 1790
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1791
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1802 1803 1804 1805 1806 1807 1808 1809
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1810 1811 1812 1813
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1814
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1815
				 int level, enum plane_id plane_id, u16 value)
1816
{
1817
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1818
	int num_levels = intel_wm_num_levels(dev_priv);
1819
	bool dirty = false;
1820

1821
	for (; level < num_levels; level++) {
1822
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1823

1824
		dirty |= raw->plane[plane_id] != value;
1825
		raw->plane[plane_id] = value;
1826
	}
1827 1828

	return dirty;
1829 1830
}

1831 1832
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1833
{
1834
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1835
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1836
	enum plane_id plane_id = plane->id;
1837
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1838
	int level;
1839
	bool dirty = false;
1840

1841
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1842 1843
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1844
	}
1845

1846
	for (level = 0; level < num_levels; level++) {
1847
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1848 1849
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1850

1851 1852
		if (wm > max_wm)
			break;
1853

1854
		dirty |= raw->plane[plane_id] != wm;
1855 1856
		raw->plane[plane_id] = wm;
	}
1857

1858
	/* mark all higher levels as invalid */
1859
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1860

1861 1862
out:
	if (dirty)
1863 1864 1865 1866 1867 1868
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1869 1870

	return dirty;
1871
}
1872

1873 1874
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1875
{
1876
	const struct g4x_pipe_wm *raw =
1877 1878 1879
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1880

1881 1882
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1883

1884
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1885
{
1886 1887 1888 1889
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1890 1891 1892 1893
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1894
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1895 1896
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1897
		to_intel_atomic_state(crtc_state->uapi.state);
1898 1899 1900
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1901 1902
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1903
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1904 1905
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1906 1907 1908
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1909
	unsigned int dirty = 0;
1910

1911 1912 1913
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1914 1915
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1916
			continue;
1917

1918
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1937
			intel_atomic_get_old_crtc_state(state, crtc);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1949
	}
1950

1951
	/* initially allow all levels */
1952
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1953 1954 1955 1956 1957
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1958
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1959

1960
	for (level = 0; level < wm_state->num_levels; level++) {
1961
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1962
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1963

1964
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1965
			break;
1966

1967 1968 1969 1970 1971 1972 1973 1974
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1975
						 raw->plane[PLANE_SPRITE0],
1976 1977
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1978

1979 1980 1981
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1982 1983
	}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1994 1995
}

1996 1997 1998
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1999
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2000
				   struct intel_crtc *crtc)
2001
{
2002
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2003
	struct intel_uncore *uncore = &dev_priv->uncore;
2004 2005
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2006 2007
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
2008
	int sprite0_start, sprite1_start, fifo_size;
2009
	u32 dsparb, dsparb2, dsparb3;
2010

2011 2012 2013
	if (!crtc_state->fifo_changed)
		return;

2014 2015 2016
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2017

2018 2019
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2020

2021 2022
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2023 2024 2025 2026 2027 2028 2029 2030 2031
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2032
	spin_lock(&uncore->lock);
2033

2034 2035
	switch (crtc->pipe) {
	case PIPE_A:
2036 2037
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2049 2050
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2051 2052
		break;
	case PIPE_B:
2053 2054
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2066 2067
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2068 2069
		break;
	case PIPE_C:
2070 2071
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2083 2084
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2085 2086 2087 2088
		break;
	default:
		break;
	}
2089

2090
	intel_uncore_posting_read_fw(uncore, DSPARB);
2091

2092
	spin_unlock(&uncore->lock);
2093 2094 2095 2096
}

#undef VLV_FIFO

2097
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2098
{
2099
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2100 2101 2102
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2103
		to_intel_atomic_state(new_crtc_state->uapi.state);
2104 2105 2106
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2107 2108
	int level;

2109
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2110 2111 2112 2113 2114 2115
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2116
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2117
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2118
		!new_crtc_state->disable_cxsr;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2137
out:
2138 2139 2140 2141
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2142
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2143
		new_crtc_state->wm.need_postvbl_update = true;
2144 2145 2146 2147

	return 0;
}

2148
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2149 2150 2151
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2152
	int num_active_pipes = 0;
2153

2154
	wm->level = dev_priv->wm.max_level;
2155 2156
	wm->cxsr = true;

2157
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2158
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2159 2160 2161 2162 2163 2164 2165

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2166
		num_active_pipes++;
2167 2168 2169
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2170
	if (num_active_pipes != 1)
2171 2172
		wm->cxsr = false;

2173
	if (num_active_pipes > 1)
2174 2175
		wm->level = VLV_WM_LEVEL_PM2;

2176
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2177
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2178 2179 2180
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2181
		if (crtc->active && wm->cxsr)
2182 2183
			wm->sr = wm_state->sr[wm->level];

2184 2185 2186 2187
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2188 2189 2190
	}
}

2191
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2192
{
2193 2194
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2195

2196
	vlv_merge_wm(dev_priv, &new_wm);
2197

2198
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2199 2200
		return;

2201
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2202 2203
		chv_set_memory_dvfs(dev_priv, false);

2204
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2205 2206
		chv_set_memory_pm5(dev_priv, false);

2207
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2208
		_intel_set_memory_cxsr(dev_priv, false);
2209

2210
	vlv_write_wm_values(dev_priv, &new_wm);
2211

2212
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2213
		_intel_set_memory_cxsr(dev_priv, true);
2214

2215
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2216 2217
		chv_set_memory_pm5(dev_priv, true);

2218
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2219 2220
		chv_set_memory_dvfs(dev_priv, true);

2221
	*old_wm = new_wm;
2222 2223
}

2224
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2225
				   struct intel_crtc *crtc)
2226
{
2227 2228 2229
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2230 2231

	mutex_lock(&dev_priv->wm.wm_mutex);
2232 2233 2234 2235 2236 2237
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2238
				    struct intel_crtc *crtc)
2239
{
2240 2241 2242
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2243 2244 2245 2246 2247

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2248
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2249 2250 2251 2252
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2253
static void i965_update_wm(struct intel_crtc *unused_crtc)
2254
{
2255
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2256
	struct intel_crtc *crtc;
2257 2258
	int srwm = 1;
	int cursor_sr = 16;
2259
	bool cxsr_enabled;
2260 2261

	/* Calc sr entries for one plane configs */
2262
	crtc = single_enabled_crtc(dev_priv);
2263 2264 2265
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2266 2267
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2268 2269
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2270 2271
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2272
		int hdisplay = crtc->config->pipe_src_w;
2273
		int cpp = fb->format->cpp[0];
2274 2275
		int entries;

2276 2277
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2278 2279 2280 2281 2282
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2283 2284 2285
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2286

2287 2288 2289
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2290
		entries = DIV_ROUND_UP(entries,
2291 2292
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2293

2294
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2295 2296 2297
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2298 2299 2300
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2301

2302
		cxsr_enabled = true;
2303
	} else {
2304
		cxsr_enabled = false;
2305
		/* Turn off self refresh if both pipes are enabled */
2306
		intel_set_memory_cxsr(dev_priv, false);
2307 2308
	}

2309 2310 2311
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2312 2313

	/* 965 has limitations... */
2314
	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
2315 2316 2317
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
2318
	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
2319
		   FW_WM(8, PLANEC_OLD));
2320
	/* update cursor SR watermark */
2321
	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2322 2323 2324

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2325 2326
}

2327 2328
#undef FW_WM

2329
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2330
{
2331
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2332
	const struct intel_watermark_params *wm_info;
2333 2334
	u32 fwater_lo;
	u32 fwater_hi;
2335 2336 2337
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2338
	struct intel_crtc *crtc, *enabled = NULL;
2339

2340
	if (IS_I945GM(dev_priv))
2341
		wm_info = &i945_wm_info;
2342
	else if (!IS_GEN(dev_priv, 2))
2343 2344
		wm_info = &i915_wm_info;
	else
2345
		wm_info = &i830_a_wm_info;
2346

2347 2348
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2349
	if (intel_crtc_active(crtc)) {
2350 2351
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2352 2353 2354 2355
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2356
		if (IS_GEN(dev_priv, 2))
2357
			cpp = 4;
2358
		else
2359
			cpp = fb->format->cpp[0];
2360

2361
		planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2362
					       wm_info, fifo_size, cpp,
2363
					       pessimal_latency_ns);
2364
		enabled = crtc;
2365
	} else {
2366
		planea_wm = fifo_size - wm_info->guard_size;
2367 2368 2369 2370
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2371
	if (IS_GEN(dev_priv, 2))
2372
		wm_info = &i830_bc_wm_info;
2373

2374 2375
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2376
	if (intel_crtc_active(crtc)) {
2377 2378
		const struct drm_display_mode *pipe_mode =
			&crtc->config->hw.pipe_mode;
2379 2380 2381 2382
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2383
		if (IS_GEN(dev_priv, 2))
2384
			cpp = 4;
2385
		else
2386
			cpp = fb->format->cpp[0];
2387

2388
		planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2389
					       wm_info, fifo_size, cpp,
2390
					       pessimal_latency_ns);
2391 2392 2393 2394
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2395
	} else {
2396
		planeb_wm = fifo_size - wm_info->guard_size;
2397 2398 2399
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2400

2401 2402
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2403

2404
	if (IS_I915GM(dev_priv) && enabled) {
2405
		struct drm_i915_gem_object *obj;
2406

2407
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2408 2409

		/* self-refresh seems busted with untiled */
2410
		if (!i915_gem_object_is_tiled(obj))
2411 2412 2413
			enabled = NULL;
	}

2414 2415 2416 2417 2418 2419
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2420
	intel_set_memory_cxsr(dev_priv, false);
2421 2422

	/* Calc sr entries for one plane configs */
2423
	if (HAS_FW_BLC(dev_priv) && enabled) {
2424 2425
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2426 2427
		const struct drm_display_mode *pipe_mode =
			&enabled->config->hw.pipe_mode;
2428 2429
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2430 2431
		int clock = pipe_mode->crtc_clock;
		int htotal = pipe_mode->crtc_htotal;
2432 2433
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2434 2435
		int entries;

2436
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2437
			cpp = 4;
2438
		else
2439
			cpp = fb->format->cpp[0];
2440

2441 2442
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2443
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2444 2445
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2446 2447 2448 2449
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2450
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2451
			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
2452
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2453
		else
2454
			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
2455 2456
	}

2457 2458 2459
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2460 2461 2462 2463 2464 2465 2466 2467

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

2468 2469
	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
2470

2471 2472
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2473 2474
}

2475
static void i845_update_wm(struct intel_crtc *unused_crtc)
2476
{
2477
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2478
	struct intel_crtc *crtc;
2479
	const struct drm_display_mode *pipe_mode;
2480
	u32 fwater_lo;
2481 2482
	int planea_wm;

2483
	crtc = single_enabled_crtc(dev_priv);
2484 2485 2486
	if (crtc == NULL)
		return;

2487 2488
	pipe_mode = &crtc->config->hw.pipe_mode;
	planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
2489
				       &i845_wm_info,
2490
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2491
				       4, pessimal_latency_ns);
2492
	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
2493 2494
	fwater_lo |= (3<<8) | planea_wm;

2495 2496
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2497

2498
	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
2499 2500
}

2501
/* latency must be in 0.1us units. */
2502 2503 2504
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2505
{
2506
	unsigned int ret;
2507

2508 2509
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2510 2511 2512 2513

	return ret;
}

2514
/* latency must be in 0.1us units. */
2515 2516 2517 2518 2519
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2520
{
2521
	unsigned int ret;
2522

2523 2524
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2525
	ret = DIV_ROUND_UP(ret, 64) + 2;
2526

2527 2528 2529
	return ret;
}

2530
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2531
{
2532 2533 2534 2535 2536 2537
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2538
	if (WARN_ON(!cpp))
2539 2540 2541 2542
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2543
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2544 2545
}

2546
struct ilk_wm_maximums {
2547 2548 2549 2550
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2551 2552
};

2553 2554 2555 2556
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2557 2558
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2559
			      u32 mem_value, bool is_lp)
2560
{
2561
	u32 method1, method2;
2562
	int cpp;
2563

2564 2565 2566
	if (mem_value == 0)
		return U32_MAX;

2567
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2568 2569
		return 0;

2570
	cpp = plane_state->hw.fb->format->cpp[0];
2571

2572
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2573 2574 2575 2576

	if (!is_lp)
		return method1;

2577
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2578
				 crtc_state->hw.pipe_mode.crtc_htotal,
2579
				 drm_rect_width(&plane_state->uapi.dst),
2580
				 cpp, mem_value);
2581 2582

	return min(method1, method2);
2583 2584
}

2585 2586 2587 2588
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2589 2590
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2591
			      u32 mem_value)
2592
{
2593
	u32 method1, method2;
2594
	int cpp;
2595

2596 2597 2598
	if (mem_value == 0)
		return U32_MAX;

2599
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2600 2601
		return 0;

2602
	cpp = plane_state->hw.fb->format->cpp[0];
2603

2604 2605
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2606
				 crtc_state->hw.pipe_mode.crtc_htotal,
2607
				 drm_rect_width(&plane_state->uapi.dst),
2608
				 cpp, mem_value);
2609 2610 2611
	return min(method1, method2);
}

2612 2613 2614 2615
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2616 2617
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2618
			      u32 mem_value)
2619
{
2620 2621
	int cpp;

2622 2623 2624
	if (mem_value == 0)
		return U32_MAX;

2625
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2626 2627
		return 0;

2628
	cpp = plane_state->hw.fb->format->cpp[0];
2629

2630
	return ilk_wm_method2(crtc_state->pixel_rate,
2631
			      crtc_state->hw.pipe_mode.crtc_htotal,
2632
			      drm_rect_width(&plane_state->uapi.dst),
2633
			      cpp, mem_value);
2634 2635
}

2636
/* Only for WM_LP. */
2637 2638
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2639
			      u32 pri_val)
2640
{
2641
	int cpp;
2642

2643
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2644 2645
		return 0;

2646
	cpp = plane_state->hw.fb->format->cpp[0];
2647

2648 2649
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2650 2651
}

2652 2653
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2654
{
2655
	if (INTEL_GEN(dev_priv) >= 8)
2656
		return 3072;
2657
	else if (INTEL_GEN(dev_priv) >= 7)
2658 2659 2660 2661 2662
		return 768;
	else
		return 512;
}

2663 2664 2665
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2666
{
2667
	if (INTEL_GEN(dev_priv) >= 8)
2668 2669
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2670
	else if (INTEL_GEN(dev_priv) >= 7)
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2681 2682
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2683
{
2684
	if (INTEL_GEN(dev_priv) >= 7)
2685 2686 2687 2688 2689
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2690
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2691
{
2692
	if (INTEL_GEN(dev_priv) >= 8)
2693 2694 2695 2696 2697
		return 31;
	else
		return 15;
}

2698
/* Calculate the maximum primary/sprite plane watermark */
2699
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2700
				     int level,
2701
				     const struct intel_wm_config *config,
2702 2703 2704
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2705
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2706 2707

	/* if sprites aren't enabled, sprites get nothing */
2708
	if (is_sprite && !config->sprites_enabled)
2709 2710 2711
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2712
	if (level == 0 || config->num_pipes_active > 1) {
2713
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2714 2715 2716 2717 2718 2719

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2720
		if (INTEL_GEN(dev_priv) <= 6)
2721 2722 2723
			fifo_size /= 2;
	}

2724
	if (config->sprites_enabled) {
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2736
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2737 2738 2739
}

/* Calculate the maximum cursor plane watermark */
2740
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2741 2742
				      int level,
				      const struct intel_wm_config *config)
2743 2744
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2745
	if (level > 0 && config->num_pipes_active > 1)
2746 2747 2748
		return 64;

	/* otherwise just report max that registers can hold */
2749
	return ilk_cursor_wm_reg_max(dev_priv, level);
2750 2751
}

2752
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2753 2754 2755
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2756
				    struct ilk_wm_maximums *max)
2757
{
2758 2759 2760 2761
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2762 2763
}

2764
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2765 2766 2767
					int level,
					struct ilk_wm_maximums *max)
{
2768 2769 2770 2771
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2772 2773
}

2774
static bool ilk_validate_wm_level(int level,
2775
				  const struct ilk_wm_maximums *max,
2776
				  struct intel_wm_level *result)
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2806 2807 2808
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2809 2810 2811 2812 2813 2814
		result->enable = true;
	}

	return ret;
}

2815
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2816
				 const struct intel_crtc *crtc,
2817
				 int level,
2818
				 struct intel_crtc_state *crtc_state,
2819 2820 2821
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2822
				 struct intel_wm_level *result)
2823
{
2824 2825 2826
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2827 2828 2829 2830 2831 2832 2833 2834

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2835
	if (pristate) {
2836
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2837
						     pri_latency, level);
2838
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2839 2840 2841
	}

	if (sprstate)
2842
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2843 2844

	if (curstate)
2845
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2846

2847 2848 2849
	result->enable = true;
}

2850
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2851
				  u16 wm[8])
2852
{
2853 2854
	struct intel_uncore *uncore = &dev_priv->uncore;

2855
	if (INTEL_GEN(dev_priv) >= 9) {
2856
		u32 val;
2857
		int ret, i;
2858
		int level, max_level = ilk_wm_max_level(dev_priv);
2859 2860 2861 2862 2863

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2864
					     &val, NULL);
2865 2866

		if (ret) {
2867 2868
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2884
					     &val, NULL);
2885
		if (ret) {
2886 2887
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2912
		/*
2913
		 * WaWmMemoryReadLatency:skl+,glk
2914
		 *
2915
		 * punit doesn't take into account the read latency so we need
2916 2917
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2918
		 */
2919 2920 2921 2922 2923
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2924
				wm[level] += 2;
2925
			}
2926 2927
		}

2928 2929 2930 2931 2932 2933
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2934
		if (dev_priv->dram_info.wm_lv_0_adjust_needed)
2935 2936
			wm[0] += 1;

2937
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2938
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2939 2940 2941 2942

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2943 2944 2945 2946
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2947
	} else if (INTEL_GEN(dev_priv) >= 6) {
2948
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2949 2950 2951 2952 2953

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2954
	} else if (INTEL_GEN(dev_priv) >= 5) {
2955
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2956 2957 2958 2959 2960

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2961 2962
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2963 2964 2965
	}
}

2966
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2967
				       u16 wm[5])
2968 2969
{
	/* ILK sprite LP0 latency is 1300 ns */
2970
	if (IS_GEN(dev_priv, 5))
2971 2972 2973
		wm[0] = 13;
}

2974
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2975
				       u16 wm[5])
2976 2977
{
	/* ILK cursor LP0 latency is 1300 ns */
2978
	if (IS_GEN(dev_priv, 5))
2979 2980 2981
		wm[0] = 13;
}

2982
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2983 2984
{
	/* how many WM levels are we expecting */
2985
	if (INTEL_GEN(dev_priv) >= 9)
2986
		return 7;
2987
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2988
		return 4;
2989
	else if (INTEL_GEN(dev_priv) >= 6)
2990
		return 3;
2991
	else
2992 2993
		return 2;
}
2994

2995
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2996
				   const char *name,
2997
				   const u16 wm[8])
2998
{
2999
	int level, max_level = ilk_wm_max_level(dev_priv);
3000 3001 3002 3003 3004

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
3005 3006 3007
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
3008 3009 3010
			continue;
		}

3011 3012 3013 3014
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
3015
		if (INTEL_GEN(dev_priv) >= 9)
3016 3017
			latency *= 10;
		else if (level > 0)
3018 3019
			latency *= 5;

3020 3021 3022
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3023 3024 3025
	}
}

3026
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3027
				    u16 wm[5], u16 min)
3028
{
3029
	int level, max_level = ilk_wm_max_level(dev_priv);
3030 3031 3032 3033 3034 3035

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3036
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3037 3038 3039 3040

	return true;
}

3041
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3056 3057
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3058 3059 3060
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3061 3062
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3085 3086
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3087 3088 3089 3090 3091
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3092
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3093
{
3094
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3095 3096 3097 3098 3099 3100

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3101
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3102
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3103

3104 3105 3106
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3107

3108
	if (IS_GEN(dev_priv, 6)) {
3109
		snb_wm_latency_quirk(dev_priv);
3110 3111
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3112 3113
}

3114
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3115
{
3116
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3117
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3118 3119
}

3120
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3132
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3133 3134 3135

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3136
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3137 3138 3139 3140 3141 3142
		return false;
	}

	return true;
}

3143
/* Compute new watermarks for the pipe */
3144
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3145
{
3146
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3147
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3148
	struct intel_pipe_wm *pipe_wm;
3149 3150
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3151 3152 3153
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3154
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3155
	struct ilk_wm_maximums max;
3156

3157
	pipe_wm = &crtc_state->wm.ilk.optimal;
3158

3159 3160 3161 3162 3163 3164 3165
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3166 3167
	}

3168
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3169
	if (sprstate) {
3170 3171 3172 3173
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3174 3175
	}

3176 3177
	usable_level = max_level;

3178
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3179
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3180
		usable_level = 1;
3181 3182

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3183
	if (pipe_wm->sprites_scaled)
3184
		usable_level = 0;
3185

3186
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3187
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3188
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3189

3190
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3191
		return -EINVAL;
3192

3193
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3194

3195 3196
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3197

3198
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3199
				     pristate, sprstate, curstate, wm);
3200 3201 3202 3203 3204 3205

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3206 3207 3208 3209
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3210 3211
	}

3212
	return 0;
3213 3214
}

3215 3216 3217 3218 3219
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3220
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3221
{
3222
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3223
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3224
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3225
	struct intel_atomic_state *intel_state =
3226
		to_intel_atomic_state(newstate->uapi.state);
3227 3228 3229
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3230
	int level, max_level = ilk_wm_max_level(dev_priv);
3231 3232 3233 3234 3235 3236

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3237
	*a = newstate->wm.ilk.optimal;
3238
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3239
	    intel_state->skip_intermediate_wm)
3240 3241
		return 0;

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3263
	if (!ilk_validate_pipe_wm(dev_priv, a))
3264 3265 3266 3267 3268 3269
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3270 3271
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3272 3273 3274 3275

	return 0;
}

3276 3277 3278
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3279
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3280 3281 3282 3283 3284
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3285 3286
	ret_wm->enable = true;

3287
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3288
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3289 3290 3291 3292
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3293

3294 3295 3296 3297 3298
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3299
		if (!wm->enable)
3300
			ret_wm->enable = false;
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3312
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3313
			 const struct intel_wm_config *config,
3314
			 const struct ilk_wm_maximums *max,
3315 3316
			 struct intel_pipe_wm *merged)
{
3317
	int level, max_level = ilk_wm_max_level(dev_priv);
3318
	int last_enabled_level = max_level;
3319

3320
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3321
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3322
	    config->num_pipes_active > 1)
3323
		last_enabled_level = 0;
3324

3325
	/* ILK: FBC WM must be disabled always */
3326
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3327 3328 3329 3330 3331

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3332
		ilk_merge_wm_level(dev_priv, level, wm);
3333

3334 3335 3336 3337 3338
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3339 3340 3341 3342 3343 3344

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3345 3346
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3347 3348 3349
			wm->fbc_val = 0;
		}
	}
3350 3351 3352 3353 3354 3355 3356

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3357
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3358
	    intel_fbc_is_active(dev_priv)) {
3359 3360 3361 3362 3363 3364
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3365 3366
}

3367 3368 3369 3370 3371 3372
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3373
/* The value we need to program into the WM_LPx latency field */
3374 3375
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3376
{
3377
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3378 3379 3380 3381 3382
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3383
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3384
				   const struct intel_pipe_wm *merged,
3385
				   enum intel_ddb_partitioning partitioning,
3386
				   struct ilk_wm_values *results)
3387
{
3388 3389
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3390

3391
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3392
	results->partitioning = partitioning;
3393

3394
	/* LP1+ register values */
3395
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3396
		const struct intel_wm_level *r;
3397

3398
		level = ilk_wm_lp_to_level(wm_lp, merged);
3399

3400
		r = &merged->wm[level];
3401

3402 3403 3404 3405 3406
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3407
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3408 3409 3410
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3411 3412 3413
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3414
		if (INTEL_GEN(dev_priv) >= 8)
3415 3416 3417 3418 3419 3420
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3421 3422 3423 3424
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3425
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3426
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3427 3428 3429
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3430
	}
3431

3432
	/* LP0 register values */
3433
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3434
		enum pipe pipe = intel_crtc->pipe;
3435 3436
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3437

3438
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3439
			continue;
3440

3441 3442 3443 3444
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3445 3446 3447
	}
}

3448 3449
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3450 3451 3452 3453
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3454
{
3455
	int level, max_level = ilk_wm_max_level(dev_priv);
3456
	int level1 = 0, level2 = 0;
3457

3458 3459 3460 3461 3462
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3463 3464
	}

3465 3466
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3467 3468 3469
			return r2;
		else
			return r1;
3470
	} else if (level1 > level2) {
3471 3472 3473 3474 3475 3476
		return r1;
	} else {
		return r2;
	}
}

3477 3478 3479 3480 3481 3482 3483
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3484
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3485 3486
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3487 3488 3489 3490 3491
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3492
	for_each_pipe(dev_priv, pipe) {
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3530 3531
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3532
{
3533
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3534
	bool changed = false;
3535

3536 3537
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3538
		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
3539
		changed = true;
3540 3541 3542
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3543
		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
3544
		changed = true;
3545 3546 3547
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3548
		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
3549
		changed = true;
3550
	}
3551

3552 3553 3554 3555
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3556

3557 3558 3559 3560 3561 3562 3563
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3564 3565
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3566
{
3567
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3568
	unsigned int dirty;
3569
	u32 val;
3570

3571
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3572 3573 3574 3575 3576
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3577
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3578
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3579
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3580
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3581
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3582
		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3583

3584
	if (dirty & WM_DIRTY_DDB) {
3585
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3586
			val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
3587 3588 3589 3590
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
3591
			intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
3592
		} else {
3593
			val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
3594 3595 3596 3597
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
3598
			intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
3599
		}
3600 3601
	}

3602
	if (dirty & WM_DIRTY_FBC) {
3603
		val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
3604 3605 3606 3607
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
3608
		intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
3609 3610
	}

3611 3612
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3613
		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
3614

3615
	if (INTEL_GEN(dev_priv) >= 7) {
3616
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3617
			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
3618
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3619
			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
3620
	}
3621

3622
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3623
		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
3624
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3625
		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
3626
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3627
		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
3628 3629

	dev_priv->wm.hw = *results;
3630 3631
}

3632
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3633 3634 3635 3636
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3637
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3638
{
3639 3640 3641
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3642

3643
	for (i = 0; i < max_slices; i++) {
3644
		if (intel_uncore_read(&dev_priv->uncore, DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3645 3646
			enabled_slices_mask |= BIT(i);
	}
3647

3648
	return enabled_slices_mask;
3649 3650
}

3651 3652 3653 3654
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3655
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3656
{
3657
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3658 3659
}

3660 3661 3662
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3663 3664
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3665 3666
}

3667 3668 3669
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3682
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3683
	} else if (IS_GEN(dev_priv, 11)) {
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
3711
static int
3712
intel_enable_sagv(struct drm_i915_private *dev_priv)
3713 3714 3715
{
	int ret;

3716 3717 3718 3719
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3720 3721
		return 0;

3722
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3723 3724 3725
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3726
	/* We don't need to wait for SAGV when enabling */
3727 3728 3729

	/*
	 * Some skl systems, pre-release machines in particular,
3730
	 * don't actually have SAGV.
3731
	 */
3732
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3733
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3734
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3735 3736
		return 0;
	} else if (ret < 0) {
3737
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3738 3739 3740
		return ret;
	}

3741
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3742 3743 3744
	return 0;
}

3745
static int
3746
intel_disable_sagv(struct drm_i915_private *dev_priv)
3747
{
3748
	int ret;
3749

3750 3751 3752 3753
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3754 3755
		return 0;

3756
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3757
	/* bspec says to keep retrying for at least 1 ms */
3758 3759 3760 3761
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3762 3763
	/*
	 * Some skl systems, pre-release machines in particular,
3764
	 * don't actually have SAGV.
3765
	 */
3766
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3767
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3768
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3769
		return 0;
3770
	} else if (ret < 0) {
3771
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3772
		return ret;
3773 3774
	}

3775
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3776 3777 3778
	return 0;
}

3779 3780 3781
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3782
	const struct intel_bw_state *new_bw_state;
3783 3784
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3785

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;

	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3800
	if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3801
		intel_disable_sagv(dev_priv);
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to mask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;

	/*
	 * If new mask is zero - means there is nothing to mask,
	 * we can only unmask, which should be done in unmask.
	 */
	if (!new_mask)
		return;

	/*
	 * Restrict required qgv points before updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3828 3829 3830 3831 3832
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3833
	const struct intel_bw_state *new_bw_state;
3834 3835
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845

	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;
3846

3847 3848 3849 3850
	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3851
	if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3852
		intel_enable_sagv(dev_priv);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to unmask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = new_bw_state->qgv_points_mask;

	/*
	 * Allow required qgv points after updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3872 3873
}

3874
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3875
{
3876
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3877
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3878
	enum plane_id plane_id;
3879

3880 3881 3882
	if (!intel_has_sagv(dev_priv))
		return false;

3883
	if (!crtc_state->hw.active)
3884
		return true;
3885

3886
	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
3887 3888
		return false;

3889
	for_each_plane_id_on_crtc(crtc, plane_id) {
3890
		const struct skl_plane_wm *wm =
3891 3892
			&crtc_state->wm.skl.optimal.planes[plane_id];
		int level;
3893

3894
		/* Skip this plane if it's not enabled */
3895
		if (!wm->wm[0].plane_en)
3896 3897 3898
			continue;

		/* Find the highest enabled wm level for this plane */
3899
		for (level = ilk_wm_max_level(dev_priv);
3900
		     !wm->wm[level].plane_en; --level)
3901 3902 3903
		     { }

		/*
3904 3905
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3906
		 * can't enable SAGV.
3907
		 */
3908
		if (!wm->wm[level].can_sagv)
3909 3910 3911 3912 3913 3914
			return false;
	}

	return true;
}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum plane_id plane_id;

	if (!crtc_state->hw.active)
		return true;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		const struct skl_ddb_entry *plane_alloc =
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
		const struct skl_plane_wm *wm =
			&crtc_state->wm.skl.optimal.planes[plane_id];

		if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
			return false;
	}

	return true;
}

3936 3937
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
3938 3939 3940 3941 3942 3943 3944
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	if (INTEL_GEN(dev_priv) >= 12)
		return tgl_crtc_can_enable_sagv(crtc_state);
	else
		return skl_crtc_can_enable_sagv(crtc_state);
3945 3946
}

3947 3948
bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
			   const struct intel_bw_state *bw_state)
3949
{
3950 3951
	if (INTEL_GEN(dev_priv) < 11 &&
	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3952 3953
		return false;

3954 3955 3956 3957 3958
	return bw_state->pipe_sagv_reject == 0;
}

static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
3959
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3960
	int ret;
3961
	struct intel_crtc *crtc;
3962
	struct intel_crtc_state *new_crtc_state;
3963 3964 3965
	struct intel_bw_state *new_bw_state = NULL;
	const struct intel_bw_state *old_bw_state = NULL;
	int i;
3966

3967 3968 3969 3970 3971
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
3972

3973
		old_bw_state = intel_atomic_get_old_bw_state(state);
3974

3975 3976 3977 3978 3979
		if (intel_crtc_can_enable_sagv(new_crtc_state))
			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
		else
			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
	}
3980

3981 3982
	if (!new_bw_state)
		return 0;
3983

3984 3985
	new_bw_state->active_pipes =
		intel_calc_active_pipes(state, old_bw_state->active_pipes);
3986

3987 3988 3989 3990 3991 3992
	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;

		/*
		 * We store use_sagv_wm in the crtc state rather than relying on
		 * that bw state since we have no convenient way to get at the
		 * latter from the plane commit hooks (especially in the legacy
		 * cursor case)
		 */
		pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
				       intel_can_enable_sagv(dev_priv, new_bw_state);
	}

4007 4008
	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

	return 0;
4019 4020
}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
static int intel_dbuf_size(struct drm_i915_private *dev_priv)
{
	int ddb_size = INTEL_INFO(dev_priv)->ddb_size;

	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
{
	return intel_dbuf_size(dev_priv) /
		INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
}

4039 4040 4041
static void
skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
			 struct skl_ddb_entry *ddb)
4042
{
4043
	int slice_size = intel_dbuf_slice_size(dev_priv);
4044

4045 4046 4047 4048 4049
	if (!slice_mask) {
		ddb->start = 0;
		ddb->end = 0;
		return;
	}
4050

4051 4052
	ddb->start = (ffs(slice_mask) - 1) * slice_size;
	ddb->end = fls(slice_mask) * slice_size;
4053

4054 4055
	WARN_ON(ddb->start >= ddb->end);
	WARN_ON(ddb->end > intel_dbuf_size(dev_priv));
4056 4057
}

4058 4059 4060 4061
u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
			    const struct skl_ddb_entry *entry)
{
	u32 slice_mask = 0;
4062
	u16 ddb_size = intel_dbuf_size(dev_priv);
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u16 slice_size = ddb_size / num_supported_slices;
	u16 start_slice;
	u16 end_slice;

	if (!skl_ddb_entry_size(entry))
		return 0;

	start_slice = entry->start / slice_size;
	end_slice = (entry->end - 1) / slice_size;

	/*
	 * Per plane DDB entry can in a really worst case be on multiple slices
	 * but single entry is anyway contigious.
	 */
	while (start_slice <= end_slice) {
		slice_mask |= BIT(start_slice);
		start_slice++;
	}

	return slice_mask;
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
{
	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
	int hdisplay, vdisplay;

	if (!crtc_state->hw.active)
		return 0;

	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);

	return hdisplay;
}

4104 4105 4106 4107 4108 4109 4110 4111 4112
static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
				    enum pipe for_pipe,
				    unsigned int *weight_start,
				    unsigned int *weight_end,
				    unsigned int *weight_total)
{
	struct drm_i915_private *dev_priv =
		to_i915(dbuf_state->base.state->base.dev);
	enum pipe pipe;
4113

4114 4115 4116
	*weight_start = 0;
	*weight_end = 0;
	*weight_total = 0;
4117

4118 4119
	for_each_pipe(dev_priv, pipe) {
		int weight = dbuf_state->weight[pipe];
4120 4121 4122 4123 4124 4125 4126 4127

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
4128
		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
4129 4130
			continue;

4131 4132 4133 4134 4135 4136 4137
		*weight_total += weight;
		if (pipe < for_pipe) {
			*weight_start += weight;
			*weight_end += weight;
		} else if (pipe == for_pipe) {
			*weight_end += weight;
		}
4138
	}
4139 4140 4141
}

static int
4142
skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
4143
{
4144 4145
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	unsigned int weight_total, weight_start, weight_end;
4146 4147 4148 4149
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);
	struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
4150
	struct intel_crtc_state *crtc_state;
4151
	struct skl_ddb_entry ddb_slices;
4152
	enum pipe pipe = crtc->pipe;
4153 4154 4155 4156 4157
	u32 ddb_range_size;
	u32 dbuf_slice_mask;
	u32 start, end;
	int ret;

4158 4159 4160 4161
	if (new_dbuf_state->weight[pipe] == 0) {
		new_dbuf_state->ddb[pipe].start = 0;
		new_dbuf_state->ddb[pipe].end = 0;
		goto out;
4162 4163
	}

4164
	dbuf_slice_mask = new_dbuf_state->slices[pipe];
4165 4166 4167 4168

	skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
	ddb_range_size = skl_ddb_entry_size(&ddb_slices);

4169 4170
	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
				&weight_start, &weight_end, &weight_total);
4171 4172 4173

	start = ddb_range_size * weight_start / weight_total;
	end = ddb_range_size * weight_end / weight_total;
4174

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	new_dbuf_state->ddb[pipe].start = ddb_slices.start + start;
	new_dbuf_state->ddb[pipe].end = ddb_slices.start + end;

out:
	if (skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
				&new_dbuf_state->ddb[pipe]))
		return 0;

	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
	if (ret)
		return ret;

	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
	if (IS_ERR(crtc_state))
		return PTR_ERR(crtc_state);

	crtc_state->wm.skl.ddb = new_dbuf_state->ddb[pipe];
4192

4193
	drm_dbg_kms(&dev_priv->drm,
4194
		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
4195
		    crtc->base.base.id, crtc->base.name,
4196 4197 4198 4199
		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
4200 4201

	return 0;
4202 4203
}

4204 4205 4206 4207 4208
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4209
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4210
				 int level,
4211
				 unsigned int latency,
4212 4213 4214 4215 4216 4217 4218
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4219
{
4220
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4231
	drm_WARN_ON(&dev_priv->drm, ret);
4232 4233

	for (level = 0; level <= max_level; level++) {
4234 4235 4236
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4237 4238 4239 4240 4241
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4242

4243
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4244 4245
}

4246 4247
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4248
{
4249

4250 4251
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4252

4253 4254
	if (entry->end)
		entry->end += 1;
4255 4256
}

4257 4258 4259 4260
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4261 4262
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4263
{
4264 4265
	u32 val, val2;
	u32 fourcc = 0;
4266 4267 4268

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
4269
		val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
4270
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4271 4272 4273
		return;
	}

4274
	val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
4275 4276

	/* No DDB allocated for disabled planes */
4277 4278 4279 4280
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4281

4282
	if (INTEL_GEN(dev_priv) >= 11) {
4283
		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
4284 4285
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
4286 4287
		val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
		val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
4288

4289 4290
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4291 4292 4293 4294
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4295 4296 4297
	}
}

4298 4299 4300
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4301
{
4302 4303 4304
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4305
	intel_wakeref_t wakeref;
4306
	enum plane_id plane_id;
4307

4308
	power_domain = POWER_DOMAIN_PIPE(pipe);
4309 4310
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4311
		return;
4312

4313 4314 4315 4316 4317
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4318

4319
	intel_display_power_put(dev_priv, power_domain, wakeref);
4320
}
4321

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4338
static uint_fixed_16_16_t
4339 4340
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4341
{
4342
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4343
	u32 src_w, src_h, dst_w, dst_h;
4344 4345
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4346

4347 4348
	if (drm_WARN_ON(&dev_priv->drm,
			!intel_wm_plane_visible(crtc_state, plane_state)))
4349
		return u32_to_fixed16(0);
4350

4351 4352 4353 4354 4355 4356 4357
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4358 4359 4360 4361
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4362

4363 4364 4365 4366
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4367

4368
	return mul_fixed16(downscale_w, downscale_h);
4369 4370
}

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4386
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4387 4388 4389 4390 4391
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4392 4393
			[PIPE_A] = BIT(DBUF_S1),
		},
4394 4395 4396 4397
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4398 4399
			[PIPE_B] = BIT(DBUF_S1),
		},
4400 4401 4402 4403 4404
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4405 4406
			[PIPE_B] = BIT(DBUF_S2),
		},
4407 4408 4409 4410
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4411 4412
			[PIPE_C] = BIT(DBUF_S2),
		},
4413 4414 4415 4416 4417
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4418 4419
			[PIPE_C] = BIT(DBUF_S2),
		},
4420 4421 4422 4423 4424
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4425 4426
			[PIPE_C] = BIT(DBUF_S2),
		},
4427 4428 4429 4430 4431 4432
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4433 4434
			[PIPE_C] = BIT(DBUF_S2),
		},
4435
	},
4436
	{}
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4449
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4450 4451 4452 4453 4454
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4455 4456
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4457 4458 4459 4460
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4461 4462
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4463 4464 4465 4466 4467
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4468 4469
			[PIPE_B] = BIT(DBUF_S1),
		},
4470 4471 4472 4473
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4474 4475
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4476 4477 4478 4479 4480
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4481 4482
			[PIPE_C] = BIT(DBUF_S2),
		},
4483 4484 4485 4486 4487
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4488 4489
			[PIPE_C] = BIT(DBUF_S2),
		},
4490 4491 4492 4493 4494 4495
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4496 4497
			[PIPE_C] = BIT(DBUF_S2),
		},
4498 4499 4500 4501
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4502 4503
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4504 4505 4506 4507 4508
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4509 4510
			[PIPE_D] = BIT(DBUF_S2),
		},
4511 4512 4513 4514 4515
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4516 4517
			[PIPE_D] = BIT(DBUF_S2),
		},
4518 4519 4520 4521 4522 4523
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4524 4525
			[PIPE_D] = BIT(DBUF_S2),
		},
4526 4527 4528 4529 4530
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4531 4532
			[PIPE_D] = BIT(DBUF_S2),
		},
4533 4534 4535 4536 4537 4538
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4539 4540
			[PIPE_D] = BIT(DBUF_S2),
		},
4541 4542 4543 4544 4545 4546
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4547 4548
			[PIPE_D] = BIT(DBUF_S2),
		},
4549 4550 4551 4552 4553 4554 4555
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4556 4557
			[PIPE_D] = BIT(DBUF_S2),
		},
4558
	},
4559
	{}
4560 4561
};

4562 4563
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4564 4565 4566
{
	int i;

4567
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4579
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4593
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4594 4595
}

4596
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4597
{
4598
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4599 4600
}

4601
static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes)
4602 4603 4604 4605 4606
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4607
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4608
	else if (IS_GEN(dev_priv, 11))
4609
		return icl_compute_dbuf_slices(pipe, active_pipes);
4610 4611 4612 4613
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
4614
	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4615 4616
}

4617
static u64
4618 4619
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4620
			     int color_plane)
4621
{
4622
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4623
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4624 4625
	u32 data_rate;
	u32 width = 0, height = 0;
4626
	uint_fixed_16_16_t down_scale_amount;
4627
	u64 rate;
4628

4629
	if (!plane_state->uapi.visible)
4630
		return 0;
4631

4632
	if (plane->id == PLANE_CURSOR)
4633
		return 0;
4634 4635

	if (color_plane == 1 &&
4636
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4637
		return 0;
4638

4639 4640 4641 4642 4643
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4644 4645
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4646

4647
	/* UV plane does 1/2 pixel sub-sampling */
4648
	if (color_plane == 1) {
4649 4650
		width /= 2;
		height /= 2;
4651 4652
	}

4653
	data_rate = width * height;
4654

4655
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4656

4657 4658
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4659
	rate *= fb->format->cpp[color_plane];
4660
	return rate;
4661 4662
}

4663
static u64
4664 4665
skl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4666
{
4667 4668
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4669
	const struct intel_plane_state *plane_state;
4670
	struct intel_plane *plane;
4671
	u64 total_data_rate = 0;
4672 4673
	enum plane_id plane_id;
	int i;
4674

4675
	/* Calculate and cache data rate for each plane */
4676 4677 4678 4679 4680
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4681

4682
		/* packed/y */
4683 4684
		crtc_state->plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4685

4686
		/* uv-plane */
4687 4688 4689 4690 4691 4692 4693
		crtc_state->uv_plane_data_rate[plane_id] =
			skl_plane_relative_data_rate(crtc_state, plane_state, 1);
	}

	for_each_plane_id_on_crtc(crtc, plane_id) {
		total_data_rate += crtc_state->plane_data_rate[plane_id];
		total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
4694 4695 4696 4697 4698
	}

	return total_data_rate;
}

4699
static u64
4700 4701
icl_get_total_relative_data_rate(struct intel_atomic_state *state,
				 struct intel_crtc *crtc)
4702
{
4703 4704
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4705
	const struct intel_plane_state *plane_state;
4706
	struct intel_plane *plane;
4707
	u64 total_data_rate = 0;
4708 4709
	enum plane_id plane_id;
	int i;
4710 4711

	/* Calculate and cache data rate for each plane */
4712 4713 4714 4715 4716
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		if (plane->pipe != crtc->pipe)
			continue;

		plane_id = plane->id;
4717

4718
		if (!plane_state->planar_linked_plane) {
4719 4720
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4721 4722 4723 4724 4725
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4726
			 * intel_atomic_crtc_state_for_each_plane_state(),
4727 4728 4729 4730
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4731
			if (plane_state->planar_slave)
4732 4733 4734
				continue;

			/* Y plane rate is calculated on the slave */
4735
			y_plane_id = plane_state->planar_linked_plane->id;
4736 4737
			crtc_state->plane_data_rate[y_plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4738

4739 4740
			crtc_state->plane_data_rate[plane_id] =
				skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4741 4742 4743
		}
	}

4744 4745 4746
	for_each_plane_id_on_crtc(crtc, plane_id)
		total_data_rate += crtc_state->plane_data_rate[plane_id];

4747 4748 4749
	return total_data_rate;
}

4750 4751 4752 4753 4754
static const struct skl_wm_level *
skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
		   enum plane_id plane_id,
		   int level)
{
4755 4756 4757 4758 4759
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];

	if (level == 0 && pipe_wm->use_sagv_wm)
		return &wm->sagv_wm0;
4760 4761 4762 4763

	return &wm->wm[level];
}

4764
static int
4765 4766
skl_allocate_plane_ddb(struct intel_atomic_state *state,
		       struct intel_crtc *crtc)
4767
{
4768
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4769 4770
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
4771
	const struct intel_dbuf_state *dbuf_state =
4772
		intel_atomic_get_new_dbuf_state(state);
4773 4774
	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
	int num_active = hweight8(dbuf_state->active_pipes);
4775 4776 4777
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4778
	u64 total_data_rate;
4779
	enum plane_id plane_id;
4780
	u32 blocks;
4781
	int level;
4782

4783
	/* Clear the partitioning for disabled planes. */
4784 4785
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4786

4787
	if (!crtc_state->hw.active)
4788 4789
		return 0;

4790 4791
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4792
			icl_get_total_relative_data_rate(state, crtc);
4793
	else
4794
		total_data_rate =
4795
			skl_get_total_relative_data_rate(state, crtc);
4796

4797
	alloc_size = skl_ddb_entry_size(alloc);
4798
	if (alloc_size == 0)
4799
		return 0;
4800

4801
	/* Allocate fixed number of blocks for cursor. */
4802
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4803
	alloc_size -= total[PLANE_CURSOR];
4804
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4805
		alloc->end - total[PLANE_CURSOR];
4806
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4807 4808 4809

	if (total_data_rate == 0)
		return 0;
4810

4811
	/*
4812 4813
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4814
	 */
4815
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4816
		blocks = 0;
4817
		for_each_plane_id_on_crtc(crtc, plane_id) {
4818
			const struct skl_plane_wm *wm =
4819
				&crtc_state->wm.skl.optimal.planes[plane_id];
4820 4821

			if (plane_id == PLANE_CURSOR) {
4822
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4823 4824
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4825 4826 4827
					blocks = U32_MAX;
					break;
				}
4828
				continue;
4829
			}
4830

4831 4832
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4833 4834
		}

4835
		if (blocks <= alloc_size) {
4836 4837 4838
			alloc_size -= blocks;
			break;
		}
4839 4840
	}

4841
	if (level < 0) {
4842 4843 4844 4845
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4846 4847 4848
		return -EINVAL;
	}

4849
	/*
4850 4851 4852
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4853
	 */
4854
	for_each_plane_id_on_crtc(crtc, plane_id) {
4855
		const struct skl_plane_wm *wm =
4856
			&crtc_state->wm.skl.optimal.planes[plane_id];
4857 4858
		u64 rate;
		u16 extra;
4859

4860
		if (plane_id == PLANE_CURSOR)
4861 4862
			continue;

4863
		/*
4864 4865
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4866
		 */
4867 4868
		if (total_data_rate == 0)
			break;
4869

4870
		rate = crtc_state->plane_data_rate[plane_id];
4871 4872 4873
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4874
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4875 4876
		alloc_size -= extra;
		total_data_rate -= rate;
4877

4878 4879
		if (total_data_rate == 0)
			break;
4880

4881
		rate = crtc_state->uv_plane_data_rate[plane_id];
4882 4883 4884
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4885
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4886 4887 4888
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4889
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4890 4891 4892

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4893
	for_each_plane_id_on_crtc(crtc, plane_id) {
4894
		struct skl_ddb_entry *plane_alloc =
4895
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4896
		struct skl_ddb_entry *uv_plane_alloc =
4897
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4898 4899 4900 4901

		if (plane_id == PLANE_CURSOR)
			continue;

4902
		/* Gen11+ uses a separate plane for UV watermarks */
4903 4904
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4905 4906 4907 4908 4909 4910 4911

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4912

4913 4914 4915 4916
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4917
		}
4918
	}
4919

4920 4921 4922 4923 4924 4925 4926
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4927
		for_each_plane_id_on_crtc(crtc, plane_id) {
4928
			struct skl_plane_wm *wm =
4929
				&crtc_state->wm.skl.optimal.planes[plane_id];
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4946

4947
			/*
4948
			 * Wa_1408961008:icl, ehl
4949 4950
			 * Underruns with WM1+ disabled
			 */
4951
			if (IS_GEN(dev_priv, 11) &&
4952 4953
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4954 4955
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4956
			}
4957 4958 4959 4960 4961 4962 4963
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
4964
	for_each_plane_id_on_crtc(crtc, plane_id) {
4965
		struct skl_plane_wm *wm =
4966
			&crtc_state->wm.skl.optimal.planes[plane_id];
4967

4968
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4969
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4970 4971
	}

4972
	return 0;
4973 4974
}

4975 4976
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4977
 * for the read latency) and cpp should always be <= 8, so that
4978 4979 4980
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4981
static uint_fixed_16_16_t
4982 4983
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4984
{
4985
	u32 wm_intermediate_val;
4986
	uint_fixed_16_16_t ret;
4987 4988

	if (latency == 0)
4989
		return FP_16_16_MAX;
4990

4991
	wm_intermediate_val = latency * pixel_rate * cpp;
4992
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4993

4994
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4995 4996
		ret = add_fixed16_u32(ret, 1);

4997 4998 4999
	return ret;
}

5000 5001 5002
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
5003
{
5004
	u32 wm_intermediate_val;
5005
	uint_fixed_16_16_t ret;
5006 5007

	if (latency == 0)
5008
		return FP_16_16_MAX;
5009 5010

	wm_intermediate_val = latency * pixel_rate;
5011 5012
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
5013
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5014 5015 5016
	return ret;
}

5017
static uint_fixed_16_16_t
5018
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5019
{
5020
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5021 5022
	u32 pixel_rate;
	u32 crtc_htotal;
5023 5024
	uint_fixed_16_16_t linetime_us;

5025
	if (!crtc_state->hw.active)
5026
		return u32_to_fixed16(0);
5027

5028
	pixel_rate = crtc_state->pixel_rate;
5029

5030
	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5031
		return u32_to_fixed16(0);
5032

5033
	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
5034
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5035 5036 5037 5038

	return linetime_us;
}

5039
static int
5040 5041 5042 5043 5044
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
5045
{
5046
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5047
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5048
	u32 interm_pbpl;
5049

5050
	/* only planar format has two planes */
5051 5052
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5053 5054
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
5055 5056 5057
		return -EINVAL;
	}

5058 5059 5060 5061 5062 5063 5064
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5065
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5066

5067
	wp->width = width;
5068
	if (color_plane == 1 && wp->is_planar)
5069 5070
		wp->width /= 2;

5071 5072
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
5073

5074
	if (INTEL_GEN(dev_priv) >= 11 &&
5075
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5076 5077 5078 5079
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

5080
	if (drm_rotation_90_or_270(rotation)) {
5081
		switch (wp->cpp) {
5082
		case 1:
5083
			wp->y_min_scanlines = 16;
5084 5085
			break;
		case 2:
5086
			wp->y_min_scanlines = 8;
5087 5088
			break;
		case 4:
5089
			wp->y_min_scanlines = 4;
5090
			break;
5091
		default:
5092
			MISSING_CASE(wp->cpp);
5093
			return -EINVAL;
5094 5095
		}
	} else {
5096
		wp->y_min_scanlines = 4;
5097 5098
	}

5099
	if (skl_needs_memory_bw_wa(dev_priv))
5100
		wp->y_min_scanlines *= 2;
5101

5102 5103 5104
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5105 5106
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
5107

5108
		if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5109 5110
			interm_pbpl++;

5111 5112
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
5113
	} else {
5114
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5115 5116 5117 5118 5119 5120
					   wp->dbuf_block_size);

		if (!wp->x_tiled ||
		    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
			interm_pbpl++;

5121
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5122 5123
	}

5124 5125
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
5126

5127
	wp->linetime_us = fixed16_to_u32_round_up(
5128
					intel_get_linetime_us(crtc_state));
5129 5130 5131 5132

	return 0;
}

5133 5134 5135 5136 5137
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
5138
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5139 5140
	int width;

5141 5142 5143 5144 5145
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
5146
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5147 5148 5149

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
5150
				     plane_state->hw.rotation,
5151
				     intel_plane_pixel_rate(crtc_state, plane_state),
5152 5153 5154
				     wp, color_plane);
}

5155 5156 5157 5158 5159 5160 5161 5162 5163
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5164
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5165
				 int level,
5166
				 unsigned int latency,
5167 5168 5169
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5170
{
5171
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5172 5173
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5174
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5175

5176 5177 5178
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5179
		return;
5180
	}
5181

5182 5183 5184 5185
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5186 5187 5188
	if ((IS_KABYLAKE(dev_priv) ||
	     IS_COFFEELAKE(dev_priv) ||
	     IS_COMETLAKE(dev_priv)) &&
5189 5190 5191
	    dev_priv->ipc_enabled)
		latency += 4;

5192
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5193 5194 5195
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5196
				 wp->cpp, latency, wp->dbuf_block_size);
5197
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5198
				 crtc_state->hw.pipe_mode.crtc_htotal,
5199
				 latency,
5200
				 wp->plane_blocks_per_line);
5201

5202 5203
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5204
	} else {
5205
		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
5206
		     wp->dbuf_block_size < 1) &&
5207
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5208
			selected_result = method2;
5209
		} else if (latency >= wp->linetime_us) {
5210
			if (IS_GEN(dev_priv, 9) &&
5211 5212 5213 5214 5215
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5216
			selected_result = method1;
5217
		}
5218
	}
5219

5220
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5221
	res_lines = div_round_up_fixed16(selected_result,
5222
					 wp->plane_blocks_per_line);
5223

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5239

5240 5241 5242 5243 5244 5245 5246 5247 5248
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5249
	}
5250

5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5269 5270 5271
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5272 5273 5274
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5275
		return;
5276
	}
5277 5278 5279 5280 5281 5282 5283

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5284 5285
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5286 5287
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5288
	result->plane_en = true;
5289 5290 5291

	if (INTEL_GEN(dev_priv) < 12)
		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
5292 5293
}

5294
static void
5295
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5296
		      const struct skl_wm_params *wm_params,
5297
		      struct skl_wm_level *levels)
5298
{
5299
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5300
	int level, max_level = ilk_wm_max_level(dev_priv);
5301
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5302

5303
	for (level = 0; level <= max_level; level++) {
5304
		struct skl_wm_level *result = &levels[level];
5305
		unsigned int latency = dev_priv->wm.skl_latency[level];
5306

5307 5308
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5309 5310

		result_prev = result;
5311
	}
5312 5313
}

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
				const struct skl_wm_params *wm_params,
				struct skl_plane_wm *plane_wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
	struct skl_wm_level *levels = plane_wm->wm;
	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;

	skl_compute_plane_wm(crtc_state, 0, latency,
			     wm_params, &levels[0],
			     sagv_wm);
}

5328
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5329
				      const struct skl_wm_params *wp,
5330
				      struct skl_plane_wm *wm)
5331
{
5332
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5333
	const struct drm_i915_private *dev_priv = to_i915(dev);
5334
	u16 trans_min, trans_amount, trans_y_tile_min;
5335
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5336 5337 5338

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5339
		return;
5340

5341 5342 5343 5344 5345 5346 5347
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5348
	if (INTEL_GEN(dev_priv) >= 11)
5349
		trans_min = 4;
5350 5351 5352 5353 5354 5355 5356 5357
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5358 5359 5360

	trans_offset_b = trans_min + trans_amount;

5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5371
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5372

5373
	if (wp->y_tiled) {
5374 5375
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5376
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5377 5378
				trans_offset_b;
	} else {
5379
		res_blocks = wm0_sel_res_b + trans_offset_b;
5380 5381
	}

5382 5383 5384 5385 5386 5387 5388
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5389 5390
}

5391
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5392 5393
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5394
{
5395 5396
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5397
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5398 5399 5400
	struct skl_wm_params wm_params;
	int ret;

5401
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5402 5403 5404 5405
					  &wm_params, color_plane);
	if (ret)
		return ret;

5406
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5407 5408 5409 5410

	if (INTEL_GEN(dev_priv) >= 12)
		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);

5411
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5412 5413 5414 5415

	return 0;
}

5416
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5417 5418
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5419
{
5420
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5421 5422 5423
	struct skl_wm_params wm_params;
	int ret;

5424
	wm->is_planar = true;
5425 5426

	/* uv plane watermarks must also be validated for NV12/Planar */
5427
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5428 5429 5430
					  &wm_params, 1);
	if (ret)
		return ret;
5431

5432
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5433

5434
	return 0;
5435 5436
}

5437
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5438
			      const struct intel_plane_state *plane_state)
5439
{
5440
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5441
	enum plane_id plane_id = plane->id;
5442 5443
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5444 5445
	int ret;

5446 5447
	memset(wm, 0, sizeof(*wm));

5448 5449 5450
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5451
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5452
					plane_id, 0);
5453 5454 5455
	if (ret)
		return ret;

5456
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5457
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5458 5459 5460 5461 5462 5463 5464 5465
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5466
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5467 5468
			      const struct intel_plane_state *plane_state)
{
5469 5470 5471 5472
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	enum plane_id plane_id = plane->id;
	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
5473 5474
	int ret;

5475 5476
	memset(wm, 0, sizeof(*wm));

5477
	/* Watermarks calculated in master */
5478
	if (plane_state->planar_slave)
5479 5480
		return 0;

5481
	if (plane_state->planar_linked_plane) {
5482
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5483
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5484

5485 5486 5487 5488
		drm_WARN_ON(&dev_priv->drm,
			    !intel_wm_plane_visible(crtc_state, plane_state));
		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
			    fb->format->num_planes == 1);
5489

5490
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5491 5492 5493 5494
						y_plane_id, 0);
		if (ret)
			return ret;

5495
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5496 5497 5498 5499
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5500
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5501 5502 5503 5504 5505 5506
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5507 5508
}

5509 5510
static int skl_build_pipe_wm(struct intel_atomic_state *state,
			     struct intel_crtc *crtc)
5511
{
5512 5513 5514
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
5515
	const struct intel_plane_state *plane_state;
5516 5517
	struct intel_plane *plane;
	int ret, i;
L
Lyude 已提交
5518

5519 5520 5521 5522 5523 5524 5525 5526
	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
		/*
		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
		 * instead but we don't populate that correctly for NV12 Y
		 * planes so for now hack this.
		 */
		if (plane->pipe != crtc->pipe)
			continue;
5527

5528
		if (INTEL_GEN(dev_priv) >= 11)
5529
			ret = icl_build_plane_wm(crtc_state, plane_state);
5530
		else
5531
			ret = skl_build_plane_wm(crtc_state, plane_state);
5532 5533
		if (ret)
			return ret;
5534
	}
5535

5536 5537
	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;

5538
	return 0;
5539 5540
}

5541 5542
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5543 5544 5545
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5546 5547
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5548
	else
5549
		intel_de_write_fw(dev_priv, reg, 0);
5550 5551
}

5552 5553 5554 5555
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5556
	u32 val = 0;
5557

5558
	if (level->plane_en)
5559
		val |= PLANE_WM_EN;
5560 5561 5562 5563
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5564

5565
	intel_de_write_fw(dev_priv, reg, val);
5566 5567
}

5568 5569
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5570
{
5571
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5572
	int level, max_level = ilk_wm_max_level(dev_priv);
5573 5574 5575 5576 5577 5578 5579 5580
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5581 5582

	for (level = 0; level <= max_level; level++) {
5583 5584 5585 5586
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5587
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5588
				   wm_level);
5589
	}
5590
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5591
			   &wm->trans_wm);
5592

5593
	if (INTEL_GEN(dev_priv) >= 11) {
5594
		skl_ddb_entry_write(dev_priv,
5595 5596
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5597
	}
5598 5599 5600 5601 5602 5603 5604 5605

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5606 5607
}

5608 5609
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5610
{
5611
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5612
	int level, max_level = ilk_wm_max_level(dev_priv);
5613 5614 5615 5616 5617 5618
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5619 5620

	for (level = 0; level <= max_level; level++) {
5621 5622 5623 5624
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5625
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5626
				   wm_level);
5627
	}
5628
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5629

5630
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5631 5632
}

5633 5634 5635
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5636
	return l1->plane_en == l2->plane_en &&
5637
		l1->ignore_lines == l2->ignore_lines &&
5638 5639 5640
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5641

5642 5643 5644 5645 5646
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5647

5648
	for (level = 0; level <= max_level; level++) {
5649 5650 5651 5652 5653 5654
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5655 5656 5657 5658
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5659 5660
}

5661 5662
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5663
{
5664
	return a->start < b->end && b->start < a->end;
5665 5666
}

5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
static void skl_ddb_entry_union(struct skl_ddb_entry *a,
				const struct skl_ddb_entry *b)
{
	if (a->end && b->end) {
		a->start = min(a->start, b->start);
		a->end = max(a->end, b->end);
	} else if (b->end) {
		a->start = b->start;
		a->end = b->end;
	}
}

5679
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5680
				 const struct skl_ddb_entry *entries,
5681
				 int num_entries, int ignore_idx)
5682
{
5683
	int i;
5684

5685 5686 5687
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5688
			return true;
5689
	}
5690

5691
	return false;
5692 5693
}

5694
static int
5695 5696
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5697
{
5698 5699
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5700 5701
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5702

5703 5704 5705
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5706

5707 5708 5709 5710
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5711 5712
			continue;

5713
		plane_state = intel_atomic_get_plane_state(state, plane);
5714 5715
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5716

5717
		new_crtc_state->update_planes |= BIT(plane_id);
5718 5719 5720 5721 5722
	}

	return 0;
}

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
{
	struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
	u8 enabled_slices;
	enum pipe pipe;

	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
	enabled_slices = BIT(DBUF_S1);

	for_each_pipe(dev_priv, pipe)
		enabled_slices |= dbuf_state->slices[pipe];

	return enabled_slices;
}

5741
static int
5742
skl_compute_ddb(struct intel_atomic_state *state)
5743
{
5744 5745
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *old_dbuf_state;
5746
	struct intel_dbuf_state *new_dbuf_state = NULL;
5747
	const struct intel_crtc_state *old_crtc_state;
5748
	struct intel_crtc_state *new_crtc_state;
5749 5750
	struct intel_crtc *crtc;
	int ret, i;
5751

5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		new_dbuf_state = intel_atomic_get_dbuf_state(state);
		if (IS_ERR(new_dbuf_state))
			return PTR_ERR(new_dbuf_state);

		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
		break;
	}

	if (!new_dbuf_state)
		return 0;

	new_dbuf_state->active_pipes =
		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);

	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
5769 5770
		if (ret)
			return ret;
5771
	}
5772

5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	for_each_intel_crtc(&dev_priv->drm, crtc) {
		enum pipe pipe = crtc->pipe;

		new_dbuf_state->slices[pipe] =
			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes);

		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
			continue;

		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
5783 5784
		if (ret)
			return ret;
5785 5786
	}

5787 5788 5789 5790 5791 5792
	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);

	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
5793 5794 5795 5796 5797 5798

		drm_dbg_kms(&dev_priv->drm,
			    "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
			    old_dbuf_state->enabled_slices,
			    new_dbuf_state->enabled_slices,
			    INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
	}

	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		enum pipe pipe = crtc->pipe;

		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);

		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
			continue;

		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		ret = skl_crtc_allocate_ddb(state, crtc);
		if (ret)
			return ret;
	}

	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		ret = skl_allocate_plane_ddb(state, crtc);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
		if (ret)
			return ret;
	}
5831

5832 5833 5834
	return 0;
}

5835 5836 5837 5838 5839
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5840
static void
5841
skl_print_wm_changes(struct intel_atomic_state *state)
5842
{
5843 5844 5845 5846 5847
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5848
	int i;
5849

5850
	if (!drm_debug_enabled(DRM_UT_KMS))
5851 5852
		return;

5853 5854
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5855 5856 5857 5858 5859
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5860 5861
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5862 5863
			const struct skl_ddb_entry *old, *new;

5864 5865
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5866 5867 5868 5869

			if (skl_ddb_entry_equal(old, new))
				continue;

5870 5871 5872 5873 5874
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5887
			drm_dbg_kms(&dev_priv->drm,
5888 5889
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5890 5891 5892 5893 5894 5895
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
5896
				    enast(old_wm->sagv_wm0.plane_en),
5897 5898 5899 5900
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5901 5902
				    enast(new_wm->trans_wm.plane_en),
				    enast(new_wm->sagv_wm0.plane_en));
5903 5904

			drm_dbg_kms(&dev_priv->drm,
5905 5906
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5917
				    enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5918 5919 5920 5921 5922 5923 5924 5925 5926

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5927 5928
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
				    enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5929 5930

			drm_dbg_kms(&dev_priv->drm,
5931 5932
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5933 5934 5935 5936 5937 5938
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
5939
				    old_wm->sagv_wm0.plane_res_b,
5940 5941 5942 5943
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5944 5945
				    new_wm->trans_wm.plane_res_b,
				    new_wm->sagv_wm0.plane_res_b);
5946 5947

			drm_dbg_kms(&dev_priv->drm,
5948 5949
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5950 5951 5952 5953 5954 5955
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
5956
				    old_wm->sagv_wm0.min_ddb_alloc,
5957 5958 5959 5960
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5961 5962
				    new_wm->trans_wm.min_ddb_alloc,
				    new_wm->sagv_wm0.min_ddb_alloc);
5963 5964 5965 5966
		}
	}
}

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
6011
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

6027
static int
6028
skl_compute_wm(struct intel_atomic_state *state)
6029
{
6030
	struct intel_crtc *crtc;
6031
	struct intel_crtc_state *new_crtc_state;
6032 6033
	int ret, i;

6034 6035
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
		ret = skl_build_pipe_wm(state, crtc);
6036 6037
		if (ret)
			return ret;
6038 6039
	}

6040 6041 6042 6043
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

6044 6045 6046
	ret = intel_compute_sagv_mask(state);
	if (ret)
		return ret;
6047

6048 6049 6050 6051 6052
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
6053
	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
6054 6055 6056 6057 6058
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

6059
	skl_print_wm_changes(state);
6060

6061 6062 6063
	return 0;
}

6064
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6065 6066 6067 6068 6069
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
6070
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

6082
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6083
{
6084
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6085
	struct ilk_wm_maximums max;
6086
	struct intel_wm_config config = {};
6087
	struct ilk_wm_values results = {};
6088
	enum intel_ddb_partitioning partitioning;
6089

6090
	ilk_compute_wm_config(dev_priv, &config);
6091

6092 6093
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6094 6095

	/* 5/6 split only in single pipe config on IVB+ */
6096
	if (INTEL_GEN(dev_priv) >= 7 &&
6097
	    config.num_pipes_active == 1 && config.sprites_enabled) {
6098 6099
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6100

6101
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6102
	} else {
6103
		best_lp_wm = &lp_wm_1_2;
6104 6105
	}

6106
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6107
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6108

6109
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6110

6111
	ilk_write_wm_values(dev_priv, &results);
6112 6113
}

6114
static void ilk_initial_watermarks(struct intel_atomic_state *state,
6115
				   struct intel_crtc *crtc)
6116
{
6117 6118 6119
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6120

6121
	mutex_lock(&dev_priv->wm.wm_mutex);
6122
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6123 6124 6125
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
6126

6127
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6128
				    struct intel_crtc *crtc)
6129
{
6130 6131 6132
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6133 6134 6135

	if (!crtc_state->wm.need_postvbl_update)
		return;
6136

6137
	mutex_lock(&dev_priv->wm.wm_mutex);
6138 6139
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
6140
	mutex_unlock(&dev_priv->wm.wm_mutex);
6141 6142
}

6143
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6144
{
6145
	level->plane_en = val & PLANE_WM_EN;
6146
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6147 6148 6149
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
6150 6151
}

6152
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6153
			      struct skl_pipe_wm *out)
6154
{
6155 6156
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
6157 6158
	int level, max_level;
	enum plane_id plane_id;
6159
	u32 val;
6160

6161
	max_level = ilk_wm_max_level(dev_priv);
6162

6163
	for_each_plane_id_on_crtc(crtc, plane_id) {
6164
		struct skl_plane_wm *wm = &out->planes[plane_id];
6165

6166
		for (level = 0; level <= max_level; level++) {
6167
			if (plane_id != PLANE_CURSOR)
6168
				val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
6169
			else
6170
				val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
6171

6172
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6173 6174
		}

6175 6176 6177
		if (INTEL_GEN(dev_priv) >= 12)
			wm->sagv_wm0 = wm->wm[0];

6178
		if (plane_id != PLANE_CURSOR)
6179
			val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
6180
		else
6181
			val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
6182 6183

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6184 6185 6186
	}
}

6187
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6188
{
6189 6190
	struct intel_dbuf_state *dbuf_state =
		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
6191
	struct intel_crtc *crtc;
6192

6193
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6194 6195 6196 6197
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
6198

6199
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6200
		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228

		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));

		for_each_plane_id_on_crtc(crtc, plane_id) {
			struct skl_ddb_entry *ddb_y =
				&crtc_state->wm.skl.plane_ddb_y[plane_id];
			struct skl_ddb_entry *ddb_uv =
				&crtc_state->wm.skl.plane_ddb_uv[plane_id];

			skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
						   plane_id, ddb_y, ddb_uv);

			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv);
		}

		dbuf_state->slices[pipe] =
			skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes);

		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);

		crtc_state->wm.skl.ddb = dbuf_state->ddb[pipe];

		drm_dbg_kms(&dev_priv->drm,
			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
			    crtc->base.base.id, crtc->base.name,
			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes);
6229
	}
6230 6231

	dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
6232 6233
}

6234
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6235
{
6236
	struct drm_device *dev = crtc->base.dev;
6237
	struct drm_i915_private *dev_priv = to_i915(dev);
6238
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6239 6240
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6241
	enum pipe pipe = crtc->pipe;
6242

6243
	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
6244

6245 6246
	memset(active, 0, sizeof(*active));

6247
	active->pipe_enabled = crtc->active;
6248 6249

	if (active->pipe_enabled) {
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6263
		int level, max_level = ilk_wm_max_level(dev_priv);
6264 6265 6266 6267 6268 6269 6270 6271 6272

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6273

6274
	crtc->wm.active.ilk = *active;
6275 6276
}

6277 6278 6279 6280 6281
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6282 6283 6284
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6285
	u32 tmp;
6286

6287
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6288 6289 6290 6291 6292
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

6293
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6294 6295 6296 6297 6298 6299 6300
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

6301
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6302 6303 6304 6305 6306 6307
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6308 6309 6310 6311
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6312
	u32 tmp;
6313 6314

	for_each_pipe(dev_priv, pipe) {
6315
		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
6316

6317
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6318
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6319
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6320
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6321
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6322
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6323
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6324 6325 6326
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

6327
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
6328
	wm->sr.plane = _FW_WM(tmp, SR);
6329 6330 6331
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6332

6333
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
6334 6335 6336
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6337

6338
	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
6339 6340 6341
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
6342
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
6343 6344
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6345

6346
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
6347 6348
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6349

6350
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
6351 6352
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6353

6354
		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6355
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6356 6357 6358 6359 6360 6361 6362 6363 6364
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6365
	} else {
6366
		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
6367 6368
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6369

6370
		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
6371
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6372 6373 6374 6375 6376 6377
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6378 6379 6380 6381 6382 6383
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6384
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6385 6386 6387 6388 6389 6390
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

6391
	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
6392

6393
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6453 6454 6455 6456 6457 6458
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6459 6460
	}

6461 6462 6463 6464 6465 6466 6467 6468
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6489
		if (plane_state->uapi.visible)
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6527
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6528 6529
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6530
	struct intel_crtc *crtc;
6531 6532 6533 6534
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

6535
	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6536 6537 6538
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6539
		vlv_punit_get(dev_priv);
6540

6541
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6542 6543 6544
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6545 6546 6547 6548 6549 6550 6551 6552 6553
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6554
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6555 6556 6557 6558 6559
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6560 6561 6562
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6563 6564 6565 6566 6567 6568
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6569

6570
		vlv_punit_put(dev_priv);
6571 6572
	}

6573
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6589
			struct g4x_pipe_wm *raw =
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6611
		crtc_state->wm.vlv.intermediate = *active;
6612

6613 6614 6615 6616 6617 6618 6619
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6620
	}
6621

6622 6623 6624
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6625 6626
}

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6647
		if (plane_state->uapi.visible)
6648 6649 6650
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6651
			struct g4x_pipe_wm *raw =
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6676 6677 6678 6679 6680 6681
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
6682 6683 6684
	intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
	intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
	intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
6685 6686 6687 6688 6689 6690 6691

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6692
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6693
{
6694
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6695
	struct intel_crtc *crtc;
6696

6697 6698
	ilk_init_lp_watermarks(dev_priv);

6699
	for_each_intel_crtc(&dev_priv->drm, crtc)
6700 6701
		ilk_pipe_wm_get_hw_state(crtc);

6702 6703 6704
	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
6705

6706
	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
6707
	if (INTEL_GEN(dev_priv) >= 7) {
6708 6709
		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
6710
	}
6711

6712
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6713
		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6714
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6715
	else if (IS_IVYBRIDGE(dev_priv))
6716
		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6717
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6718 6719

	hw->enable_fbc_wm =
6720
		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6721 6722
}

6723 6724
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6725
 * @crtc: the #intel_crtc on which to compute the WM
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6756
void intel_update_watermarks(struct intel_crtc *crtc)
6757
{
6758
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6759 6760

	if (dev_priv->display.update_wm)
6761
		dev_priv->display.update_wm(crtc);
6762 6763
}

6764 6765 6766 6767
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6768 6769 6770
	if (!HAS_IPC(dev_priv))
		return;

6771
	val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
6772 6773 6774 6775 6776 6777

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

6778
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
6779 6780
}

6781 6782 6783 6784 6785 6786 6787
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
6788 6789 6790
	if (IS_KABYLAKE(dev_priv) ||
	    IS_COFFEELAKE(dev_priv) ||
	    IS_COMETLAKE(dev_priv))
6791 6792 6793 6794 6795
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6796 6797 6798 6799 6800
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6801
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6802

6803 6804 6805
	intel_enable_ipc(dev_priv);
}

6806 6807 6808 6809 6810 6811 6812
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6813
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6814
}
6815

6816
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6817
{
6818
	enum pipe pipe;
6819

6820
	for_each_pipe(dev_priv, pipe) {
6821 6822
		intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
			   intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
6823
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6824

6825 6826
		intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
		intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
6827 6828 6829
	}
}

6830
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6831
{
6832
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6833

6834 6835 6836 6837 6838 6839 6840
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6841

6842
	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
6843 6844
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6845
	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
6846
		   VFMUNIT_CLOCK_GATE_DISABLE);
6847

6848 6849 6850 6851 6852 6853 6854
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
6855 6856
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6857 6858
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6859 6860
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
		   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
6861
		    DISP_FBC_WM_DIS));
6862 6863

	/*
6864 6865 6866 6867 6868
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6869
	 */
6870 6871
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6872 6873
		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
6874
			   ILK_FBCQ_DIS);
6875 6876
		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6877 6878
			   ILK_DPARB_GATE);
	}
6879

6880
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
6881

6882 6883
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6884
		   ILK_ELPIN_409_SELECT);
6885

6886
	g4x_disable_trickle_feed(dev_priv);
6887

6888
	ibx_init_clock_gating(dev_priv);
6889 6890
}

6891
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6892
{
6893 6894
	enum pipe pipe;
	u32 val;
6895

6896 6897 6898 6899 6900
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6901
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6902 6903
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6904
	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
6905 6906 6907 6908 6909
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
6910
		val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
6911 6912 6913 6914 6915 6916
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6917
		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
6918 6919 6920
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
6921
		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
6922 6923
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6924 6925
}

6926
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6927
{
6928
	u32 tmp;
6929

6930
	tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
6931
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6932 6933 6934
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6935 6936
}

6937
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6938
{
6939
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6940

6941
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
6942

6943 6944
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6945
		   ILK_ELPIN_409_SELECT);
6946

6947 6948
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
6949 6950
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6951

6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6964
	 */
6965
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
6966 6967
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6968

6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
6980 6981
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
6982
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6983 6984
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
6985
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6986 6987
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
		   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
6988 6989
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6990

6991
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
6992

6993
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
6994

6995
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
6996 6997
}

6998
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
6999
{
7000 7001 7002
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
7003
	 */
7004
	if (HAS_PCH_LPT_LP(dev_priv))
7005 7006
		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
			   intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7007
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7008 7009

	/* WADPOClockGatingDisable:hsw */
7010 7011
	intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
7012
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7013 7014
}

7015
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7016
{
7017
	if (HAS_PCH_LPT_LP(dev_priv)) {
7018
		u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
7019 7020

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7021
		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
7022 7023 7024
	}
}

7025 7026 7027 7028 7029
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
7030
	u32 val;
7031 7032

	/* WaTempDisableDOPClkGating:bdw */
7033 7034
	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7035

7036
	val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7037 7038 7039
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7040
	intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
7041 7042 7043 7044 7045

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
7046
	intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
7047
	udelay(1);
7048
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
7049 7050
}

O
Oscar Mateo 已提交
7051 7052
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
7053
	/* Wa_1409120013:icl,ehl */
7054
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7055 7056
		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);

O
Oscar Mateo 已提交
7057
	/* This is not an Wa. Enable to reduce Sampler power */
7058 7059
	intel_uncore_write(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   intel_uncore_read(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7060

7061 7062 7063
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
7064 7065
}

7066
static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
7067
{
7068
	/* Wa_1409120013:tgl,rkl,adl_s,dg1 */
7069
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
7070
			   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7071

7072
	/* Wa_1409825376:tgl (pre-prod)*/
7073
	if (IS_TGL_DISP_STEPPING(dev_priv, STEP_A0, STEP_B1))
7074
		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7075
			   TGL_VRH_GATING_DIS);
M
Matt Atwood 已提交
7076

7077
	/* Wa_14011059788:tgl,rkl,adl_s,dg1 */
M
Matt Atwood 已提交
7078 7079
	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
			 0, DFR_DISABLE);
7080 7081
}

7082 7083
static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
{
7084 7085
	gen12lp_init_clock_gating(dev_priv);

7086 7087
	/* Wa_1409836686:dg1[a0] */
	if (IS_DG1_REVID(dev_priv, DG1_REVID_A0, DG1_REVID_A0))
7088
		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
7089 7090 7091
			   DPT_GATING_DIS);
}

7092 7093 7094 7095 7096
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

7097
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7098
	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
7099
		   CNP_PWM_CGE_GATING_DISABLE);
7100 7101
}

7102
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7103
{
7104
	u32 val;
7105 7106
	cnp_init_clock_gating(dev_priv);

7107
	/* This is not an Wa. Enable for better image quality */
7108
	intel_uncore_write(&dev_priv->uncore, _3D_CHICKEN3,
7109 7110
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

7111
	/* WaEnableChickenDCPR:cnl */
7112 7113
	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7114

7115 7116 7117 7118
	/*
	 * WaFbcWakeMemOn:cnl
	 * Display WA #0859: cnl
	 */
7119
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7120 7121
		   DISP_FBC_MEMORY_WAKE);

7122
	val = intel_uncore_read(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE);
7123 7124
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
7125
	intel_uncore_write(&dev_priv->uncore, SLICE_UNIT_LEVEL_CLKGATE, val);
7126

R
Rodrigo Vivi 已提交
7127
	/* Wa_2201832410:cnl */
7128
	val = intel_uncore_read(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE);
R
Rodrigo Vivi 已提交
7129
	val |= GWUNIT_CLKGATE_DIS;
7130
	intel_uncore_write(&dev_priv->uncore, SUBSLICE_UNIT_LEVEL_CLKGATE, val);
R
Rodrigo Vivi 已提交
7131

7132
	/* WaDisableVFclkgate:cnl */
7133
	/* WaVFUnitClockGatingDisable:cnl */
7134
	val = intel_uncore_read(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE);
7135
	val |= VFUNIT_CLKGATE_DIS;
7136
	intel_uncore_write(&dev_priv->uncore, UNSLICE_UNIT_LEVEL_CLKGATE, val);
7137 7138
}

7139 7140 7141 7142 7143
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

7144
	/* WAC6entrylatency:cfl */
7145
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7146 7147
		   FBC_LLC_FULLY_OPEN);

7148 7149 7150 7151
	/*
	 * WaFbcTurnOffFbcWatermark:cfl
	 * Display WA #0562: cfl
	 */
7152
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7153 7154
		   DISP_FBC_WM_DIS);

7155 7156 7157 7158
	/*
	 * WaFbcNukeOnHostModify:cfl
	 * Display WA #0873: cfl
	 */
7159
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7160 7161 7162
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

7163
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7164
{
7165
	gen9_init_clock_gating(dev_priv);
7166

7167
	/* WAC6entrylatency:kbl */
7168
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7169 7170
		   FBC_LLC_FULLY_OPEN);

7171
	/* WaDisableSDEUnitClockGating:kbl */
7172
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7173
		intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7174
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7175 7176

	/* WaDisableGamClockGating:kbl */
7177
	if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7178
		intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7179
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7180

7181 7182 7183 7184
	/*
	 * WaFbcTurnOffFbcWatermark:kbl
	 * Display WA #0562: kbl
	 */
7185
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7186 7187
		   DISP_FBC_WM_DIS);

7188 7189 7190 7191
	/*
	 * WaFbcNukeOnHostModify:kbl
	 * Display WA #0873: kbl
	 */
7192
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7193
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7194 7195
}

7196
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7197
{
7198
	gen9_init_clock_gating(dev_priv);
7199

7200
	/* WaDisableDopClockGating:skl */
7201
	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
7202 7203
		   ~GEN7_DOP_CLOCK_GATE_ENABLE);

7204
	/* WAC6entrylatency:skl */
7205
	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
7206
		   FBC_LLC_FULLY_OPEN);
7207

7208 7209 7210 7211
	/*
	 * WaFbcTurnOffFbcWatermark:skl
	 * Display WA #0562: skl
	 */
7212
	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
7213 7214
		   DISP_FBC_WM_DIS);

7215 7216 7217 7218
	/*
	 * WaFbcNukeOnHostModify:skl
	 * Display WA #0873: skl
	 */
7219
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7220
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7221

7222 7223 7224 7225
	/*
	 * WaFbcHighMemBwCorruptionAvoidance:skl
	 * Display WA #0883: skl
	 */
7226
	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
7227
		   ILK_DPFC_DISABLE_DUMMY0);
7228 7229
}

7230
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7231
{
7232
	enum pipe pipe;
B
Ben Widawsky 已提交
7233

7234
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7235 7236
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7237 7238
		   HSW_FBCQ_DIS);

7239
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7240
	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7241

7242
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7243 7244
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7245

7246
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7247
	for_each_pipe(dev_priv, pipe) {
7248 7249
		intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
7250
			   BDW_DPRS_MASK_VBLANK_SRD);
7251
	}
7252

7253 7254
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
7255 7256
	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7257
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7258

7259
	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7260
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7261 7262

	/* WaDisableSDEUnitClockGating:bdw */
7263
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7264
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7265

7266 7267
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7268

7269
	/* WaKVMNotificationOnConfigChange:bdw */
7270
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
7271 7272
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7273
	lpt_init_clock_gating(dev_priv);
7274 7275 7276 7277 7278 7279

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
7280 7281
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7282 7283
}

7284
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7285
{
7286
	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7287 7288
	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
7289 7290
		   HSW_FBCQ_DIS);

7291
	/* This is required by WaCatErrorRejectionIssue:hsw */
7292 7293
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7294
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7295

7296
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7297
	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7298

7299
	lpt_init_clock_gating(dev_priv);
7300 7301
}

7302
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7303
{
7304
	u32 snpcr;
7305

7306
	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7307

7308
	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
7309 7310
	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
7311 7312
		   ILK_FBCQ_DIS);

7313
	/* WaDisableBackToBackFlipFix:ivb */
7314
	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7315 7316 7317
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7318
	if (IS_IVB_GT1(dev_priv))
7319
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7320
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7321 7322
	else {
		/* must write both registers */
7323
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7324
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7325
		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
7326
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7327
	}
7328

7329
	/*
7330
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7331
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7332
	 */
7333
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7334
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7335

7336
	/* This is required by WaCatErrorRejectionIssue:ivb */
7337 7338
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7339 7340
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7341
	g4x_disable_trickle_feed(dev_priv);
7342

7343
	snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
7344 7345
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
7346
	intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
7347

7348
	if (!HAS_PCH_NOP(dev_priv))
7349
		cpt_init_clock_gating(dev_priv);
7350

7351
	gen6_check_mch_setup(dev_priv);
7352 7353
}

7354
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7355
{
7356
	/* WaDisableBackToBackFlipFix:vlv */
7357
	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
7358 7359 7360
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7361
	/* WaDisableDopClockGating:vlv */
7362
	intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
7363 7364
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7365
	/* This is required by WaCatErrorRejectionIssue:vlv */
7366 7367
	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7368 7369
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7370
	/*
7371
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7372
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7373
	 */
7374
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
7375
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7376

7377 7378 7379
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7380 7381
	intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
		   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7382

7383
	/*
7384
	 * WaDisableVLVClockGating_VBIIssue:vlv
7385 7386 7387
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7388
	intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7389 7390
}

7391
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7392
{
7393 7394
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
7395 7396
	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
7397
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7398 7399

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7400
	intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
7401
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7402 7403

	/* WaDisableCSUnitClockGating:chv */
7404
	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
7405
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7406 7407

	/* WaDisableSDEUnitClockGating:chv */
7408
	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
7409
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7410

7411 7412 7413 7414 7415 7416
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7417 7418
}

7419
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7420
{
7421
	u32 dspclk_gate;
7422

7423 7424
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7425 7426
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
7427
	intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
7428 7429 7430
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7431
	if (IS_GM45(dev_priv))
7432
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7433
	intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
7434

7435
	g4x_disable_trickle_feed(dev_priv);
7436 7437
}

7438
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7439
{
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7450 7451
}

7452
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7453
{
7454
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7455 7456 7457 7458
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
7459 7460
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7461
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7462 7463
}

7464
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7465
{
7466
	u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
7467 7468 7469

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
7470
	intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
7471

7472
	if (IS_PINEVIEW(dev_priv))
7473
		intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7474 7475

	/* IIR "flip pending" means done if this bit is set */
7476
	intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7477 7478

	/* interrupts should cause a wake up from C3 */
7479
	intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7480 7481

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7482
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7483

7484
	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
7485
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7486 7487
}

7488
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7489
{
7490
	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7491 7492

	/* interrupts should cause a wake up from C3 */
7493
	intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7494
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7495

7496
	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7497
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7498 7499 7500 7501 7502 7503 7504 7505

	/*
	 * Have FBC ignore 3D activity since we use software
	 * render tracking, and otherwise a pure 3D workload
	 * (even if it just renders a single frame and then does
	 * abosultely nothing) would not allow FBC to recompress
	 * until a 2D blit occurs.
	 */
7506
	intel_uncore_write(&dev_priv->uncore, SCPD0,
7507
		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7508 7509
}

7510
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7511
{
7512
	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
7513 7514
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7515 7516
}

7517
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7518
{
7519
	dev_priv->display.init_clock_gating(dev_priv);
7520 7521
}

7522
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7523
{
7524 7525
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7526 7527
}

7528
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7529
{
7530 7531
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7545 7546 7547
	if (IS_DG1(dev_priv))
		dev_priv->display.init_clock_gating = dg1_init_clock_gating;
	else if (IS_GEN(dev_priv, 12))
7548
		dev_priv->display.init_clock_gating = gen12lp_init_clock_gating;
7549
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7550
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7551
	else if (IS_CANNONLAKE(dev_priv))
7552
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7553
	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7554
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7555
	else if (IS_SKYLAKE(dev_priv))
7556
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7557
	else if (IS_KABYLAKE(dev_priv))
7558
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7559
	else if (IS_BROXTON(dev_priv))
7560
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7561 7562
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7563
	else if (IS_BROADWELL(dev_priv))
7564
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7565
	else if (IS_CHERRYVIEW(dev_priv))
7566
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7567
	else if (IS_HASWELL(dev_priv))
7568
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7569
	else if (IS_IVYBRIDGE(dev_priv))
7570
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7571
	else if (IS_VALLEYVIEW(dev_priv))
7572
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7573
	else if (IS_GEN(dev_priv, 6))
7574
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7575
	else if (IS_GEN(dev_priv, 5))
7576
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7577 7578
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7579
	else if (IS_I965GM(dev_priv))
7580
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7581
	else if (IS_I965G(dev_priv))
7582
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7583
	else if (IS_GEN(dev_priv, 3))
7584 7585 7586
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7587
	else if (IS_GEN(dev_priv, 2))
7588 7589 7590 7591 7592 7593 7594
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7595
/* Set up chip specific power management-related functions */
7596
void intel_init_pm(struct drm_i915_private *dev_priv)
7597
{
7598
	/* For cxsr */
7599
	if (IS_PINEVIEW(dev_priv))
7600
		pnv_get_mem_freq(dev_priv);
7601
	else if (IS_GEN(dev_priv, 5))
7602
		ilk_get_mem_freq(dev_priv);
7603

7604 7605 7606
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7607
	/* For FIFO watermark updates */
7608
	if (INTEL_GEN(dev_priv) >= 9) {
7609
		skl_setup_wm_latency(dev_priv);
7610
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7611
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7612
		ilk_setup_wm_latency(dev_priv);
7613

7614
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7615
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7616
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7617
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7618
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7619 7620 7621 7622 7623 7624
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7625
		} else {
7626 7627 7628
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7629
		}
7630
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7631
		vlv_setup_wm_latency(dev_priv);
7632
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7633
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7634
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7635
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7636
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7637 7638 7639 7640 7641 7642
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7643
	} else if (IS_PINEVIEW(dev_priv)) {
7644
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7645 7646 7647
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7648 7649
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7650 7651 7652 7653 7654
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7655
			intel_set_memory_cxsr(dev_priv, false);
7656 7657
			dev_priv->display.update_wm = NULL;
		} else
7658
			dev_priv->display.update_wm = pnv_update_wm;
7659
	} else if (IS_GEN(dev_priv, 4)) {
7660
		dev_priv->display.update_wm = i965_update_wm;
7661
	} else if (IS_GEN(dev_priv, 3)) {
7662 7663
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7664
	} else if (IS_GEN(dev_priv, 2)) {
7665
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7666
			dev_priv->display.update_wm = i845_update_wm;
7667
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7668 7669
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7670
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7671 7672
		}
	} else {
7673 7674
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7675 7676 7677
	}
}

7678
void intel_pm_setup(struct drm_i915_private *dev_priv)
7679
{
7680 7681
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7682
}
7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731

static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return NULL;

	return &dbuf_state->base;
}

static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
				     struct intel_global_state *state)
{
	kfree(state);
}

static const struct intel_global_state_funcs intel_dbuf_funcs = {
	.atomic_duplicate_state = intel_dbuf_duplicate_state,
	.atomic_destroy_state = intel_dbuf_destroy_state,
};

struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *dbuf_state;

	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
	if (IS_ERR(dbuf_state))
		return ERR_CAST(dbuf_state);

	return to_intel_dbuf_state(dbuf_state);
}

int intel_dbuf_init(struct drm_i915_private *dev_priv)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return -ENOMEM;

	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
				     &dbuf_state->base, &intel_dbuf_funcs);

	return 0;
}
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768

void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				old_dbuf_state->enabled_slices |
				new_dbuf_state->enabled_slices);
}

void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				new_dbuf_state->enabled_slices);
}